TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC # **TD62387AFN,TD62388AFN** #### 8CH LOW INPUT ACTIVE DARLINGTON SINK DRIVER The TD62387AFN and TD62388AFN are non-inverting transistor arrays, which are comprised of eight NPN darlington output stages and PNP input stages. All unites feature integral clamp diodes for switching inductive These devices are Low Level input active drivers and are suitable for operations with TTL, 5 V CMOS and 5 V Microprocessor which have sink current output drivers. Applications include relay, hammer, lamp and LED driver. :SSOP20 pin (0.65 mm pitch) Package Type High Sustaining Voltage : 50 V (Min) Output Current (Single Output): 500 mA / ch (Max) Output Clamp Diodes :LOW LEVEL ACTIVE Input Standard Supply Voltage Inputs Compatible with TTL and 5 V CMOS | TYPE | V _{IN(ON)} | |------------|-----------------------------| | TD62387AFN | 0 V~V _{CC} - 3.7 V | | TD62388AFN | 0 V V CC 5.7 V | # SSOP20-P-225-0.65A Weight: 0.09 g (Typ.) # PIN CONNECTION (TOP VIEW) #### **SCHEMATICS (EACH DRIVER)** TD62387AFN #### TD62388AFN The input and output parasitic diodes cannot be used as clamp diodes. # MAXIMUM RATINGS (Ta = 25°C) | CHARACTERISTIC | SYMBOL | RATING | UNIT | | |-----------------------------|-----------------------|-------------|---------|--| | Supply Voltage | V _{CC} | -0.5~7.0 | V | | | Output Sustaining Voltage | V _{CE} (SUS) | -0.5~50 | ٧ | | | Output Current | lout | 500 | mA / ch | | | Input Voltage | V _{IN} | -0.5~7.0 | V | | | Input Current | I _{IN} | -10 | mA | | | Clamp Diode Reverse Voltage | V _R | 50 | V | | | Clamp Diode Forward Current | I _F | 500 | mA | | | Power Dissipation | PD | 0.96 (Note) | W | | | Operating Temperature | T _{opr} | -40~85 | °C | | | Storage Temperature | T _{stg} | -55~150 | °C | | Note: On Glass Epoxy PCB (50 × 50 × 1.6 mm Cu 40%) # RECOMMENDED OPERATING CONDITIONS (Ta = $-40 \sim 85$ °C) | CHARACTERISTIC | SYMBOL | CONDITION | | MIN | TYP. | MAX | UNIT | |-----------------------------|----------------------------|--|------------|-----|------|-----|---------| | Supply Voltage | V _{CC} | | | 4.5 | 5.0 | 5.5 | V | | Output Sustaining Voltage | V _{CE} (SUS) | | 0 | _ | 50 | V | | | Output Current | I _{OUT}
(Note) | DC 1 Circuit | | 0 | _ | 350 | | | | | T_{pw} = 25 ms
8 Circuits
Ta = 85°C
T_j = 120°C | Duty = 10% | 0 | _ | 180 | mA / ch | | | | | Duty = 50% | 0 | _ | 90 | | | Input Voltage | V _{IN} | | | 0 | _ | 5.5 | V | | Clamp Diode Reverse Voltage | V _R | | | _ | _ | 50 | V | | Clamp Diode Forward Current | I _F | | | _ | _ | 400 | mA | | Power Dissipation | P _D | | | _ | _ | 0.4 | W | Note: On Glass Epoxy PCB (50 × 50 × 1.6 mm Cu 40%) # **ELECTRICAL CHARACTERISTICS (Ta = 25°C)** | CHARACTERISTIC | | SYMBOL | TEST
CIR-
CUIT | TEST CONDITION | MIN | TYP. | MAX | UNIT | | |-----------------------------|------------|-----------------------|----------------------|---|-----|-------|-----------------------|------|--| | Output Leakage Current | | I _{CEX} | 1 | V _{CC} = 5.5 V, I _{IN} = 0
V _{OUT} = 50 V, Ta = 85°C | _ | _ | 100 | μΑ | | | Output Saturation Voltage | | V _{CE} (sat) | 2 | V _{CC} = 4.5 V
V _{IN} = V _{IN} (ON) Max.
I _{OUT} = 350 mA | _ | 1.4 | 2.0 | V | | | Input Current | Output On | I _{IN (ON)} | 3 | V _{CC} = 5.5 V, V _{IN} = 0.4 V | _ | -0.32 | -0.45 | mA | | | | | | | $V_{CC} = 5.5 \text{ V}, V_{IN} = -20 \text{ V}$ | _ | _ | -2.6 | | | | | Output Off | I _{IN (OFF)} | 4 | | _ | _ | -4.0 | μA | | | Input Voltage (Output on) | | V _{IN (ON)} | 5 | | _ | _ | V _{CC} - 3.7 | V | | | Clamp Diode Reverse Current | | I _R | 6 | V _R = 50 V, Ta = 25°C (Note 1) | _ | _ | 50 | μА | | | | | | | V _R = 50 V, Ta = 85°C (Note 1) | _ | _ | 100 | | | | Clamp Diode Forward Current | | V _F | 7 | I _F = 350 mA | _ | _ | 2.0 | V | | | | | | | I _F = 280 mA | _ | _ | 1.8 | v | | | Supply Current | | I _{CC} (ON) | - 8 | V _{CC} = 5.5 V, V _{IN} = 0 | _ | 17 | 22 | mA | | | | | I _{CC} (OFF) | | V _{CC} = 5.5 V, V _{IN} = V _{CC} | _ | _ | 100 | μΑ | | | Turn-On Delay | | t _{ON} | 9 | V _{CC} = 5 V, V _{OUT} = 50 V(Note1) | _ | 0.1 | | μs | | | Turn-Off Delay | | t _{OFF} | 9 | $R_L = 125 \Omega$, $C_L = 15 pF$ | _ | 3 | _ | | | # **TEST CIRCUIT** 1. I_{CEX} 2. VCE (sat) 3. I_{IN (ON)} 6. I_R 4. I_{IN} (OFF) 5. V_{IN (ON)} 7. V_F 8. Icc ### 9. ton, toff Note 1: Pulse Width 50 μs , Duty Cycle 10% Output Impedance 50 Ω , $t_{\Gamma} \le 5$ ns, $t_{f} \le 10$ ns Note 2: C_L includes probe and jig capacitance. #### PRECAUTIONS for USING This IC does not integrate protection circuits such as overcurrent and overvoltage protectors. Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC. Utmost care is necessary in the design of the output line, VCC, COMMON and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding. 5 2001-07-04 ### **PACKAGE DIMENSIONS** SSOP20-P-225-0.65A Unit: mm Weight: 0.09 g (Typ.) ## RESTRICTIONS ON PRODUCT USE 000707EBA - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. - The products described in this document are subject to the foreign exchange and foreign trade laws. - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. - The information contained herein is subject to change without notice.