TC35670FTG Bluetooth™ LE + NFC-Tag IC

Overview Document

Bluetooth SMART and Bluetooth are registered trademarks of Bluetooth SIG. ARM is a registered trademark of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

1

Contents

Con	tents	2
1.	General Description	3
1.1.	Product Concept	
1.2.	Features	4
2.	Pin Function	5
2.1.	Pin Assignment (Top View) ver.QFN40-0606-0.50	5
2.2.	Pin Function Descriptions	6
2.3.	GPIO function list	
2.4.	Power Supply Pins	13
3.	System Configuration Example	14
3.1.	In case of Host CPU connection	
4.	Package outline	
4.1.	Outline dimensional drawing	15
REST	RICTIONS ON PRODUCT USE	

TC35670FTG BLE+NFC-Tag IC Overview

1. General Description

1.1. Product Concept

TC35670FTG is IC based on a 2.4GHz wireless-communications BluetoothTM V4.0 Low Energy standard, and has a built-in non-volatile memory (EEPROM) which can be accessed by communication based on NFC Forum Type 3 Tag standard. It includes an RF analog part and a Baseband digital part., provides BluetoothTM HCI (Host Control Interface) function and LE (Low Energy) function specified in BluetoothTM Specifications.

Connected with an external host processor, TC35670 easily realizes low energy consumption applications. And also it realizes standalone type low energy consumption applicatios with its internal ADC & GPIO functions.

The internal EEPROM is access-available through the wireless and wire interfaces and has 1520 byte general user areas. Access attribute can be set.

Data can be translated from the wireless interface to the wire interface or from the wire interface to the wireless interface by temporarily storing received data in RAM (Through mode function).

TC35670FTG BLE+NFC-Tag IC Overview

1.2. Features

- ➤ Compliant with BluetoothTM Ver4.0 Low Energy
 - ♦ Built-in Bluetooth[™]Baseband digital core, Built-in Bluetooth[™]RF analog core
 - ♦ Built-in ARM7TDMI-STM core
 - Achieve low power consumption by a two-step switching of the operating clock frequency 1MHz / 13MHz
 - ♦ On-chip ProgramMask-ROM (320 KB)
 - ♦ On-chip Work RAM for Bluetooth[™] Baseband process (96 KB), On-chip RAM for application program storing (32 KB)
 - ♦ Supports patch program loader function
 - ♦ Suports sleep, deep sleep function
 - Built in EEPROM
 - Wireless interface based on NFC Forum Type 3 Tag standard
 Automatic detection of transmission speed 212kbps and 424kbps
 - ♦ I2C wire interface: Maximum operational clock 400kHz
 - ♦ General user area: 1520 bytes
 - High reliable writing function: Protecting against defective data
 - ♦ Writing time: 5ms(typ.)
 - Ibit error automatic correction, CRC automatic addition, and error detection of read data
 - Security: Mutual authentication with Message authentication code (MAC)
 Writing prohibition, reading/writing, reading after authentication, writing after authentication, writing with MAC
 - External authentication is stored for the wireless interface and wire interface separately.
- General Purpose IO (8 pins)
 - ♦ General SPI / I2C / UART interface (1ch/General Purpose IO)
 - Bluetooth host CPU interface:UART (2.4 kbps to 921.6 kbps/General Purpose IO)
 - ♦ Built-in general purpose ADC : GPADC 2ch(General Purpose IO/ADC1ch for internal VDD detection)
 - ♦ Wake-up function from sleep (1ch/general Purpose IO)
 - ♦ PWM interface(1ch,/General Purpose IO)
- Base Clock Input
 - ♦ Built-in oscillator for external 26MHz resonator connection
 - ♦ Sleep clock(32.768kHz) External input supported/ Internal oscillation SiOSC
- Built-in DCDC converter and LDO
 - Wide range of input power supply voltage supported (1.8 to 3.6 V, Low voltage detection for battery, DCDC start from 1.9V)
- > Package: QFN40-0606-0.50 [40pin,6x6mm2, 0.5mmpitch, 0.9mm thickness]

The NFC-F wireless interface is referred to the below standards.

- > JIS X 6319-4: Specification of implementation for integrated circuit (s) cards Part 4: High speed proximity cards
- ISO/IEC 18092: Information technology Telecommunications and information exchange between systems Near Field Communication - Interface and Protocol-1(NFCIP-1)
- NFC Forum: <u>http://www.nfc-forum.org/</u>

Pin Function 2.

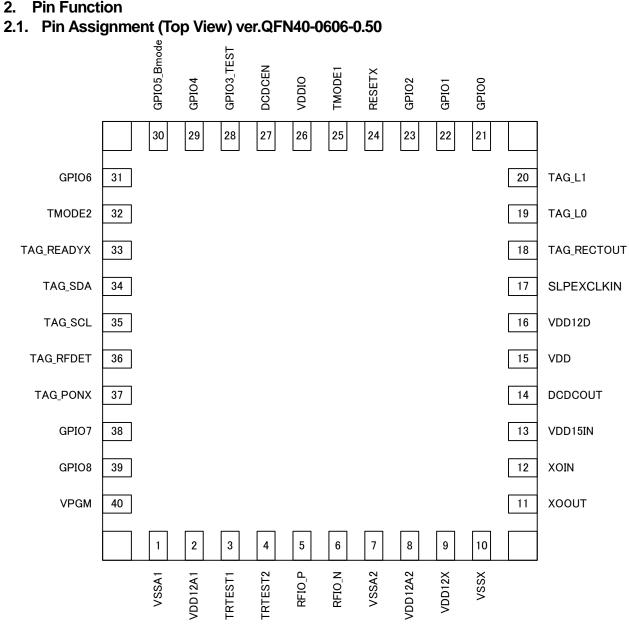


Figure 2-1 Pin Assignment (Top View)

2.2. Pin Function Descriptions

Table 2-1 shows attributes, input/output states for operating modes and descriptions for pin functions. Table 2-4 shows descriptions about power supply pins.

Dia agree	Dia N	A 44	Constitution	Europie aleganic fier	
Pin name	Pin No	Attribute	Condition	Functional description	
		VDD	Default		
		category	(during reset)		
		Direction			
		Туре			
				Reset interface	
RESETX	24	VDDIO	IN	Hardware reset input pin.	
		IN		System initialization signal whose low level	
		Schmitt		indicates reset.	
				Mode setting	
DCDCEN	27	VDD	IN	DCDC enable pin.	
		IN		High level: internal DCDC is ON	
		Schmitt		Low level: internal DCDC is OFF	
				Reference clock interface	
XOIN	12	VDD12X	IN	Oscillator (OSC) or TCXO input pin for Baseband	
		IN		and RF reference clock (26 MHz) pin.	
		OSC		OSC's frequency accuracy should be less than or	
				equal to 50 ppm. A feedback resistor is built in	
				between XOIN pin and XOUT pin.	
				This pin needs to be connected with the	
				appropriate resistor and capacitor for the	
				connected X'tal.	
XOOUT	11	VDD12X	OUT	Oscillator output for Baseband / RF reference	
		OUT		clock (26 MHz) pin	
		OSC		A feedback resistor is built in between XOIN pin	
				and XOUT pin.	
				This pin needs to be connected with the	
				appropriate resistor and capacitor for the	
				connected X'tal.	
SLPEXCLKIN	17	VDDIO	IN	Sleep clock input pin (32.768 kHz) for low power	
		IN/OUT		consumption operation.	
		OSC		Frequency accuracy of sleep clock should be	
				less than or equal to 500 ppm.	
				When external clock is not supplied, this pin	
				needs to be connected to the GND.	
				RF interface	
RFIO_P	5	VDD12A	Hi-z	RF differential I/O pin.	
RFIO_N	6	IN/OUT		Connection example of RF signal is at	
		Analog		accompanying sheet which describes System	
				Configuration Example.	
			<u> </u>	TAG interface	
IAG Intellace					

Table 2-1 Pin Functions

Pin name	Pin No	Attribute	Condition	Functional description
		VDD	Default	
		category	(during reset)	
		Direction		
		Туре		
TAG_L0	19	-	Hi-z	TAG antenna coil connection pin
TAG_L1	20	IN/OUT		Connect antenna coil.
		Analog		
TAG_READYX	33	VDDIO	OUT	TAG through mode ready output pin
		OUT		When data of Through mode is received through
				the wireless interface, this pin outputs low level.
				If response data is received through the wire
				interface, the level turns to the high level.
TAG_SDA	34	VDDIO	IN	I2C data pin for wire interface of TAG.
		IN/OUT		This pin can act as SDA terminal in I2C.
		Schmitt		If this function is not used, implement open
				process to this pin.
TAG_SCL	35	VDDIO	OUT	I2C clock pin for wire interface of TAG.
		OUT	Hi-z	
		Schmitt		If this function is not used, this pin should be open
				circuit.
TAG_RFDET	36	VDD	Pull-down	TAG carrier detection pin.
		OUT	OUT	If no carrier, this pin becomes low level by
				Pull-down resistor.
				If wireless carrier is detected, this pin is cut off
				from Pull-down resistor and becomes high level.
TAG_PONX	37	VDDIO	IN	TAG power supply control and wire interface
		IN		enable pin
		Schmitt		In case of turning on power supply switch and
				using the wire interface, input low level.
				High level leads to turning off the power supply
				switch and disabling the wire interface.
				General purpose I/O port
GPIO0	21	VDDIO	Hi-z	General purpose I/O pin 0.
		IN/OUT		During a reset and right after the reset release,
		PullReg		this pin is set input-disabled.
		Schmitt		After the reset release, the firmware configures
				the pin function as wake up pin or general
				purpose IO pin.
				For sleep and deep sleep modes, after settings
				by firmware and external input, wake up function
				can be selected, which activates the chip.
				When not used, this pin should be pulled down to
				the ground with 100 kohm resistor.

Pin name	Pin No	Attribute	Condition	Functional description
		VDD	Default	_
		category	(during reset)	
		Direction		
		Туре		
GPIO1	22	VDDIO	Analog	ADC input/General purpose I/O pin1
		IN/OUT		During a reset, this pin is set input-disabled. After
		PullReg		the reset is released, this pin is input-disabled
		Schmitt		with pull-up resistor off. After the reset release,
				the firmware configures pull-up or pull-down
				resistors, and the pin can function as general
				ADC input pin AIN0 or general purpose IO pin.
				When not used, this pin should be pulled down to
				the ground.
GPIO2	23	VDDIO	Analog	ADC input/General purpose I/O pin 2
		IN/OUT		During a reset, this pin is set input-disabled. After
		PullReg		the reset is released, this pin is input-disabled
		Schmitt		with pull-up resistor off.
				After the reset, the firmware configures pull-up or
				pull-down resistors, and the pin can function as
				general ADC input pin AIN1, PWM output pin
				PWM0, or general purpose IO pin.
				When not used, this pin should be pulled down to
				the ground.
GPIO3_TEST	28	VDDIO	Pull-up	General purpose I/O pin 3.
		IN/OUT		During a reset, this pin is set input-disabled with
		PullReg		pull-up resistor on. Low input for this pin during
		Schmitt		power up sequence after reset enables Toshiba
				test mode. Please keep this pin high during
				power up sequence after reset.
				After reset, firmware configures pull-up or
				pull-down resistors, and the pin can function as
				UART data transfer pin UART1-TX (UART2-TX),
				SPI data output DOUT, or general purpose IO
				pin.
				When not used, this pin should be opened.

Pin name	Pin No	Attribute	Condition	Functional description
rinname	TITINO	VDD	Default	
			(during reset)	
		category Direction	(duning resel)	
		Туре		
GPIO4	29	VDDIO	Hi-z	General purpose I/O pin 4.
		IN/OUT		During a reset, the pull up resistor is on, and the
		PullReg		input is disabled. After reset, firmware configures
		Schmitt		the pin.When not used, this pin should be
				opened.
				GPIO pins can be assigned to UART I/Fs,
				serial memory I/Fs or some other functions
				by firmware in ROM or command from
				external Host. Please refer to Table 2-2,
				2-3.
GPIO5_Bmode	30	VDDIO	Pull-up	General purpose I/O pin 5.
		IN/OUT		During a reset, the pull up resistor is on, and the
		PullReg		input is disabled. High input during power up
		Schmitt		sequence after reset enables host program
				download mode (for more information, please
				refer to the firmware document). After normal
				power up sequence with low input during reset
				release after reset, firmware configures pull-up or
				pull-down resistors and the pin can function as
				UART request to send pin UART1-RTSX, UART
				data transfer pin UART1-TX (UART2-TX), SPI
				chip select output pin SCS, or general purpose IO
				pin.
				When not used, this pin should be opened.
GPIO6	31	VDDIO	Hi-z	General purpose I/O pin 6~8.
GPIO7	38	IN/OUT		During a reset, the pull up resistor is on, and the
GPIO8	39	PullReg		input is disabled. After reset, firmware configures
		Schmitt		the pin.
				When not used, this pin should be opened.
				GPIO pins can be assigned to UART I/Fs,
				serial memory I/Fs or some other functions
				by firmware in ROM or command from
				external Host. Please refer to Table 2-2,
				2-3.
		<u>.</u>	•	IC test interface
TMODE1	25	VDDIO	-	Test mode setting pins
TMODE2	32	IN		These pins are used for IC manufacturing test
		Schmitt		and need to be connected to GND when
				assembled on a board.
		1	1	

Pin name	Pin No	Attribute	Condition	Functional description
		VDD	Default	
		category	(during reset)	
		Direction		
		Туре		
TRTEST1	3	VDD12A	-	Analog test pins.
TRTEST2	4	IN/OUT		These pins are used for IC manufacturing test
		Analog		and need to be connected to GND when
				assembled on a board.
TAG_RECTOUT	18	-	Hi-z	TAG rectification circuit output pin
		OUT		Output from the rectification circuit can be
		Analog		monitored.
				If this function is not used, this pin should be open
				circuit.

2.3. GPIO function list

GPIO pins can be assigned to UART I/Fs, serial memory I/Fs or some other functions by firmware in ROM or command from external Hosts. Table 2-2 shows available functions for each GPIO pin, and Table 2-3 examples of GPIO function settings.

Pin	Analog input	Function 1	Function 2	Function 3	Function 4	Function 5
GPIO0	-	GPIO1	WakeUp	-	-	-
		Digital I/O	Input			
GPIO1	ADC0Input	GPIO	-	-	-	-
		Digital I/O				
GPIO2	ADC1Input	GPIO	PWM0	-	-	-
		Digital I/O	Output			
GPIO3_TEST	-	GPIO	UART1-TX	-	SPI-DOUT	UART2-TX
		Digital I/O	Output		Output	Output
GPIO4	-	GPIO	UART1-RX	-	SPI-DIN	UART2-RX
		Digital I/O	Input		Input	Input
GPIO5_Bmode	-	GPIO	UART1-RTSX	UART2-TX	SPI-SCS	UART1-TX
		Digital I/O	Output	Output	Output	Output
GPIO6	-	GPIO	UART1-CTSX	UART2-RX	SPI-SCLK	UART1-RX
		Digital I/O	Input	Input	Output	Input
GPIO7	-	GPIO	-	I2C-SCL	SPI-DOUT	-
		Digital I/O		Output	Output	
GPIO8	-	GPIO	-	I2C-SDA	SPI-DIN	-
		Digital I/O		I/O	Input	

Table 2-2 Available functions for GPIO

				1
Pin name	Basic	UART1+UART2+I2C	SPI+I2C	UART+SPI
	example	Example	Example	Example
GPIO0	WakeUp	WakeUp	WakeUp	WakeUp
GPIO1	ADC-AIN0	ADC-AIN0	ADC-AIN0	ADC-AIN0
GPIO2	ADC-AIN1 /	ADC-AIN1 /	ADC-AIN1 /	ADC-AIN1 /
	PWM0	PWM0	PWM0	PWM0
GPIO3_TEST	UART1-TX	UART1-TX	SPI-DOUT	UART1-TX
GPIO4	UART1-RX	UART1-RX	SPI-DIN	UART1-RX
GPIO5_Bmode	UART1-RTSX	UART2-TX	SPI-SCS	SPI-SCS
GPIO6	UART1-CTSX	UART2-RX	SPI-SCLK	SPI-SCLK
GPIO7	I2C-SCL	I2C-SCL	I2C-SCL	SPI-DOUT
GPIO8	I2C-SDA	I2C-SDA	I2C-SDA	SPI-DIN

Table 2-3 GPIO function list (example)

There are other functions than the above examples. About the detail of the other functions, refer to the firmware specification.

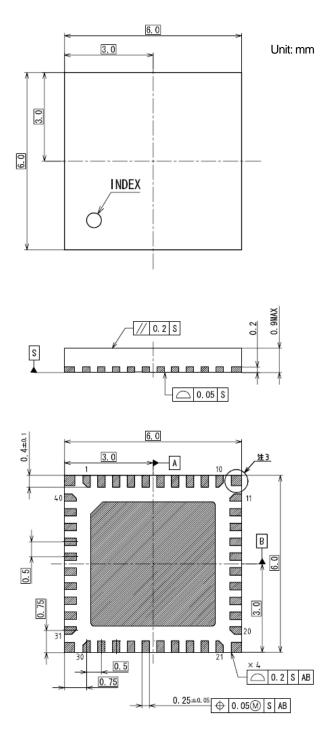
2.4. Power Supply Pins

Table 2-4 shows the attributes and descriptions of power supply pins for normal operations.

Details available under NDA.

Table 2-4 Power supply pins

3. System Configuration Example


This figure shows an example of system configuration.

3.1. In case of Host CPU connection

Details available under NDA.

Figure 3-1 Example of TC35670FTG system configuration (HOST CPU connetion)

- 4. Package outline
- 4.1. Outline dimensional drawing

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR
 PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING
 WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT
 LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY
 AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION,
 INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF
 INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

End of document.