

TCP4620AP TCP4630AP SILICON MONOLITHIC

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER GENERAL DESCRIPTION

TLCS-46A is a $C^2 MOS$ high speed and low power 4-bit single chip micro-computer for consumer applications.

A single and integral microcomputer has been composed of a 4-bit parallel arithmetic and logical unit (ALU), accumulator (AC), program memory (ROM), data memory (RAM), input/output ports, clock generator, and divider incorporated.

TLCS-46A Family consists of two kinds of chips having different ROM/ RAM capacities for mass production and evaluator for system development.

INTEGRATEDCIRCUIT

TECHNICAL DATA

TCP4620AP TCP4630AP

FEATURES

- o TCP4620AP 2048 x 8 ROM 96 x 4 RAM 34 I/O Lines
- o TCP4630AP 3072 x 8 ROM 160 x 4 RAM 34 I/O Lines
- o TCP4600AP Evaluator Chip for TLCS-46A

- Low Power Dissipation by Employment of C²MOS Process
 Typical Supply Current : 400µA (at 400 kHz Basic Clock)
- o Single 5V Supply
 Wide Operating Range : 3V to 6V

o Wide Operating Temperature Range: -30°C to 85°C

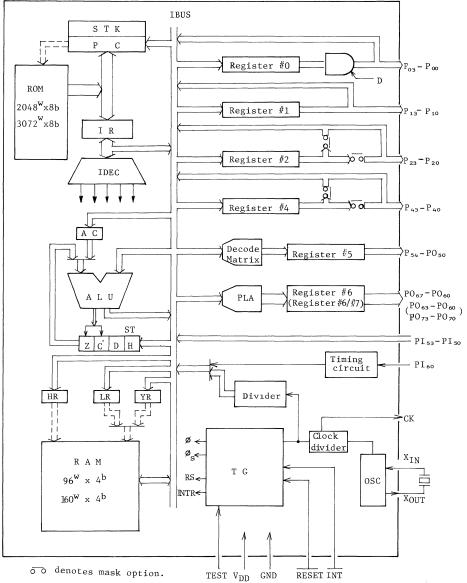
- 52 Instructions
 46 One Cycle Instructions
 6 Two Cycle Instructions
- o Single Level Subroutine Nesting
- o Single Level External Interrupt
- o $10\mu s$ Instruction Execution Time
- o PLA and Decode Matrix for Display Operation
- Many Kinds of Mask Options for Optimum
 Application Systems

PIN CONNECTIONS (TOP VIEW)

		\sim	
Роз	d 1	42	VDD
P 02	C 2	41 🛓	P 23
Poi	d 3	40 þ	P 22
P oo	q 4	39 🗖	P 21
P 13	C 5	38 🗖	P 20
P 12	[6	37 🗖	P43
Pii	d 7	36 🗖	P 42
P 10	С 8	35 🗖	P 41
P0 67	d 9	34 🗖	P 40
PO 66	C 10	33 🗖	ΡI 60
P0 65	d 11	32 🗖	INT
P ₀₆₄	D 12	31 🗖	RESET
РО ₆₃	L 13	30 🗗	TEST
P0 62	D 14	29 þ	CK
P0 61	d 15	28 🗖	XOUT
P0 60	[16	27 Þ	X_{IN}
PO 54	L 17	26 🗖	PI 53
P053	[18	25 🏼	PI 52
PO 5 2	d 19	24 🏼	ΡI 51
PO 51	d 20	23 🏼	PI 50
GND	D 21 .	22 þ	PO 50

PIN NAMES & PIN DESCRIPTION

Pin Name	Input/Output	Function				
P . 3 - P	Input/Output	4-bit general purpose I/O port (I/O is designated by a program).				
P ₁₃ - P ₁₀	Output	4-bit general purpose output port.				
P ₂₃ - P ₂₀	Input or Output	4-bit general purpose] Input/Output is				
P ₄₃ - P ₄₀	Input or Output	4-bit general purpose designated by mask Input/Output port options.				
PO ₅₄ - PO ₅₀	Output	5-digit output port for display. (Can be used as the general purpose 5-bit output port)				

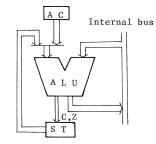

INTEGRATEDCIRCUIT

TECHNICAL DATA

Pin Name	Input/Output	Function
P0 ₆₇ -P0 ₆₀	Output	8-segment output port for display (can be used as the general purpose 8-bit output port)
PI53-PI50	Input	4-bit general purpose input port.
PI60	Input	l-bit general purpose input port (with a internal Schmitt circuit).
RESET	Input	Initialize signal input (with a internal Schmitt circuit).
INT	Input	Interrupt request signal input (with a inter- internal Schmitt circuit).
XIN	Input	Oscillator connecting terminal
X _{OUT}	Output	Oscillator connecting terminal
СК	Output	External timing output
TEST	Input	LSI test signal input, used by connecting to GND
V _{DD}		Power supply
GND		GND

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION


[SYSTEM CONFIGURATION]

TLCS-46A consists of the following elements.

1. BASIC ELEMENTS

- (1) Arithmetic and Logical Unit (ALU)
- (2) Accumulator (AC)
- (3) Status Register (ST)
- (4) H Register (HR), L Register (LR), Y Register (YR), Y Register Flag (EYR)
- (5) Port (P), Port Register (Register)
- (6) Internal Bus (IBUS)
- (7) Data Memory (RAM)
- (8) Program Memory (ROM)
- (9) Program Counter (PC)
- (10) Stack (STK), Stack Flag (FSTK)
- (11) Instruction Register (IR), Instruction Decoder (IDEC)
- (12) Clock Generator (OSC)
- (13) Divider
- (14) Timing Generator (TG)
- (1) Arithmetic and Logical Unit (ALU)

ALU performs the principal function involved in the data processing of TLCS-46A, and consists of 4-bit binary parallel arithmetic circuit.

One of the inputs of the arithmetic and logical unit is the accumulator

or the status register, and another input is the internal bus, and the result of operation is output to the internal bus and at the same time, carry (barrow) and zero are detected.

(2) Accumulator (AC)

The accumulator is a 4-bit register that temporarily stores data for arithmetic process, arithmetic result and data from/to the input/output ports.

(3) Status Register (ST)

The status register is a 4-bit register having a meaning per bit, and is called H flag, D flag, C flag and Z flag in that order from LSB side.

(MSB)			(LSB)
3	2	1	0
Z	С	D	Н

(1) Zero Flag (Z)

The zero flag (Z) is set to "l", if the result generated by certain instructions is zero.

The zero flag is cleared, if the result is not zero.

Further, z flag is used not only for judgement of zero but also as a branch condition for program flow.

(2) C Flag

When an instruction indicating update is executed, C flag is set at "1" if carry is resulted at time of addition and increment, and at "0" if no carry is resulted.

Further C flag is also set at "0" when borrow is resulted at time of substruction and at "1" when no borrow is resulted. C flag is used for judging size of data and for multiple digit arithmatic operation.

(3) D Flag

D flag is used by a program as an input/output designating signal of the input/output port (Po). When D flag is "0", the input/output port serves as the input port and when D flag is "1", it serves as the output port.

When the input/output port is used exclusively as the output port (specified by mask option), D flag becomes the general purpose flag bit that can be optionally used by user. D flag is reset at "0" by the initialize operation.

(4) H Flag

H flag is used as a control signal for hold operation. When "1" is set on H flag, the timing generator is placed in hold mode and the operation is held suspensed. The restart from the hold mode is accomplished by resetting H flag at "0" in the hardware processing, and after released from the hold mode, the process that was held suspended prior to the hold operation is resumed. However, interrupt request is not accepted under the hold operation.

When the hold operation is not used (specified by mask option), H flag becomes a general purpose flag bit that can be optionally used by user.

H flag is reset at "O" by the initialize operation.

(4) H Register (HR), L Register (LR), Y Register (YR), Y Register Flag (EYR)

H register and L register are 4-bit registers and function as an address pointer of the data memory (RAM) or a general purpose register.

When H register and L register are used as an address pointer of the data memory, H register represents high order 4 bits of an address and L register represents low order 4 bits, and they designate an address space of total 8 bits (256 words). Therefore, when 16 words in the address space of the data memory are expressed as one page, H register designates a page address and L register designates an address in the page.

When an undefined region without data memory is read with H register and L register used as address pointers of the data memory, the data memory contents are regarded as being undefined. Further, data write into an undefined region should be avoided.

Y register is a 4-bit register and functions as an address pointer in page 0 of the data memory or a general purpose register.

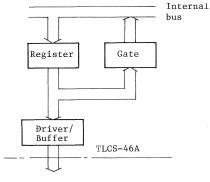
Y register flag is an 1-bit flag that shows as to whether H register or L register is used as an address pointer of the data memory. When Y register flag is "1" (EYR=1), Y register is selected as an address pointer of the data memory, and when Y register flag is "0" (EYR=0), H register and L register are selected as address pointers.

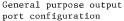
Y register flag is set at "1" by the execution of Y register data setting instruction. And Y register flag is cleared at "0" by the execution of the instruction which does not set data to data memory. Further,while Y register flag is set at "1", it is kept in interrupt disabled (waiting) state.

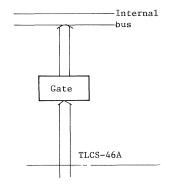
Y register flag is reset at "0" by the initialize operation.

(5) Port (P), Port Register (Register)

TCP4620AP/TCP4630AP is provided with a total 34 ports; input port, output port, input output port, and input/output port.




ТСР4620АР тср4630АР


When a port is used as input, it is processed as non-latch input, and therefore, it is necessary to hold external input data till completion of read-in.

When a port is used as output, output data is set in the port register by an instruction and contents of this prot register are output. On some ports it is possible to read contents of the port registers by an instruction.

Further, the port register is reset at "0" by initialize operation. In addition, the input level is compatible with CMOS, and the output level is compatible with CMOS/TTL.

General purpose input port configuration

Port	Configuration
------	---------------

Port Name	Symbol	Pin Name	Register Number	Port Function	Remarks
Input Ou t- Put port	Po	P ₀₃ - P ₀₀	0	Input out- put port	Control designating of I/O by D flag. This port can be specified as an ex- clusive use output port by mask option.

INTEGRATEDCIRCUIT

Port Name	Symbol	Pin Name	Register Number	Port Function	Remarks
Output Port	P ₁	P ₁₃ - P ₁₀	1	Output port	General purpose output port. Con- tents of registers can be read by an instruction.
I/O Port	P 2	P ₂₃ - P ₂₀	2	I/O port	Input/output is specified by mask option. Contents of registers can be read by instruction at the output
I/O Port	Ρ4	P ₄₃ - P ₄₀	4	I/O port	mode.
Key Input Port	PI5	PI ₅₃ ¬PI ₅₀	5	Input port	General purpose input port with a 150KΩ(Typical) resistor. (Pull- up/down can be specified by mask options).
Digit Output Port	PO5	PO54-PO50	2	Output port	Digit output port for dynamic dis- play. Can be specified as a gen- eral purpose output port by mask options.
Input Port	PI ₆	PI ₆₀	6	Input port	General purpose input port.
Segment Output Port	PO ₆	PO _{6 7} PO _{6 0}	U	Output port	8-segment output port for dynamic display. Can be specified as a general purpose output port by mask options.

Generalization of Segment Output Port (Sepcified by Mask Options)

Port Name	Symbol	Pin Name	Register Number	Port Function	Remarks
Output Port	PO ₆	PO63 - PO60	6	Output port	General purpose output port.
Output Port	PO7	P0 ₇₃ - P0 ₇₀	7	Output port	General purpose output port.

Port 0 (Po)

Port 0 is a 4-bit general purpose input/output port. This port is selected when Register 0 is specified in an instruction.

Input/output designation is made by D flag of the status register. When D flag is "0", this port becomes the input and when D flag is "1", it becomes the output and output the content of Register 0. Port 0 can be used as an exclusive output port by mask options.

2 Port 1 (P1)

Port 1 is a 4-bit general purpose output port. This port is selected when Register 1 is specified in an instruction and the content of Register 1 is output.

Further, the content of Register 1 can be read by an instruction.

③ Port 2 (P2), Port 4 (P4)

Port 2 and Port 4 are 4-bit input/output ports that can be specified as either input or output by mask options. When Register 2 and Register 4 are specified in an instruction, Port 2 and Port 4 are selected, respectively.

In specifying input or output in a mask option, the following combination is possible.

(a) p2/F/, P4/F/-Port 2 and Port 4 as output.

(b) P2/F/, P4/3/-Port 2 as output. High order 2 bits (P43,P42) of Port 4 as input, low order 2 bits (P41, P40) as output.

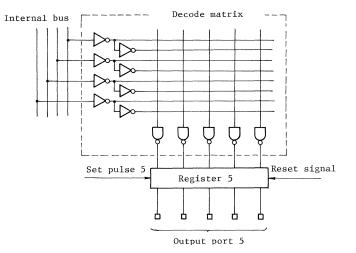
(c) P2/0/, P4/F/-Port 2 as input. Port 4 as output.

(d) Specify $P2/\theta/$, P4/3/-Port 2 as input.

High order 2 bits (P43,P42) of Port 4 as input low order 2 bits (P41, P40) of Port 4 as output.

(e) Specify P2/0/, P4/0/-Port 2 and P4 as input.

Further, in case of input bits these ports operate as non-latch inputs, and in case of output bits they operate functionally same as in Port 1.


(4) Output Port 5 (PO5)

Output Port 5 is a 5-bit output port with the purpose of digit data output in dynamic display.

When an instruction for writing data in Register 5 is executed, 4-bit data on the internal bus is converted into 5-bit data by the decoder matrix, this data is written into the 5-bit Register 5 and further, output to Port 5.

User is able to specify the content of the decode matrix optionally by mask options.

Further, the content of Register 5 cannot be read by an instruction.

```
(5) Input Port 5 (PI5)
```

Input Port 5 is a 4-bit input port. This port is selected by a Read Register 5 instruction.

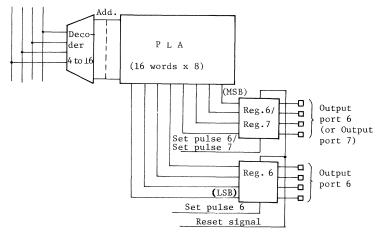
Input Port 5 is equipped with a $150k\Omega($ Typ.) input resistor, and the pull-up/down is specified by mask options.

6 Output Port 6 (PO₆), Output Port 7 (PO₇)

Output Port 6 is a 8-bit output port for segment data output in dynamic display.

When an instruction for writing data in Register 6 is executed, a output data is read from 16 words x 8 bits PLA with a 4-bit data on the internal bus used as an address, this output data is written into the 8-bit Register 6, and output to Port 6.

TECHNICAL DATA


TCP4620AP TCP4630AP

User is able to specify the content of PLA optionally by mask options.

Further, it is possible to specify and use output Port 6 as two 4-bit general purpose output ports by mask options. In this case, the 8-bit output port is split into high order 4 bits and low order 4 bits, and the high order 4 bits are assigned to output Port 7 (Register 7) and low order 4 bits to Output Port 6 (Register 6).

The contents of Register 6 (and Register 7) cannot be read by an instruction.

Internal bus

⑦ Input Port 6 (PI6), Counter Buffer

Input Port 6 is the input port of 1 terminal (PI_{60}), but internally it is treated as a 4-bit data in combination with 3-bit data that are output from the divider (refer to Item for Divider).

The read circuit which reads this 4-bit data is called Counter Buffer/Input Port 6 or Counter Buffer simply. This counter buffer is selected by a Read Register 6 instruction and processed as 4-bit parallel non-latch input as in other input ports.

The bit configuration of the counter buffer is such that external input from PI60 terminal is connected to LSB side 1 bit and output from the divider is connected to MSB side 3 bits.

Further, the output stage of the divider to be connected is specified by mask options, but is fixed by a combination of an oscillator to be used and internal basic frequency. (Refer to Item for Divider.)

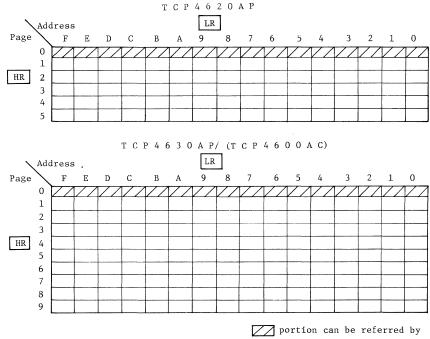
A Schmitt circuit and a timing shaping shift register are connected to PI60 terminal, which therefore cannot be operated at frequency above the internal basic clock frequency. The internal signal from the input terminal is subject to a time delay of maximum.

$$\frac{3}{\text{Internal basic frequency x 2}}$$
 (sec.)

(6) Internal Bus (IBUS)

The internal bus consists of 4 bits, connects various registers and blocks such as the accumulator, status register, data memory, H register, L register, Y register, port register, ALU, etc., and data to be processed and data of process result are transfered through the internal bus.

(7) Data Memory (RAM)


TLCS-46A Family has the following internal data memories in order to store user's process data.

Туре	Capacity				
TCP4620AP	96 words x 4 bits				
TCP4630AP	160 words x 4 bits				
(TCP4600AC	160 words x 4 bits)				

The data memory consists of the static memory cells.

Addressing of the data memory is executed by contents of H register/L register or Y register.

Y register.

Addressing of Data Memory

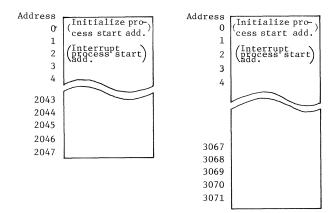
INTEGRATEDCIRCUIT

TECHNICAL DATA

TCP4620AP TCP4630AP

(8) Program Memory (ROM)

TLCS-46A Family has the following internal program memory in order to store user's process programs.


Туре	Capacity
TCP4620AP	2048 words x 8 bits
TCP4630AP	3072 words x 8 bits
(TCP4600AC	No internal ROM)

The program memory addressing is executed by the program counter (PC). Inherent meaning is given to Addresses 0 and 2 by the hardware, normal user process programs are place in Address 4 and subsequent addresses.

Further, the program counter consists of 12 bits and is capable of directly specifying addresses up to 4095, however, data in an undefined region having no program memory loaded becomes unstable.

ТСР4620АР

ТСР4630АР

(9) Program Counter (PC)

The program counter consists of a 12-bit binary counter, adds count increment at every instruction fetch, and makes the addressing of a program memory in which an instruction to be executed.

When a branch instruction, an interrupt operation, or subroutine instruction is executed, the contents of the program counter are changed.

Addresses 0 and 2 are compulsorily set in the program counter by a initialize signal and an interrupt request signal, respectively.

(10) Stack (STK), Stack Flag (FSTK)

The stack is used for temporary evacuation of the contents of the program counter when an interrupt request is accepted or a subroutine is to be executed.

The stack flag is a flag indicating whether the contents of the program counter have been evacuated in the stack.

When the contents of the program counter are pushed down in the stack, the stack flag is set at "1" (FSTK=1). And when the contents of the stack are popped up by a RTN instruction and returned to the original program flow, the stack flag is set at "0" (FSTK=0). At time of FSTK=1, the interrupt request becomes the disable (waiting) state.

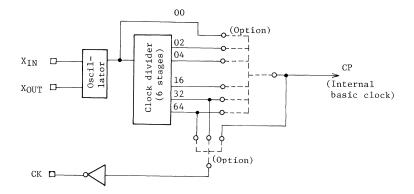
Further, the stack flag is set at FSTK=1 by the initialize operation.

(11) Instruction Register (IR), Instruction Decoder (IDEC)

The instruction register latches a 8-bit data from the program memory and outputs it to the instruction decoder. (Program memory data may be used for direct internal control.)

The instruction decoder receives data from the instruction register and outputs a control signal required for processing.

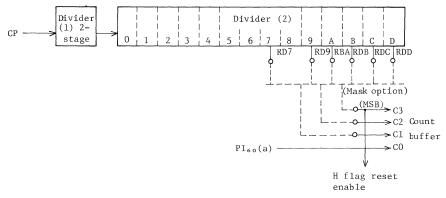
(12) Clock Generator (OSC)


TCP4620AP/TCP4630AP has a internal clock generator. By externally installing a crystal oscillator/ceramic oscillator or a LC oscillator, required clock is easily obtained. Furhter, clock can be supplied externally, however, in this case, the clock is input through $X_{\rm IN}$ terminal and $X_{\rm OUT}$ terminal is kept open. While TCP4620AP/TCP4630AP starts by RESET, the clock should be always continuously supplied.

Oscillation frequency shall be selected from several frequencies ranging from 20KHz to 4.2MHz by mask options. The clock generator has a internal 6-stage clock divider and specifies the optimum divide ratio to obtain internal basic clock (CP) on the basis of oscillation frequency by mask options.

The clock generator is provided with the output terminal CK for external timing, and output frequency is specified by mask options.

Further, a divide ratio for obtaining internal basic clock and external timing output frequency specified by mask options (refer to Item for Divider) are determined by an oscillator (oscillation frequency) to be used and internal basic clock frequency.



Clock Generator Circuit Configuration

(13) Divider

The divider is a binary 16-stage divider provided for a clock counter, timer, etc., and makes the count of internal basic clock (CP).

Of output from the 16-stage divider, 3 bits are connected to the counter buffer by mask options and can be read by a program as the counter buffer contents.

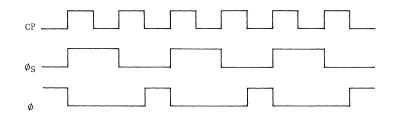
The relation between output 3 bits that can be specified by mask options and the divider output stage is determined by an oscillator (oscillation frequency) to be used and internal basic frequency as shown below.

Oscillator	32.76K X tal	100K X tal	400 - 500K Ceramic /IFT	400K ce- ramic /IFT	3 - 4.2M X tal	3 - 4.2M X tal	
Internal basic CP clock	00	00	04	02	64	32	
External timing CK	32	64	СР	СР	CP	CP	
C1	RD9	RDB	RDB	RD7	RDA	RD7	
Counter C2 buffer	RDA	RDC	RDC	RDA	RDB	RDA	
C3	RD B	RDD	RDD	RDD	RDC	RDD	

Further, the most significant bit (C3) of the counter buffer is used as a hold release signal (H flag reset enable signal of the status register) when the hold operation is used.

In addition, only when a 100K Xtal is used as an oscillator, the divider (2) is reset when the count value of the divider (2) reaches "12500" and the count value is reset to zero and then the count is resumed.

(14) Timing Generator (TG)


The timing generator consists of the internal timing signal generation circuit, initialize control circuit and interrupt control circuit.

(1) Internal Timing Signal Generation Circuit

This circuit receives the internal basic clock (CP) from the clock generator and generates two internal basic timing signals ϕ and $\phi_{\rm S}$.

(2) Initialize Control Circuit

This circuit shapes the timing of external RESET signal and generates an internal initialize signal. This initialize signal ia used for internal initialization. (For details of the initialize operation refer to "Operation Description".)

(3) Interrupt Control Circuit

This circuit shapes the timing of external interrupt request signal INT, store it in the internal interrupt latch, and makes a judgement as to if the internal state is interrupt enable. When it is in evable state, this circuit generates an interrupt request signal internally and starts an interrupt operation, but if it is in disable state, controls the interrupt request to wait till it becomes enables.

(For details of the interrupt operation refer to "Operation Description".)

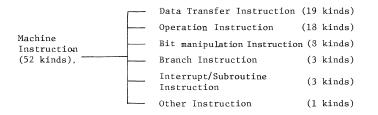
[MACHINE INSTRUCTION]

1. Symbol Meaning

The explanation of symbols used for the following description is collected in the following table.

Symbol	Meaning
PC	Program counter
AC	Accumulator
ST	Status register
М	Data memory
LR	L register
HR	H register
YR	Y register
EYR	Y register flag
С	C flag of status register
Z	Z flag of status register
R	Port register, Field designating register under instruc- tions
I	Value of immediate data field
G	Field designating bit position under bit processing instructions
AP	Address branched by branch instructions
AP _H	Field showing higher order 4 bits of AP
APM	Field showing intermediate order 4 bits of AP
AP_L	Field showing lower order 4 bits of AP
(A)	Content of A
(Ā)	Values that contents of A are inverted every bit
+	Binary addition
-	Binary subtraction
^	Logical AND for every bit
~	Logical OR for every bit

TECHNICAL DATA


INTEGRATEDCIRCU

TCP4620AP TCP4630AP

Symbol	Meaning
¥	Exclusive OR for every bit
*	Value of left side is equalized to that of right side
A <a :="" b="">	Content from b bitth to a bitth of A
0	Value is made into one by connecting two fields
*	Value is updated by operation result
-	Value is not changed by operation result
Push PC	Content of program counter is saved in stack
Pop PC	Content of stack is returned to program counter
Nu11	No operation

2. Instruction Description

The machine instruction of TLCS-46A consists of 52 kinds of instruction, being divided roughly into 6 kinds as follows:

In this paragraph, the function of each instruction is described according to the following instruction description description format.

	Instruction name		
Assembler mnemonic	Machine code		Execution cycle
	Function	Z flag C fla after execu- tion tion	after
	Operation description		

Instruction Description Format

(1) Data Transfer Instruction

The data transfer instruction mainly provides the data transfer among accumulator, status register, memory (RAM), and registers.

	Load Accumulator from Regsiter	
	70	
LAR R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	$(AC) \leftarrow (R)$	0
	The content of register or input port designated by R field is loaded in accumulator.	I

INTEGRATEDCIRCUIT

TECHNICAL DATA

	Load Accumulator from Register and Test			
LTR R	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1
	$(AC) \leftarrow (R)$	*	-	0
	The content of resister or input port designate loaded in accumulator. After execution Z flag	,		is
	Load Accumulator from Memory			
LAM	7 0			1
	$(AC) \leftarrow (M)$	-	-	0
	The content of memory is loaded in accumulator Note 1			
	Load Accumulator from Memory and Test			
LTM	7 0 1 0 0 0 0 1 1 1			1
	(AC) ← (M)	*	-	0
	The content of memory is loaded in accumulator. After execution Z flag is updated. Note 1			

	Load Status-register from Memory			
	7 0			
LSM	0 0 0 0 1 0 1			1
		Note 3	Noto 3	
	$(ST) \leftarrow (M)$	*	*	0
	The content of memory is loaded in status re Note 1	egister	•	
	Load Accumulator from L-register			
			Tanka - Vana - Tan	
LAL	7 0 0 0 0 1 1 0			1
	$(AC) \leftarrow (LR)$	-	-	0
	The content of L register is loaded in accum	ulator		
	The content of B register is found in accum	aracor	•	
	Load Accumulator from H-register			
	7 0			
LAH				1
	$(AC) \leftarrow (HR)$	_	_	0
	The content of H register is loaded in accum	ulator	•	
	Load Accumulator Immediate			
	7 0			
LAI I	$0 1 0 0 I = 0 \le I \le 15$			1
	(AC) ← I	-	-	0
	The value of I field is set to accumulator.			
1				

	Load L-register Immediate			
LLI I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1
	(LR) ← I	-	-	0
	The value of I field is set to L register.			
	Load H-register Immediate			
LHI I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1
	(HR) + I	-	-	0
	The value of I field is set to H register.			
	Load Y-register Immediate			
LYI I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1
	(YR) + I	-	-	1
	The value of I field is set to Y register. After execution, Y register flag is set to "1"	".		
	Store Accumulator to Register			
SAR R	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1
	$(R) \leftarrow (AC)$	-	-	0
	The content of accumulator is stored in the designated by R field.	regist	er	

	Store Accumulator to Memory			
SAM	7 0 0 0 0 1 1 0 0			1
	(M) ← (AC)	-	-	-
	The content of accumulator is stored in mem	roy.		
	Note 1, Note 2			
	Store Status-register to Memory			
SSM				1
	(M) ← (ST)	-	-	-
	The content of status register is stored in	memory	,	
	Note 1, Note 2	-		
	Store Accumulator to L-register			
SAL				1
	$(LR) \leftarrow (AC)$	-	-	0
	The content of accumulator is stored in L r	egister		
	Store Accumulator to H-register			
S A H	7 0 0 0 0 1 1 1 1 1			1
	(HR) ← (AC)	-	-	0
	The content of accumulator is stored in H r	egister		

	Store Accumulator to Y-register		
SAY	7 0 0 0 0 1 0 0 0		
	(YR) ← (AC) – –	1	
	The content of accumulator is stored in Y register. After execution, Y register flag is set to "1".		
	Store Y-register to Register		
SYR R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	(R) + (YR)	0	
	The content of Y register is stored in register designate by R field.	ed	
	Clear Register		
CLR R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	$(R) \leftarrow 0 \qquad (0 \leq R \leq 4) \qquad - \qquad -$	0	
	"0" is written in the register designated by R field ($0 \le R \le 4$) For $5 \le R \le 7$, decode matrix output or PLA output corresponding data "0" is written in the register.		

(2) Operation Instruction

Operation instruction has 2 operand instruction and 1 operand instruction, and performs arithmetic operation and logical operation.

	Add Accumulator Immediate			
ADI I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1
	(AC) ← (AC) + I	*	*	0
	The value of I field is added to the content of After execution of instruction, Z flag and C f			
	Add and Store to Accumulator			
ADA				1
	$(AC) \leftarrow (M) + (AC)$	*	*	0
	The content of accumulator is added to the cor and the result is loaded in accumulator. Afte instruction, Z flag and C flag are updated.			
	Add and Store to Memory			
ADM	7 0 0 0 1 0 0 0			1
	$(M) \leftarrow (M) + (AC)$	*	*	-
	The content of accumulator is added to the cor and the result is stored in memory. After exe struction, Z flag and C flag are updated. Note	cution	of in-	у,
	Add with Carry and Store to Accumulator			
АСА	7 0 1 0 0 0 0 0 1	1		1
	$(AC) \leftarrow (M) + (AC) + (C)$	*	*	0
	The content of accumulator and the content of the content of memory, and the result is loade After execution of instruction,Z flag and C fl	d in a	ccumula	tor.

INTEGRATEDCIRCUIT

TECHNICAL DATA

	Add with Carry and Store to Memory			
АСМ	7 0			1
	$(M) \leftarrow (M) + (AC) + (C)$	*	*	-
	The content of accumulator and the content of the content of memory, and the result is sotr execution of instruction,Z flag and Cflag are u	ed in m	emory.	After
	Subtract and Store to Accumulator			
SUA				1
	$(AC) \leftarrow (M) - (AC)$	*	*	0
	The content of accumulator is subtracted from memory, and the result is loaded in accumulat of instruction, Z flag and C flag are updated	or. Af	ter exe	
······································	Subtract and Store to Memory			
SUM	7 0 1 0 0 0 1 0 1 0 1			1
	(M) - (M) - (AC)	*	*	-
	The content of accumulator is subtracted from memory, and the result is stored in memory. instruction,Z flag and C flag are updated. N	After e	xecutio	
	Or and Store to Accumulator			
ORA	7 0			1
	$(AC) \leftarrow (M) \lor (AC)$	*	-	0
	The logical sum of every bit of the content content of accumulator is loaded in accumula tion of instruction, Z flag is updated. Note	tor. A		

	Or and Store to Memory			
ORM	7 0 0 0 0 1 1 0 0			1
	$(M) \leftarrow (M) \lor (AC)$	*	-	-
	The logical sum of every bit of the content o content of accumulator is stored in memory. of instruction, Z flag is updated. Note 1, N	After t	-	
	Exclusive-or and Store to Accumulator			
ЕОА				1
	$(AC) \leftarrow (M) \nleftrightarrow (AC)$	*	-	0
	The exclusive OR of every bit of the content content of accumulator is loaded in accumulat of instruction, Z flag is updated. Note 1			
	Exclusive-or and Store to Memory			
ЕОМ	7 0 0 0 0 1 1 0 1			1
	$(M) \leftarrow (M) \checkmark (AC)$	*	-	-
	The exclusive OR of every bit of the content content of accumulator is stored in memory. instruction, Z flag is updated. Note 1, Note	After e	bry and executio	the n of
	Complement Accumulator			
СМА	7 0			1
	$(AC) \leftarrow \overline{(AC)}$	*	_	0
	The content of accumulator is inverted every After exectuion of instruction, Z flag is upd			

INTEGRATEDCIRCUIT

TECHNICAL DATA

	Complement Accumulator and Store to Memory			
СММ				1
	$(M) \leftarrow \overline{(AC)}$	*	-	-
	The content of accumulator is inverted every h is stored in memory. After execution of instr updated. Note 1, Note 2			
	Load Accumulator and Increment			
ICA	7 0 1 0 0 0 0 0 1 1 1			1
	$(AC) \leftarrow (M) + 1$	*	*	0
	"1" is added to the content of memory, and the in accumulator. After execution of instruction flag are updated. Note 1.	e resul	t is lo lag and	aded C
	Increment Memory			
ІСМ	7 0 1 0 0 0 1 0 1 1			1
	, (M) ← (M) + 1	*	*	-
	"1" is added to the content of memory. After struction, Z flag and C flag are updated. Note 1, Note 2 .	execut	ion of i	in-
	Increment L-register			
ICL				1
	$(LR) \leftarrow (LR) + 1$	-	-	0
	"1" is added to the content of L register.			

	Increment H-register				
ІСН	7 0 0 0 0 0 1 1			1	
	(HR) ← (HR) + 1	-	-	0	
	"1" is added to the content of H register.				
	Test Memory				
тѕм	7 0 1 0 0 0 1 1 1 1 1 1 0				
	(M) ← (M)	*>	_	-	
	Z flag is set according to the content of mem Note 1, Note 2	ory.			

(3) Bit Manipulation Instruction

The bit manipulation instruction is performed to each bit of accmulator or status register.

	Test a bit for Accumulator				
	7 0				
TBA G	$1 \ \ 0 \ \ 1 \ \ 0 \ \ 0 \ \ 0 \ G \qquad 0 \le G \le 3$			1	
	Null \leftarrow (AC) $\land 2^{G}$	*	-	0	
	The Z flag is updated, according to the bit of designated by G field.	accum	ulator		

	Tast a bit for Status-register	
TBS G	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	Null \leftarrow (ST) $\land 2^{G}$ * -	0
	The Z flag is updated, according to the bit of status regist designated by G field.	er
	Set a bit for Accumulator	
SBA G	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	$(AC) \leftarrow (AC) \lor 2G$	0
	The bit of accumulator designated by G field is set to "1".	
	Set a bit for Status-register	
SBS G	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	$(ST) \leftarrow (ST) \lor 2^{G}$ Note 3 Note 3 * *	0
	The bit of status-register designated by G field is set to "	'1".
	Clear a bit for Accumulator	
CBA G	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	$(AC) \leftarrow (AC) \land \overline{2^G}$	0
	The bit of accumulator designated by G field is cleared to "	'0".

	Clear a bit for Status register	
CBS G	$\begin{bmatrix} 7 & & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 \\ \end{bmatrix} G 0 \leq G \leq 3$	1
	$(ST) \leftarrow (ST) \land 2^{\overline{G}}$ Note 3 Note 3 *	0
	The bit of status register designated by G field is cleared "0".	to
	Invert a bit for Accumulator	
IBA G	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	$(AC) \leftarrow (AC) \neq 2^{G}$	0
	The bit of accumulator designated by G field is inverted.	
	Invert a bit for Status register	
IBS G	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	$(ST) \leftarrow (ST) \neq 2G$ Note 3 Note 3 *	0
	The bit of status register designated by G field is inverted	1.

(4) Branch nstruction

	Jump
	7 015 8
JMP AP	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0 S Ar S 4095
	(PC) ← AP 0
	The value of AP field is set to program counter. After execution of instruction, therefore, program sequence changes to the AP address.
	Branch on Condition Set
BCS AP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
500 m	$0 \le AP \le 4095$
	If Z = 1 then (PC) \leftarrow AP, else Null 0
	The content of Z flag is "1", the value of AP field is set to pro- gram counter. After execution of instruction, therefore, progra sequence changes to the AP address. If the content of Z flag is "0", the program sequence follows the next address without any operation.
	Branch on Condition Clear
BCC AP	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	If Z = 0 then (PC) \leftarrow AP, else Null 0
	The content of Z flag is "0", the value of AP field is set to pro- gram counter. After execution of instruction, therefore, program sequence changes to the AP address. If the content of Z flag is "1", the program sequence follows the next address without any operation.

The branch instruction performs unconditional or conditional branch.

(5) Interrupt/Subroutine Instruction

The interrupt/subroutine instruction is used for performing a call of subroutine and a return from interrupt routine or subroutine.

In addition NOP instruction is available as one other instruction.

	Call Subroutine			
	7 015		8	
CAL AP	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	М		2
	$0 \leq AP \leq 4095$			
	push (PC), and (PC) \leftarrow AP	-	-	0
	The content (the next address) of program cour the stack, and the value of AP field is set to counter. The interrupt is placed in disable during execution of subroutine.	o the p	rogram	
	Return			
RTN	7 0			2
	POP (PC)	-	-	0
	The content of the stack is restored to progr execution of instruction, the interrupt is pl			After state
	Jump by Accumulator			
JAC	7 0 0 0 0 0 0 1 0 0 1			2
	(PC)+(PC)+1, and (PC)+(PC)<11:4>∘(AC)	-	-	0
	The content (address where JAC instruction is the incremented program counter is taken as th the content of AC is taken as the lower 4 bits of 12 bits in total that these contents are co the program counter.	ne high	er 8 bi	ts, and
	No Operation			
NOP				1
	Null	-	-	0
	This is an instruction by which nothing is exec However, Y register flag is reset to "O".	cuted.	L	

Note 1: The address of data memory becomes as follows;

EYR = 0, (HR \circ LR) EYR = 1, (O \circ YR).

Note 2: Care should be taken to the fact that, even after this instruction is ececuted, Y register flag does not change.

Note 3: A flag may be updated as a result of processing.

TECHNICAL DATA

TCP4620AP TCP4630AP

3. LIST OF INSTRUCTIONS

	Mne- monic	Machin Hexa- decimal	e code Binary	Operation	Update of flag	Remarks
Data Transfer Instruction	LAR LTR LAM LAM LAL LAL LAH LAI LLI LHI LYI SAR SAM SAM SAL SAH SAY SYR CLR	$ \begin{array}{c} 1\underline{i} \\ 1\underline{i} \\ 04 \\ 87 \\ 05 \\ 06 \\ 07 \\ 4i \\ 6i \\ 7i \\ 5i \\ 2\underline{i} \\ 0C \\ 0D \\ 0E \\ 0F \\ 08 \\ 3\underline{1} \\ 2\underline{i} \\ 01 \end{array} $	000101111 00001111 00000110 10000111 00000110 00000110 01001111 011011	$(AC) \leftarrow (Register 1ii)$ $(AC) \leftarrow (Register 1ii)$ $(AC) \leftarrow (M)$ $(AC) \leftarrow (M)$ $(AC) \leftarrow (M)$ $(AC) \leftarrow (LR)$ $(AC) \leftarrow (LR)$ $(AC) \leftarrow (LR)$ $(AC) \leftarrow (III)$ $(AC) \leftarrow (III)$ $(AC) \leftarrow (III)$ $(AC) \leftarrow (III)$ $(AC) \leftarrow (III)$ $(AC) \leftarrow (III)$ $(Register 1ii) \leftarrow (AC)$ $(Register 1ii) \leftarrow (VR)$ $(Register 1ii) \leftarrow (0)$	Z Z ZC	EYR is set EYR is set
Operation Instruction	ADI ADA ADM ACA SUA SUM ORA ORM EOA EOM CMA CMM ICA ICA ICL ICL ICL	91 80 88 81 89 82 8A 84 85 8D 86 85 8D 86 82 83 8B 02 03 8F	10011111 1000000 10001000 10000001 10001001	$ \begin{array}{l} (AC) \leftarrow (AC) + i1i1i \\ (AC) \leftarrow (M) + (AC) \\ (M) \leftarrow (M) + (AC) \\ (AC) \leftarrow (M) + (AC) + (C) \\ (AC) \leftarrow (M) + (AC) + (C) \\ (M) \leftarrow (M) - (AC) \\ (M) \leftarrow (M) - (AC) \\ (AC) \leftarrow (M) \lor (AC) \\ (AC) \leftarrow (M) + 1 \\ (M) \leftarrow (AC) \\ (AC) \leftarrow (M) + 1 \\ (M) \leftarrow (M) , \text{ if } (M) = 0 \\ \end{array} $	ZC ZC ZC ZC ZC ZC Z Z Z Z Z Z Z Z Z Z Z	

TECHNICAL DATA

TCP4620AP TCP4630AP

	Mne- Machine code		e code		Update	
	monic	Hexa- decimal	Binary	Operation	of flag	Remarks
Manipulation struction	TBA	A <u>i</u>	101000ii	if $(AC) < ii >= 0$ then $Z \leftarrow 1$ eles $Z \leftarrow 0$ then $Z \leftarrow 1$	Z	Asteris (*)
Bit Manipulat Instruction	TBS	Bi	101100ii	if $(ST) < ii > = 0$ then $Z < 1$ eles $Z < 0$	Z	denotes that, when
ip	SBA	Ai	101001ii	(AC) <ii>+1</ii>		Z flag and C flag
tri	SBS	Bi	101101ii	(ST) <ii>+1</ii>	**	are designated,
Musu	CBA	A <u>i</u> A <u>i</u> B <u>i</u> Ai	101010ii	(AC) <ii>←0</ii>		the fags are
HH H	CBS	Bi	101110ii	(ST) <ii>←0</ii>	**	updated.
В	IBA		101011ii	(AC) < ii > (AC) < ii >		
	IBS	Bi	101111ii	(ST) <ii>←(ST)<ii></ii></ii>	**	J
	JMP	Ek	1110kkkk	(PC)←iiiijjjjkkkk		2-byte,2-cycle
nstruction Others		ij	iiiijjjj	(10) 1111()))		instruction
t i	BCS	Ck	1100kkkk	if Z=1 then (PC)←iiiiijjjjkkkk		
rs	200	ij	iiiijjjj			
he	BCC	Dk	1101kkkk	if Z=O then (PC)←iiiijjjjkkkk	[**
Ot		ij	iiiijjjj			
Hp	CAL	Fk	1111kkkk	(PC)↓, (PC)≁iiiijjjjkkkk		"
Branch] and	_	ij	iiiijjjj			
an	RTN	01	00000001	(PC)↑		1-byte, 2-cycle
Br		00	00001001		ł	instruction
	JAC	09	00001001	(PC) ← ((PC) +1) <11:4> • (AC)		TWD
	NOP	00	00000000	No Operation		EYR is reset.

Note: Pay attention to the conversion of the underlined machine codes.

TECHNICAL DATA

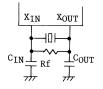
TCP4620AP TCP4630AP

4. TLCS-46A Instruction map

L H	0	1	2	3	4	5	6	7	8	9	A	В	с	D	Е	F
0	NOP	*1 RTN	ICL	ICH	LAM	LSM	LAL	LAH	SAY	*1 JAC		L	SAM	SSM	SAL	SAH
1				LA	R							L	ΤR			
2				СL	R							S.	AR			
3						SΥ	R									
4								LA	I							
5								LΥ	I							
6								ΓL	I							
7								LH	I							
8	ADA	ACA	SUA	ICA	ORA	EOA	CMA	LTM	ADM	АСМ	SUM	ICM	ORM	EOM	CMM	TSM
9								A D	I							
A		т	ВА			S	ВА			СЕ	3 A			II	3 A	
В	TBS SBS CBS IBS															
С	вс s *2															
D	вс с *2															
Е	J M P *2															
F								C .	AL*	2						

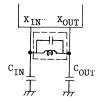
*1 - 1 byte,2-cycle instruction *2 - 2 byte,2-cycle instruction

ТСР4620АР тср4630АР

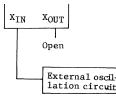

[OPERATION DESCRIPTION]

1. Basic Clock

The basic clock is used to generate the basic timing signals for the operation of TLCS-46A and as the clock for the divider.


For the generation and supply of basic clock, there are following methods:

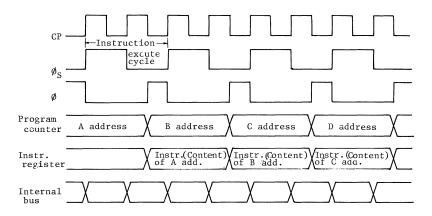
(1) Connecting crystal oscillator/ceramic oscillator


In case the crystal oscillator/ceramic oscillator is connected as shown in the left figure, it is possible to obtain the oscillation frequency characteristic to crystal oscillator/ ceramic oscillator.

(2) Connecting IFT

In case the IFT is connected as shown in the left figure, it is possible to obtain the oscillation frequency characteristic to IFT.

(3) Suppling the external clock


If the external oscillator is connected to X_{IN} terminal as shown in the left figure, it is possible to supply the clock from the external. In this case, X_{OUT} terminal shall be kept open.

2. Instruction Execute Cycle

The instruction execute cycle consists of two internal timing signals, ϕ s and ϕ , supplied by the timing generator.

 ϕ_S is the signal expressing the instruction execute cycle, while ϕ is the signal which comes to the set timing of data memory, register, etc.

Instruction Execution Timing Chart

3. Initialize operation (System initialization)

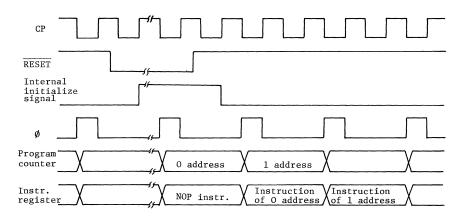
The initialize operation is carried out without fail after impressing power source on TLCS-46A, which is returned to the initial state in the interior.

By keeping the RESET terminal to "L" level, the internal initialize signal is formed, whereby the initialize operation of TLCS-46A is executed. At this time, more than 2 cycles are required for the time of "L" level.

R	Ε	S	Ε	1

W < 2 cycles	W ≥ 2 cycles
Whether or not initialize operation is executed is not difinite.	Initialize operation is executed.

However, 1 cycle corresponds to 2 period of internal basic clock (CP).


By the initialize operation, the interior of TLCS-46A comes to the conditions as given below:

- 1 Resetting H flag and D flag of status register to "0".
- 2 Resetting the interrupt latch to "0".
- (3) Resetting the port register "0".(All output pins come to "L" level.)
- (4) Setting the stack flag to "1".
- 5 Setting the program counter to 0 address.

There is no influence on accumulator, data memory, H register, L register, Y register, C flag and Z flag of status register, etc.

The program is executed from 0 address when RESET signal comes to "H" level and the internal initialize signal comes to "L" level.

Start from initialization

4. Interrupt Operation

TLCS-46A is provided with the function permitting the external interrupt operation. The interruption is an operation enabling other processing to be preferentially made by suspending the processing underway. The request for interrupt operation is made by changing $\overline{\text{INT}}$ terminal from "H" level to "L" level and by holding the terminal on "L" level for more than 2 cycles.

There are several conditions enabling TLCS-46A to start the interrupt operation. If the interrupt operation request is made before the conditions are satisfied, the interrupt operation is in standby state to wait until the conditions are satisfied. The conditions are as follows:

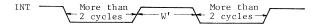
TECHNICAL DATA

TCP4620AP TCP4630AP

- Data memory is not made reference with Y register. (EYR = 0)
- (2) Stack is empty. (FSTK = 0)
- 3 No hold operation (Interrupt request is ignored in hold operation.)

The external interrupt request signal is preserved in the internal interrupt latch, and the interrupt latch is cleared when the interrupt is accepted.

In case of repetitive interrupt request, it is required to make INT terminal "H" level (more than 2 cylces) and to make INT terminal "L" level. Repetitive interrupt request is not accepted when INT terminal is "L" level without making it "H" level.


Internal latch set timing

INT W

W < 2 cycles	W ≥ 2 cycles
Whether or not interruption latch is set is not difinite.	Interruption latch is set

However, 1 cycle corresponds to 2 period of internal basic clock (CP).

2 Internal latch repetitive set timing

TECHNICAL DATA

TCP4620AP TCP4630AP

W' = 0	0 < W' < 2 cycles	₩' <u>></u> 2 cycles
Interruption latch is not set again.	Whether or not inter- ruption latch is set again is not difinite.	

However, 1 cycle coresponds to 2 period of internal basic clock (CP).

When TLCS-46A accepts the interrupt, the following processings are made:

- 1 The content of program counter is stored in a save register (stack).
- 2 The entry address (address 2) is set in the program counter.
- 3 The interrupt latch is cleared.

Therefore, the interrupt service routine defines 2 address of program memory as the top address.

When TLCS-46A returns to the main program by completing the interrupt process, it follows the execution of RTN instruction.

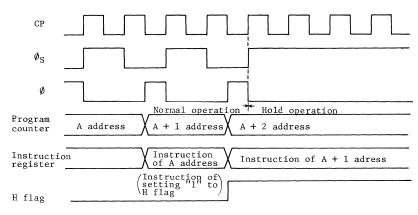
СР	
$\phi_{\rm S}$	
INT Terminal .	
Interruption latch set pulse	
Interruption latch	
Interruption demand signal	
Program counter	$\begin{pmatrix} A & address \\ A & address \\ \end{pmatrix} \begin{pmatrix} 2 & address \\ add \\ add \\ \end{pmatrix}$
Instruction register	NOP Instr. of instruction 2 add.
Stack -	A address
Stack flag	

Interrupt Acceptance Timing Chart

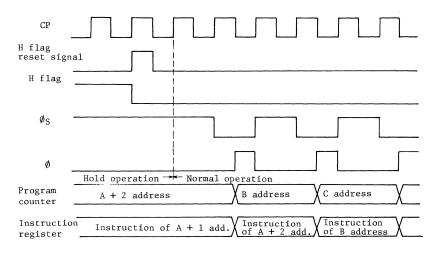
5. Hold Operation

In case the hold operation is designated by mask options, the operation state (normal/hold) of TLCS-46A is controlled by the H flag of status register.

When each instruction of SBS, LBS and LSM is executed, and "1" is set to the H flag, the internal timing signals of ϕ_s and ϕ stop after the completion of the execution of the instruction, whereby the hold operation begins. At this time, the program counter, instruction register and other internal registers are held in the state which was before the hold operation, but the interrupt request under waiting is ignored because the interrupt latch is cleared.


As the clock generator does not stop, there is no influence on the internal basic clock and the count function of divider.

Restart from the hold operation is made by resetting H flag to "O" in hardware. For the signal for resetting H flag, the output of divider (the MSB input (C3) of counter buffer) is used, and the resetting is made by detecting the trailing edge of the bit input (C3).


At the input of divider is the internal clock (CP), restart is made at constant intervals.

When H flag is reset, the internal timing signals of ϕ_s and ϕ start, whereby the execution is countinued to start from the condition which is the same as that just before starting the hold operation.

Hold Operation Start Timing

Restart Timing from Hold Operation

0 LR

6. Reference to Data Memory

There are two methods of making reference to data memory.

(1) The page of data memory is designated by H register, while the address in the page is designated by L register. In the case of access to data memory, it is so arranged as to make access to the address designated by L register in the page designated by the contents of H register. (1 page consists of 16 words.)

			/	45
Data	Memory	Address	HR	

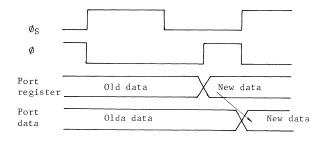
(2) The address in O page is designated by Y register. In the case of access to data memory immediately after writing data in Y register by the instruction of LYI or SAY, the access is made to the address designated by the contents of Y register in 0 page.

At the time of making reference to data memory, it depends on the value of internal Y register flag (EYR) to select H register/ L register or Y register for designating address. When EYR=0, the method (1) above is adopted. When EYR = 1, the method (2) above is adopted. When data are written in Y register by SAY instruction or LYI instruction, "1" is set to EYR. At the time of instruction execution when data are not set to data memory, EYR is reset to "0".

7. Input and Output Timing for Port

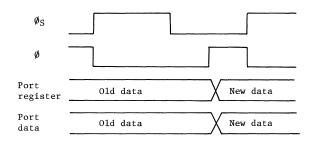
The input of data from the input port of TLCS-46A and the output of data to the output port are made by the data transfer instruction between accumulator and each port.

Port Input


As the input ports of TLCS-46A are all non-latch inputs, the input data is required to be stable until the completion of reading.

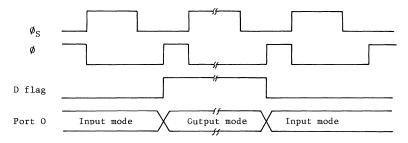
At the instruction cycle of LAR or LTR instruction, input data is set to the accumulator.

Port Output


The output ports of TLCS-46A output the content of port register. Data are written in the port register when SAR, SYR and CLR instructions are executed.

The digit output port (PO₅) and segment output port (PO₆) for display are different in output timing from other output ports.

Output Timing (Port5, Port6)



Output Timing (except Port5, Port6)

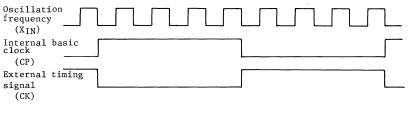
8. Input/Output Switching of Port 0

The switching of input/output of port 0 is made by the D flag of status register. By each instruction of SBS, CBS, IBS and LSM, the value of D flag is changed, whereby the switching. of input/output is carried out.

Input/Output Switching Timing of Port 0

9. Output Terminal for External Timing

CK terminal is equipped for taking out the output of the divider of clock generator.



TECHNICAL DATA

-TCP4620AP TCP4630AP

The output frequency is designated by the mask options but is decided by the oscillator (oscillation frequency) used. The output frequency is either 1/32 or 1/64 of oscillation frequency or internal basic clock (CP).

The output signal on CK terminal is generated after inverting the phase of the output of divider.

Example of the internal basic clock and external timing waveform.

The internal basic clock (CP) is 1/4 of the oscillation frequency. The external timing signal

[Mask Options]

TCP4620AP/TCP4630AP have many kinds of mask options on the clock generator, input output ports, etc. so as to meet the extensive requirements from the users.

Option Name	Function
O S C	Prescribing the oscillator and oscil- lation frequency.
C P	Prescribing the dividing ratio for obtaining the internal basic clock.

155

TECHNICAL DATA

TCP4620AP TCP4630AP

Option Name	Function				
СК	Prescribing the output frequency for the external timing.				
COUNTER	Prescribing the reset timing of divider.				
COUNTER BUFFER	Prescribing the input of counter buffer.				
HOLD	Prescribing the function of H flag.				
RSTH	Prescribing the restart signal from hold opration.				
STD	Prescribing the function of port 0.				
P 2	Prescribing the function of port 2.				
P 4	Prescribing the function of port 4.				
PI5	Prescribing the function of input resistance of port 5.				
DECODER	Prescribing the contents of decode matrix.				
P 0 6	Prescribing the function of port 6.				
PLA	Prescribing the contents of PLA.				

(Note) o The mask options of OSC-RSTH are decided by the oscillator (oscillation frequency) used.

- Use the designation paper for mask options which is attached to the ES order sheet.
- Submit to us the designation paper for mask options together with the ES order sheet by the data two weeks prior to the date of submitting the mask tape.

TECHNICAL DATA

TCP4620AP TCP4630AP

1. Designation of Mask Options

Option	Item	Option	Name	TYP001	TYP002	TYP003	TYP004	TYP005	TYP006
				003	012	050	050	400	400
Oscilla	tion		OSC	32.76K	100K	400-500K	400K	3 - 4.2K	3-4.2K
freque	ncy		050	Xtal	Xtal	ceramic	ceramic	Xtal	Xtal
	A			ACG1		/IFT	/IFT		mean
	Dividing ratio for		CP	00	00	04	02	64	32
internal clo									
External tim			CK	32	64	CP	CP	CP	CP
	1 Input		PD	CP	CP	СР	CP	CP	СР
Divider		Counte		PD2	PD2	PD2	PD2	PD2	PD2
S Reset t			PDR	N	/12500/	N	N	N	N
Buffer (Buffer) Buffer (Buffer) Buffer (Buffer)			CO	PI 60	PI60	PI 60	PIGO	PI60	PI60
Buffer		Counte	Another of Parameter Statements and	RD9	RDB	RDB	RD7	RDA	RD7
Buffer 2		Buffe		RDA	RDC	RDC	RDA	RDB	RDA
ບໍ ឝ Buffer : H flag	3 Input		C3	RDB	RDD	RDD	RDD	RDC	RDD
Restart cond	litein		HOLD	H C3	<u>Н</u> СЗ	H	0	0	0
Input/Out-	111100		RSTH	63	63	C3	0	0	0
put port	Port O		STD	D(PROG)	1(OUT)				_
I/O port	Port 2		P2	/F/(OUT)	/F/(OUT)	/0/(IN)	/0/(IN)	/0/(IN)	I
1/0 porc	Port 4		P4	/F/(OUT)	/3/(IN/OUT)	/F/(OUT)	/3/(IN/OUT)	/0/(IN)	1
Input resist	ance		P15	0(UP)	1(DOWN)		``` <u>_</u>		-
(Input port	5) ·	1	P15	0(0P)	I (DOWN)				
	Line O		DEC0	1					
Decode	Line 1		DEC1	/ /]				
matrix	Line 2	DECODER	DEC2	//					
matrix	Line 3		DEC3	/ /					
	Line 4]	DEC4	1/					
Output port	6/7		P06	1(P6/P7)	0(P6)				
	Line O		PLA0	/ 00 /	1 1				
	Line l		PLA1	/ 11 /	1 1				
	Line 2		PLA2	/ 22 /	1 /	[
	Line 3		PLA 3	/ 33 /	1 1				
	Line 4		PLA4	/ 44 /	1				
	Line 5	_	PLA5	/ 55 /	//				
	Line 6		PLA6	/ 66 /	/ /				
PLA	Line 7		PLA7	/ 77 /	1 1	1			
1 13 11	Line 8		PLA8	/ 88 /	1				
	Line 9		PLA9	; 99 /	1 1				
	Line A		PLAA	/ AA /	1 1				
	Line B		PLAB	/ <u>BB</u> /	1//				
	Line C	I	PLAC	/ CC /	/ /				
	Line D		PLAD	/ DD /	/ /	1			
	Line E		PLAE	/ EE /	1 1				
	Line F	I	PLAF	/ FF /	1//				
Note 1. As	to orch	antion	; + om	and of the	- +				

Note 1: As to each option item, one of the thick frames horizontally lined shall be selected. (The whole thick frame is enclosed with a circule.)

Note 2: Please enter the data entry mode (decode matrix, PLA) by yourself.

Note 3: The formal name of option is that naming continuously the option name and the data in the designation column of option.

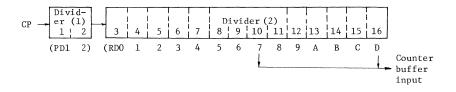
(1) OSC - RSTH Options

OSC-RSTH options can construct six kinds of combination. However, it is impossible to use the options by changing the combinations.

Name of Op	Name of Option		ТҮР002	TYP 003	TYP 004	TYP 005	TYP 006
	OSC	003	012	050	050	400	400
	СР	00	00	04	02	64	32
	€К	32	64	CP	CP	СР	СР
	PD	CP	СР	CP	CP	CP	СР
COUNTER	PDR	PD2	PD2	PD2	PD2	PD2	PD2
	PDR	N	/ 12500/	N	N	N	N
	CO	PI60	ΡI ₆₀	ΡI ₆₀	PL ₆₀	Р I ₆₀	P I.60
COUNTER	C1	RD9	RDB	RDB	RD7	RDA	RD7
BUFFER	C2	RDA	RDC	RDC	RDA	RDB	RDA
	C3	RDB	RDD	RDD	RDD	RDC	RDD
	HOLD	Н	Н	Н	0	0	0
	RSTH	С3	C3	C3	0	0	0

OSC: Prescribing the oscillator and oscillation frequency.
 o OSC003 - 32.768 KHz oscillation by Xtal oscillator.

- o OSCO12 100 KHz oscillation by Xtal oscillator.
- o OSCO50 400 KHz (400K \sim 500KHz) oscillation by ceramic oscillator or IFT.
- o OSC400 4194.304 KHz oscillation by Xtal oscillator.
 - Note (1): It is possible to make driving from the external oscillator by opening X_{OUT} terminal and by arrangeing X_{IN} terminal for input.
 - Note (2): The formal name of option is that naming continuously the option name and the data in the designation column of option.


- ② CP: Prescribing the frequency dividing ratio for obtaining the internal basic clock.
 - o CP00 Oscillation signal is made to clock.
 - o CP02 Signal of dividing oscillation frequency into 2.
 - o CP04 Signal of dividing oscillation frequency into 4.
 - o CP32 Signal of dividing oscillation frequency into 32.
 - o CP64 Signal of dividing oscillation frequency into 64.

(3) CK: Prescribing the output frequency for external timing

- o CK32 Signal of dividing oscillation frequency into 32.
- o CK64 Signal of dividing oscillation frequency into 64.
- o CKCP Signal of the internal basic clock frequency.

(4) COUNTER: Dividers

The divider consists of 16-stage divider and con be disassumbled into the basic construction of the front 2 stages [divider (1)] and the rear 14 stages [divider (2)].

TECHNICAL DATA

TCP4620AP TCP4320AP

- PDCP - Setting the input of divider (1) to the inter-0 nal basic clock (CP).
- PDRPD2 - Setting the input of divider (2) to the output 0 of divider (1).
- 0 PDRN - Setting the function of divider (1) and divider (2) as the usual binary counters.
- o PDR/12500/ This is the designation only at the time of use of 100K Xtal. When the count value of divider (2) is "12500", the divider (2) is reset to return the count value to "0".
- (5) COUNTER BUFFER Prescribing the input of counter buffer The counter buffer is composed of 4 bits, which are marked CO, C1, C2 and C3 from LSB side (Bit 0).
 - o COPI60 PI60 terminal input to Bit 0.
 - C1RD7 The output of divider 10 to Bit 1. 0
 - C1RD9 The output of divider 12 to Bit 1. 0
 - ClRDA _ The output of divider 13 to Bit 1. 0
 - o C1RDB The output of divider 14 to Bit 1.
 - C2RDA The output of divider 13 to Bit 2. 0
 - C2RDB The output of divider 14 to Bit 2. 0
 - C2RDC The output of divider 15 to Bit 2. 0
 - C3RDB The output of divider 14 to Bit 3.
 - o C3RDC The output of divider 15 to Bit 3.
 - o C3RDD The output of divider 16 to Bit 3.
- (6)HOLD, RSTH: Prescribing the function of H flag and the signal for restart from the hold state.

0

TECHNICAL DATA

TC4620AP TC4630AP

- o HOLDH Hold control is carried out by H flag.
- HOLDO No hold is maintained. H flag is capable of being used as the general flag.
- RSTHC3 Interlocking with HOLDH. Counter buffer bit 3 is used as the hold restart signal.
- o RSTHO Interlocking with HOLDO. No hold is maintained.
- (2) STD-PI5 Options

STL-PI5 options prescribe the state of input/output of port. It is possible to independently designate STD and P15 options respectively.

Option names		Designation of option					
STD	D(PROG)	1 (OUT)					
P2	/F/(OUT)	/F/(OUT)	/0/(IN)	/0/(IN)	/0/(IN)		
P4	/F/(OUT)	/3/(IN/OUT)	/F/(OUT)	/3/(IN/OUT)	/0/(IN)		
PI5	0(UP)	1(DOWN)					

1) STD: Prescribing the function of port 0.

- STDD Switching input/output of port 0 is made according to the contents of D flag.
- STD1 Using as the output of port 0. In this case,
 D flag can be used as the general flag.

2 P2, P4: Prescribing the function of port 2 and port 4.

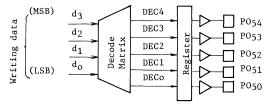
Port 2 and port 4 are the 4-bit ports to which the input or the output can be designated. The 4-bit ports are expressed by the one-figure numeric

characters of hexadecimal digit by defining the input as "O" and the output as "1" for each bit.

TC4620AP TC4630AP

(Example) (MSB) (LSB) Bit 3 2 1 0 0 0 1 1 1 0 0 1 1 1 (1: 0utput) Hexadecimal = 3

- o P2/F/, P4/F/ Prescribing both port 2 and port 4 as the output.
- o P2/F/, P4/3/ Prescribing the upper 2 bits of port 4 the input, with the others being the output.
- P2/0/, P4/F/ Prescribing port 2 as the input and port 4 as the output.
- o P2/0/, P4/3/ Prescribing the lower 2 bits of port 4 as as the output, with the others being the input.
- o P2/0/, P4/0/ Prescribing both port 2 and port 4 as the input.
- ③ P15: Prescribing the function of the input resistance at port 5.
 - PI50 Input port 5 comes to the input with pull-up resistance.
 - PI51 Input port 5 comes to the input with pull-down resistance.
- (3) DECODER PLA Options


The decoder and PLA options are the data writing mode in which user designates the data. PO6 option is used according to the function of PLA.

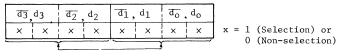
Option Names	Designation of Oprions				
DECODER	Data writing mode				
P06	1 (P6/P7)	0 (P6)			
PLA	General output port	Data writing mode			

1 DECODER: Prescribing the contents of decode matrix.

Operation processing and internal data are processed with 4 bits. However, at the output port 5, 5-bit data are produced as the output after the conversion into 5 lines by the decode matrix.

The following explanation is made for the purpose of explaining the contents of decode matrix and has no direct relations with the design patterning in the actual LSI. Give your kind attention to this point.

The logic of decode matrix can be expressed by the following formula. (See the above diagram.)


 $\begin{cases} DECi = D_3 \cdot D_2 \cdot D_1 \cdot D_0 \ (i = 0 - 4) \\ Where, the selection is practicable as to \\ Dj(j = 0 - 3) = dj \text{ or } dj \text{ or } 1 \end{cases}$

As to the designation of decode matrix, it is possible to define the selection as "1", to define non-selection as "0", and to express \overline{d}_3 , \overline{d}_2 , \overline{d}_2 , \overline{d}_1 , d_1 , \overline{d}_0 , and d_0 as the continuous 8-bit data (\overline{d}_3 shall be MSB) with the figures of hexadecimal two digits.

TECHNICAL DATA

TCP4620AP TCP4630AP

Hexadecimal two digits

Note: $D_j = \overline{d}_j \rightarrow (\overline{d}_j, d_j) = (\text{Selection}, \text{Non-selection}) = (1, 0)$ $D_j = d_j \rightarrow (\overline{d}_j, d_j) = (\text{Non-selection}, \text{Selection}) = (0, 1)$ $D_j = 1 \rightarrow (\overline{d}_j, d_j) = (\text{Non-selection}, \text{Non-selection}) = (0, 0)$ It is meaningless to select both \overline{d}_j and d_j

Attention shall be given to the fact that the output comes to "1" except initialization in case where the designation of (Non-selection, Non-selection) is made to all bits (DECi = 1).

o In case where PO_{50} terminal output is "H" when the data "1" are written in the output port 5,and the output is "L" when other dwata are written:

Logic: DECO =
$$\overline{d3} \cdot \overline{d2} \cdot \overline{d1} \cdot d0$$

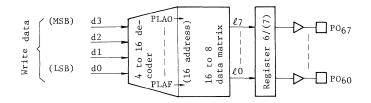
 $\overline{d3} \cdot \overline{d3} \cdot \overline{d2} \cdot \overline{d1} \cdot d0$
Designation: DECO = $\begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} = X' A9'$

o In case where PO₅₄ terminal output is "H" when the data "C"
 "F" are written in the output port 5, and the output is "L" when other data are written:

Logic: DEC4 =
$$d3 \cdot d2$$

 $d3 \quad d3 \quad d2 \quad d2 \quad d1 \quad d1 \quad d0 \quad d0$
Designation: DEC4 = $\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ = X' 50'

o In the case of PO₅₁ terminal when the output of data written in the output port 5 is desired:


164

- * Refer to the examples of data designation.
- 2 PO6: Prescribing the function of port 6.
 - o PO60 Port 6 is used as the 8-bit PLA data output port.
 - PO61 Port 6 is used as the two 4-bit general output port. (No designation can be made as to the contents of PLA.)

③ PLA: Prescribing the contents of PLA.

Operation processing and internal data are processed with 4 bits. However, at the output port 6, 8-bit data are produced as the output after the conversion into 8 lines by PLA.

The following explanation is made for the purpose of explaining the contents of PLA and has no direct relations with the design patterning in the actual LSI. Give your kind attention to this point.

TECHNICAL DATA

TCP4620AP TCP4630AP

PLA can be expressed as the 16 words x 8 bits memory. (Refer to the above diagram.) Nemaly, the 4-bit write data is the address of PLA, and the 8-bit data read out from PLA comes to the output data on the output port terminals.

Write data	Address	Write data	Address	Write data	Address	Write data	Address
0	PLAO	4	PLA4	8	PLA8	12	PLAC
1	PLA1	5	PLA5	9	PLA9	13	PLAD
2	PLA2	6	PLA6	10	PLAA	14	PLAE
3	PLA3	7	PLA7	11	PLAB	15	PLAF

The designation of PLA data is made to addresses by expressing the 8-bit data, which are MSB in PO₆₇ terminal output and LSB in PO₆₀ terminal output, with 2-figure numeric characters of hexadecimal digit.

o In case each output between P067 terminal and P060 terminal comes to H, L, H, H. L, H. H, and L when data "5" are written in the 8-bit output port 6,

 $PLA 5 = \frac{PO_{66}}{PO_{67}} \frac{PO_{62}}{PO_{65}} \frac{PO_{62}}{PO_{61}} = X' B6' \frac{f}{(PO_{62})} \frac{a(PO_{67})}{g(PO_{64})} b \\ (PO_{62}) \frac{f}{g(PO_{64})} \frac{A(PO_{67})}{g(PO_{64})} b \\ (PO_{62}) \frac{f}{g(PO_{64})} \frac{A(PO_{67})}{g(PO_{65})} b \\ (PO_{63}) \frac{f}{g(PO_{63})} \frac{A(PO_{67})}{h} b \\ (PO_{63}) \frac{f}{g(PO_{63})} \frac{A(PO_{63})}{h} b \\ (PO_{63}) \frac{f}{g(PO_{63})} \frac{f}$

 In case data "3" are written in output port 6 or output port 7 to use it as the 4-bit general output port,

PLA 3 =
$$\begin{array}{c} PO_{66} & PO_{64} & PO_{62} & PO_{60} \\ PO_{67} & PO_{65} & PO_{63} & PO_{61} \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ Port & 7 & Port & 6 \end{array}$$
 = X' 33'

TECHNICAL DATA

TCP4620AP TCP4630AP

Therefore, if data "3" are written in output port 7, each output between PO67 terminal and PO64 terminal comes to L. L, H, and H. At this time, each input to register 6 (connected to PO63 terminal- PO60 terminal) comes likewise to 0, 0, 1, and 1, but each output does not change because no setting is made to the register. This applies to the reverse case comes likewise.

o Refer to the examples of the designation of data.

	Examples of the besignation of bata for becode matrix and FLA						
\sum	Examples of Ceneral port	Examples of 5-1 Fig. dynamic indication		General port	Examples of seg- ment display		
	DECO = dO	$DECO = \overline{d3} \ \overline{d2} \ \overline{d1} \ d0$		PLA 0 = /00/	PLA 0 = /FC/		
0	DEC1 = d1	DEC1 = $\overline{d3}$ $\overline{d2}$ d1 $\overline{d0}$		PLA 1 = /11/	PLA 1 = /60/		
Logi	DEC2 = d2	$DEC2 = \overline{d3} \ \overline{d2} \ d1 \ d0$		PLA 2=/22/	PLA = /DA/		
	DEC3 = d3	DEC3 = $\overline{d3}$ d2 $\overline{d1}$ $\overline{d0}$		PLA 3=/33/	$PLA \ 3 = /F2/$		
	$DEC4 = \overline{d3}$	$DEC4 = \overline{d3} \ d2 \ \overline{d1} \ d0$		PLA 4 = /44/	PLA 4= /66/		
ta	DEC0 = /01/	DECO = /A9/		PLA 5=/55/	PLA 5 = /B6/		
d Da	DEC1 = /04/	DEC1 = /A6/		PLA 6=/66/	PLA 6 = /BE/		
i gna ted	DEC2 = /10/	DEC2 = /A5/		PLA 7=/77/	PLA 7 = /E4 /		
sign	DEC3 = /40/	DEC3 = /9A/		PLA 8= /88/	PLA $8 = /FE/$		
Des	DEC4 = /80/	DEC4 = /99/		PLA 9=/99/	PLA 9 = /F6/		
	(Evalue	ator built-in option)		PLA $A = /AA/$	PLA A = /FD/		

PLA B = /BB/

PLA C = /CC/

PLA D = /DD/

PLA E = /EE /

PLA F = /FF/

Examples of the Designation of Data for Decode Matrix and PLA

(Evaluator built-in option)

(Evaluator built-in option)

PLA C = /02/

PLA D = /CE/

PLA E = /9E/

PLA F = /8E/

PLA B = /00/ (blank)

MASK ROM DATA TAPE FORMAT

	<pre> Leader Output of more than 50 characters of "NULL"</pre>
'COMMENT'	Comment Output of six characters starting from the
CR LF	beginning of character train defined by TTL
	statement of source program and two characters
	of serial number, with apostrophe. (when no
	TTL statement exist, output of six characters
	of space code and two chareaters of serial
	number.)
N8;	\ldots . Output of "N8" indicating that the date pattern is 8
CR (LF)	bits long. (The program data follow this code.)
RXXXX ;	Output of the program start address following "R" in
	four frames of decimal ASCII code.
V D	1-b - Alberton Alberton N
$X_{XX} P_X$;	and check sum
X _{XX} P _X ;	2nd address data Check sum
	and check sum Number of data bits having "1" is output.
X _{XX} P _X ;	8th address data 🛛 🖵 Data
CR LF	and check sum Two-characters of eight bit data are output, in two frames
R _{XXXX} ;	9th program address of hexadecimal ASCII code.
XXX PX ;	9th address data and check sum
	Repeated output through the last data
CR (LF)	
Ş	Output of indicating the end of program data
l	
ł	Trailer: Output of more than 50 characters of "NULL".

TECHNICAL DATA

TCP4620AP TCP4630AP

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

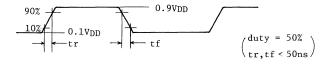
SYMBOL	ITEM	RATING
V _{DD}	Supply Voltage	-0.3V to $+7.0V$
VIN	Input Voltage	-0.3V to VDD + 0.3V
VOUT	Output Voltage	-0.3V to VDD + 0.3V
PD	Power Dissipation	600 mW
T _{sol}	Soldering Temperature	260°C (10 SEC)
Tstg	Storage Temperature	-55°C to + 125°C
Topr	Operating Temperature	-30°C to + 85°C

ALLOWABLE OPERATING CONDITIONS

SYMBOL	TTEM	Condition			
STRIDUL	LIEN	$V_{DD} = 3V \text{ to } 6V$	$V_{DD} = 4V \text{ to } 6V$		
Та	Ambient Temeprature	-30°C to + 85°C	-30°C to 85°C		
VOH	Output High Voltage	Min. V _{DD} -3.5V(≥1.5V)	Min.VDD -3.5V (≥1.5V)		
VOL	Output Low Voltage	Max. 3V	Max. 3V		
fx	Xtal Operating Frequency	20KHz to 2MHz	20KHz to 4.2MHz		
tcy	Cycle Time	40µs to 100µs	10µs to 100µs		

TECHNICAL DATA

TCP4620AP TCP4630AP

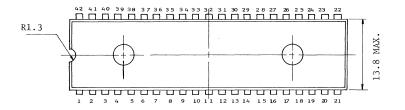

DC CHARACTERISTICS (Ta=-30°C to +85°C, VDD=3V to 6V)

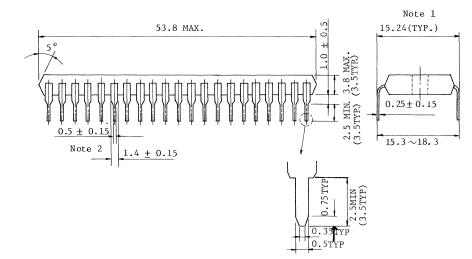
SYMBOL	PARAMETER	TEST CONDITION	MIN.	TVP. (Note 1)	MAX.	UNIT
V _{IH}	Input High Voltage		VDDx0.75	-	VDD	
		$VDD \ge 4V$	VDDx0.7	VDDx0.55	VDD	
VTHS	Input High Voltage		VDDx0.9	VDDx0.75	VDD	
	(Schmitt)	$V_{DD} \ge 4V$	VDDx0.85	-	V _{DD}	
VIHC	Input High Voltage(XIN Input)		V _{DD} x0.75	_	VDD	v
VIL	Input Low Voltage		0	VDDx0.45	V _{DDx} 0.3	v
VILS	Input Low Voltage (Schmitt)		0	VDDx0.35	V _{DD} x0.1	
		$V_{DD} \ge 4V$	0	-	VDDx0.15	
VILC	Input Low Voltage (XIN Input)		0	-	V _{DD} x0.25	
IIH	Input High Current	VDD=6V, VIN=6V	-	· _	20	
IIL	Input Low Current	VDD=6V, VIN=0V	-	-	-20	μA
RIN	Input Resistance (PI5)	VDD=5V	75	150	350	kΩ
V _{OH}	Output High Voltage	Output	4.7	4.9	-	v
VOL	Output Low Voltage	V _{DD} =5V, Output Open	-	0.1	0.3	·
IOH	Output High Current	Van-4 5V Vov-2 4V	-0.7	-2	-	
IOH1	Output High Current (P05, P06)	V _{DD} =4.5V,V _{OH} =2.4V	-2.5	-6	-	
TOHT	ourrent	VDD=5V, VOH=4.2V	-1.1	-2.5	-	mA
IØL	Output Low Current	VDD=4.5V, VOL=0.45V	1.6	4	-	
IOL1	Output Low Current (P05,P06)	VDD-4.5V, VOL-0.45V	3.5	8	-	
	V _{DD} Supply (fx=32.8 KHz)		-	50	300	
IDDO	Current in $(fx=100 \text{ KHz})$ Normal $(fx=400 \text{ KHz})$ Operation $(fx=4.19 \text{ MHz})$	V _{DD} =6V V _{IN} =5.9V/0.1V	-	150	450	
			-	400	1200	
		(All valid)	-	1000	3000	μA
I _{DIH}	Vpp Supply (fx=32.8 KHz)	PI5 Open	-	15	80	
	VDD Supply (fx=32.8 KHz) Current in (fx=100 KHz)	$C_L = 50 pF$	-	40	120	
	Hold Operation (fx=400 KHz)	(Note 3)	-	150	450	

Note 1: Typical values are at Ta=25°C and VDD=5V.

Note 2: Output characteristic excludes XOUT terminal.

Note 3: $X_{\mbox{IN}}$ input waveform at the time of measuring $V_{\mbox{DD}}$ supply current.


AC CHARACTERISTICS (Ta=-30°C to +85°C, V_{DD}=3V to 6V)


SYMBOL	PARAMETER	TEST CONDITION	MIN.	ТҮР.	MAX.	UNIT
tWXIN	XIN Pluse Width	External Input VIN=VIHC/VILC	0.4/fx	-	0.6/f _x	SEC
tWRESET	RESET Pulse Width		2 tcy	-	-	
tWINT	INT Pulse Width	$v_{1N} = v_{IHS} / v_{ILS}$	2 tcy	-	-	μs
t _{WPI60}	PI60 Pulse Width		2 tcy	-	-	

OUTLINE DRAWINES

Unit in mm

- Note 1: This dimension is measured at the center of bending point of leads.
- Note 2: Each lead pitch is 2.54mm, and all the leads are located within ± 0.25 mm from their theoretical positions with respect to No.1 and No.42 leads.