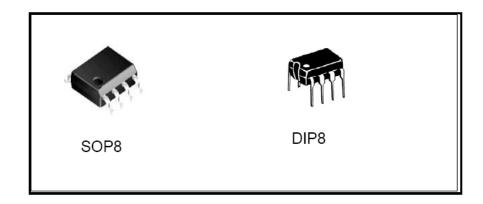
General Description

The TD34063 is a monolithic switching regulator • control circuit which contains the primary functions • required for DC-DC converters. This device • consists of internal temperature compensated • reference, voltage comparator, controlled duty cycle • oscillator with active current limit circuit, driver • and high current output switch.

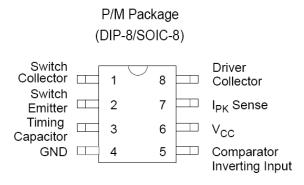
The TD34063 is specifically designed as a general DC-DC converter to be used in Step-Down, Step-Up and Voltage-Inverting applications with a minimum number of external components.

The TD34063 is available in 2 packages: SOIC-8 and DIP-8.


Features

- Operation from 3.0V to 36V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5A
- Output Voltage Adjustable
- Operation Frequency up to 180KHz
- Precision 2% Reference

Applications


- Battery Chargers
- ADSL Modems
- Hubs
- Negative Voltage Power Supplies

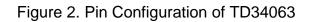
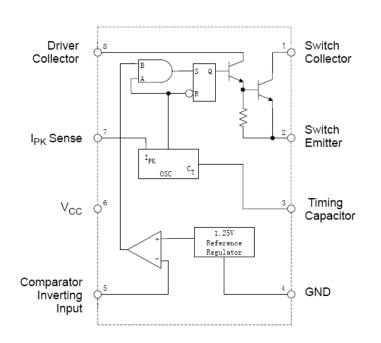
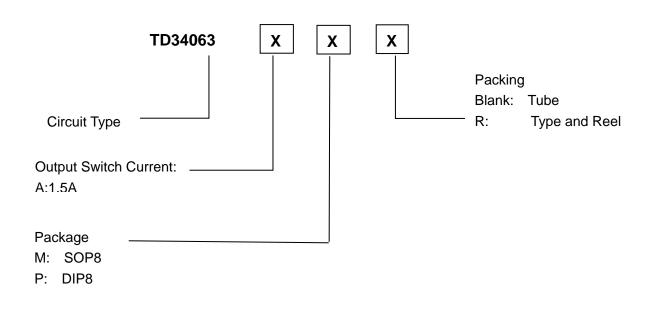

Package Types

Figure 1. Package Types of TD34063

Pin Configuration

Functional Block Diagram




Figure 3. Functional Block Diagram of TD34063

TD34063

Pin Description

Pin Number	Pin Name	Function
1	Switch Collector	Internal switch transistor collector
2	Switch Emitter	Internal switch transistor emitter
3	Timing Capacitor	Timing Capacitor to control the switching frequency
4	GND	Ground pin for all internal circuits
5	Comparator Inverting Input	Inverting input pin for internal comparator
6	VCC	Voltage supply
7	IPK Sense	Peak Current Sense Input by monitoring the voltage drop across an external current sense resistor to limit the peak current through the switch
8	Driver Collector	Voltage driver collector

Ordering Information

TD34063

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit		
Power Supply Voltage	VCC	40	V		
Comparator Input Voltage Range	VIR	-0.3 to 40	V		
Switch Collector Voltage		VC(switch)	40	V	
Switch Emitter Voltage (VPIN 1=40)	V)	VE(switch)	40	V	
Switch Collector to Emitter Voltage	VCE(switch)	40	V		
Driver Collector Voltage		VC(driver)	40	V	
Driver Collector Current (Note 2)	IC(driver)	100	mA		
Switch Current	ISW	1.5	А		
Deres Dissignation (TA 25 °C)	DIP-8	DD	1.25	W	
Power Dissipation (TA=25 $^{\circ}$ C)	SOIC-8	PD	780	mW	
	DIP-8	Dote	100	°C /W	
Thermal Resistance	SOIC-8	— R θ JA	160		
Operating Junction Temperature	TJ	150	°C		
Lead Temperature (Soldering, 10s)	TLEAD	260	°C		
Storage Temperature Range	TSTG	-65 to 150	°C		
ESD (Human body model)		2000	V		

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: Maximum package power dissipation limits must be observed.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	VCC	3	36	V
Ambient Temperature	ТА	-40	85	°C

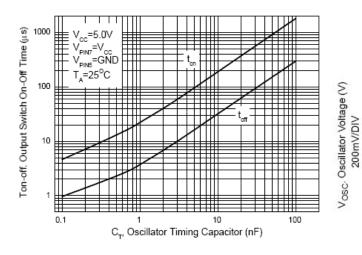
TD34063

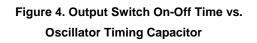
Electrical Characteristics

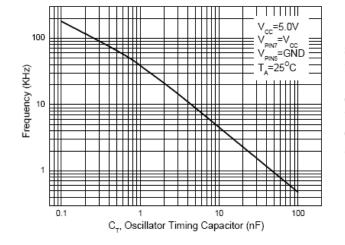
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
OSCILLATOR						
Frequency	fosc	VPIN5=0V, CT=1.0nF TA=25°C 24		29	44	KHz
Charge Current	ICHG	VCC=5.0V to 36V, TA=25°C	30	38	45	uA
Discharge Current	Idischg	VCC=5.0V to 36V, TA=25°C	180	240	290	uA
Discharge to						
Charge Current	IDISCHG/ICHG	Pin 7 to VCC, TA=25°C	5.2	6.5	7.5	
Ratio						
Current Limit	VIDK (conco)	ICHG=IDISCHG, TA=25℃	250	300	350	mV
Sense Voltage	VIPK(sense)	ICHO=IDISCHO, IA=25 C	250	300		
OUTPUT SWITC	H(Note3)					
Saturation		Isw=1.0A, Pins 1, 8 connected,				
Voltage, Dalington	VCE(sat)	Common Emitter		1.0	1.3	V
Connection		Common Emitter				
Saturation Voltage		ISW=1.0A, RPIN8=82 Ω to				
(Note 4.)	VCE(sat)	VCC, Forced $\beta = 20$, Common		0.45	0.7	V
		Emitter				
DC Current Gain	hFE	ISW=1.0A, VCE=5.0V,TA=25℃	50	75		
Collector	IC(off)	VCE=36V		0.01	100	uA
Off-State Current	IC(0II)	VCE-30V		0.01	100	uA
COMPARATOR						
Threshold Voltage	Vth	TA=25°C 1.225		1.250	1.275	V
Threshold Voltage	VIH	TA=-40 to 85 °C	1.21	1.250	1.29	v
Threshold Voltage	Regline	VCC=3.0V to 36V		1.4	5	mV
Line Regulation	REGLINE	VCC=3.0V 10 50V		1.4	5	IIIV
Input Bias Current	Iib	VIN=0V		-20	-400	nA
TOTAL DEVICE						
		VCC=5.0V to 36V,				
Supply Current	ICC	CT=1.0nF,VPIN7=VCC, VPIN5 >			4	mA
		VTH,VPIN2=GND, other pins open				

Note 3: Low duty cycle pulse technique are used during test to maintain junction temperature as close to ambient temperature as possible.

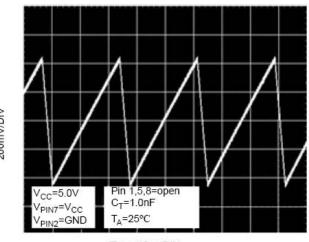
Note 4: If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0us for it to come out of saturation. This condition will shorten the off time at frequencies 30KHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

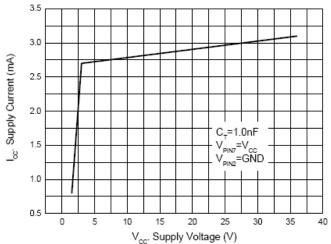

TD34063

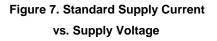

Electrical Characteristics (Continued)


Forced β of output switch: $\frac{\text{IC output}}{\text{ICdriver - 7.0mA}^*} \ge 10$

* The 100Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.


Typical Performance Characteristics





Time. 10µs/DIV

Figure 5. Timing Capacitor Waveform

\mathcal{T} echcode

Datasheet

1.5A STEP-DOWN/STEP-UP/INVERTING DC-DC CONVERTER

Typical Performance Characteristics (Continued)

TD34063

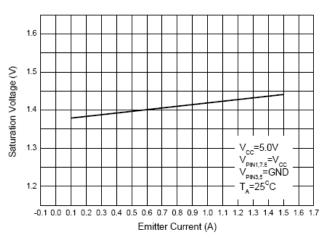


Figure 8. Emitter Follower Configuration Output Saturation Voltage vs. Emitter current

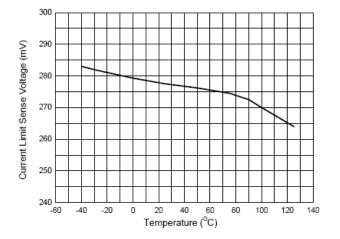
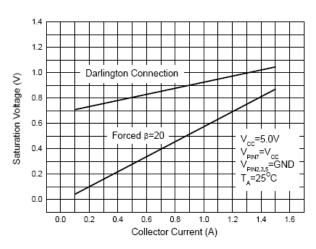
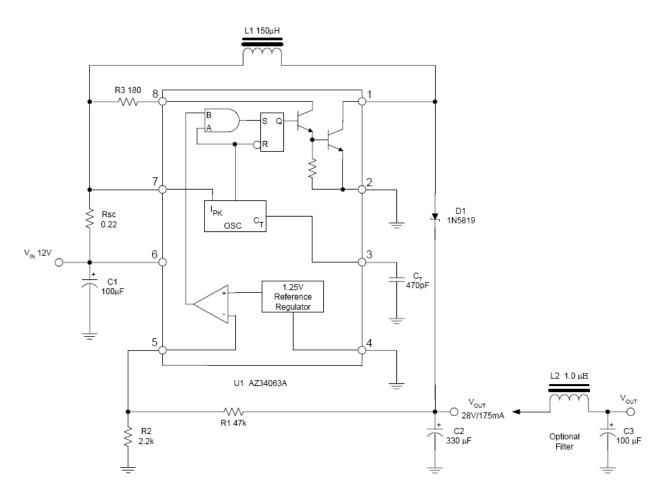
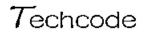


Figure 10. Current Limit Sense Voltage vs. Temperature


Figure 9. Common Emitter Configuration Output Switch Saturation Voltage vs. Collector Current

Typical Applications

Figure 10. Step-Up Converter (Note 5)

Note 5: This is a typical step-up converter configuration. In the steady state, if the resistor divider voltage at pin5 is greater than the voltage in the non-inverting input, which is 1.25V determined by the internal reference, the output of the comparator will go low. At the next swithching period, the output switch will not conduct and the output voltage will eventually drop below its nominal voltage until the divider voltage at pin 5 is lower than 1.25V. Then the output of the comparator will go high, the output switch will be allowed to conduct. Since VPIN5=VOUT*R2/(R1+R2)=1.25(V), the output voltage can be decided by VOUT=1.25*(R1+R2)/R2(V).

Typical Applications (Continued)

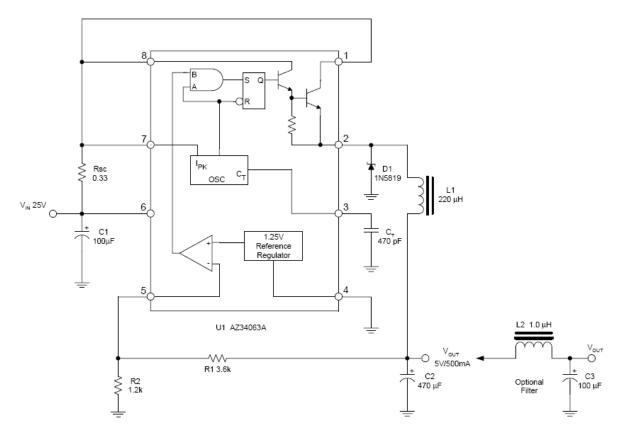
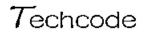
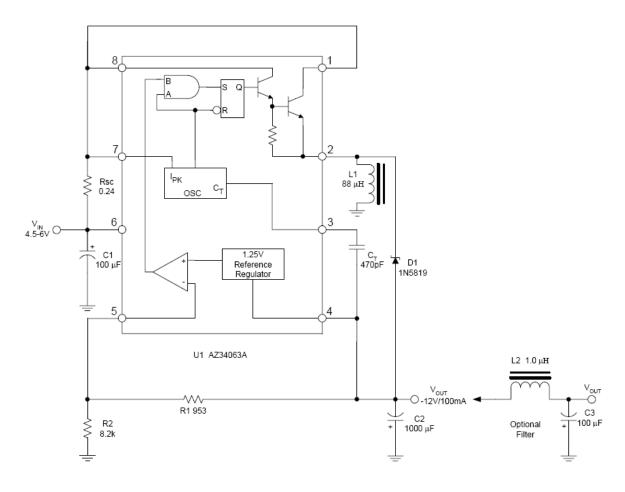
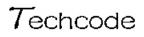
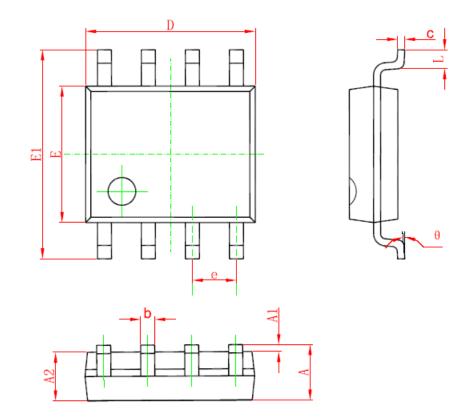




Figure 11. Step-Down converter (Note 6)

Note 6: This is a typical step-down converter configuration. The working process in the steady state is similar to step-up converter, VPIN5=VOUT*R2/(R1+R2)=1.25 (V), the output voltage can be decided by VOUT=1.25*(R1+R2)/R2 (V).



Typical Applications (Continued)

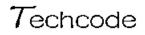

Figure 12. Voltage Inverting Converter (Note 7)

Note 7: This is a typical inverting converter configuration. The working process in the steady state is similar to step-up converter, the difference in this situation is that the voltage at the non-inverting pin of the comparator is equal to 1.25V+VouT, then VPIN5=VouT*R2/(R1+R2)=1.25V+VouT, so the output voltage can be decided by VouT=-1.25*(R1+R2)/R1 (V).

Package Information

SOP8 Package Outline Dimensions




Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0. 020	
C	0.170	0. 250	0.006	0.010	
D	4. 700	5. 100	0. 185	0. 200	
E	3.800	4.000	0. 150	0.157	
E1	5.800	6. 200	0. 228	0. 244	
e	1. 270 (BSC)		0. 050 (BSC)		
L	0.400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

TD34063

Package Information

DIP8 Package Outline Dimensions

Design Notes