CMOS Digital Integrated Circuit Silicon Monolithic

TC90175XBG

Video signal processing IC

Overview

TC90175XBG is a video signal LSI for the Full-HD input and output. This device receives an analog video signal (CVBS) or a digital video signal (LVTTL / LVDS), executes the video signal processing (scaling function, and picture improvement feature), and outputs a digital signal (LVTTL / LVDS).

Application

This device is used for the equipument implementing a panel which displays a multiple image systems, such as a car navigation system, a display audio system, and others.

Features

- Analog video signal (CVBS) input
 - 10bit ADC 1ch, 2-in / 1-out selector switch
 - Pre-filter (LPF)
 - 3line-Y / C sepalation
 - Color decorder for multi color system
- Digital video signal input
 - LVTTL 1ch 85MHz (max), YUV = 4:2:2 or RGB = 4:4:4
 - LVDS (Single 2ch or Dual 1ch) 100MHz (max)@Singel-Link, YUV = 4:4:4/4:2:2 or RGB = 4:4:4 (e.g. 1920x720@60fps) 150MHz (max)@Dual-Link, YUV = 4:4:4/4:2:2 or RGB = 4:4:4 (e.g. 1920x1080@60fps)
- Scaling function
 - Up / Down scaling
 - Horizontal averration correction
 - Trapezoid correction
 - Nonliner horizontal scaling
- YUV signal process
 - Edge correction (HVD-Enhancer / NC, Sharpness, CTI)
 - Static / Dynamic YC-gamma correction
 - Area-adaptive dynamic YC-gamma correction
 - Color management
 - TINT adjustment
 - Contrast adjustment, Brightness adjustment
 - Color gain adjustment, Color offset adjustment

- RGB signal process
 - Offset / Gain adustment
 - Gamma correction
 - Dither process
- Built-in OSD function
 - Font OSD display
 - Line drawing
- Digital video signal output
 - LVTTL 1 ch 80MHz (max), YUV = 4:2:2 or RGB = 4:4:4
 T-con signal output (Case of RGB18bit output)
- LVDS (Single 2ch or Dual 1ch) 100MHz (max)@Singel-Link,
 YUV = 4:4:4/4:2:2 or RGB = 4:4:4 (e.g. 1920x720@60fps) 150MHz (max)@Dual-Link,
 YUV = 4:4:4/4:2:2 or RGB=4:4:4 (e.g. 1920x1080@60fps)
- PWM signal output (2 pin)
- PLLwithin SSCGfunction
- I²C-BUS control
- Operating temperature : -40°Cto 85°C
- Power supply : 1.2 V, 3.3 V
- Package : P-LFBGA293-1717-0.80-001

1. Block Diagram

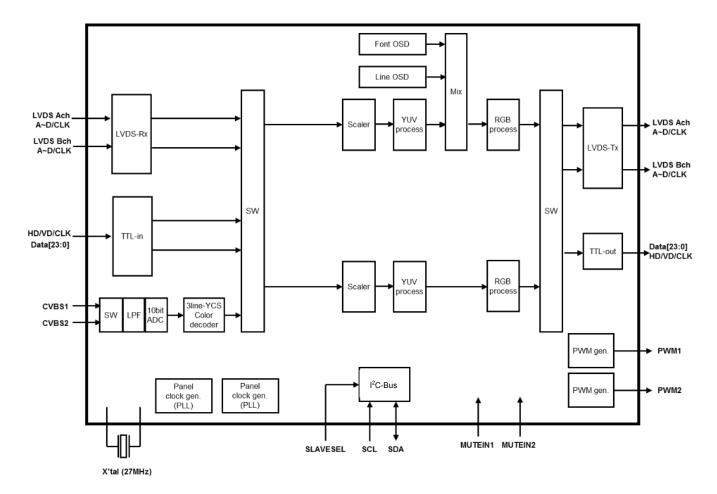


Figure 1.1 Internal Block diagram

2. Electrical Characteristics

2.1. Absolute Maximum Ratings

The absolute maximum ratings are the rated values which must not be exceeded during operation, even for an instant. Exceeding the maximum rating may result in destruction, degradation, or other damages of device.

Parameter	Symbol	Min	Тур.	Max	Unit
Core power supply (1.2 V)	VDD12	-0.3	—	VSS + 1.8	V
Standard I/O power supply (3.3 V)	VDD33	-0.3	_	VSS + 3.9	V
ADC power supply (1.2 V)	AVDD12	-0.3	_	VSS + 1.8	V
ADC power supply (3.3 V)	AVDD33	-0.3	_	VSS + 3.9	V
LVDS-Rx power supply (1.2 V)	RVDD12	-0.3	_	VSS + 1.8	V
LVDS-Rx power supply (3.3 V)	RVDD33	-0.3		VSS + 3.9	V
LVDS-Tx power supply (1.2 V)	TVDD12	-0.3	_	VSS + 1.8	V
LVDS-Tx power supply (3.3 V)	TVDD33	-0.3	_	VSS + 3.9	V
X'tal power supply (3.3 V)	XVDD33	-0.3	_	VSS + 3.9	V
PLL power supply (1.2 V)	PVDD12	-0.3	_	VSS + 1.8	V
DC input voltage (3.3 V)	VIN33	-0.3	_	VDD33 + 0.3	V
DC output voltage (3.3 V)	VOUT33	-0.3	_	VDD33 + 0.3	V
DC input current	IIN	_	_	±10	mA
Operating ambient temperature	Та	-40	_	85	°C
Storage temperature	Tstg	-40	_	125	°C

Table 2.1	Absolute	Maximum	Ratings
	/ 10001010	Maximanna in	i tatili go

2.2. Operating Conditions

Parameter	Symbol	Min	Тур.	Мах	Unit
Core power supply (1.2V)	VDD12	1.1	1.2	1.3	V
Standard I/O power supply (3.3 V)	VDD33	3.0	3.3	3.6	V
ADC power supply (1.2 V)	AVDD12	1.1	1.2	1.3	V
ADC power supply (3.3V)	AVDD33	3.0	3.3	3.6	V
LVDS-Rx power supply (1.2V)	RVDD12	1.1	1.2	1.3	V
	RVDD33	3.0	3.3	3.6	V
LVDS-Rx power supply (3.3V)	RVDD33 (2.5V mode)	2.3	2.5	2.7	V
LVDS-Tx power supply (1.2V)	TVDD12	1.1	1.2	1.3	V
	TVDD33	3.0	3.3	3.6	V
LVDS-Tx power supply (3.3V)	RVDD33 (2.5V mode)	2.3	2.5	2.7	V
XTAL power supply (3.3V)	XVDD33	3.0	3.3	3.6	V
PLL power supply (1.2V)	PVDD12	1.1	1.2	1.3	V

Table 2.2 Operating conditions

2.3. Consumption current

Table 2.3 DC characteristic (Consumption current)

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Current of Core (1.2V)	IDD12	_	210	350	mA	PLL1 = 150MHz PLL2 = 75MHz 1dot-crosshatch processing (Notes. 1)
Current of Standard I/O (3.3 V)	IDD33	_	65	90	mA	75MHz output 1dot-crosshatch processing (Notes. 2)
Current of ADC (1.2 V)	AIDD12	_	18	25	mA	-
Current of ADC (3.3V)	AIDD33	_	25	35	mA	-
Current of LVDS-Rx (1.2V)	RIDD12	_	75	90	mA	When Dual mode
		_	70	110	mA	When Dual mode (3.3V mode)
Current of LVDS-Rx (3.3V)	RIDD33	_	65	100	mA	When Dual mode (2.5V mode)
Current of LVDS-Tx (1.2V)	TIDD12	_	10	20	mA	When Dual mode
Current of LVDS Ty $(2, 2)$	TIDD33		100	125	mA	When Dual mode (3.3V mode/350mVp-p mode)
Current of LVDS-Tx (3.3V)	10033		75	95	mA	When Dual mode (2.5V mode/225mVp-p mode)
Current of XTAL (3.3V)	XIDD33		5	10	mA	-
Current of PLL (1.2V)	PIDD12		10	15	mA	-

Notes. 1 : The consumption current of Core power (IDD12) is depends on operating frequency and using circuit block at this IC.

Notes. 2 : The consumption current of Standard IO power is depends on the load capacity at output pin. When the load capacity is large value, the consumption current of IDD33 may exceed the above described maximum value.

2.4. 3.3V system I/O

Table 2.4 DC characteristic (3.5V System 1/O)						
Parameter	Symbol	Min	Тур.	Max	Unit	Notes
	VIH	VDDIO×0.8	_	VDDIO	V	I/O input terminal of 3.3V system
Input voltage	VIL	VSS	_	VDDIO×0.2		I/O input terminal of 3.3V system
Innut ourrent	IIH	-10	_	10	μA	I/O input terminal of 3.3V system
Input current	IIL	-10		10		I/O input terminal of 3.3V system
	VOH	VDD33-0.6		VDD33	V	I/O output terminal of 3.3V system when load current 4mA
Output voltage	VOIT	VDD33-0.6		VDD33		I/O output terminal of 3.3V system when load current 8mA
Output voltage	DVSS	DVSS	_	0.4		I/O output terminal of 3.3V system when load current 4mA
	VUL	DVSS		0.4		I/O output terminal of 3.3V system when load current 8mA

Table 2.4 DC characteristic (3.3V system I/O)

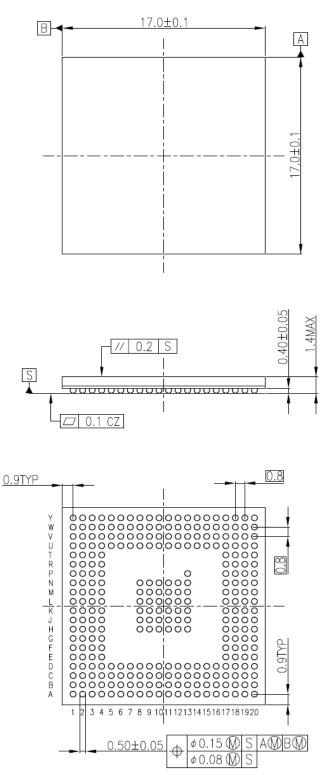
2.5. LVDS input

 Table 2.5
 DC characteristic (LVDS input)

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Input voltage	VIN	0.2	—	2.4	V	-
Absolute input differential voltage	Vid	100	_	600	mV	-

2.6. LVDS output

Table 2.6 DC characteristic (LVDS output)


Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Output voltage	VOH	_	—	1600	mV	RLOAD = 100Ω ± 1%
Output voltage	VOL	900	—	—	mV	RLOAD = 100Ω ± 1%
Absolute differential output voltage	IVODI	250	_	450	mV	RLOAD = 100Ω ± 1%
Output offset voltage	VOS	1075	_	1325	mV	RLOAD = 100Ω ± 1%

3. Package Information

3.1. Package Diagram

P-LFBGA293-1717-0.80-001

Unit : mm

Weight: 0.665g (Typ.)

Figure 3.1 Package dimensions

4. Revision History

Revision	Date	Description
1.00	2018-07-02	First Edition

 Table 4.1
 Revision History

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

•TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.

•This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.

•Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. **TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.**

•PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.

•Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

•Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

•The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

•ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

•Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

•Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. **TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.**

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION