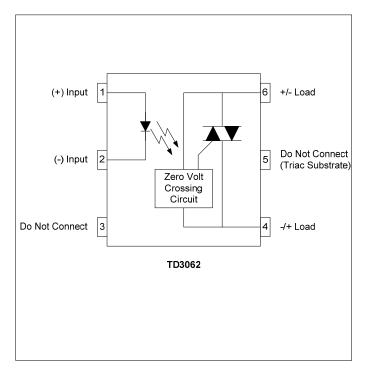


TD3062 Zero Volt Switching 600V Triac Driver

Description


The TD3062 consists of a single input LED optically coupled to a zero-volt crossing triac driver. The TD3062 provides high input-to-output isolation and is designed to drive high-powered triacs. Typical uses include interfacing logic level control signals to equipment powered from $110V_{AC}$ to $240V_{AC}$ lines.

The TD3062 comes standard in a miniature 6 pin DIP package making it ideal for high-density board applications.

Applications

- Home Appliances
- Motor / Drive Controls
- Solid State Relays
- Solenoid / Valve Control
- Temperature Control

Schematic Diagram

Features

- Zero-Volt Switching
- 600V Blocking Voltage
- Trigger Current (10mA MAX)
- High Isolation Voltage (5000V_{RMS})
- High dV/dt (1kV/µS MIN, 2kV/µS TYP)
- Long Life / High Reliability
- RoHS / Pb-Free / REACH Compliant

Agency Approvals

UL/C-UL:	File # E201932
VDE:	File # 40035191 (EN 60747-5-2)

Absolute Maximum Ratings

The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to absolute Maximum Ratings may cause permanent damage to the device and may adversely affect reliability.

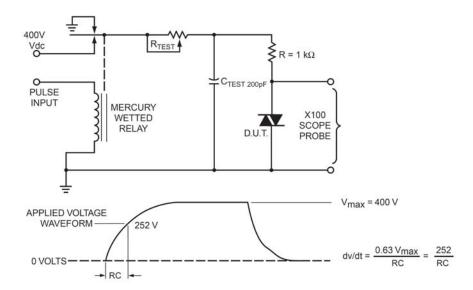
Storage Temperature	-55 to +125°C
Operating Temperature	
Continuous Input Current	50mA
Transient Input Current	400mA
Reverse Input Control Voltage	5V
Input Power Dissipation	40mW
Output Power Dissipation	330mW
Solder Temperature – Wave (10sec)	260°C
Solder Temperature – IR Reflow (10sec)	260°C

Ordering Information

Part Number	Description
-------------	-------------

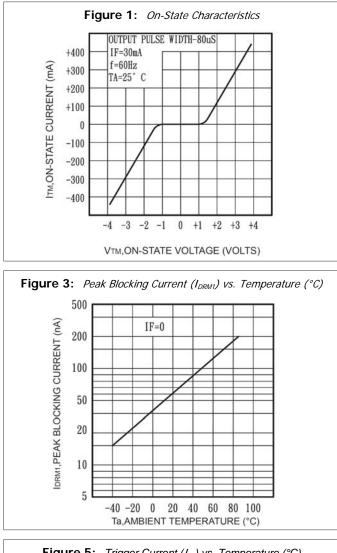
TD3062	6 pin DIP, (60/Tube)
TD3062-H	0.40" (10.16mm) Lead Spacing (VDE0884)
TD3062-S	6 pin SMD, (60/Tube)
TD3062-STR	6 pin SMD, Tape and Reel (1000/Reel)

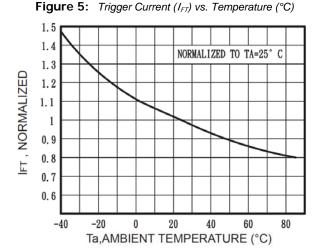
NOTE: Suffixes listed above are not included in marking on device for part number identification

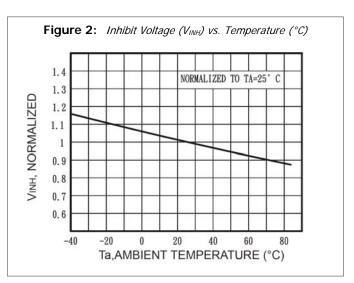

Electrical Characteristics, T_A = 25°C (unless otherwise specified)

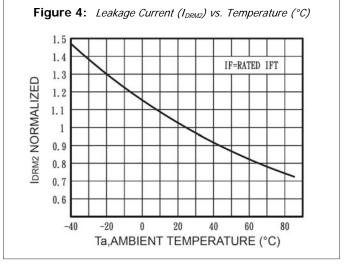
Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	
Input Specifications							
LED Forward Voltage	VF	-	1.4	1.8	V	I _F = 10mA	
LED Reverse Voltage	BV _R	5	-	-	V	I _R = 10μA	
Reverse Leakage Current	I _{InRleak}	-	-	10	μA	V _R = 6µA	
Trigger Current ¹	I _{FT}	-	-	10	mA	Main Terminal Voltage = 3V	
Output Specifications							
Blocking Voltage	V _{DRM}	600	-	-	V	I ₀ = 1μA	
Peak Blocking Current	I _{DRM1}	-	60	500	nA	V _{DRM} = 600V	
On-State Voltage	V _{ON}	-	1.8	3	V	I _F = 10mA, I _{TM} = 100mA	
Leakage Current	I _{DRM2}	-	0.2	1	μA	I _F =0mA, V _{DRM} = 600V	
Holding Current	I _{HOLD}	-	100	-	μA	-	
Inhibit Voltage	V _{INH}	-	5	20	V	I _F = 10mA	
Critical Rate of Rise ²	dV/dt	1000	2000	-	V/µS	-	
Isolation Specifications							
Isolation Voltage	V _{ISO}	5,000	-	-	V_{RMS}	RH ≤ 50%, t=1min	
Input-Output Resistance	R _{I-O}	-	10 ¹²	-	Ω	$V_{I-O} = 500V_{DC}$	

Note 1: Resistive load. For inductive loads, higher drive current is recommended


Note 2: This is for static dV/dt. Test Circuit Below


TD3062 Static dV/dt Test Circuit:





TD3062 Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)

TD3062 Solder Temperature Profile Recommendations

(1) Infrared Reflow:

Refer to the following figure as an example of an optimal temperature profile for single occurrence infrared reflow. Soldering process should not exceed temperature or time limits expressed herein. Surface temperature of device package should not exceed 250°C:

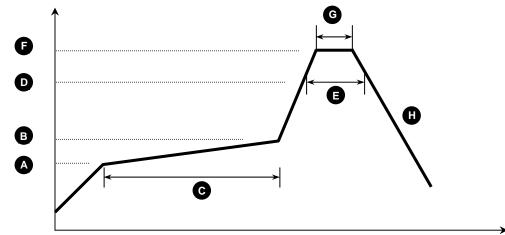
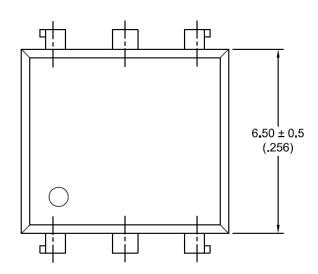


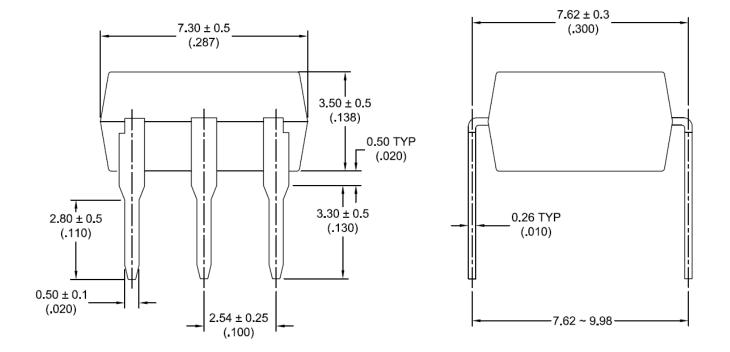
Figure 1

Process Step	Description	Parameter	
А	Preheat Start Temperature (°C)	150°C	
В	Preheat Finish Temperature (°C)	180°C	
С	Preheat Time (s)	90 - 120s	
D	Melting Temperature (°C)	230°C	
E	Time above Melting Temperature (s)	30s	
F	Peak Temperature, at Terminal (°C)	260°C	
G	Dwell Time at Peak Temperature (s)	10s	
H	Cool-down (°C/s)	<6°C/s	

(2) Wave Solder:

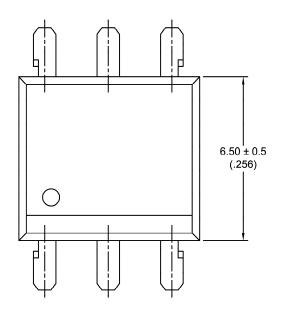
Maximum Temperature:	260°C (at terminal)
Maximum Time:	10s
Pre-heating:	100 - 150°C (30 - 90s)
Single Occurrence	

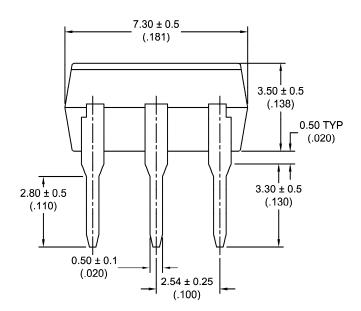

(3) Hand Solder:

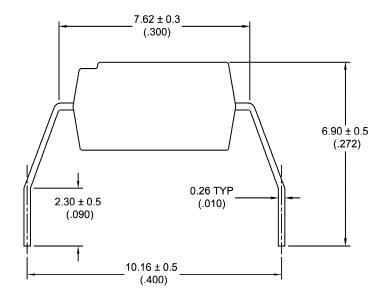

Maximum Temperature: Maximum Time:	350°C 3s	(at tip of soldering iron)
Single Occurrence		

6 PIN DIP Package

Note: All dimensions in millimeters with inches ["] in parenthesis ()

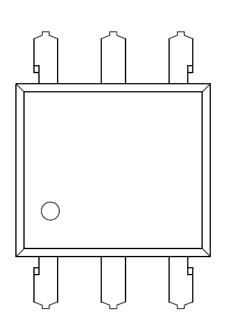


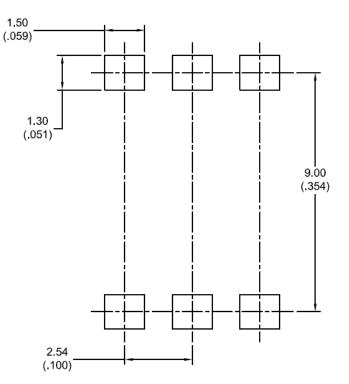


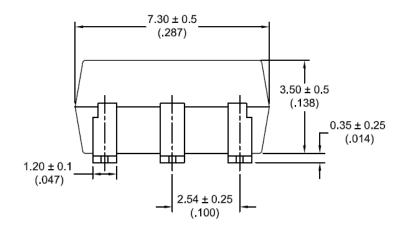


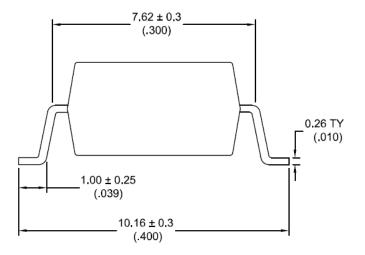
6 PIN WIDE Lead Space Package (-H)

Note: All dimensions in millimeters [mm] with inches in parenthesis ()

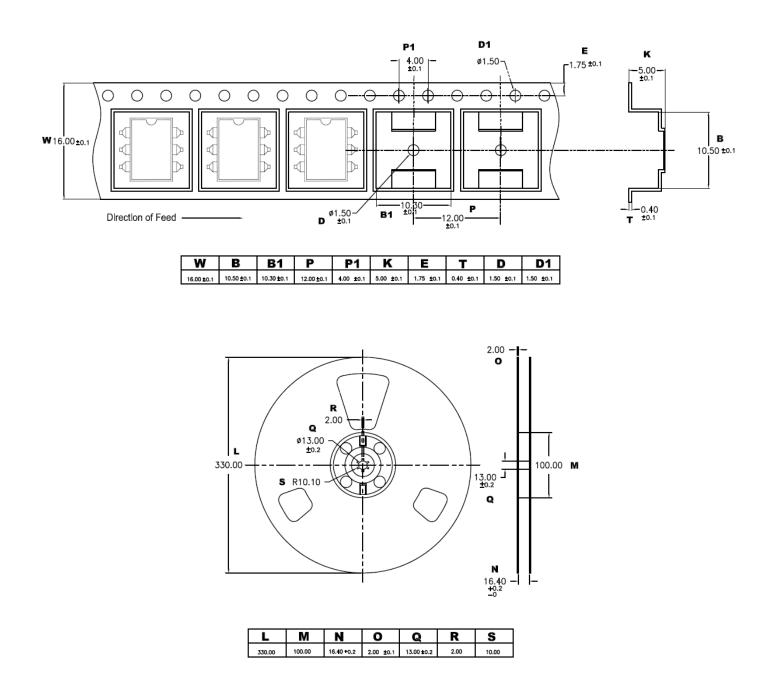


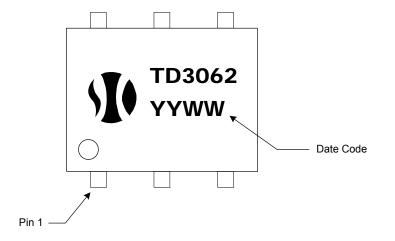





6 PIN SMD Surface Mount Package (-S)

Note: All dimensions in millimeters with inches ["] in parenthesis ()




6 PIN SMD Tape & Reel (-STR)

Note: All dimensions in millimeters

TD3062 Package Marking

TD3062 Package Weights

Device	Single Unit	Full Tube (60pcs)	Full Pouch (10 tubes)	Full Reel (1000pcs)
TD3062	0.41	43	450	-
TD3062-S	0.40	42	440	-
TD3062-H	0.42	44	460	
TD3062-STR	0.40	-	-	880

Note: All weights above are in GRAMS, and include packaging materials where applicable

DISCLAIMER

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notices. SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent

licenses nor indemnity are expressed or implied.

Except as specified in SSO's Standard Terms & Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.