TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

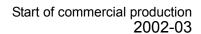
TC74LCX16373FT

Low-Voltage 16-Bit D-Type Latch with 5-V Tolerant Inputs and Outputs

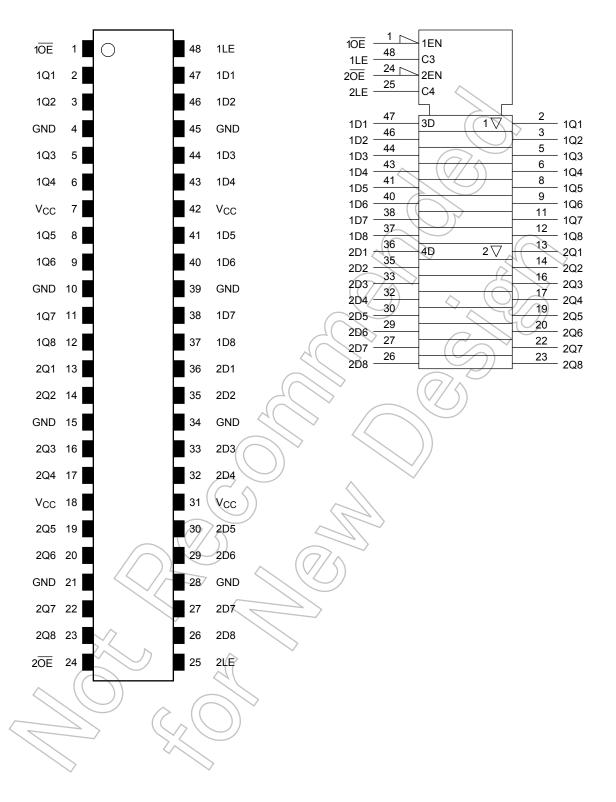
The TC74LCX16373FT is a high-performance CMOS 16-bit D-type latch. Designed for use in 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (2.5-V or 3.3-V) VCC applications, but it could be used to interface to 5-V supply environment for both inputs and outputs.

This 16-bit D-type latch is controlled by a latch enable input (LE) and an output enable input (\overline{OE}) which are common to each byte. It can be used as two 8-bit latches or one 16-bit latch. When the \overline{OE} input is high, the outputs are in a high-impedance state.


All inputs are equipped with protection circuits against static discharge.

Weight: 0.25 g (typ.)


Features

- Low-voltage operation: V_{CC} = 2.0 to 3.6 V
- High-speed operation: $t_{pd} = 5.4 \text{ ns (max)} (V_{CC} = 3.0 \text{ to } 3.6 \text{ V})$
- Ouput current: $|I_{OH}|/I_{OL} = 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$
- Latch-up performance: -500 mA
- Package: TSSOP
- · Power-down protection provided on all inputs and outputs

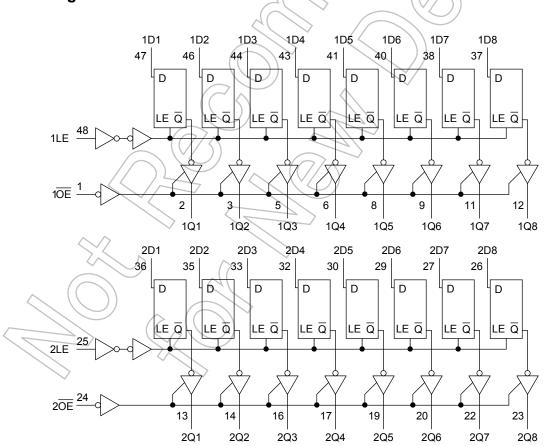
Pin Assignment (top view)

IEC Logic Symbol

2 2014-03-01

Truth Table

	Outputs		
1OE	1LE	1D1-1D8	1Q1-1Q8
Н	Х	X	Z
L	L	Х	Qn
L	Н	L	L
L	Н	Н	Н


	Outputs		
2 OE	2LE	2D1-2D8	2Q1-2Q8
Н	Х	Х	Z
L	L	Х	Qn
L	Н	L	L
L	Н	Н	Н

X: Don't care

Z: High impedance

Qn: Q outputs are latched at the time when the LE input is taken to a low logic level

System Diagram

3

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5 to 6.0	V	
Input voltage	V_{IN}	-0.5 to 7.0	V	
		-0.5 to 7.0 (Note 2)		
Output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5 (Note 3)	V	
Input diode current	lıĸ	-50	mA	
Output diode current	I _{OK}	±50 (Note 4)	mA	
DC output current	I _{OUT}	±50	mA	
Power dissipation	P_{D}	400	mW	
DC V _{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	(mA)	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: Output in OFF state

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	Vcc	2.0 to 3.6 1.5 to 3.6 (Note 2)	V
Input voltage	→ V _{IN}	0 to 5.5	V
Output voltage	V	0 to 5.5 (Note 3)	٧
Output voltage	Vout	0 to V _{CC} (Note 4)	
		±24 (Note 5)	
Output current	IOH/IOL	±12 (Note 6)	mA
	4	±8 (Note 7)	
Operating temperature	Topr	-40 to 85	°C
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

Gridodd iripato maet be tied to either VCC

Note 2: Data retention only

Note 3: Output in OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.7 \text{ to } 3.0 \text{ V}$

Note 7: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 8: $V_{IN} = 0.8 \text{ to } 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characterist	tics	Symbol	Test Col	ndition	V _{CC} (V)	Min	Max	Unit
H-level		\/			2.3 to 2.7	1.7	_	
Input voltage	n-ievei	V _{IH}	_	_		2.0	_	V
iliput voltage	L-level	VIL			2.3 to 2.7) /_	0.7	V
	L-level	VIL.		. (2.7 to 3.6	_	8.0	
				I _{OH} = -100 μA	2.3 to 3.6	V _{CC} - 0.2	_	
				$I_{OH} = -8 \text{ mA}$	2.3	1.8	_	
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
				I _{OH} = -18 mA	3.0	2(4	\rightarrow	
Output voltage				I _{OH} = -24 mA	3.0	2.2	_	
			V _{IN} = V _{IH} or V _{IL}	I _{QL} = 100 μA	2.3 to 3.6)	0.2	
	L-level V _{OL}			I _{OL} = 8 mA	2.3	4	0.6	
		V _{OL}		I _{OL} = 12 mA	2.7	>_	0.4	
				1 _{OL} = 16 mA	(3.0)	_	0.4	
			I _{OL} = 24 mA		3.0	_	0.55	
Input leakage current		I _{IN}	V _{IN} = 0 to 5.5 V		2.3 to 3.6	_	±5.0	μΑ
3-state output OFF sta	ate current	loz	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 5.5 V		2.3 to 3.6	_	±5.0	μА
Power-off leakage cur	rent	loff	$V_{IN}/V_{OUT} = 5.5 V$		0	_	10.0	μΑ
Quiescent supply curre	Outroport supply support		$V_{IN} = V_{CC}$ or GND	^	2.3 to 3.6	_	20.0	
Quiescent supply current		Icc	$V_{IN}/V_{OUT} = 3.6 \text{ to } 5.5 \text{ V}$		2.3 to 3.6	_	±20.0	μΑ
Increase in I _{CC} per inp	out	Δlcc	V _{IH} = V _{CC} – 0.6 V		2.3 to 3.6	_	500	

AC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	Symbol Test Condition				Max	Unit
Cital acteristics	Symbol	rest Condition	V _{CC} (V)	CL(pF)	Min	Max	Offic
Propagation delay time	+		2.5 ± 0.2	30	1.5	6.5	
(D-Q)	t _{pLH}	Figure 1, Figure 2	2.7	50	1.5	5.9	ns
(D-Q)	tpHL		3.3 ± 0.3	50	1.5	5.4	
Dreng retion delevations			2.5 ± 0.2	30	1.5	6.6	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	50	1.5	6.4	ns
(LE-Q)	t _{pHL}		3.3 ± 0.3	50	1.5	5.5	
			2.5 ± 0.2	30	1.5	7.9	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	(2.7	> 50	1.5	6.5	ns
	^t pZH		3.3 ± 0.3	50	1.5	6.1	
		Figure 1, Figure 3	2.5 ± 0.2	30	1(5	7.2	
3-state output disable time	t _{pLZ}		2.7	50	1.5	6.3	ns
	t _{pHZ}		3.3 ± 0.3	50(1.5	6.0	
			2.5 ± 0.2	30	3,5) —	
Minimum pulse width	t _w (H)	Figure 1, Figure 2	2.7	50	3.0		ns
(LE)			3.3 ± 0.3	50)	3.0		
			2.5 ± 0.2	30	3.0		
Minimum setup time	ts	Figure 1, Figure 2	2.7))50	2.5		ns
		40	3.3 ± 0.3	50	2.5	_	
	,		2.5 ± 0.2	30	2.0		
Minimum hold time	t _h	Figure 1, Figure 2	/2.7	50	1.5	_	ns
			3.3 ± 0.3	50	1.5	_	
			2.5 ± 0.2	30			
Output to output skew	tosLH	(Note)	2.7	50	_	_	ns
	tosHL		3.3 ± 0.3	50	_	1.0	

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{DLHm} - t_{DLHn}|, t_{OSHL} = |t_{DHLm} - t_{DHLn}|)$

Dynamic Switching Characteristics

(Ta = 25°C, input: $t_r = t_f = 2.5 \text{ ns}, R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum	VOLP	V _{IH} = 2.5 V, V _{IL} = 0 V, C _L =30pF	2.5	0.6	V
dynamic V _{OL}	VOLP	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 50 \text{pF}$	3.3	0.8	V
Quiet output minimum	IVI	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 30 \text{pF}$	2.5	0.6	V
dynamic V _{OL}	V _{OLV}	V _{IH} = 3.3 V, V _{IL} = 0 V, C _L =50pF	3.3	0.8	v

TOSHIBA Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_	3.3	7	pF
Output capacitance	C _{OUT}	_	3.3	8	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (Note)	3.3	25	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16 \text{ (per bit)}$

AC Test Circuit

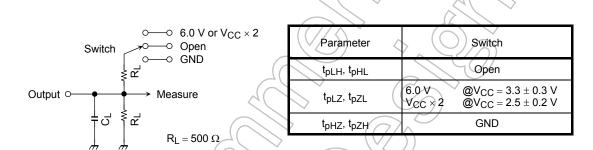


Figure 1

AC Waveform

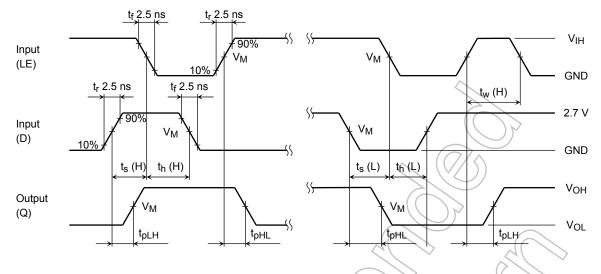
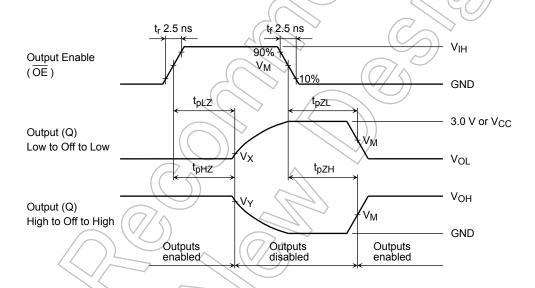
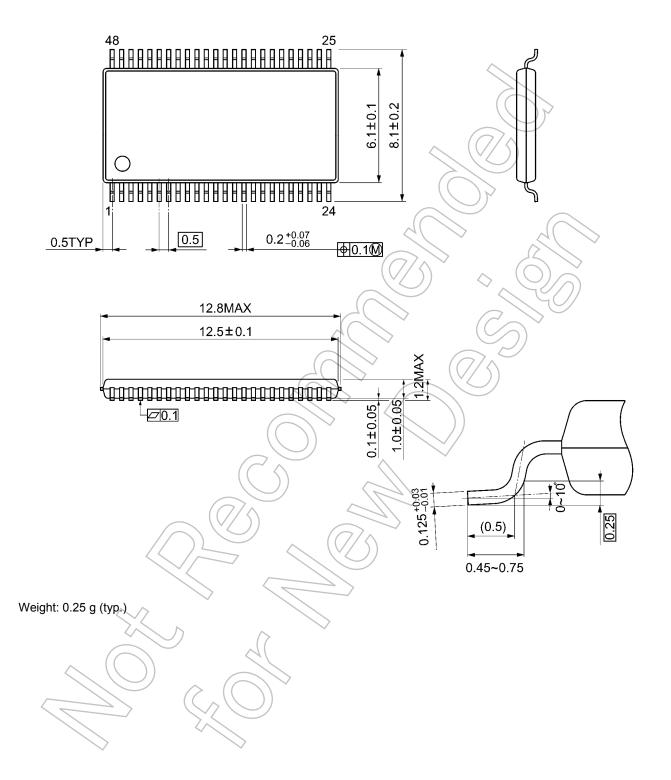


Figure 2 tplH, tpHL, tw, ts, th




Figure 3 t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}

	NI		
Symbol		V _{CC}	
Symbol	3.3 ± 0.3 V	2.7 V	$2.5\pm0.2\textrm{V}$
VIH	2.7 V	2.7 V	V _{CC}
V _M	1.5 V	1.5 V	V _{CC} /2
VX	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V
VY	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 0.15 V

8 2014-03-01

Package Dimensions

TSSOP48-P-0061-0.50A Unit: mm

9

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

10