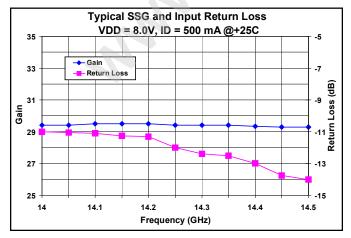
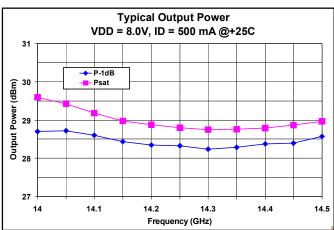
TBQ-3017 14.0 to 14.5 GHz MMIC Power Amplifier for VSAT Applications

Features

- ♦ +27 dB Output Power at 1 dB Gain Compression
- ♦ 24 dB Minimum Small Signal Gain
- ♦ 6 dB Typical Noise Figure
- ♦ Thermally Efficient Copper-Tungsten Package

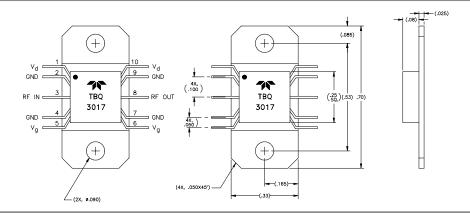

Product Description

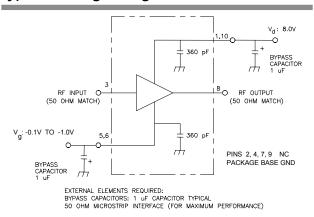

The TBO-3017 is a three stage PHEMT GaAs MMIC amplifier that is ideally suited for Ku-Band VSAT applications. The amplifier provides a minimum of 24 dB gain and delivers 27 dBm output power from 14.0 to 14.5 GHz. The small package provides a simple, cost effective solution to customized designs. The base material is gold plated copper-tungsten to provide excellent thermal dissipation.

Electrical Specifications (T = + 25°C, $V_d = 8V$, $V_a = -0.1V$ to -1.5V, $I_d = 500$ mA)

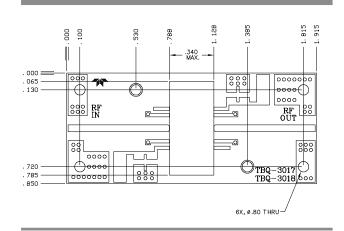
Parameter	Symbol	Min	Max	Typical	Units
Operating Frequency	F _{OP}	14	14.5	ı	GHz
Gain	S ₂₁	24	-	29	dB
Input VSWR	VSWR	-	-	3:1	-
Output VSWR	VSWR	-	-	3:1	-
Output Power at 1 dB Gain Compression*	P _{-1dB}	27	-	28	dBm
Third Order Intercept	IP3	-	-	35	dBm
Noise Figure	NF	-	-	6	dB
Gain Variation Over Operating Frequency	△ S ₂₁	-	-	2	dB
Gain Variation at any Frequency over Temperature	△ S ₂₁	-	-	-0.05	dB/ °C

^{*} $I_d = 500$ mA, typical

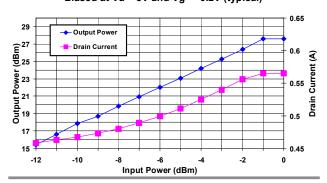



www.teledynewireless.com email: amplifiers@teledyne.com

14 to 14.5 GHz GaAs MMIC Power Amplifier for VSAT Applications


Package Outline

Typical Biasing Configuration


Evaluation Board

Notes

- Dual bias supply required.
- DC supply sequencing or protection circuitry not included. See Amplifier Biasing Procedure
- 3. A 360 pF DC supply line decoupling capacitor is included on both $\rm V_d$ and $\rm V_d$ lines. (See typical biasing configuration shown above).
- The last fixture or circuit should incorporate additional bypass capacity (25ufd) on the drain and gate bias terminals to prevent oscillations caused by feedback signals.
- 5. Supply (drain and gate) wire/leads should be as short as possible.
- Close placement of external components to the power amplifier is essential for stability purposes.
- TET recommends the unit be soldered to DC and RF ground for best results.
- 8. Pin numbers indicated on outline drawing are for user information only. Units are not labeled with pin numbers.
- MASK drawing for circuit board available on the Teledyne Wireless website at www.teledynewireless.com.

Power Transfer Curve and Drain Current at 14.25 GHz Biased at Vd = 8V and Vg = -0.2V (typical)

Teledyne reserves the right to make changes without further notice to any specification herein. "Typical" parameters can and do vary.

www.teledynewireless.com email: amplifiers@teledyne.com