# TOSHIBA MOS MEMORY PRODUCT

1,048,576 WORDS × 1 BIT DYNAMIC RAM SILICON GATE CMOS

### TC511001P/J/Z-85, TC511001P/J/Z-10 TC511001P/J/Z-12

### DESCRIPTION

The TC511001P/J/Z is the new generation dynamic RAM organized 1,048,576 words by 1 bit. The TC511001P/J/Z utilizes TOSHIBA's CMOS Silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user. Multiplexed address inputs permit the TC511001P/J/Z to be packaged in a standard 18 pin plastic DIP, 26/20 pin plastic SOJ and 20/19 pin plastic ZIP. The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment. System oriented features include single power supply of  $5V\pm10\%$  tolerance, direct interfacing capability with high performance logic families such as Schottky TTL. The special feature of TC511001P/J/Z is nibble mode, allowing the user to serially access 4 bits of data at a high data rate. "Test Mode" function is implemented from Revision C.

### FEATURES

- 1,048,576 words by 1 bit organization
- Fast access time and cycle time

|                   |                                     | TC511001P | /J/Z-85 | -10-12 |
|-------------------|-------------------------------------|-----------|---------|--------|
| t <sub>RAC</sub>  | RAS Access Time                     | 85ns      | 100ns   | 120ns  |
| t <sub>AA</sub>   | Column Address<br>Access Time       | 45ns      | 50ns    | 60ns   |
| <sup>t</sup> CAC  | $\overline{\text{CAS}}$ Access Time | 30ns      | 35ns    | 40ns   |
| tRC               | Cycle Time                          | 165ns     | 190ns   | 220ns  |
| t <sub>NCAC</sub> | Nibble Mode<br>Access Time          | 20ns      | 20ns    | 25ns   |
| tNC               | Nibble Mode<br>Cycle Time           | 40ns      | 40ns    | 50ns   |

- Single power supply of 5V±10% with a built-in  $\,$  - Package  $V_{\rm BB}$  generator

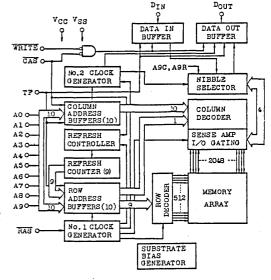
### PIN CONNECTION (TOP VIEW)

| Plastic DIP                                                                                                                                                                                           | Plastic SOJ    | Plastic 2                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|
| D <sub>IN</sub> (1 18 JV <sub>SS</sub><br>WRITE (2 17 D <sub>OUT</sub><br>RAS (3 16 JCAS<br>TF (4 15 JA9<br>A0 (5 14 JA8<br>A1 (6 15 JA7<br>A2 (7 12 JA6<br>A3 (8 11 JA5<br>V <sub>CC</sub> (9 10 JA4 | DIN 010-26 VSS | A9 1 20<br>Dout 31 4 4<br>Din 5 1 6 4<br>RAS 7 6 9<br>N.C. 9 6<br>A0 111 12 A<br>A2 113 12 A |
|                                                                                                                                                                                                       |                | 14 A                                                                                         |

| PIN | NAMES |
|-----|-------|
|     |       |

| LJ                    |  |  |  |
|-----------------------|--|--|--|
| Address Inputs        |  |  |  |
| Column Address Strobe |  |  |  |
| Data In               |  |  |  |
| Data Out              |  |  |  |
| Row Address Strobe    |  |  |  |
| Read/Write Input      |  |  |  |
| Power (+5V)           |  |  |  |
| Ground                |  |  |  |
| Test Function         |  |  |  |
| No Connection         |  |  |  |
|                       |  |  |  |

| Pla                                          | stic     | ZIP                                   |
|----------------------------------------------|----------|---------------------------------------|
| A9<br>Dout<br>D <sub>IN</sub><br>RAS<br>N.C. | 13151719 | CAS<br>V <sub>SS</sub><br>WRITE<br>TF |
| A0                                           | 11 12    | Al                                    |
| A2                                           | 13 14    | A3                                    |
| vcc                                          | 15 16    | A4                                    |
| A5                                           | 17 18    | AG                                    |
| A7                                           | 19 20    | AB                                    |
|                                              |          |                                       |


Low Power:

385mW MAX. Operating (TC511001P/J/Z-85) 330mW MAX. Operating (TC511001P/J/Z-10) 275mW MAX. Operating (TC511001P/J/Z-12) 5.5mW MAX. Standby

- Output unlatched at cycle end allows two-dimensional chip selection
- Common I/O capability using "EARLY WRITE" operation
- Read-Modify-Write, CAS before RAS refresh, RAS-only refresh, Hidden refresh, Nibble Mode and Test Mode capability
- All inputs and output TTL compatible
- 512 refresh cycles/8ms

Package Plastic DIP: TC511001P Plastic SOJ: TC511001J Plastic ZIP: TC511001Z

BLOCK DIAGRAM



— A-105 —

### ABSOLUTE MAXIMUM RATINGS

| LTEM                         | SYMBOL  | RATING         | UNITS  | NOTES |
|------------------------------|---------|----------------|--------|-------|
| Input Voltage                | VIN     | -1 ~ 7         | V      | 1     |
| Test Mode Input Voltage      | VIN(TF) | $-1 \sim 10.5$ | V      | 1     |
| Output Temperature           | VOUT    | -1 ~ 7         | V      | 1     |
| Power Supply Voltage         | VCC     | -1 ~ 7         | V      | 1     |
| Operating Temperature        | TOPR    | 0~70           | °C     | 1     |
| Storage Temperature          | TSTG    | -55 ~ 150      | °C     | 1     |
| Soldering Temperature • Time | TSOLDER | 260 • 10       | °C•sec | 1     |
| Power Dissipation            | PD      | 600            | mW     | 1     |
| Short Circuit Output Current | IOUT    | 50             | mA     | 1     |

RECOMMENDED DC OPERATING CONDITIONS (Ta=0  $\sim 70^{\circ}$  C)

| SYMBOL  | PARAMETER                      | MIN.    | TYP. | MAX. | UNIT | NOTES |
|---------|--------------------------------|---------|------|------|------|-------|
| VCC     | Supply Voltage                 | 4.5     | 5.0  | 5.5  | v    | 2     |
| VIH     | Input High Voltage             | 2.4     | -    | 6.5  | v    | 2     |
| VIL     | Input Low Voltage              | -1.0    | -    | 0.8  | v    | 2     |
| VIH(TF) | Test Enable Input High Voltage | VCC+4.5 | -    | 10.5 | V    | 2     |

### DC ELECTRICAL CHARACTERISTICS ( $v_{CC}$ =5±10%, Ta=0 $\sim$ 70°C)

| SYMBOL           | PARAMETER                                                      | MIN.                                  | MAX | UNITS | NOTES    |     |
|------------------|----------------------------------------------------------------|---------------------------------------|-----|-------|----------|-----|
|                  | OPERATING CURRENT                                              | TC511001P/J/Z-85                      | - 1 | 70    | mA       |     |
| I <sub>CC1</sub> | Average Power Supply Operating Current                         | TC511001P/J/Z-10                      | -   | 60    | mA       | 3,4 |
| 001              | (RAS, CAS, Address Cycling: tRC=tRC MIN.)                      | TC511001E/J/Z-12                      | -   | 50    | mA       |     |
|                  | STANDBY CURRENT                                                |                                       |     |       |          |     |
| I <sub>CC2</sub> | Power Supply Standby Current                                   |                                       | -   | 2     | mA       | 3   |
|                  | $(\overline{RAS}=\overline{CAS}=V_{IH})$                       |                                       |     |       |          |     |
|                  | RAS ONLY REFRESH CURRENT                                       | -                                     | 70  | mA    |          |     |
| ICC3             | Average Power Supply Current, RAS Only Mode                    | TC511001E/J/Z-10                      | -   | 60    | mA       | 3   |
|                  | (RAS Cycling, CAS=VIH: tRC=tRC MIN.)                           | TC511001E/J/Z-12                      | -   | 50    | mA       |     |
|                  | NIBBLE MODE CURRENT                                            | TC511001P/J/Z-85                      | -   | 50    | mA       | 3,4 |
| ICC4             | Average Power Supply Current, Nibble Mode                      | TC 511001E/J/Z-10                     |     | 40    | mA       | 3,4 |
|                  | (RAS=VIL, CAS Cycling: t <sub>NC</sub> =t <sub>NC</sub> MIN.)  | TC511001P/J/Z-12                      | -   | .30   | mA       |     |
|                  | STANDBY CURRENT                                                |                                       |     |       |          |     |
| ICC5             | C5 Power Supply Standby Current                                |                                       |     |       | mA       |     |
|                  | $(\overline{RAS} = \overline{CAS} = V_{CC} - 0.2V)$            | · · · · · · · · · · · · · · · · · · · |     |       |          |     |
|                  | CAS BEFORE RAS REFERSH CURRENT                                 | TC511001E/J/Z-85                      |     | 70    | mA       |     |
| ICC6             | Average Power Supply Current, CAS Before                       | TC511001E/J/Z-10                      |     | 60    | mA       | 3   |
|                  | RAS Mode (RAS, CAS Cycling: tRC=tRC MIN.)                      | TC511001P/J/Z-12                      |     | 50    | mA       |     |
| _                | INPUT LEAKAGE CURRENT (any input except TF)                    |                                       |     |       |          | .   |
| II(L)            | Input Leakage Current, any input $(0V \le V_{IN} \le 6.5V)$ ,  |                                       | -10 | 10    | μA       |     |
|                  | All Other Pins Not Under Test=OV)                              |                                       |     |       |          |     |
| IITF(L)          | INPUT LEAKAGE CURRENT (only TF)                                |                                       | -10 | 10    | μA       |     |
|                  | $(0V \leq V_{IN(TF)} \leq 0.8V$ , All Other Pins Not Under Tes | st = 0V                               |     |       |          |     |
|                  | OUTPUT LEAKAGE CURRENT                                         |                                       | -10 | 10    | μA       |     |
|                  |                                                                |                                       |     |       |          |     |
| ITF              | TEST FUNCTION INPUT CURRENT                                    |                                       |     |       | mA       |     |
|                  | $(V_{CC}+4.5V \leq V_{IN(TF)} \leq 10.5V)$                     |                                       |     |       | <u> </u> |     |
| VOH              | OUTPUT LEVEL                                                   |                                       |     |       | v        |     |
| .01              | Output "H" Level Voltage (IOUT=-5mA)                           | 2.4                                   | -   | v     |          |     |
| VOL              | OUTPUT LEVEL                                                   |                                       |     |       |          |     |
| - UL             | Output "L" Level Voltage (IOUT=4.2mA)                          |                                       |     | 0.4   | v        | _   |

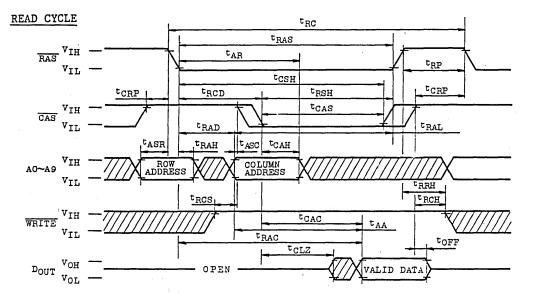
### ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{CC}=5V\pm10\%, Ta=0 \sim 70^{\circ}C)$  (Notes 5, 6, 7)

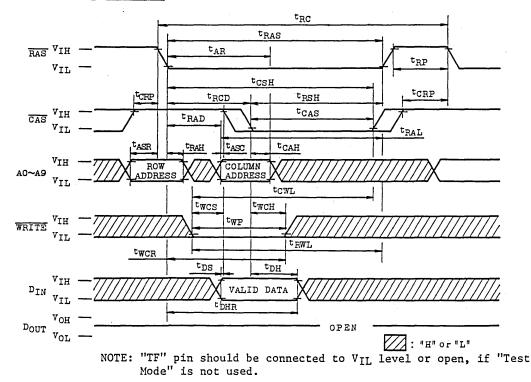
|                   | ·                                             |         | (100 -     | /V ± ± 0. | ~, 1a=0     |         | ) (Notes    | 2, 4 | , .,  |
|-------------------|-----------------------------------------------|---------|------------|-----------|-------------|---------|-------------|------|-------|
| SYMBOL            | PARAMETER                                     | TC 5110 | 012/J/Z-85 | TC 5110   | 001E/J/Z-10 | TC 5110 | 001E/J/Z-12 | IINT | NOTE  |
| STIBUL            | FARATEIER                                     | MIN.    | MAX.       | MIN.      | MAX.        | MIN.    | MAX.        | UNIT | NOTES |
| tRC               | Random Read or Write Cycle Time               | 165     | -          | 190       | -           | 220     | -           | ns   |       |
| tRWC              | Read-Write Cycle Time                         | 190     |            | 220       | -           | 255     | -           | ns   |       |
| <sup>t</sup> NC   | Nibble Mode Cycle Time                        | 40      | -          | 40        | -           | 50      | -           | ns   |       |
| t <sub>NRMW</sub> | Nibble Mode Read-Write Cycle Time             | 65      | -          | 65        | -           | 80      | -           | ns   |       |
| tRAC              | Access Time from RAS                          | -       | 85         | -         | 100         | -       | 1.20        | ns   | 8,13  |
| <sup>t</sup> CAC  | Access Time from $\overline{CAS}$             | -       | 30         | -         | 35          | -       | 40          | ns   | 8,13  |
| t <sub>AA</sub>   | Access Time from Column Address               | -       | 45         | -         | 50          | -       | 60          | ns   | 8,14  |
| <sup>t</sup> NCAC | Nibble Mode Access Time                       | -       | 20         | -         | 20          | -       | 25          | ns   | 8     |
| tCLZ              | CAS to Output in Low-Z                        | -5      | -          | 5         | -           | 5       | -           | ns   | 8     |
| t <sub>OFF</sub>  | Output Buffer Turn-Off Delay                  | 0       | 30         | 0         | 30          | 0       | 35          | ns   | 9     |
| tT                | Transition Time (Rise and Fall)               | 3       | 50         | 3         | 50          | 3       | 50          | ns   | 7     |
| t <sub>RP</sub>   | RAS Precharge Time                            | 70      | -          | 80        | -           | 90      | <b>-</b> ·  | ns   |       |
| tRAS              | RAS Pulse Width                               | 85      | 10,000     | 100       | 10,000      | 120     | 10,000      | ns   | 1     |
| t <sub>RSH</sub>  | RAS Hold Time                                 | 30      | -          | 35        | -           | 40      |             | ns   |       |
| tCSH              | CAS Hold Time                                 | 85      | -          | 100       | -           | 120     | -           | ns   |       |
| tCAS              | CAS Pulse Width                               | 30      | 10,000     | 35        | 10,000      | .40     | 10,000      | ns   |       |
| t <sub>RCD</sub>  | RAS to CAS Delay Time                         | 25      | 55         | 25        | 65          | 25      | 80          | ns   | 13    |
| t <sub>RAD</sub>  | RAS to Column Address Delay Time              | 20      | 40         | 20        | 50          | 20      | 60          | ns   | 14    |
| tCRP              | CAS to RAS Precharge Time                     | 10      | -          | 10        |             | 10      | -           | ns   |       |
| tCPN              | CAS Precharge Time                            | 15      | -          | 15        | -           | 20      | -           | ns   |       |
| tASR              | Row Address Set-Up Time                       | 0       | -          | 0         | -           | 0       | -           | ns   |       |
| t <sub>RAH</sub>  | Row Address Hold Time                         | 15      | -          | 15        | -           | 15      |             | ns   |       |
| t <sub>ASC</sub>  | Column Address Set-Up Time                    | 0       | _          | 0         | -           | 0       | -           | ns   |       |
| <sup>t</sup> CAH  | Column Address Hold Time                      | 20      | -          | 20        | -           | 25      | -           | ns   |       |
| t <sub>AR</sub>   | Column Address Hold Time<br>referenced to RAS | 65      | -          | 75        | -           | 90      | -           | ns   |       |
| t <sub>RAL</sub>  | Column Address to RAS Lead Time               | 45      | -          | 50        | -           | 60      | -           | ns   |       |
| tRCS              | Read Command Set-Up Time                      | 0       | -          | 0         | -           | 0       | -           | ns   |       |
| t <sub>RCH</sub>  | Read Command Hold Time<br>referenced to CAS   | 0       | -          | 0         | -           | 0       | -           | ns   | 10    |
| t <sub>RRH</sub>  | Read Command Hold Time<br>referenced to RAS   | 0       | -          | 0         | -           | 0       | -           | ns   | 10    |
| tWCH              | Write Command Hold Time                       | 20      | -          | 20        | -           | 25      | -           | ns   |       |
| <sup>L</sup> WCR  | Write Command Hold Time<br>referenced to RAS  | 65      | -          | 75        | -           | 90      | -           | ns   |       |

### ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Continued)

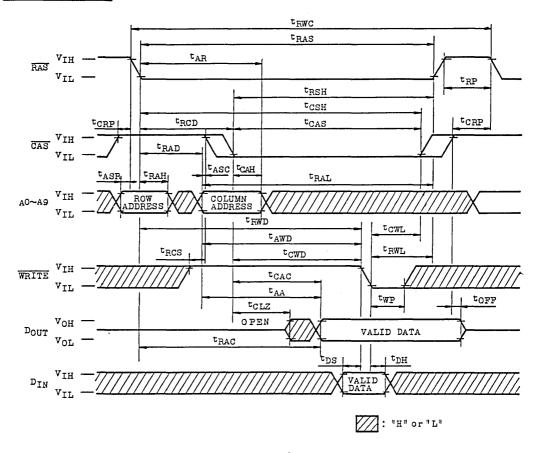
| ·                 |                                                                                              | TC 511001 | P/J/Z-85 | TC 511001 | P/J/Z-10     | TC 51 1001 | P/J/7-12 |       |       |
|-------------------|----------------------------------------------------------------------------------------------|-----------|----------|-----------|--------------|------------|----------|-------|-------|
| SYMBOL            | PARAMETER                                                                                    | MIN.      | MAX.     | MIN.      | MAX.         | MIN.       | MAX.     | UNITS | NOTES |
| twp               | Write Command Pulse Width                                                                    | 20        |          | 20        | -            | 25         | -        | ns    |       |
| t <sub>RWL</sub>  | Write Command to RAS Lead Time                                                               | 20        | _        | 25        | -            | 30         | -        | ns    |       |
| tCWL              | Write Command to CAS Lead Time                                                               | 20        |          | 25        | -            | 30         | -        | ns    |       |
| tDS               | Data-In Set-Up Time                                                                          | 0         | -        | 0         | <del>.</del> | 0          | -        | ns    | 11    |
| t <sub>DH</sub>   | Data-In Hold Time                                                                            | 20        | -        | 20        | -            | 25         | -        | ns    | 11    |
| tDHR              | Data-In Hold Time<br>reference to RAS                                                        | 65        | -        | 75        |              | 90         | -        | ns    |       |
| t <sub>REF</sub>  | Refresh Period                                                                               | -         | 8        | -         | 8            | -          | 8        | ms    |       |
| twcs              | Write Command Set-Up Time                                                                    | 0         |          | 0         | -            | 0          |          | ns    | 12    |
| t <sub>CWD</sub>  | CAS to WRITE Delay Time                                                                      | 30        | -        | 35        | -            | 40         | -        | ns    | 12    |
| t <sub>RWD</sub>  | RAS to WRITE Delay Time                                                                      | 85        | -        | 100       | -            | 120        |          | ns    | 12    |
| tAWD              | Column Address to WRITE<br>Delay Time                                                        | 45        | -        | 50        | -            | 60         | -        | ns    | 12    |
| tCSR              | CAS Set-Up Time<br>(CAS before RAS)                                                          | 10        | · _      | 10        | -            | 10         | _ '      | ns    |       |
| <sup>t</sup> CHR  | $\overline{\text{CAS}}$ Hold Time ( $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ ) | 30        | -        | 30        | -            | 30         | -        | ns    |       |
| t <sub>RPC</sub>  | RAS Precharge to CAS<br>Active Time                                                          | 0         |          | 0         | -<br>•,      | 0          |          | ns    |       |
| <sup>t</sup> CPT  | CAS Precharge Time<br>(CAS before RAS Counter Test)                                          | 50        | <u>-</u> | 50        | -            | 60         | -        | ns    |       |
| t <sub>NCAS</sub> | Nibble Mode Pulse Width                                                                      | 20        | -        | 20        | -            | 25         | -        | ns    |       |
| tNCP              | Nibble Mode CAS Precharge Time                                                               | 10        | -        | 10        | -            | 15         |          | ns    |       |
| t <sub>NRSH</sub> | Nibble Mode RAS Hold Time                                                                    | 20        | -        | 20        | -            | 25         |          | ns    |       |
|                   | Nibble Mode CAS to WRITE<br>Delay Time                                                       | 20        | -        | 20        | -            | 25         | ÷        | ns    |       |
| t <sub>NRWL</sub> | Nibble Mode WRITE Command<br>to RAS Lead Time                                                | 20        | -        | 20        | -            | 25         | -        | ns    |       |
| <sup>t</sup> NCWL | Nibble Mode WRITE Command<br>to CAS Lead Time                                                | 20        | -        | 20        | -            | 25         | -        | ns    |       |
| t <sub>TES</sub>  | Test Mode Enable Set-Up Time<br>referenced to RAS                                            | 0         | -        | 0         | - :          | 0          | -        | ns    |       |
| t <sub>TEH</sub>  | Test Mode Enable Hold Time<br>referenced to RAS                                              | 0         |          | 0         | -            | · 0        | -        | ns    |       |


### CAPACITANCE ( $V_{CC}=5V\pm10\%$ , f=1MHz, Ta=0 $\sim$ 70°C)

| SYMBOL         | PARAMETER                                          | MIN. | MAX. | UNIT |
|----------------|----------------------------------------------------|------|------|------|
| CII            | Input Capacitance (A0 $\sim$ A9, D <sub>IN</sub> ) | -    | 5    | pF   |
| CI2            | Input Capacitance (RAS, CAS, WRITE, TF)            | -    | 7    | pF   |
| C <sub>0</sub> | Output Capacitance (DOUT)                          | -    | 7    | pF   |


NOTES:

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2. All voltage are referenced to VSS.
- 3. I<sub>CC1</sub>, I<sub>CC3</sub>, I<sub>CC4</sub>, I<sub>CC6</sub> depend on cycle rate.
- 4. I<sub>CC1</sub>, I<sub>CC4</sub> depend on output loading. Specified values are obtained with the output open.
- 5. An initial pause of 200µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 CAS Before RAS initialization cycles instead of 8 RAS cycles are required.
- 6. AC measurements assume  $t_T=5ns$ .
- 7.  $V_{IH}(min.)$  and  $V_{IL}(max.)$  are reference levels for measuring timing of input signals. Also, transition times are measured between  $V_{IH}$  and  $V_{IL.'}$
- 8. Measured with a load equivalent to 2 TTL loads and 100pF.
- topp(max.) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 10. Either tRCH or tRRH must be satisfied for a read cycle.
- 11. These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in read-write cycles.
- 12.  $t_{WCS}$ ,  $t_{RWD}$ ,  $t_{CWD}$  and  $t_{AWD}$  are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If  $t_{WCS} \ge t_{WCS}$  (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If  $t_{RWD} \ge t_{RWD}$ (min.),  $t_{CWD} \ge t_{CWD}$ (min.) and  $t_{AWD} \ge t_{AWD}$ (min.), the cycle is a read-write cycle and the data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 13. Operation within the t<sub>RCD</sub>(max.) limit insures that t<sub>RAC</sub>(max.) can be met. t<sub>RCD</sub>(max.) is specified as a reference point only: If t<sub>RCD</sub> is greater than the specified t<sub>RCD</sub>(max.) limit, then access time is controlled by t<sub>CAC</sub>.
- 14. Operation within the  $t_{RAD}(max.)$  limit insures that  $t_{RAC}(max.)$  can be met.  $t_{RAD}(max.)$  is specified as a reference point only: If  $t_{RAD}$  is greater than the specified  $t_{RAD}(max.)$  limit, then access time is controlled by  $t_{AA}$ .

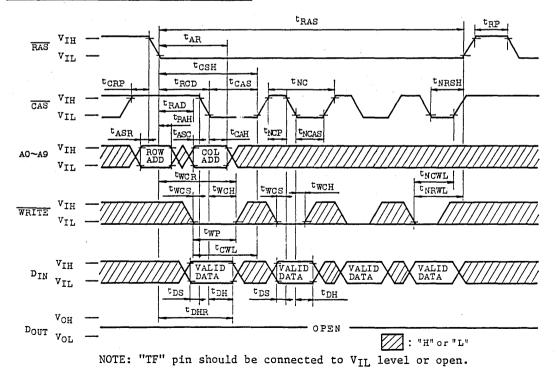

TIMING WAVEFORMS



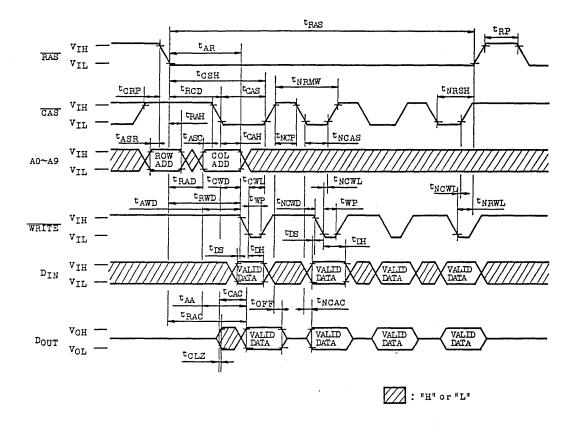
### WRITE CYCLE (EARLY WRITE)

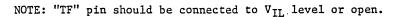


#### READ-WRITE CYCLE

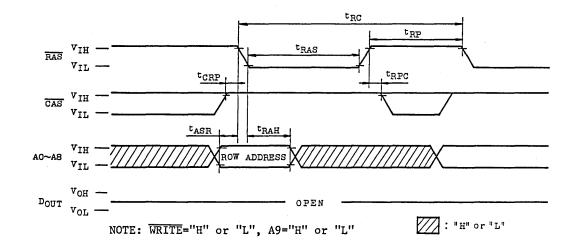



NOTE: "TF" pin should be connected to  ${\tt V}_{\rm IL}$  level or open, if "Test Mode" is not used.

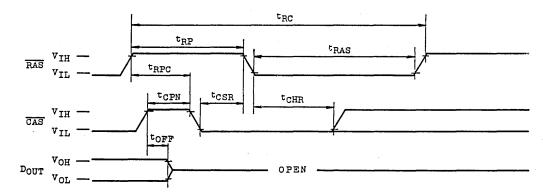

#### NIBBLE MODE READ CYCLE




#### NIBBLE MODE WRITE CYCLE (EARLY WRITE)



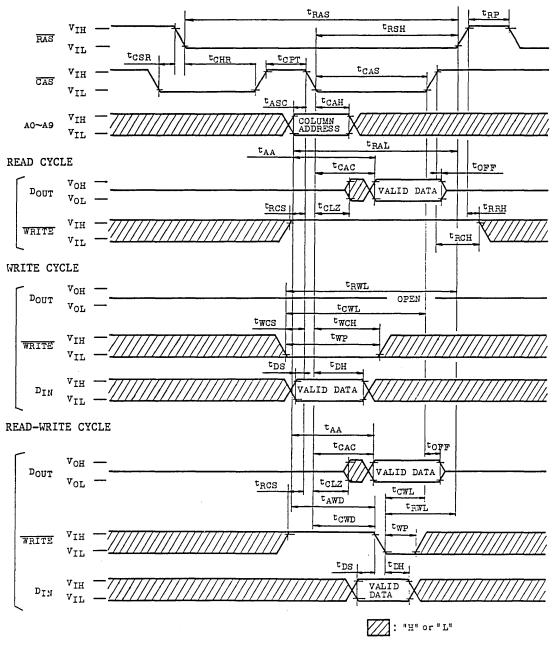

#### NIBBLE MODE READ-WRITE CYCLE





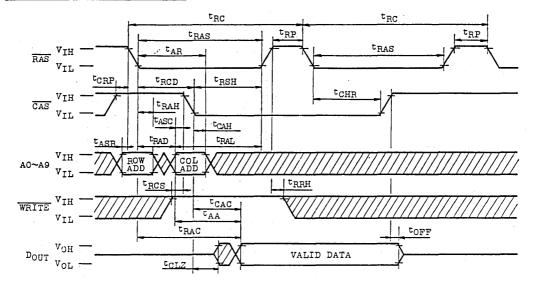

#### RAS ONLY REFRESH CYCLE



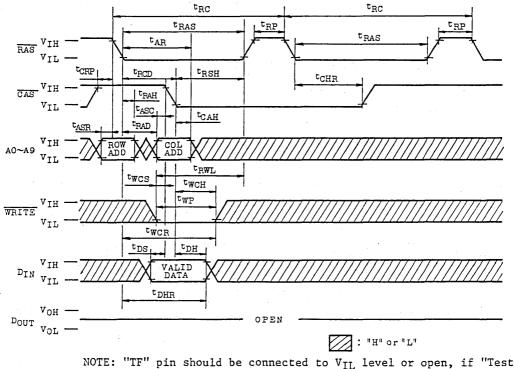

### CAS BEFORE RAS REFRESH CYCLE



NOTE:  $\overline{WRITE}$ ="H" or "L", A0  $\sim$  A9="H" or "L"


"TF" pin should be connected to  $\ensuremath{\text{V}_{\text{IL}}}$  level or open, if "Test Mode" is not used.

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE




NOTE: "TF" pin should be connected to  $\mathtt{V}_{\mathrm{IL}}$  level or open, if "Test Mode" is not used.

#### HIDDEN REFRESH CYCLE (READ)



### HIDDEN REFRESH CYCLE (WRITE)



Mode" is not used.

#### APPLICATION INFORMATION

#### ADDRESSING

The 20 address bits required to decode 1 of the 1,048,576 cell locations within the TC511001P/J/Z are multiplexed onto the 10 address inputs and latched into the onchip address latches by externally applying two negative going TTL-level clocks.

The first clock, the Row Address Strobe ( $\overline{RAS}$ ), latches the 10 row address bits into the chip. The second clock, the Column Address Strobe ( $\overline{CAS}$ ), subsequently latches the 10 column address bits into the chip. Each of these signals,  $\overline{RAS}$ , and  $\overline{CAS}$ , triggers a sequence of events which are controlled by different delayed internal clocks.

The two clock chains are linked together logically in such a way that the address multiplexing operation is done outside of the critical path timing sequence for read data access. The later events in the  $\overline{CAS}$  clock sequence are inhibited until the occurrence of a delayed signal derived from the  $\overline{RAS}$  clock chain. This "gated  $\overline{CAS}$ " feature allows the  $\overline{CAS}$  clock to be externally activated as soon as the Row Address Hold Time specification (t<sub>RAH</sub>) has been satisfied and the address inpute have been changed from Row address to Column address information.

#### DATA INPUT/OUTPUT

Data to be written into a selected cell is latched into an on-chip register by a combination of  $\overline{\text{WRITE}}$  and  $\overline{\text{CAS}}$  while  $\overline{\text{RAS}}$  is active. The later of the signals ( $\overline{\text{WRITE}}$ or  $\overline{\text{CAS}}$ ) to make its negative transition is the strobe for the Data  $\text{In}(D_{\text{IN}})$  register. This permits several options in the write cycle timing. In a write cycle, if the  $\overline{\text{WRITE}}$  input is brought low(active) prior to  $\overline{\text{CAS}}$ , the  $D_{\text{IN}}$  is strobed by  $\overline{\text{CAS}}$  and the set-up and hold times are referenced to  $\overline{\text{CAS}}$ . If the input data is not available at  $\overline{\text{CAS}}$  time or if it is desired that the cycle be a read-write cycle, the  $\overline{\text{WRITE}}$  signal will be delayed until after  $\overline{\text{CAS}}$  has made is negative transition. In this "delayed write cycle" the data input set-up and hold times are referenced to the negative edge of  $\overline{\text{WRITE}}$  rather than  $\overline{\text{CAS}}$ . (To illustrate this feature,  $D_{\text{IN}}$  is referenced to  $\overline{\text{WRITE}}$  in the timing diagrams depicting the read-write and nibble mode write cycles while the "early write" cycle diagram shows  $D_{\text{IN}}$  referenced to  $\overline{\text{CAS}}$ ).

Data is retrieved from the memory in a read cycle by maintaining  $\overline{\text{WRITE}}$  in the inactive or high state throughout the portion of the memory cycle in which  $\overline{\text{CAS}}$  is active(low). Data read from the selected cell will be avialable at the output within the specified access time.

#### DATA OUTPUT CONTROL

The normal condition of the Data Output  $(D_{OUT})$  of the TC511001P/J/Z is the high impedance (open circuit) state. This is to say, anytime  $\overline{CAS}$  is at a high level, the  $D_{OUT}$  pin will be floating. The only time the output will turn on and contain either a logic 0 or logic 1 is at access time during a read cycle. D<sub>OUT</sub> will remain valid from access time until  $\overline{CAS}$  is taken back to the inactive (high level) condition.

#### NIBBLE MODE

Nibble mode operation allows faster successive data operation on 4 bits. The first of 4 bits is accessed in the usual manner with read data coming out at  $t_{CAC}$  time. By keeping  $\overline{RAS}$  low,  $\overline{CAS}$  can be cycled up and then down, to read or write the next three pages at high data rate (faster than  $t_{CAC}$ ). Row and column addresses need only be supplied for the first access of the cycles. From then on, the falling edge of  $\overline{CAS}$  will activate the next bit. After four bits have been accessed, the next bit will be the same as the first bit accessed (wrap-around method).

(0, 0) - (0, 1) - (1, 0) - (1, 1) - (1, 1)

Address A9 determines the starting point of the circular 4 bits nibble. Row A9 and column A9 provide the two binary bits needed to select one of four bits. From then on, successive bits come out in a binary fashion;  $00 \rightarrow 01 \rightarrow 10 \rightarrow 11$  with A9 row being the least significant address.

A nibble cycle can be a read, write, or delayed write cycle. Any combinations of reads and writes or late writes will be allowed. In addition, the circular wraparound will continue for as long as  $\overline{RAS}$  is kept low.

#### RAS ONLY REFRESH


Refresh of the dynamic cell matrix is accomplished by performing a memory cycle at each of the 512 row address (A0  $\sim$  A8) within each 8 millisecond time interval. Although any normal memory cycle will perform the refresh operation, this function is most easily accomplished with "RAS-only" cycles.

### CAS BEFORE RAS REFRESH

 $\overline{CAS}$  before  $\overline{RAS}$  refreshing available on the TC511001P/J/Z offers an alternate refresh method. If  $\overline{CAS}$  is held on low for the specified period (t<sub>CSR</sub>) before  $\overline{RAS}$  goes to low, on chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh operation is performed, the refresh address counter is automatically incremented in perparation for the next  $\overline{CAS}$  before  $\overline{RAS}$  refresh operation.

#### HIDDEN REFRESH

An optional feature of the TC511001P/J/Z is that refresh cycles may be performed while maintaining valid data at the output pin. This referred to as Hidden Refresh. Hidden Refresh is performed by holding  $\overline{CAS}$  at  $V_{IL}$  and taking  $\overline{RAS}$  high and after a specified precharge period (t<sub>RP</sub>), executing a  $\overline{CAS}$  before  $\overline{RAS}$  refresh cycle. (see Figure below)

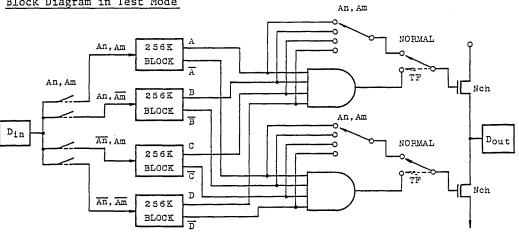


This feature allows a refresh cycle to be "hidden" among data cycles without affecting the data availability.

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh operation of TC511001P/J/Z can be tested by  $\overline{CAS}$  BEFORE  $\overline{RAS}$  REFRESH COUNTER TEST. This cycle performs READ/WRITE operation taking the internal counter address as row address and the input address as column address.

The test is performed after a minimum of 8  $\overline{CAS}$  before  $\overline{RAS}$  cycles as initialization cycles. The test procedure is as follows.


- (1) Write "0" into all the memory cells at normal write mode.
- (2) Select one cartain column address and read "0" out and write "1" in each cell by performing CAS BEFORE RAS REFRESH COUNTER TEST (READ-WRITE CYCLE). Repeat this operation 512 times.
- (3) Check "1" out of 512 bits at normal read mode, which was written at (2).
- ④ Using the same column as ②, read "1" out and write "0" in each cell performing CAS BEFORE RAS REFRESH COUNTER TEST. Repeat this operation 512 times.
- (5) Check "0" out of 512 bits at normal read mode, which was written at (4).
- 6 Perform the above (1) to (5) the complement data.

#### DESCRIPTION OF THE TEST MODE FOR 1M DRAMS

The TC511000/1/2 is a CMOS DRAM organized as 1,048,576 words by 1-bit. It is internally organized as 262,144 words by 4-bits.

The "Test Mode" function allows for a 1M DRAM to be tested virtually as if it were a 256K DRAM. Figure 1 shows the block diagram of the "Test Mode" circuit. Data is written into the four 256K blocks in parallel and is retrieved the same way. A logical "and" operation is performed on the outputs of the four internal 256K blocks.

- ο For a good device, the output data of the four internal blocks are identical to the input data (all "H" or all "L") and consequently the same data will appear on the output pin.
- ο For a bad device, the output data of one or more of the internal blocks will differ from the input data and a high impedance state will be detected on the output pin.



#### Block Diagram in Test Mode

TF Pin = Super Voltage; Test Mode TF Pin = Low Level or Hi-Z; Normal

#### Truth Table in Test Mode Function

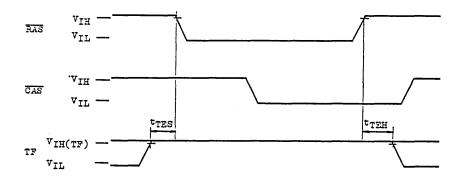
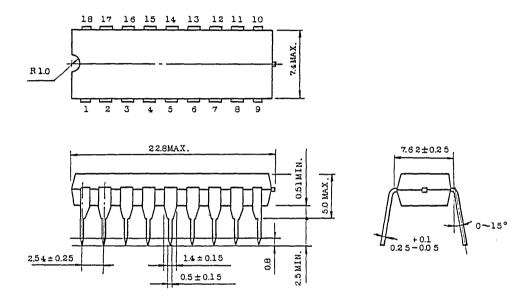

| A | В    | С      | D    | DOUT |
|---|------|--------|------|------|
| 0 | 0    | 0      | 0    | 0    |
| 1 | 1    | 1      | 1    | 1    |
|   | Othe | erwise | Hi-Z |      |

Fig. 1

#### DESCRIPTION OF THE TEST MODE FOR 1M DRAMS (CONTINUED)

The "Test Mode" function is enabled by applying a "Super Voltage" (VCC+4.5V, max. voltage=10.5V) on the "TF" pin for a specified period (tTES and tTEH as shown in figure 2). It can be used while operating in any mode, including static column mode. It achieves a 4:1 reduction in test time for N patterns and a 16:1 reduction in test time for N<sup>2</sup> patterns. The A9 address input is ignored during the "Test Mode".

During normal operation or when the "Test Mode" function is not used, the "TF" pin must be connected to VSS or TTL Logic Low Level, or left unconnected on the printed wiring board.



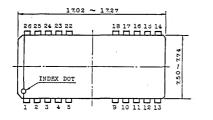

#### Fig.2 Test Mode Cycle

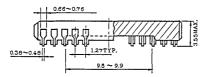
### OUTLINE DRAWINGS

• Plastic DIP

Unit in mm

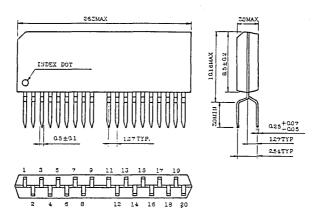



Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No.1 and No.18 leads. All dimensions are in millimeters.


Plastic SOJ



0.9 TYP.


6.48~7.11 8.38~864





Plastic ZIP





Note: Each lead pitch is 1.27mm.

All dimensions are in millimeters.

Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.