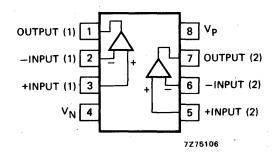
Preliminary

DUAL OPERATIONAL AMPLIFIER

The TDA0358D consists of two independent, high gain, internally frequency compensated operational amplifiers. It is especially designed to operate from a single power supply over a wide range of voltages.

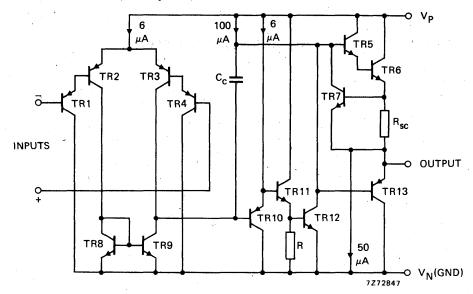

The circuit is equivalent to the LM358, however it is mounted in a miniature plastic package.

The device can be directly operated from the standard +5 V supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ± 15 V supplies.

Features

- Internally frequency compensated for unity gain
- Large d.c. voltage gain: 100 dB
- Unity gain bandwidth: 1 MHz
- Wide supply voltage range: 3 to 30 V
- Low supply current drain: 1 mW per op amp at $V_P V_N = 5 V$
- Differential input voltage range equal to supply voltage
- Input common mode range includes ground
- Large output voltage range : 0 to Vp 1,5 V
- Operating ambient temperature : -25 to +85 °C

CONNECTION DIAGRAM



PACKAGE OUTLINE (see general section) SO-8 (SOT-96A); plastic 8-lead flat pack.

1

Preliminary

CIRCUIT DIAGRAM (one amplifier)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)Supply voltage $V_P - V_N$ max.32VDifferential input voltage $V_{I+} - V_{I-}$ max.±32VCommon mode input voltage V_{I+} ; V_{I-} -0,3 to +32VOutput short-circuit to V_N (see note)continuous at $T_{amb} = 25$ °C

continuous at $T_{amb} = 25 \text{ °C}$ Vp < 15 V, only one amplifier

Power dissipation in free air; $T_{amb} = 50$ °C (see note)

Mounted on a ceramic substrate of 4 cm ² derating factor for $T_{amb} > 50 ^{0}\text{C}'$	P _{tot}	max.	450	mW
	1/R _{th}	=	6	mW/ºC
Mounted on PC board of 4 cm ²	P _{tot}	max.	310	m₩
derating factor for $T_{amb} > 50$ °C	1/R _{th}	=	4,2	mW ⁄⁰C

<u>Note</u>: Short-circuits from the output to V_P can cause excessive heating and eventual destruction. I_0 max. is about 40 mA independent of the magnitude of V_P . At values of V_P in excess of +15 V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.

2

Prelimina	ry
-----------	----

TDA0358D

Parameter	Conditions	Symbol	min.	typ.	max.	Unit
Input offset voltage	· · · · · ·	Vio	-	Ż	7.	mV
Input offset current		I _{io}	-	5	50	nA
Input bias current	1).	Ii	-	45	500	nA
Common mode input voltage	$V_P \leq 30 V^2$)	Vi	0	-	V _P -1,5	v
Common mode rejection ratio	d.c.	CMRR	-	85	-	₫B
Power supply rejection ratio	d.c.	PSRR	-	100	-	dB
Amplifier to amplifier coupling	f = 1 kHz to 20 kHz (input referred)		-	-120	—	dB
Large signal voltage gain	$R_{L} > 2 k\Omega$	Gv	-	100	-	V /mV
Output voltage range	$R_L > 2 k\Omega$	vo	0	-	Vp-1,5	v
Output current source	$V_{I+} = 1 V; V_{I-} = 0 V$	Io	20	40	-	mA
Output current sink	$V_{I+} = 0 V; V_{I-} = 1 V$	Io	10	20	-	mA
Supply current	$R_{L} = \infty$ (all op amps)	IP	-	0,5	1,2	mA ·

CHARACTERISTICS at V_P = +5 V; V_N = 0; T_{amb} = 25 °C unless otherwise specified

 $^{l})$ The direction of the input current is out of the IC due to the p-n-p input stage.

²) Either input signal voltage should not be allowed to go negative by more than 0, 3 V. The upper end of the common mode voltage range is V_p - 1, 5 V, but either or both inputs can go to +30 V without damage.

August 1976

3