TOSHIBA MOS MEMORY PRODUCT TC57256AD-15 TC57256AD-20

DESCRIPTION

The TC57256AD is a 32,768 word × 8 bit CMOS ultraviolet light erasable and electrically programmable read only memory. For read operation, the TC57256AD's access time is 150ns. The TC57256AD operates from a single 5-volt power supply and has a low power standby mode which reduces power dissipation without increasing access time. The standby mode is achieved by applying a TTL-high level signal to the CE input. Advanced CMOS technology reduces the maximum active current to 40mA/6.7MHz and the standby current to 100µA. For program operation, the programming is achieved by using the high speed prgramming mode. The TC57256AD is fabricated using CMOS technology and N-channel silicon double layer gate MOS technology.

FEATURES

PIN

- · Peripheral circuit: CMOS Memory cell : N-MOS
- Low power dissipation Active : 40mA/6.7MHz Standby: 100µA
- Fast access time: TC57256AD-15 150ns TC57256AD-20 200ns

CONNECTION] (TOP	VI	EW)
VPPC		28	l vcc
A1 2 🗖	2	27	A14
A7 🗖	3	26	A13
A6 🗖	4	25	A8
A5 🗖	5	24	A9
A4 🗖	6	23	A11
A3 🗖	7	22	ÔE
A2 🗖	8	21	A10
A1 🗖	9	20	CE
A0 🗖	10	19	07
00 C	11	18	06
01 🗖	12	17	05
02 🗖	13	16	04
GND	14	15	03

- Single 5V power supply
- Full static operation
- · High speed programming mode
- · Inputs and outputs TTL compatible
- Pin compatible with ROMs TC53257P and TMM23256P, TMM27256AD and TC57256AD
- · Standard 28 pin DIP cerdip package

BLOCK DIAGRAM

PIN NAM	ES	MODE SELECTION							
$A0 \sim A14$	Address Inputs	PIN	ĈĒ	ŌĒ	VPP	VCC	00~07	POLIER	
00~07'	Outputs (Inputs)	MODE	(20)	(22)	(1)	(28)	$(11 \sim 13, 15 \sim 19)$	TOWER	
CE	Chip Enable Input	Read	L	L		l	Data Out	Activo	
ত্র	Output Enable Input	Output Deselect	*	H	5V	5V	High Impedance		
Vpp	Program Supply	Standby	Н	*		[High Impedance	Standby	
(PP	Voltage	Program	L	Н			Data In		
Vcc	VCC Supply Voltage	Program Inhibit	H	Н	12.5V	6V	High Impedance	Active	
	(+5V)	Program Verify	*	L			Data Out		
GND	Ground	* H or I		·	· · · · · ·	·		·	

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{CC}	VCC Power Supply Voltage	-0.6~7.0	v
Vpp	Program Supply Voltage	-0.6 ~ 14.0	v
VIN	Input Voltage	-0.6~7.0	v
VI/O	Input/Output Voltage	-0.6~ Vcc+0.5	v
PD	Power Dissipation	1.5	W
TSOLDER	Soldering Temperature Time	260 • 10	°C•sec
TSTRG	Storage Temperature	-65 ∿ 125	°C
TOPR	Operating Temperature	-40 ∿ 85	°C

READ OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.2	-	V _{CC} +0.3	
VIL	Input Low Voltage	-0.3		0.8	
VCC	V _{CC} Power Supply Voltage	4.75	5.00	5.25	v
VPP	Vpp Power Supply Voltage	V _{CC} -0.6	VCC	V _{CC} +0.6	

D.C. and OPERATING CHARACTERISTICS (Ta=-40 \sim 85°C, $v_{CC}{=}5v\pm5\%$)

SYMBOL	PARAMETER	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
ILI	Input Current	$v_{IN}=0v \sim v$	$v_{IN}=0v \sim v_{CC}$		-	±10	μA
I _{CC01}	0	CE=OV f=6.7MHz		-	-	40	- 4
I _{CCO2}	Operating Current	I _{OUT} =0mA	f=1MHz	-	-	10	πLA
ICCS1	Stor iber Gumment	CE=VIH		-	-	1	mA
ICCS2	Standby Current	CE=VCC-0.2V		-	-	100	μA
V _{OH}	Output High Voltage	IOH=-4001	A	2.4	-	-	v
V _{OL}	Output Low Voltage	I _{OL} =2.1mA		-	-	0.4	v
I _{PP1}	V _{CC} Current	$V_{PP}=V_{CC} \pm 0.6V$		-	-	±10	μA
ILO	Output Leakage Current	V _{OUT} =0.4V	v ∿ vcc	-	-	±10	μA

CVD/DOT	PARAMETER	TROM CONDITION	TC5725	6AD-15	TC5725	INTT	
SIMBOL	THEOL FARMETER TEST CONDITION		MIN.	MAX.	MIN.	MAX.	UNIT
tACC	Address Access Time	CE=OE=VIL	-	150	-	200	
^t CE	CE to Output Valid	OE=VIL	-	150	-	200	
t _{OE}	$\overline{\text{OE}}$ to Output Valid	CE=VIL	-	70	-	70 [.]	
t _{DF1}	$\overline{\text{CE}}$ to Output in High-Z	OE=VIL	0	60	0	60	115
^t DF2	OE to Output in High-Z	CE=V _{IL}	0	60	0	60	
t _{OH}	Output Data Hold Time	CE=OE=VIL	0	-	0	-	

A.C. CHARACTERISTICS (Ta=-40 \sim 85°C, V_{CC}=5V±5%, V_{PP}=V_{CC}±0.6V)

A.C. TEST CONDITIONS

• Input Pulse Levels

• Output Load

: 1 TTL Gate and C_L =100pF

- Input Pulse Rise and Fall Times : 10ns Max.
 - : 0.45V ∿ 2.4V
- Timing Measurement Reference Level: Inputs 0.8V and 2.2V, Outputs 0.8V and 2.0V

CAPACITANCE *(Ta=25°C, f=1MHz)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} =0V	-	4	6	٦F
COUT	Output Capacitance	V _{OUT} =0V	-	8	12	pr

* This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS

PROGRAM OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.2	-	V _{CC} +1.0	
VIL	Input Low Voltage	-0.3	-	0.8	
VCC	VCC Power Supply Voltage	5.75	6.0	6.25	
VPP	Vpp Power Supply Voltage	12.0	12.5	13.0	

D.C. and OPERATING CHARACTERISTICS (Ta=25 \pm 5°C, V_{CC}=6V \pm 0.25V, V_{PP}=12.5V \pm 0.5V)

SYMBOL	PARAMETER	TESTCONDITION	MIN.	TYP.	MAX.	UNIT
ILI	Input Current	$v_{IN}=0 \sim v_{CC}$	-	-	±10	μA
V _{OH}	Output High Voltage	I _{OH} =-400µA	2.4	-	-	v
VOL	Output Low Voltage	I _{OL} =2.1mA	-		0.4	v
ICC	V _{CC} Supply Current	-	-	-	40	mA
IPP2	Vpp Supply Current	V _{PP} =13.0V	-	- '	50	mA
VID	A9 Auto Select Voltage	-	11.5	12.0	12.5	v

A.C. PROGRAMMING CHARACTERISTICS (Ta= $25 \pm 5^{\circ}$ C, V_{CC}= $6V \pm 0.25V$, V_{PP}= $12.5V \pm 0.5V$)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
t _{AS}	Address Setup Time	-	2	-	-	μs
t _{AH}	Address Hold Time	-	2	-	-	μs
tCES	CE Setup Time	-	0 ·	-	, 1	ns
tCEH	CE Hold Time	-	0	-	-	ns
tOES	OE Setup Time	-	2	1	1	μs
tDS	Data Setup Time	-	2	1	-	μs
t _{DH}	Data Hold Time	-	2	-1	1	μs
tvps	Vpp Setup Time	-	2	-	-	μs
tVCS	V _{CC} Setup Time	-	2	-	-	μs
tpw	Initial Program Pulse Width	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$	0.95	1	1.05	ms
topw	Overprogram Pulse Width	Note 1	2.85	3	78.75	ms
tOE	OE to Output Valid	CE=VIH	-	-	150	ns
tDFP	OE to Output in High-Z	CE=VIH	-	-	130	ns

A.C. TEST CONDITIONS

• Output Load

: 1 TTL Gate and CL (100pF)

- Input Pulse Rise and Fall Times
- d Fall Times : 10ns Max. : 0.45V ∿ 2 4V
- Input Pulse Levels : $0.45V \sim 2~4V$ • Timing Measurement Reference Level : Input 0.8V and 2.2V, Output 0.8V and 2.0V

Note 1: The length of the overprogram pulse may vary as a function of the counter value X.

TIMING WAVEFORMS (PROGRAM) (V_{CC}=6V±0.25V, V_{PP}=12.5V±0.5V)

- Note: (1) V_{CC} must be applied simultaneously with or before Vpp and cut off simultaneously with or after Vpp.
 - (2) Removing the device from the socket or placing the device in the socket with Vpp=12.5V may cause permanent damage to the device.
 - (3) The Vpp supply voltage is permitted up to 14V for program operation; voltages over 14V should not be applied to the Vpp terminal. When a switching pulse voltage is applied to the Vpp terminal, the overshoot voltage of the pulse should not exceed 14V.

ERASURE CHARACTERISTICS

The TC57256AD's erasure is achieved by applying shortwave ultraviolet light with a wavelength of 2537Å (Angstroms) through the transparent window of the chip.

The integrated dose (ultraviolet light intensity $[w/cm^2] \times exposure time [sec.]$) for erasure should be a minimum of 15 $[w \cdot sec/cm^2]$.

When the Toshiba GL-15 sterilizing lamp is used and the device is exposed at a distance of 1 cm from the lamp surface, erasure will be achieved within 60 minutes.

Using a commercial lamp with an ultraviolet light intensity of 12000 [μ w/cm²] reduces the exposure time to about 20 minutes. (In this case, the integrated dose is 12000 [μ w/cm²] × (20×60) [sec] \cong 15 [w · sec/cm²].)

The TC57256AD's erasure begins to occur when exposed to light with wavelengths shorter than 4000Å. Both sunlight and flourescent lamps include 3000~4000Å wavelength components. Therefore when used under such lighting for extended periods of time, opaque seals-Toshiba EPROM Protect Seal AC901-are available

OPERATION INFORMATION

The TC57256AD's six operation modes are listed in the following table. Mode selection can be achieved by applying TTL level signal to all inputs.

MODE	PIN NAMES (NUMBER)	CE (20)	· <u>0</u> E (22)	V _{PP} (1)	V _{CC} (28)	$0_0 \sim 0_7$ (11 \cdot 13, 15 \cdot 19)	POWER	
Read Operation (Ta=-40 ∿ 85°C)	Read	L	L	5V 5V		Data Out	Active	
	Output Deselect	*	H			High Impedance		
	Standby	H	*			High Impedance	Standby	
	Program	L	H			Data In		
Program Operation (Ta=25±5°C)	Program Inhibit	H	H	12.5V	6V	High Impedance	Active	
	Program Verify	*	L			Data Out		

Note: H; V_{IH}, L; V_{IL}, *; V_{IH} or V_{IL}

READ MODE

The TC57256AD has two control functions. The chip enable (\overline{CE}) controls the operation power and should be used for device selection.

The output enable (\overline{OE}) controls the output buffers, independent of device selection.

Assuming that $\overline{CE} = \overline{OE} = V_{IL}$, the output data is valid at the outputs after address access time from stabilizing of all addressess. The \overline{CE} to output valid (t_{CE}) time is equal to the address access time (t_{ACC}).

Assuming that $\overline{\text{CE}}=V_{\prod}$ and all addresses are valid, the output data is valid at the outputs after tOE from the falling edge of $\overline{\text{OE}}$.

OUTPUT DESELECT MODE

With $\overline{\text{CE}}=V_{\text{IH}}$ or $\overline{\text{OE}}=V_{\text{IH}}$, outputs will be in high impedance state so two or more TC57256AD's can be connected together on a common bus line.

When \overline{CE} is decoded for device selection, all deselected devices are in low power standby mode.

STANDBY MODE

The TC57256AD has a low power standby mode controlled by the $\overline{\text{CE}}$ signal.

By applying a high level to the \overline{CE} input, the TC57256AD is placed in the standby mode which reduces the operating current to 100 μ A. The outputs are in a high impedence state, independent of the \overline{OE} inputs.

PROGRAM MODE

Initially, when received by customers, all bits of the TC57256AD are in the "1" state, which is the erased state. The programming operation introduces "Os" data into the desired bit locations by electrical programming.

The TC57256AD is in the programming mode when the Vpp input is at 12.5V and \overline{CE} is at TTL-Low under $\overline{OE}=V_{IH}$. The TC57256AD can be programmed at any location, anytime, either individually, sequentially or randomly.

PROGRAM VERIFY MODE

The verify mode verifies that the desired data is correctly programmed on the programmed bits. The verify is accomplished with \overline{OE} at $V_{\rm IL}$.

PROGRAM INHIBIT MODE

Under the condition that the program voltage (+12.5V) is applied to Vpp terminal, a high level $\overline{\text{CE}}$ input inhibits the TC57256AD from being programmed.

Programming of two or more TC57256AD's in parallel with different data is easily accomplished: all inputs except for \overline{CE} and \overline{OE} are commonly connected, a TTL low level program pulse is applied to the \overline{CE} of the desired device only, and TTL high level signals are applied to the other devices.

HIGH SPEED PROGRAMMING MODE

The program time can be greatly reduced by using this high speed programming mode. The device is set up in the high speed programming mode when the programming voltage (+12.5V) is applied to the Vpp terminal with $V_{CC}=6V$.

The programming is achieved by applying a single TTL low level 1ms pulse to the \overline{CE} input after addresses and data are stable. The programmed data is then verified by using the Program Verify Mode.

If the programmed data is not correct, another program pulse of 1ms is applied and the programmed data is verified. This should be repeated until the programmed data is correct. (max. 25 times)

After correctly programming the selected addresses, an additional program pulse with a width of 3 times more than that needed for initial programming is applied.

When programming has been completed. Data in all addresses should be verified with $V_{CC} = V_{PP} = 5V$.

HIGH SPEED PROGRAM MODE FLOW CHART

ELECTRIC SIGNATURE MODE

Electric signature mode allows a code to be read from the TC57256AD which identifies its manufacture and device type.

The programming equipment may be used to read the manufacturer code and device code from the TC57256AD by using this mode before program operation, and automatically set program voltage (Vpp) and algorithm.

Electric Signature mode is set up when 12V is applied to address line A9 and the rest of address lines are set to V_{IL} in read operation. Data output under these conditions is the manufacturer code. Device code is identified when address A0 is set to V_{IH} . These two codes possess an odd parity with the parity bit of MSB (07).

The following table shows the electric signature of the TC57256AD.

PINS	A0 (10)	07 (19)	06 (18)	05 (17)	04 (16)	03 (15)	02 (13)	01 (12)	00 (11)	HEX. DATA
Manufacture Code	VIL	1	0	0	. 1	1	0	0	0	98
Device Code	VIH	1	1	0	0	0	1	0	0	C4

Notes: A9=12V±0.5V

Al \sim A8, A10 \sim A14, \overline{CE} , $\overline{OE}=V_{IL}$

OUTLINE DRAWINGS

Unit in mm

Note 1. Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect No.1 and No.28.

2. This value is measured at the end of leads.

3. All dimensions are in millimeters.