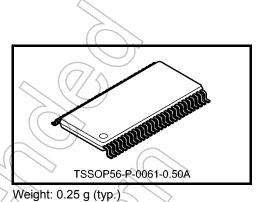
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC74VCXH16543FT

Low-Voltage 16-Bit Registered Transceiver with Bushold

The TC74VCXH16543FT is a high-performance CMOS 16-bit registered transceiver. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The TC74VCXH16543FT can be used as two 8-bit transceivers or one 16-bit transceiver. Separate latch-enable (LEAB or LEBA) and output-enable (\overline{OEAB} or \overline{OEBA}) inputs are provided for each register to permit independent control in either direction of data flow.

The A-to-B enable (CEAB) input must be low in order to enter data from A or to output data from B. If CEAB is low and LEAB is low, the A-to-B latches are transparent; a subsequent

low-to-high transition of LEAB puts the Alatches in the storage mode. With CEAB and OEAB both low, the 3-state B outputs are active and reflect the data present at the output of the A latches.

Data flow from B to A is similar but requires using the CEBA, DEBA, and OEAB inputs,

When the \overline{OE} input is high, the outputs are in a high-impedance state. This device is designed to be used with 3-state memory address drivers, etc.

The A, B data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

All inputs are equipped with protection circuits against static discharge.

Features (Note)

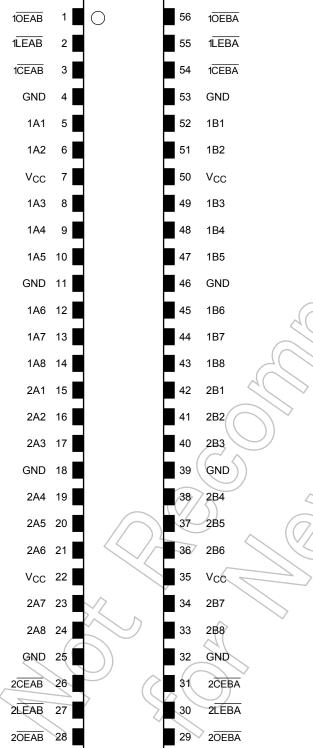
- Low-voltage operation: $V_{CC} = 1.8$ to 3.6 V
- Bushold on data inputs eliminating the need for external pull-up/pull-down resistors
- High-speed operation: $t_{pd} = 3.5$ ns (max) (V_{CC} = 3.0 to 3.6 V)

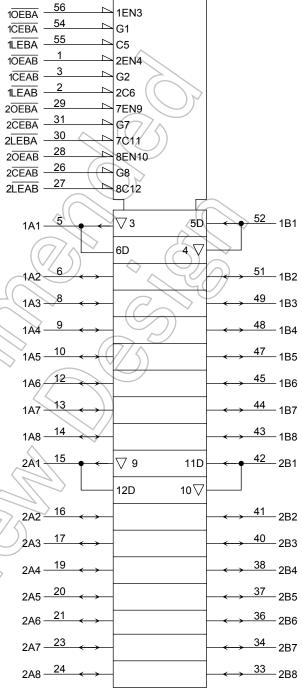
$$t_{pd} = 4.0 \text{ ns} (max) (V_{CC} = 2.3 \text{ to } 2.7 \text{ V})$$

 $t_{pd} = 8.0 \text{ ns (max)} (V_{CC} = 1.8 \text{ V})$

- 3.6-V tolerant control inputs
- Output current: $I_{OH}/I_{OL} = \pm 24 \text{ mA} (\min) (V_{CC} = 3.0 \text{ V})$

$$: I_{OH}/I_{OL} = \pm 18 \text{ mA (min)} (V_{CC} = 2.3 \text{ V})$$


$$IOH/IOL = \pm 6 \text{ mA} (min) (VCC = 1.8 \text{ V})$$


- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200$ V
 - Human body model≥±2000 V
- Package: TSSOP

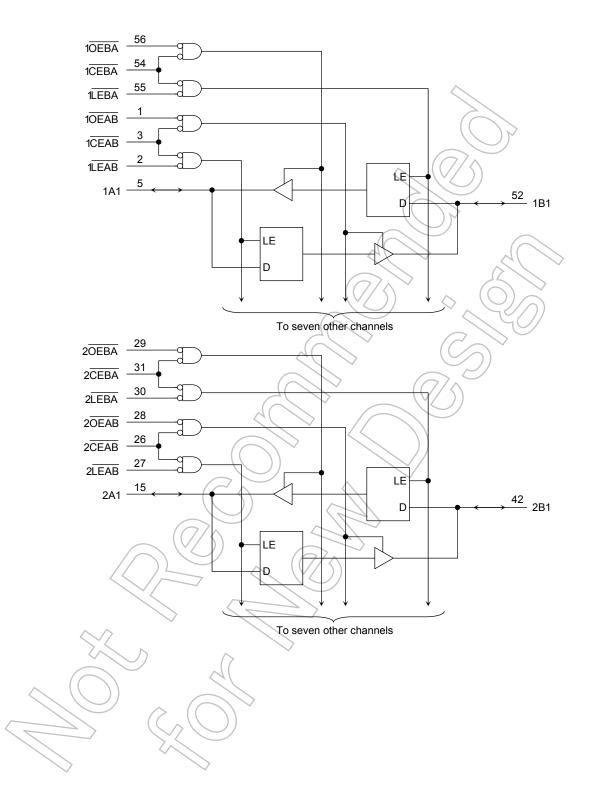
Note: Do not apply a signal to any bus pins when it is in the output mode. Damage may result.

Pin Assignment (top view)

IEC Logic Symbol

Truth Table (A bus \rightarrow B bus each 8-bit latch)

	Inp	Inputs					
CEAB	LEAB	OEAB	А	В			
Н	Х	Х	Х	Z			
Х	Х	Н	Х	Z			
L	Н	L	Х	В0			
				(Note)			
L	L	L	L	L			
L	L	L	Н	Н			


Note: Output level before the indicated steady-state input conditions were established.

Truth Table (B bus \rightarrow A bus each 8-bit latch)

	Inp		Outputs	
CEBA	LEBA	OEBA	В	A
Н	Х	Х	Х	z
Х	Х	Н	Х	z
L	Н	L	x	A0 (Note)
L	L	L	L	L
L	L	L	н	H H

Note: Output level before the indicated steady-state input conditions were established.

System Diagram

Absolute Maximum Ratings (Note 1)

	Characteristics	Symbol	Rating	Unit	
Power sup	ply voltage	V _{CC}	–0.5 to 4.6	V	
DC input voltage	$(\overline{\underline{OEAB}}, \overline{\underline{OEBA}}, \overline{\underline{LEAB}}, \overline{LEAB}, \overline{LEBA}, \overline{CEAB}, \overline{CEBA})$		-0.5 to 4.6		
	(An, Bn)	V _{IN}	–0.5 to V _{CC} + 0.5 (Note 2)		
DC output voltage	(An, Bn)	V _{OUT}	–0.5 to V _{CC} + 0.5 (Note 3)	v	
Input diode	Input diode current		-50	mA	$\bigcirc)$
Output diod	de current	I _{OK}	±50 (Note 4)	mA	
Output curr	Output current		±50	mA	
Power diss	ipation	PD	400	mW	
DC V _{CC} /gr	ound current per supply pin	I _{CC} /I _{GND}	±100	mA	
Storage ter	mperature	T _{stg}	-65 to 150	⊃ °C	6

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

- Note 2: OFF state
- Note 3: High or low state. IOUT absolute maximum rating must be observed.
- Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1) (Note 2)

	Characteristics		Rating	Unit	
Power supply voltage		Vcc	1.8 to 3.6	V	
i owei su	by voltage	vcc	1.2 to 3.6 (Note 3)	v	
Input	$(\overline{\underline{OEAB}}, \overline{\underline{OEBA}}, \overline{\underline{LEAB}}, \overline{LEAB}, \overline{LEBA}, \overline{CEAB}, \overline{CEBA})$	V _{IN}	-0.3 to 3.6	V	
voltage	(An, Bn)		0 to V_{CC} (Note 4)		((
Output voltage	(An, Bn)	V _{OUT}	0 to V _{CC} (Note 5)	v	
			±24 (Note 6)	\mathbb{Y}/\mathbb{Z}	\bigcirc
Output cur	rrent	I _{OH} /I _{OL}	±18 (Note 7)	mA	~
			±6 (Note 8)	\bigcirc	/
Operating temperature		T _{opr}	-40 to 85	°C	
Input rise	and fall time	dt/dv	0 to 10 (Note 9)	ns/V	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

Note 2: Floating or unused control inputs must be held high or low.

Note 3: Data retention only

- Note 4: OFF state
- Note 5: High or low state
- Note 6: $V_{CC} = 3.0$ to 3.6 V
- Note 7: $V_{CC} = 2.3 \mbox{ to } 2.7 \mbox{ V}$
- Note 8: $V_{CC} = 1.8 V$
- Note 9: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < V_{CC} \leq 3.6 V)

Characterist	ics	Symbol	Test C	ondition	V _{CC} (V)	Min	Max	Unit
Input voltage	H-level	VIH	_		2.7 to 3.6	2.0	_	V
input voltage	L-level	VIL	_	_	2.7 to 3.6	_	0.8	v
				I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2	_	
	H-level	V _{OH}	VIN = VIH or VIL	I _{OH} = -12 mA	2.7	2.2	_	
				I _{OH} = -18 mA	3.0	2.4	_	
Output voltage				I _{OH} = -24 mA	3.0	2.2		V
		-level V _{OL}		I _{OL} = 100 μA	2.7 to 3.6		0.2	
	L-level		$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 12 mA	2.7	A	0.4	
		VOL		I _{OL} = 18 mA	3.0	$\langle - \rangle$	0.4	
				I _{OL} <i>=</i> 24 mA	3.0((0.55	
Input leakage current (\overline{OEAB} , \overline{OEBA} , \overline{IEA} LEBA, CEAB, CE		IIN	V _{IN} = 0 to 3.6 V		2.7 to 3.6	\sim	±5.0	μΑ
Bushold input minimur	n drive hold	L	V _{IN} = 0.8 V		3.0	75	_	
current		II (HOLD)	V _{IN} = 2.0 V	. ((//	3.0	-75	_	μA
Bushold input over-driv	ve current to	lu (op)		(Note 1)	3.6	_	450	μA
change state		II (OD)		(Note 2)	3.6	_	-450	μA
3-state output OFF sta	te current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$		2.7 to 3.6	—	±10.0	μA
Quiescent supply curre	ent	Icc	$V_{IN} = V_{CC}$ or GND	$\langle \rangle$	2.7 to 3.6		20.0	μA
Increase in I _{CC} per inp	out	Δlcc	VIH = V _{CC} – 0.6 V		2.7 to 3.6		750	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 2: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteristics		Symbol	Test Condition			Min	Max	Unit
		-,	V _{CC} (V)			man		
Input voltage	Voltage H-level		-	_	2.3 to 2.7	1.6	_	V
input voltage	L-level	V _{IL}	_	_	2.3 to 2.7		0.7	v
				I _{OH} = -100 μA	2.3 to 2.7	V _{CC} - 0.2	_	
	H-level	VOH	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -6 mA	2.3	2.0	—	
				I _{OH} = -12 mA	2.3	1.8	_	
Output voltage				I _{OH} = -18 mA	2.3	1.7	_	V
		I V _{OL}	$OL \qquad V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 100 μA	2.3 to 2.7	_	0.2	
	L-level			I _{OL} = 12 mA	2.3	_	0.4	
				I _{OL} = 18 mA	2.3	R	0.6	
Input leakage current						20	\bigtriangledown	
$(\overline{\underline{OEAB}} \;,\; \overline{\underline{OEBA}} \;,\; \overline{\underline{OEBA}} \;,\; \overline{\underline{LEA}} \;,\; \overline{\underline{CEAB}} \;,\; \overline{\mathbf{CEAB}} \;,\; \mathbf$	<u>AB</u> , BA)	I _{IN}	V _{IN} = 0 to 3.6 V	(75)	2.3 to 2.7	$\overline{\mathbf{b}}$	±5.0	μA
Bushold input minimum	n drive hold		V _{IN} = 0.7 V		2.3	45	/	•
current		II (HOLD)	V _{IN} = 1.6 V		2.3	-45	_	μA
Bushold input over-driv	ve current to		40	(Note 1)	2.7)	—	300	•
change state		I _{I (OD)}		(Note 2)	2.7	—	-300	μA
3-state output OFF sta	te current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		2.3 to 2.7		±10.0	μA
Quiescent supply curre	ent	Icc	$V_{IN} = V_{CC}$ or GND		2.3 to 2.7	_	20.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 2: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

DC Characteristics (Ta = -40 to 85°C, 1.8 V \leq V_{CC} < 2.3 V)

Characteristi	cs	Symbol	DI Test Condition		V _{CC} (V)	Min	Max	Unit
	H-level	VIH		_	1.8 to 2.3	0.7 × V _{CC}		V
Input voltage	L-level	V _{IL}	-	_	1.8 to 2.3	_	$0.2 \times V_{CC}$	V
	H-level	V _{ОН}	VIN = VIH or VIL	$I_{OH} = -100 \ \mu A$	1.8	Vcc - 0.2	_	
Output voltage				I _{OH} = -6 mA	71.8	1.4	_	V
, ,	L-level	Max		l _{OL} = 100 μA	1.8	_	0.2	-
	L-level	VOL	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 6 mA	1.8	_	0.3	
Input leakage current (\overline{OEAB} , \overline{OEBA} , \overline{IEA} LEBA, CEAB, CEA		I _{IN}	$V_{IN} = 0$ to 3.6 V		1.8		±5.0	μΑ
Bushold input minimum	n drive hold		V _{IN} = 0.36 V		1.8	25	> -	
current		lı (HOLD)	V _{IN} = 1.26 V) 1.8	25) —	μA
Bushold input over-driv	e current to	h (an)	G	(Note 1)	1.8	Y)	200	۸
change state		I _{I (OD)}	(Note 2)		1.8	\sim	-200	μA
3-state output OFF stat	te current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$		1.8	—	±10.0	μA
Quiescent supply curre	nt	ICC	$V_{IN} = V_{CC}$ or GND)1.8	—	20.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 2: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

AC Characteristics (Ta = -40 to 85°C, input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$, $R_L = 500 \Omega$) (Note 1)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
			1.8	1.5	8.0	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	0.8	4.0	ns
(An, Bn-Bn, An)	t _{pHL}		3.3 ± 0.3	0.6	3.5	
			1.8	1.5	9.8	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	0.8	5.0	ns
(LEAB, LEBA -Bn, An)	tpHL	\sim ((3.3 ± 0.3	0.6	3.9	
3-state output enable time			1.8	1.5	9.8	
$(\overline{OEAB}, \overline{OEBA}, \overline{CEAB},$	t _{pZL}	Figure 1, Figure 4	2.5 ± 0.2	0.8	4.9	ns
(OEAB, <u>OEBA</u> , CEAB, CEBA)	^t pZH		3.3 ± 0.3	0.6	3.8	
3-state output disable time	t _{pLZ} t _{pHZ}	Figure 1, Figure 4	1.8	1.5	7.6	ns
$(\overline{OEAB}, \overline{OEBA}, \overline{CEAB},$			2.5 ± 0.2	0.8	4.2	
CEBA)		$(/)^{\sim}$	3.3 ± 0.3	0.6	3.7	
N			1.8	4.0)	
Minimum pulse width	t _{W (L)}	Figure 1, Figure 2, Figure 3	2.5 ± 0.2	1.5	_	ns
$(\overline{LEAB}, \overline{LEBA}, \overline{CEAB}, \overline{CEBA})$		$\langle \langle \rangle \rangle$ (3.3 ± 0.3	1.5	_	
			1.8	2.5	_	
Minimum setup time (An, Bn- LE , CE)	ts	Figure 1, Figure 2, Figure 3	2.5 ± 0.2	1.5	_	ns
(AN, BN-LE, CE)			3.3 ± 0.3	1.5	_	
			1.8	1.0	_	
Minimum hold time (An, Bn- \overline{LE} , \overline{CE})	t _h	Figure 1, Figure 2, Figure 3	2.5 ± 0.2	1.0	_	ns
(AN, BN-LE, CE)	G		$\textbf{3.3}\pm\textbf{0.3}$	1.0	_	
			1.8	—	0.5	
Output to output skew	tosLH	(Note 2)	2.5 ± 0.2	—	0.5	ns
	tosHL		$\textbf{3.3}\pm\textbf{0.3}$	—	0.5	

Note 1: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design. $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500 \Omega$)

Characteristics	Symbol	Test			Тур.	Unit	
Characteristics	Symbol	1030	Condition	$V_{CC}\left(V\right)$	тур.	Unit	
		$V_{IH} = 1.8 \ V, \ V_{IL} = 0 \ V$	(Note)	1.8	0.25		
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 2.5 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	(Note)	2.5	0.6	V	
		$V_{IH} = 3.3 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	(Note)	3.3	0.8		
		$V_{IH} = 1.8 \ V, \ V_{IL} = 0 \ V$	(Note)	1.8	-0.25		
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 2.5 \text{ V}, \ V_{IL} = 0 \text{ V}$	(Nôte)	2.5	-0.6	V	
,		$V_{IH} = 3.3 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	(Note)	3.3	-0.8		
	Vohv	$V_{IH} = 1.8 \ V, \ V_{IL} = 0 \ V$	(Note)	1.8	1.5		
Quiet output minimum dynamic V _{OH}		$V_{IH} = 2.5 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	(Note)	2.5	1.9	V	
· · · · ·		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	3.3	2.2		

Parameter guaranteed by design. Note:

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	\bigcirc	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}		\mathcal{O}/\mathcal{N}	1.8, 2.5, 3.3	6	pF
Bus I/O capacitance	C _{I/O}			1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz	(Note)	1.8, 2.5, 3.3	20	pF

CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating Note: current consumption without load.

Average operating current can be obtained by the equation: $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16$ (per bit)

AC Test Circuit

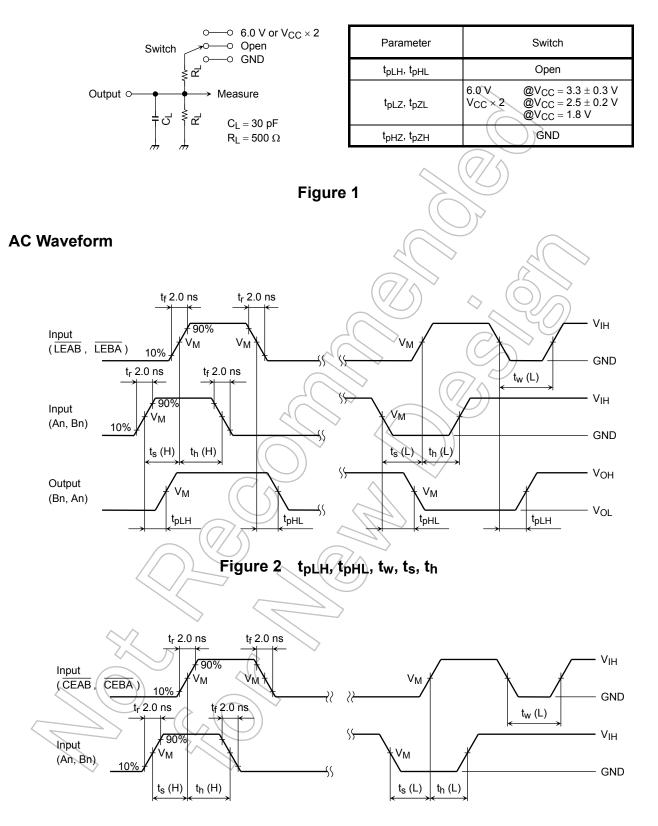
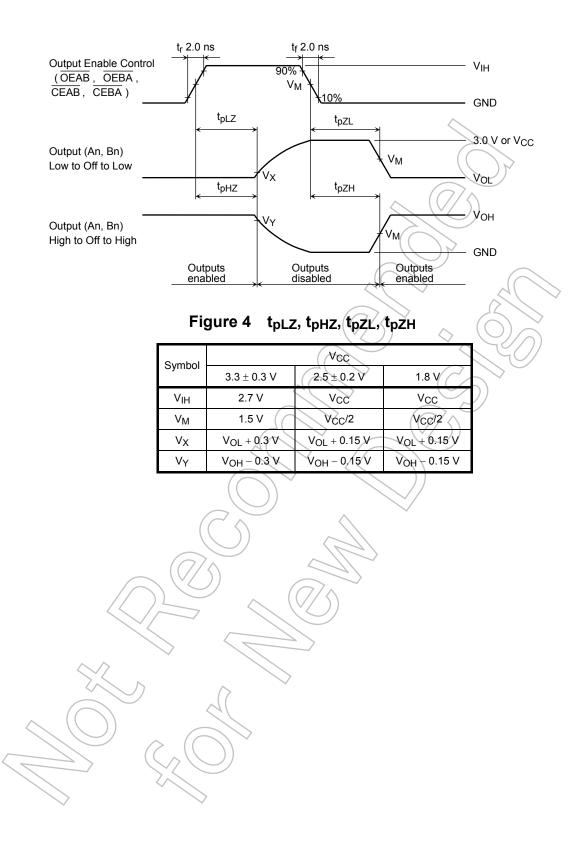
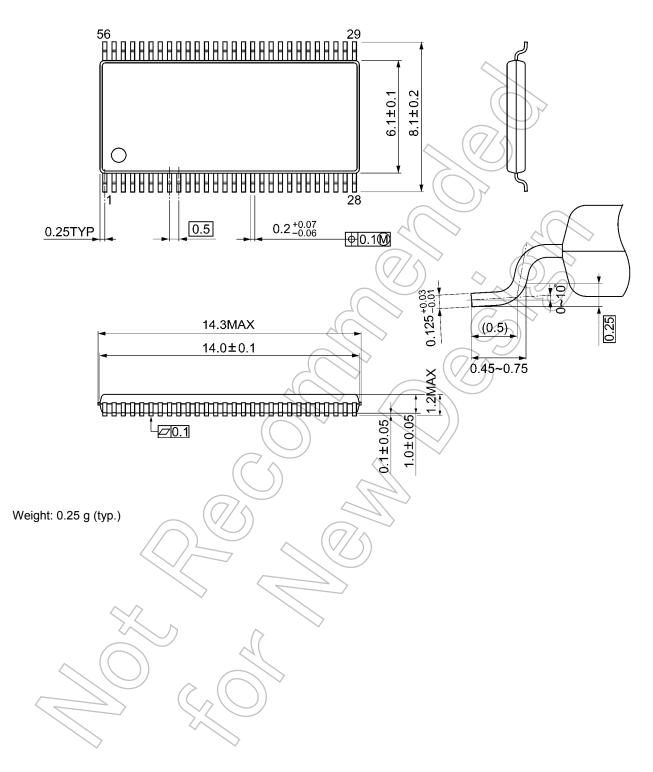



Figure 3 tw, ts, th



Package Dimensions

TSSOP56-P-0061-0.50A

Unit: mm

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT; For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
 except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,
 including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.