TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC83230-0015

TC83230-0015: Single-Chip CMOS LSI for Calculators with Printers (applicable printer heads: M31/M31A manufactured by EPSON)

The TC83230-0015 LSI is a single-chip CMOS LSI for use in calculators with printers.

It integrates I/O logic circuits necessary to configure a calculator with 10- or 12-digit display, two-memory function, two-tax function, serial printer used to print calculation results, oscillator, and LCD drivers.

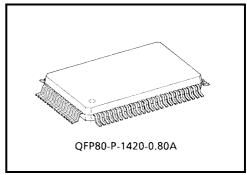
Features

٠

Operational Features

- Print: 10 or 12 digits of data. (including decimal point.)
 1 digit of floating minus sign, 1 digit of operational symbol.
 - 1-color printing (black).
 - Display: 10 or 12 digits of data. (including punctuation in each digit.)
 - 1 digit of floating minus sign, memory load, error symbol, grand total memory load, 3 digits of commas.
- Decimal output: Decimal set lock key controls output format. Fixed decimal setting ("0", "1", "2", "3", "4", "6"), full floating decimal, ADD mode and ADD2 mode.
- Key-input buffer: 12 words
- Operation methods: Addition and subtraction: By ARITHMETIC operation

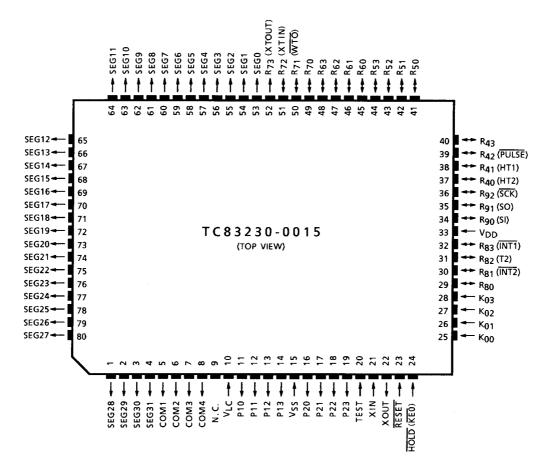
Multiplication and division: By algebraic operation


- Function: Four function, repeat multiplication and division, mixed calculation, percentage calculation, percent discount and add-on calculation, memory calculation, delta percent calculation, add-mode calculation, mark-up/down calculation, total calculation, constant calculation, tax calculation Two-key rollover.
- Leading zero suppression

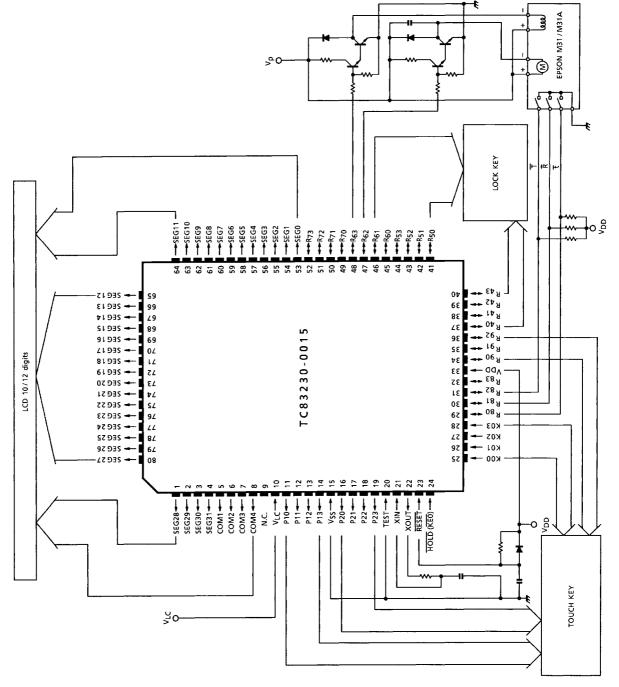
Protection

- (1) In the overflow condition, all key except "C", "C/CE", "CE", "Feed", "→" key are inoperative.
- (2) Key chatter protection.

Auto-Clear at Power On


Auto-clear functions by connecting a capacitor to the RESET pin.

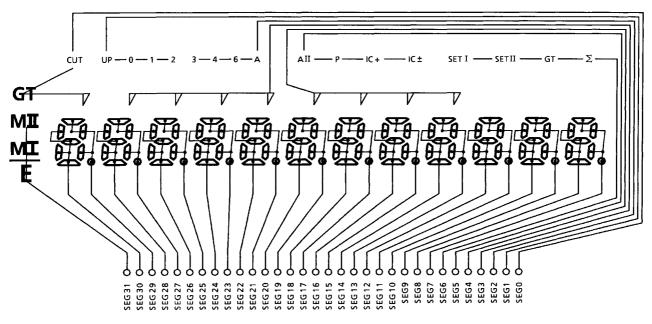
Weight: 1.52 g (typ.)


Pin Assignment (top view)

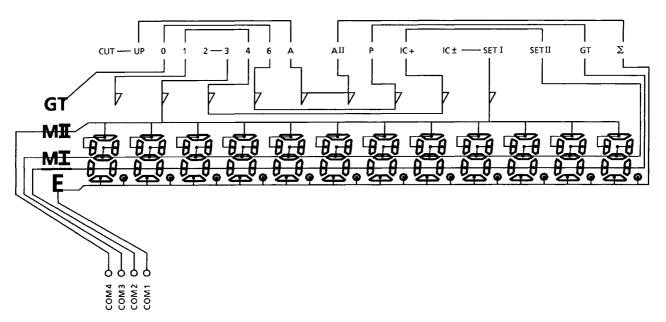
QFP80

TC83230-0015

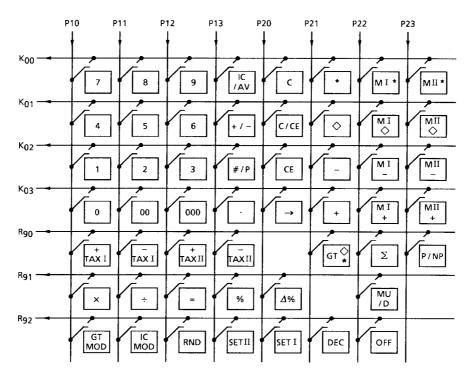
System Block Diagram

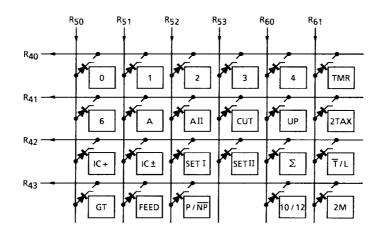


2003-03-04

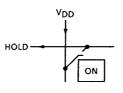

ო

Connection of LCD


Segment


Common

Key Connection



Touch Key

Touch Key Select

Specification of Calculator

Operation Specifications

- (1) Operations depending on key types and modes
 - Touch key

Key Name	CAL	Mode	Tax Set Mode (S	SETI/II key is on)	
Mode Switch	Touch Key Mode	Lock Key Mode	Touch Key Mode	Lock Key Mode	
С	Operates as clear key	Operates as clear key	Clears input data	Clears input data	
CE	Operates as clear entry key	Operates as clear entry key	Clears input data	Clears input data	
C/CE	Operates as clear or clear entry key	Operates as clear or clear entry key	Clears input data	Clears input data	
Numeral	Numeral Key-inputs numerals	Numeral Key-inputs numerals	Inputs numerals	Inputs numerals	
OFF	Operates as off key		Unused	Unused	
	Key-inputs decimal points	Key-inputs decimal points	Key-inputs decimal points	Key-inputs decimal points	
*, \$	Operates as total or sub-total key	Operates as total or sub-total key	Unused	Unused	
+, - ×, ÷	Operates as four-function key	Operates as four-function key	Unused	Unused	
=	Operates as = key	Operates as = key	Unused	Unused	
P/NP	Switches print or non-print	—	Unused	Unused	
RND	Switches round-off and round-up	_	Unused	Unused	
DEC	Switches decimal points		Unused	Unused	
%	Operates as % key	Operates as % key	Unused	Unused	
Δ%	Operates as delta percentage calculation key	Operates as delta percentage calculation key	Unused	Unused	
MU/D	Operates as mark-up/down key	Operates as mark-up/down key	Unused	Unused	
IC/AVE	Operates as item count key or average key	Operates as item count key or average key	Unused	Unused	
#/P	Operates as non-add-print key for left-justified printing	Operates as non-add-print key for left-justified printing	Unused	Unused	
\rightarrow	Operates as right-shift key	Operates as right-shift key	Operates as right-shift key	Operates as right-shift key	
+/-	Operates as sign change key	Operates as sign change key	Unused	Unused	
MI*, MII*, MI◊, MII◊, MI–, MII–, MI+, MII+	Operates as memory function key	Operates as memory function key	Unused	Unused	
-TAXI/II	Operates as -TAXI/II key	Operates as –TAXI/II key	Unused	Unused	
+TAXI/II	Operates as +TAXI/II key	Operates as +TAXI/II key	Unused	Unused	
Σ	Operates as Σ key		Unused	Unused	
IC MOD	Operates as IC-mode key		Unused	Unused	

TC83230-0015

Key Name	CAL	Mode	Tax Set Mode (SETI/II key is on)			
Mode Switch	Touch Key Mode	Lock Key Mode	Touch Key Mode	Lock Key Mode		
GT MOD	Operates as GT-mode or non-GT mode key	_	Unused	Unused		
GT^{\Diamond}_*	Operates as GT key	Operates as GT key	Unused	Unused		

• Lock key

Key Name	CAL	Mode	Tax Set Mode (SETI/II key is on)	
Mode Switch	Touch Key Mode	Lock Key Mode	Touch Key Mode	Lock Key Mode	
0, 1, 2, 3, 4, 6, A, AII	—	Switches decimal points	Unused	Unused	
CUT, UP		Switches round-off and round-up	Unused	Unused	
IC±, IC+	_	Operates as IC±/IC+ key	Unused	Unused	
Σ	—	Operates as Σ key	Unused	Unused	
GT		Switches GT-mode or non-GT mode	Unused	Unused	
FEED	Operates as paper feed key	Operates as paper feed key	Operates as paper feed key	Operates as paper feed key	
P/NP	_	Switches print or non-print	Unused	Unused	
T/N	Colocto look kov modo or	touch kou modo			
(Note 1)	Selects lock key mode or	touch key mode.			
2 TAX	Colocto cinglo tov modo o	r daubla tay mada			
(Note 1)	Selects single tax mode o	r double lax mode.			
2 M (Note 1)	Selects single memory mo	ode or double memory mod	e.		

Note 1: Can switch modes only with the reset key.

(2)

Explanation of f	
	Keys in numbers from 0 to 9, 00, and 000. If the number of displays digits exceeds
[00, 000]	10 or 12 key entry is invalid.
[·]	If this key is pressed after a key operation except data entry, the displays is cleared and entry of [·] is stored in memory. The decimal point is shifted for subsequent data entry. If the [·] key is pressed during data entry, displays does not change.
[+, -]	 Add or subtract operation data and displays the result. The decimal point is floating except when A mode is specified. Addition or subtraction can be performed repeatedly. If these key are pressed in multiplication/division mode or in constant calculation mode, add or subtract displays data to addition/subtraction registers, then displays the result. At this time, in the operation mode multiplicand or divisor do not change. These keys increment or decrement the item counter. In the following operation mode, the operations are executed, and the results are printed and displayed. At that time, addition or subtraction using the addition/subtraction register is not executed. 1) Percent discount/add-on calculation a × b% +a + (ab/100) c% +a - (ab/100) c%a - (ac/100)
	Percent discount/add-on with constants are calculated as above.
[◊]	Prints and displays the intermediate result in addition/subtraction register. In item count mode, prints the contents of the item counter before the calculation result printing. Contents of data register or stored arithmetic instruction are not changed.
[*]	Print and displays the result in addition/subtraction register. Automatically feeds paper one line. In item count mode, the contents of the item counter are printed before the calculation result printing. After this key operation, the contents of the addition/subtraction register are cleared. The contents of the item counter are cleared at the first addition/subtraction in next step. The contents of the data register or stored arithmetic instruction are not changed. When GT mode is specified, the result of addition/subtraction is added to the GT memory.
[MI+, MII+] [MI-, MII-]	If the arithmetic instruction is not stored or if the mode is constant calculation mode, first prints the displays contents after rounding to the specified number of decimal places, performs addition/subtraction using the data in memory, then stores the result in memory. If the multiplication/division instruction is stored, executes the arithmetic instruction, rounds the result to the specified number of decimal places, prints and displays the result, adds/subtracts with the data in memory, then stores the result to memory. At that time, the multiplicand or divisor is stored together with the mode, constant calculation mode. When this key is pressed immediately after the [×] or [MI+, MII+, MI-, MII-] key, operation is the same as that for the [=] key; that is, adds/subtracts using data in memory. This key operation increments or decrements the item counter for memory.

[MI¢, MII¢]	. Prints or displays the intermediate result of memory calculation. In item count mode, prints the contents of the item counter for memory before the calculation result printing. Contents of the data register or stored arithmetic instruction are not changed.
[MI*, MII*]	. Prints and displays the result of memory calculation and automatically feeds paper one line. In item count mode, prints the contents of the item counter for memory before the calculation result printing. After the [MI*, MII*] key operation, the contents of memory and the contents of the item counter for memory are cleared. Contents of the data register or stored arithmetic instruction are not changed.
[×, ÷]	. If the multiplication or division instruction is stored in memory, prints the operators, performs the operations and displays the results while simultaneously storing a new arithmetic instruction in memory. The decimal point for the result is floating. If the $[x]$ or $[\div]$ key is pressed in constant calculation mode, prints the displayed numeric value without performing an operation and stores a new multiplication/division instruction in memory.
[=]	. Executes a stored multiplication/division instruction, rounds the result to the specified number of decimal places, prints and displays the result, then automatically feeds the paper one line. Stores the multiplicand or divisor together with constant calculation mode in memory. If an instruction is not stored in memory, no operation is performed and the previous state is held. Pressing the [=] key immediately after the [×] or [+] key performs the following operation. $a \times = \dots aa$ $a \div = \dots 1$
[%]	 If an arithmetic instruction is stored in memory, performs percentage calculation, rounds the result to the specified number of decimal places, prints and displays the result. Stores the multiplicand/divisor together with constant calculation mode in memory. If a percentage calculation for multiplication is performed, percent discount/add-on calculation can be done by using the [+] or [-] key. At that time, addition/subtraction using the addition/subtraction register is not performed. If an arithmetic instruction is not stored in memory, no operation is performed and the previous states is held. Pressing the [%] key immediately after the [×] or [+] key performs the following operation. a × % =aa/100 a ÷ % =100 % key operation example: percent discount/add-on calculation a × b%ab/100 +a + (ab/100) c%a(100) a × b%ab/100 a - (ab/100) c%a(100)

–.....a – (ac/100)

[MU/D] If a multiplication/division instruction decimal point for the result is floating	
$\begin{array}{c} \text{MU/D key operation example:} \\ \text{aMU/Db} = a/(1 - (b/100 \\a/(1 - (b/100 \\ c =a/(1 - (c/100 \\a/(1 - (c/100 \\ a\text{MU/Db} +/- =a/(1 + (b/100 \\a/(1 + (b/100 \\ c +/- =a/(1 + (c/100 \\a/(1 + (c/100 \\$	 (mark-up))) - a (prints profit))) (mark-up))) - a (prints profit))) (mark-down))) - a (prints profit)
[Δ%]If a multiplication/division instructior Δ%key operation example:	n is memorized, cancels the data.
$a\Delta\% b = \dots b - a$ $(b - a)/ a $ $c = \dots c - a$ $(c - a)/ a $ $a\Delta\% b +/- = \dots -(b + a)$ $\dots -(b + a)/ a $ $c +/- = \dots -(c + a)$ $\dots -(c + a)/ a $	(prints difference) (change delta percent) (prints difference) (change delta percent) (prints difference) (change delta percent) (prints difference)
[+/-]Inverts sign of the displayed number a	at key entry.
$[\rightarrow]$ Shifts the contents of the displays to t estimation calculation error, cancels t	
$[\mathrm{GT}^{\diamondsuit}_*]$ Calls the contents of GT memory. If the GT memory, but does not change curres the contents of GT memory and clears	ent state. If the key is pressed twice, calls
[C] Cancels all arithmetic instructions an registers except the memory register,	
pressed after one of the following keys [MI–, MII–] [MI¢, MII◊] [MI*, MII*] [M	the contents of the data register. Invalid if s: [C] [x] [+] [+] [-] [=] [%] [Δ %] [MI+, MII+]
[IC+]	
[Σ] If an operation is performed by the [=] mode, adds the operation result to the increments the item counter.	
$[\div]$ [+] [-] [=] [%] [Δ %] [MI+, MII+] [MI- [IC/AVE].	e as the [CE] key. eys, operates same as the [C] key: [C/CE] [×] -, MII–] [MI◊, MII◊] [MI*, MII*] [MU/D] after the [+/–] or the [#/P] key depends on the

[#/P]	register together with the # symbol, bu	
[+TAXI/II]	does not express the tax. Prints or disp decimal-point (TAB) setting.) Feeds the TAXI key operation example: a [+TAXI]a (3/100) a + (a (3/100)) a [-TAXII]a/(1 + 3/100) – a a/(1 + 3/100)	(TAX = 3%) (prints TAX) (included TAX) (prints TAX) (excluded TAX) ey entry, calculate the tax as a result of
[P/NP]	set. Switches mode in each time when	RINT mode. At reset, NON-PRINT mode is the [P/NP] key is pressed: isplays "print mode". Valid only when the
[RND]	Switches the mode in each time when t	and half-adjust. At reset, half-adjust is set. the [RND] key is pressed: round-up/round-off. Valid only when the
[GT MOD]	. Exchange GT-mode. (initial setting isn GT mode cycles not-support and suppo Only touch key mode is valid.	
[IC MOD]	. Exchange IC-mode. (initial setting isn't IC mode cycles not-support, IC+ and IC touch key mode is valid.	t support IC-mode.) C±-mode. And displays IC-mode flag. Any
[IC/AVE]	just after pressed [*] key and [0] key, After first, prints or displays the item of	item counter are executed, prints or displays item counter are cleared. (*) \rightarrow Displays or prints addition/ subtraction register. (IC/AVE) \rightarrow Displays the item counter (IC/AVE) \rightarrow Displays or prints (a + b + c + d + e + f + g)/7

(3)

[DEC]	Switches the decimal point. At reset, floating point (F) is set. Switches the mode in each time when the [DEC] key is pressed as follows: $F \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow A \rightarrow AII \rightarrow F \rightarrow 0 \rightarrow 1$. Displays the specified decimal point or add mode.
	Valid only when the $[\overline{T}/L]$ lock key is off.
Explanation of lo	
[0, 1, 2, 3] [4, 6, A, AII]	Sets the specified decimal point. If no specification, floating is set. When processing floating point data, the operation result is zero-shifted. When A mode is specified, key-entered data are multiplied by 1/100 only when the key-entered numerical value is used for addition/subtraction or memory addition/subtraction. If the [·] key is pressed during data entry, A mode is invalid. The operation result is treated the same as the specified decimal point, 2. When AII mode is specified, key-entered data are multiplied by 1/100 only when the key-entered numerical value is used for multiplication/division by [=] key. If the [·] key is pressed during data entry, AII mode is invalid. The operation result is treated the same as the specified decimal point, 2.
[CUT, UP]	Rounds-off in CUT mode; rounds-up in UP mode; when no specification is made, half-adjusts. When a decimal point is specified, the digit (s) in the subsequent decimal place is (are) half-adjusted, rounded-off, or rounded-up (??). If floating point is specified, the value of the least significant digits which cannot be displayed is rounded off.
[P/NP]	Switches between print and non print mode. When [P/NP] lock key is off, disables all printing except [PF] or [#/P] key. When mode changes from non-print to print, feeds the paper one line.
[IC+] [IC±]	Selects item count mode. IC+Counts up by the [+] or [–] key. IC±Counts up by the [+] key, down by the [–] key.
[Σ]	If an operation is performed by the [=] or [%] key in auto accumulation calculation mode, adds the operation result to the addition/subtraction register and increments the item counter.
[GT]	In grand total mode, adds the total register to the GT register by the [*] key.
[Ŧ/L]	When the $[\overline{T}/L]$ lock key is off, the $[P/NP]$, $[\Sigma]$, $[GT MOD]$, $[IC MOD]$, $[RND]$, and $[DEC]$ keys are valid. When the $[\overline{T}/L]$ key is on, the $[NP]$, $[\Sigma]$, $[GT]$, $[IC+]$, $[IC\pm]$, $[CUT]$, $[UP]$, and $[0, 1, 2, 3, 4, 6, A, AII]$ lock keys are valid.
SETI SETII	When the [SETI/SETII] lock key is on, prints and express the stored tax rate. When the [SETI/SETII] lock key is off, store the expression data to the new tax rate. The result of tax rate is only floating-point, and not consent the decimal-point at this function.
[FEED]	Feed paper.
[TMR]	When the [TMR] lock key is on, auto power-off functions. (after approx. 6 minutes.)
[2 TAX]	Switches between single tax and double tax mode. When the [2 TAX] lock key is on, one tax rate can be set. (SETII and TAXII will be disabled.) When the [2 TAX] lock key is off, two tax rates can be set.
[2 M]	Selects single memory or double memory mode. When the [2 M] lock key is on, one memory can be used. (MII will be disabled.) When the [2 M] lock key is off, two memories can be used.

(4) ON, OFF key

[ON] If pressed in HOLD mode, cancels HOLD. At that time, cancels all arithmetic instructions and errors. The contents of the memory register and the TAX RATE before HOLD mode are retained; all other registers are cleared. While the [ON] key is pressed, the [OFF] key is invalid.

[OFF] Forcibly enters HOLD mode (CPU sleep mode).

Operation Example

					Ke	y				5.4		
F	4/5	IC	Σ	GT	MOD	10/12	2 TAX	2 M	Touch	Print		Display
F	4/5	OFF	OFF	OFF	CAL	12	ON	ON	POWER ON			
										<pf></pf>		
											С	
										<pf></pf>		0.
									1+	1.	+	1.
									2-	2.	-	-1.
									٥	-1.	<u> </u>	-1.
									*	-1.	*	
										<pf></pf>		-1.
									IC/AVE	2.		2.
F	4/5	IC+	OFF	OFF	CAL	12	ON	ON	IC/AVE		÷	
										-0.5	*	-0.5
									IC/AVE	0.		0.
									1+	1.	+	1.
									2-	2.	-	-1.
									٥	002		
										-1.	<u> </u>	-1.
									IC/AVE	2.		2.
									IC/AVE		÷	
										-0.5	*	-0.5
									IC/AVE	2.		2.
									*	002		
										-1.	*	
										<pf></pf>		-1.
									IC/AVE	2.		2.
									IC/AVE		÷	
										-0.5	*	-0.5
									IC/AVE	0.		0.

<u>TOSHIBA</u>

					Ke	ý				Drivet		Disalari
F	4/5	IC	Σ	GT	MOD	10/12	2 TAX	(2 M	Touch	Print		Display
F	4/5	OFF	OFF	OFF	CAL	12	ON	ON	3 ×	3.	×	3.
									4 ÷	4.	÷	12.
									=	4.	=	
										3.	*	
										<pf></pf>		3.
									5 ×	5.	×	5.
									6 %	6.	010	
										0.3	*	
										<pf></pf>		0.3
									+		+	
										5.3	90	
										<pf></pf>		5.3
									2 ÷	2.	÷	2.
									3 %	3.	90	
										66.666666666	*	
										<pf></pf>		66.666666666
									2 MU/D	2.	М	2.
									3 =	3.	90	
											=	
										0.0618556701	*	
										2.0618556701	*	
										<pf></pf>		2.0618556701
									2 4%	2.	-	2.
									3 =	3.	8	
											=	
										1.	*	
										50.	*	
										<pf></pf>		50.

					Ke	y				Print	Print		Display
F	4/5	IC	Σ	GT	MOD	10/12	2 TAX	2 M	Touch	11110			Display
F	4/5	OFF	Σ	OFF	CAL	12	ON	ON	3 ×	3.	×		3.
									4 ÷	4.	÷		12.
									=	4.	=		
										3.	+		
										<pf></pf>			3.
									5 ×	5.	×		5.
									6 %	6.	8		
										0.3	+		
										<pf></pf>			0.3
									+		+		
										5.3	90		
										<pf></pf>			5.3
									2 ÷	2.	÷		2.
									3 %	3.	90		
										66.666666666	+		
										<pf></pf>		66	5.6666666666
									2 MU/D	2.	Μ		2.
									3 =	3.	90		
											=		
										0.0618556701	*		
										2.0618556701	+		
										<pf></pf>		2	2.0618556701
									2 48	2.	-		2.
									3 =	3.	90		
											=		
										1.	*		
										50.	+		
										<pf></pf>			50.
									*	122.028522336	*		
										<pf></pf>		12	22.028522336
F	4/5	OFF	Σ	GΤ	CAL	12	ON	ON		2.			2.
									3 +	3.			5.
									*	_	Т		
										5.	+		_
										<pf></pf>		GT	5.
									3 -	3.		GT	-3.
									4 –	4.	-	GT	-7.
									5 -	5.		GT	-12.
											Т		
									*	-12.	+		
										<pf></pf>	_	GT	-12.
									GT	_	Т		
										-7.		GT	-7.
										_	Т		
									GT	-7.	*		
										<pf></pf>			-7.

<u>TOSHIBA</u>

TC83230-0015

					Ke	y				Drivt		Disatau	Display		
F	4/5	IC	Σ	GT	MOD	10/12	2 TAX	2 M	Touch	Print		Display			
F	4/5	OFF	Σ	OFF	CAL	12	ON	ON	MI+	1					
											М				
										-7.	+	мI	-7.		
									5			мI	5.		
									MII+	2					
											М				
										5.	+	MI, MII	5.		
									MI◊	1					
											М				
										-7.	\diamond	MI, MII	-7.		
									MI*	1					
											М				
										-7.	*				
										<pf></pf>		м II	-7.		
									MII◊	2					
											М				
										5.	\diamond	м II	5.		
									MII*	2					
											М				
										5.	*				
										<pf></pf>			5.		
									#/P	5.	\diamond		5.		
									2 #/P	#2			2.		
									#/P	2.	\diamond		2.		
									0 ÷	0.	÷		0.		
									=	0.	=		0.		
										0.	*				
										<pf></pf>		Е	0.		
									С	0.	С				
										<pf></pf>			0.		
F	CUT	OFF	OFF	OFF	SETI	12	ON	ON		1					
										0.	8				
										<pf></pf>			0.		
									3						
F	CUT	OFF	OFF	OFF	CAL	12	ON	ON		1					
										3.	90 10				
										<pf></pf>			0.		
									С	0.	С				
										<pf></pf>			0.		

TC83230-0015

					Ke	у				Drint	Disslar
F	4/5	IC	Σ	GT	MOD	10/12	2 TAX	(2 M	Touch	Print	Display
F	CUT	OFF	OFF	OFF	SETI	12	ON	ON		1	
										3. %	
										<pf></pf>	3.
F	CUT	OFF	OFF	OFF	CAL	12	ON	ON			
F	CUT	OFF	OFF	OFF	SET I	12	ON	ON		2	
										0. %	
									5	<pf></pf>	0.
F	CUT	OFF	OFF	OFF	CAL	12	ON	ON		2	
										5. %	
										<pf></pf>	0.
									С	0. C	
-					onell	1.0		0.17		<pf></pf>	0.
F	COT	OF.F.	OF.F.	OF.F.	SETH	12	ON	ON		2 5. %	
										5. % <pf></pf>	5.
F	CIIT		OFF		CAT	12	ON	ON			0.
Ľ	001	OFF	OFF	OFF	CAL	12	ON	OIN	1560		0. 1,560.
									+TAXI	1	1,000.
									1 11 11 11	1560.	
										46.8 ◊	
										1606.8 *	
										<pf></pf>	1,606.8
									1560		1,560.
									+TAXII	2	
										1560.	
										ę	
										78. ◊	
										1638. *	
										<pf></pf>	1,638.
									+TAXI	1	
										1638. ◊	
1										8	
										49.14 ◊	
										1687.14 *	
1										<pf></pf>	1,687.14
									1560		1,560.
									×	1560. ×	1,560.
									78900		78,900.

<u>TOSHIBA</u>

TC83230-0015

					Ke	ý				5.1		
F	4/5	IC	Σ	GT	MOD	10/12	2 TAX	2 M	Touch	Print		Display
F	4/5	OFF (OFF	OFF	CAL	12	ON	ON	+TAXI	1		
										78,900.	=	
										123084000.	\diamond	
											olo	
										3692520.	\diamond	
										126776520.	*	
										<pf></pf>		126,776,520.
									=			126,776,520.
									5			5.
									×	5.	×	5.
									+TAXI			5.
									=	5.	=	
										25.	*	
										<pf></pf>		25.
									+TAXI	1		
										25.	\diamond	
											olo	
										0.75	\diamond	
										25.75	*	
										<pf></pf>		25.75
									=			25.75
									С	0.	С	
										<pf></pf>		0.
2	CUT	OFF (OFF	OFF	CAL	12	ON	ON	1560			1,560.
									+	1560.00	+	1,560.00
									1100			1,100.
									+	1100.00	+	2,660.00
									+TAXII	2		
										2660.00	\diamond	
											olo	
										133.00	\diamond	
										2793.00	*	
										<pf></pf>		2,793.00

TC83230-0015

					Ke	y						
F	4/5	IC	Σ	GT	MOD	10/12	2 TAX	2 M	Touch	Print		Display
F	CUT	OFF (OFF	OFF	CAL	12	ON	ON	+TAXI	1		
										2793.00	\diamond	
											olo	
										83.79	\diamond	
										2876.79	*	
										<pf></pf>		2,876.79
									980000			
									000000			980,000,000,000.
									+TAXI	1		
										980000000000.		
											010	
										29400000000.	\diamond	
										1.00940000000	*	
										<pf></pf>		
												E 1.0094000000
									С	0.	С	
										<pf></pf>		0.
									1560			1,560.
									+/-			-1,560.
									+TAXI	1		
										-1560.		
											olo	
										-46.8	\diamond	
										-1606.8	*	
										<pf></pf>		-1,606.8
									1560			1,560.
									-TAXI	1		
										1560.		
											010	
										-45.43689321	\diamond	
										1514.56310679	*	
										<pf></pf>		1,514.56310679
									-TAXI	1		
										1514.56310679	\diamond	
											010	
										-44.11348855	\diamond	
										1470.44961824	*	
										<pf></pf>		1,470.44961824

TC83230-0015

TOSHIBA

				Key	ý				Drint		Disalau
F	4/5	IC	Σ GT	MOD	10/12	2 TAX	2 M	Touch	Print		Display
								1560			1,560.
								-TAX II	2		
									1560.		
										010	
									-74.28571429	\diamond	
									1485.71428571	*	
									<pf></pf>		1,485.71428571
								-TAXII	2		
									1485.71428571	\$	
										olo	
									-70.74829932	\$	
									1414.96598639	*	
									<pf></pf>		1,414.96598639
F	CUT	OFF O	FF OFF	SETI	12	ON	ON		1		
									3.	010	
									<pf></pf>		3.
								С			0.
F	CUT	OFF O	FF OFF	CAL	12	ON	ON		1		
									0.	010	
									<pf></pf>		0.
F	CUT	OFF O	FF OFF	SETI	12	ON	ON		1		
									0.	010	
									<pf></pf>		0.
								1234			1,234.
F	CUT	OFF O	FF OFF	CAL	12	ON	ON		1		
									1234.	010	
									<pf></pf>		0.
F	CUT	OFF O	FF OFF	SETH	12	ON	ON		2		
									5.	90	
									<pf></pf>		5.
								С			0.

Note 2: <PF> Paper feed

<u>TOSHIBA</u>

TC83230-0015

				Ke	y				Print		Diaplay
F	4/5	ΙC Σ	GT	MOD	10/12	2 TAX	2 M	Touch	Print		Display
F	CUT	OFF OF	F OFF	CAL	12	ON	ON		2		
									0.	00	
									<pf></pf>		0.
								980000			
								000000			980,000,000,000.
								+TAXI	1		
									980000000000.		
									0.	*	Е 0.
									<pf></pf>		
								С	0.	С	
									<pf></pf>		0.
A	CUT	OFF OF	F OFF	CAL	12	ON	ON	123			123.
								+	1.23	+	1.23
								456			456.
								+	4.56	+	5.79
								\diamond	5.79	\diamond	5.79
								*	5.79	*	
									<pf></pf>		5.79
AII	CUT	OFF OF	F OFF	CAL	12	ON	ON	789			789.
								×	789.	×	789.
								100			100.
								=	1.00	=	
									789.00	*	
									<pf></pf>		789.00

Note 2: <PF> Paper feed

Maximum Ratings (V_{SS} = 0 V)

Characteristics	Symbol	Rating	Unit
Supply voltage 1	V _{DD}	-0.3~6	V
Supply voltage (LCD drive)	V _{LC}	-0.3~V _{DD} + 0.3	V
Input voltage	V _{IN}	-0.3~V _{DD} + 0.3	V
Output voltage	V _{OUT}	-0.3~V _{DD} + 0.3	V
Output current	IOUT	3.2	mA
Power dissipation	PD	600	mW
Soldering temperature	T _{sld}	260 (10 s)	°C
Storage temperature	T _{stg}	-55~125	°C
Operating temperature	T _{opr}	0~40	°C

Electrical Characteristics

Recommended Operating Conditions ($V_{SS} = 0 V$, $T_{opr} = 0 \sim 40^{\circ}$ C)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Max	Unit
Operating temperature	T _{opr}			0	40	°C
		—	NORMAL	4.5		
Supply voltage	V _{DD}	—	SLOW	4.5	5.5	V
		—	HOLD	2.0	40	
High-level input voltage (non-schmitt circuit)	V _{IH1}		N>45V	V _{DD} × 0.7	V _{DD}	V
High-level input voltage (schmitt circuit)	V _{IH2}		V _{DD} ≥ 4.5 V	0 4.5 2.0 V _{DD} × 0.7 V _{DD} × 0.75 V _{DD} × 0.9 0 0	V _{DD}	V
High-level input voltage	V _{IH3}	_	V_{DD} < 4.5 V	$V_{DD} \times 0.9$	V _{DD}	V
Low-level input voltage (non-schmitt circuit)	V _{IL1}		V _{DD} ≧ 4.5 V	0	V _{DD} × 0.3	V
Low-level input voltage (schmitt circuit)	V _{IL2}		י 5.7 = 00	0	V _{DD} × 0.25	V
Low-level input voltage	V _{IL3}	_	V_{DD} < 4.5 V	0		V

DC Characteristics ($V_{SS} = 0 V$, $T_{opr} = 0 \sim 40^{\circ}$ C)

Symbol	Test Circuit	Terminal	Test Condition	Min	Тур.	Max	Unit
V _{HS}	_	Hysteresis Input	_		0.7	_	V
I _{IN1}		KO port, TEST, RESET,HOLD	V _{DD} = 5.5 V			10	μA
I _{IN2}	_	Open Drain R port, P port	V _{IN} = 5.5/0 V	_		ΞZ	μΑ
R _{IN1}	_	KO port TEST with Input Resistor	$V_{DD} = 5.5 V$	30	70	150	kΩ
R _{IN2}		RESET, HOLD	V _{IN} = 5.5/0 V	100	220	450	
I _{LO1}	_	Sink Open Drain R port	V _{DD} = 5.5 V V _{OUT} = 5.5 V		_	2	•
I _{LO2}		Source Open Drain R port, P port	V _{DD} = 5.5 V V _{OUT} = -1.5 V			-2	μΑ
V _{OH}	_	Source Open Drain R port, P port	V _{DD} = 5.5 V I _{OH} = -1.6 mA	2.4			V
V _{OL}	_	Sink Open Drain R port	V _{DD} = 5.5 V I _{OL} = 1.6 mA	_		0.4	v
R _{OUT}		R port, P port	V _{DD} = 5.5 V V _{IN} = 5.5 V	30	70	150	kΩ
R _{OS}		SEG				25	kΩ
R _{OC}		СОМ				35	K22
V _{O2/3}				3.8	4.0	4.2	
V _{01/2}	_	SEG/COM	עעי – ארט ארט ארט אנעיגע	3.3	3.5	3.7	V
V _{O1/3}				2.8	3.0	3.2	
I _{DD}			$V_{DD} = 5.5 V,$ $V_{LC} = V_{SS}$ $f_c = 4 MHz$		3	6	mA
IDDH		_	V _{DD} = 5.5 V		0.5	10	μA
	V _{HS} I _{IN1} I _{IN2} R _{IN1} R _{IN2} ILO1 ILO2 VOH VOL ROUT ROS ROC VO2/3 VO1/2 VO1/2 VO1/3 IDD	Symbol Circuit V _{HS} — I _{IN1} — I _{IN2} — R _{IN1} — R _{IN2} — ILO1 — ILO2 — VOH — VOH — VOH — VOH — ROUT — ROS — ROC — VO1/2 — VO1/3 —	SymbolCircuitTerminalVHS—Hysteresis InputIIN1—KO port, TEST, RESET, HOLDIIN2—Open Drain R port, P portRIN1—KO port TEST with Input ResistorRIN2—RESET, HOLDILO1—Sink Open Drain R portILO2—Source Open Drain R port, P portVOH—Source Open Drain R port, P portVOH—Source Open Drain R port, P portVOL—Source Open Drain R port, P portROUT—Sink Open Drain R portROUT—Sink Open Drain R portROC—SEGROC—SEGROC—SEG/COMVO1/2—SEG/COMVO1/3——	SymbolCircuitTerminalTest Condition V_{HS} Hysteresis Input I_{IN1} KO port, TEST, RESET, HOLD $V_{DD} = 5.5 V$ I_{IN2} Open Drain R port, P port $V_{IN} = 5.5/0 V$ R_{IN1} KO port TEST with Input Resistor $V_{DD} = 5.5 V$ R_{IN2} RESET, HOLD $V_{DD} = 5.5 V$ I_{LO1} RESET, HOLD $V_{DD} = 5.5 V$ I_{LO2} RESET, HOLD $V_{DD} = 5.5 V$ V_{OH} Source Open Drain R port $V_{DD} = 5.5 V$ V_{OH} Source Open Drain R port, P port $V_{DD} = 5.5 V$ V_{OH} Source Open Drain R port, P port $V_{DD} = 5.5 V$ V_{OH} Sink Open Drain R port, P port $V_{DD} = 5.5 V$ V_{OL} Sink Open Drain R port $V_{DD} = 5.5 V$ V_{OL} R port, P port $V_{DD} = 5.5 V$ I_{OL} SEG $V_{DD} = 5.5 V$ V_{OL} SEG $V_{DD} = 5.5 V$ $V_{O1/2}$ SEG/COM $V_{DD} = 5.5 V$, $V_{O1/2}$ SEG/COM $V_{DD} = 5.5 V$, $V_{D1/2}$ SEG/COM $V_{DD} = 5.5 V$, $V_{D1/2}$ $V_{DD} = 5.5 V$, $V_{D1/2}$ $V_{DD} = 5.5 V$, $V_{D1/3}$ $V_{DD} = 5.5 V$, $V_{D1/2}$ $V_{DD} = 5.5 V$, $V_{D1/2}$ <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c } \hline \mbox{Irreminal} & \mbox{Irest Condition} & \mbox{Min} & \mbox{Iyp.} \\ \hline \mbox{Min} & \mbox{Iyp.} \\ \hline \mbox{VHS} & & \mbox{Hysteresis Input} & & & 0.7 \\ \hline \mbox{I}_{IN1} & & \mbox{KO port, TEST, RESET, HOLD} & \mbox{V}_{DD} = 5.5 \ V \\ \hline \mbox{I}_{IN2} & & \mbox{Open Drain R port, P port} & \mbox{V}_{IN} = 5.5/0 \ V \\ \hline \mbox{I}_{N} = 5.5/0 \ V & \mbox{I}_{N} = 5.5/0 \ V \\ \hline \mbox{I}_{N} = 5.5/0 \ V & \mbox{I}_{N} = 5.5/0 \ V \\ \hline \mbox{I}_{N} = 5.5/0 \ V \\ \hline \mbox{I}_{ND} = 5.5 \ V \\ \hline \mbox{V}_{DD} = 5.5 \ V \\ \hline \mbox{V}_{DD} = 5.5 \ V \\ \hline \mbox{V}_{OUT} = -1.5 \ V \\ \hline \mbox{V}_{OUT} = -1.6 \ mA \\ \hline \mbox{V}_{OL} = -1.6 \ mA \\ \hline \mbox{V}_{OL} = -1.6 \ mA \\ \hline \mbox{V}_{OL} = 5.5 \ V \\ \hline \mbox{V}_{OL} = -1.6 \ mA \\ \hline \mbox{V}_{OL} = -1.6 \ mA \\ \hline \mbox{V}_{OD} = 5.5 \ V \\ \hline \mbox{V}_{OD} = 5.5 \ V \\ \hline \mbox{V}_{OD} = 5.5 \ V \\ \hline \mbox{V}_{N} = 5.5 \ V \\ \hline \mbox{V}_{DD} = 5.5 \ V \\ \hline$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c } \hline \mbox{Irreminal} & \mbox{Irest Condition} & \mbox{Min} & \mbox{Iyp.} \\ \hline \mbox{Min} & \mbox{Iyp.} \\ \hline \mbox{VHS} & & \mbox{Hysteresis Input} & & & 0.7 \\ \hline \mbox{I}_{IN1} & & \mbox{KO port, TEST, RESET, HOLD} & \mbox{V}_{DD} = 5.5 \ V \\ \hline \mbox{I}_{IN2} & & \mbox{Open Drain R port, P port} & \mbox{V}_{IN} = 5.5/0 \ V \\ \hline \mbox{I}_{N} = 5.5/0 \ V & \mbox{I}_{N} = 5.5/0 \ V \\ \hline \mbox{I}_{N} = 5.5/0 \ V & \mbox{I}_{N} = 5.5/0 \ V \\ \hline \mbox{I}_{N} = 5.5/0 \ V \\ \hline \mbox{I}_{ND} = 5.5 \ V \\ \hline \mbox{V}_{DD} = 5.5 \ V \\ \hline \mbox{V}_{DD} = 5.5 \ V \\ \hline \mbox{V}_{OUT} = -1.5 \ V \\ \hline \mbox{V}_{OUT} = -1.6 \ mA \\ \hline \mbox{V}_{OL} = -1.6 \ mA \\ \hline \mbox{V}_{OL} = -1.6 \ mA \\ \hline \mbox{V}_{OL} = 5.5 \ V \\ \hline \mbox{V}_{OL} = -1.6 \ mA \\ \hline \mbox{V}_{OL} = -1.6 \ mA \\ \hline \mbox{V}_{OD} = 5.5 \ V \\ \hline \mbox{V}_{OD} = 5.5 \ V \\ \hline \mbox{V}_{OD} = 5.5 \ V \\ \hline \mbox{V}_{N} = 5.5 \ V \\ \hline \mbox{V}_{DD} = 5.5 \ V \\ \hline $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Note 3: Typ. values are guaranteed at $T_{opr} = 25^{\circ}C$, $V_{DD} = 5 V$.

Note 4: I_{IN1}: Excepts a current through a internal pull up/down resistor.

Note 5: R_{OS}, R_{OC}: Shows on-resistor at level switching.

Note 6: $V_{O2/3}$: Shows 2/3 level output voltage at which 1/4 or 1/3 duty LCD drive.

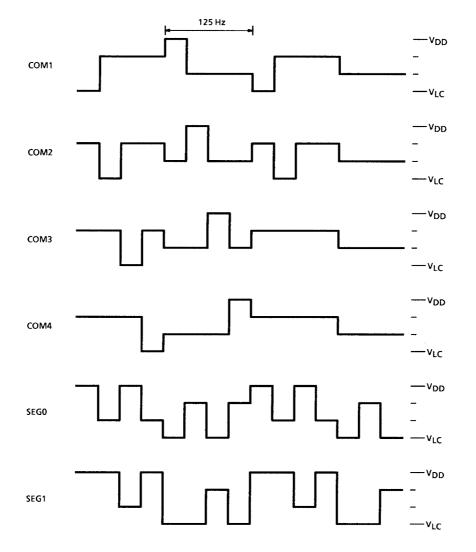
Note 7: $V_{O1/2}$: Shows 1/2 level output voltage at which 1/2 duty or static LCD drive.

Note 8: $V_{O1/3}$: Shows 1/3 level output voltage at which 1/4 or 1/3 duty LCD drive.

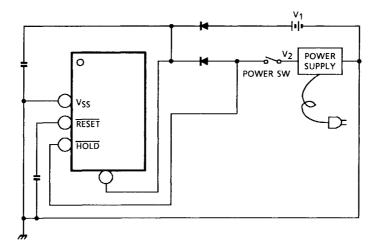
Note 9: I_{DD}, I_{DDH}: Current consumption at V_{IN} = 5.3 V/0.2 V

Should be under that KO port is open and R port voltage level is valid.

<u>TOSHIBA</u>


Oscillation Circuit ($V_{SS} = 0 V$, $V_{DD} = 4.5 \sim 5.5 V$, $T_{opr} = 0 \sim 40 °C$)

Recommended Circuit	Test Condition	Min	Тур.	Max	Unit
	$V_{DD} = 5.0 V$ C = 100 pF R = 1 k $\Omega \pm 2\%$	2.4	4.0	5.6	MHz

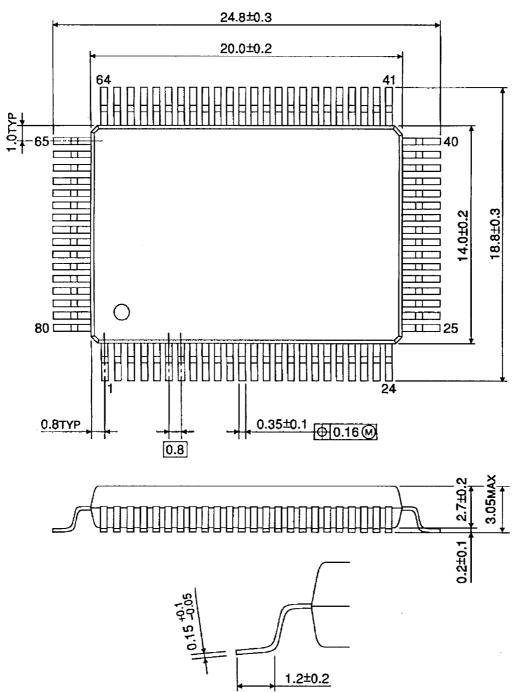

AC Characteristics (V_{SS} = 0 V, V_{DD} = 4.5~6.0 V, T_{opr} = 0~40°C)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Instruction cycle time	tov	_	NORMAL	1.9	_	20	
	tCY		SLOW	235	_	267	μS
High-level clock pulse width	twcH	_	External Clock Operation	80			ns
Low-level clock pulse width	t _{WCL}	_		00			ns
Shift data hold time	^t SDH	_	_	0.5 tcy - 300	_	_	ns
High speed timer/counter input frequency	fнт		—	_	_	f _c	MHz

Waveforms for Display

The Proposal of Outer Circuit for Tax Rate Holding with Back-Up Battery.

Note 10: $V_1 = +3$ V: Battery supply


 $V_2 = +5$ V: DC supply

 $\overline{ HOLD}$ pin is pulled down in the LSI, but normally pulled up to V_{DD}. RESET pin is pulled up to V_{DD}.

- (1) Setting POWER SW to ON, V_2 is supplied to V_{DD} pin, and also to \overline{HOLD} pin. Then calculator operates normally.
- (2) Setting POWER SW from ON to OFF, V_1 is supplied to V_{DD} pin and V_{SS} is supplied to \overline{HOLD} pin. Under this connection, TAX RATE is held.
- (3) Setting POWER SW to ON, V_2 is supplied to V_{DD} pin, and also to \overline{HOLD} pin. Then calculator operates normally with TAX RATE to be held.
- Note 11: V₁ (battery) should be supplied to the circuit after V₂ (DC) supply, because of prevention from exhaustion of battery and abnormal operation.

Package Dimensions

QFP80-P-1420-0.80A

Weight: 1.52 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.