LINEAR INTEGRATED CIRCUIT

The TDA2310 is a dual high quality **class A** preamplifier intended for extremely low distortion application in Hi-Fi systems. The TDA2310 is a monolithic integrated circuit in a 14-lead dual-in-line plastic package and its main

The TDA2310 is a monolithic integrated circuit in a 14-lead dual-in-line plastic package and its main features are:

- Very high dynamic range
- Very low distortion
- High open loop bandwidth
- Very low noise
- No pop-noise
- High slew-rate: $14V/\mu s$ (G_v = 30 dB) 50V/ μs (G_v = 50 dB)
- Large output voltage swing
- Single or split supply operation
- Output short circuit protection

ABSOLUTE MAXIMUM RATINGS

V,	DC supply voltage	± 22	V
V,	Operating supply voltage	± 20	V
V _{cm}	Common mode input voltage	± 15	V
Vi	Differential input voltage	± 5	V
Ptot	Total power dissipation at $T_{amb} < 60^{\circ}C$	500	mW
T_j, T_{stg}	Junction and storage temperature	-40 to 150	°C

ORDERING NUMBER: TDA2310

MECHANICAL DATA

Dimensions in mm

TDA2310

6/82

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

۰.

(one section)

max.

180 °C/W

THERMAL DATA

R _{thj-amb} Ther	mal resistance	junction-ambient
---------------------------	----------------	------------------

Fig. 1 - Gain and distortion test

Fig. 2 - Noise test

ELECTRICAL CHARACTERISTICS (Refer to the Test circuit of fig. 1, $T_{amb} = 25^{\circ}C$, $V_s = \pm 15V$, $G_v = 30dB$, $R_L = 20K\Omega$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V _s	Supply voltage		± 5		± 20	v
۱ _s	Supply current			10	15	mA
I _b	Input bias current			0.2	1	μA
I _{os}	Input offset current			50	300	nA
V _{os}	Input offset voltage			1	3	mV

777

	Parameter Test conditions		conditions	Min.	Typ.	Max.	Unit
Gv	Voltage gain	f = 1KHz			85		dB
	(open loop)	f = 20KHz	 No compensation 		85		dB
∆G _v	Voltage gain spread	f = 1KHz	f = 1KHz		±0.2		dB
	(closed loop)	f = 100KHz			±0.5		dB
Ri	Input resistance		6 - 1KUz		5		MΩ
Ro	Output resistance	f = IKHZ			10		Ω
V _{pp}	Output voltage swing (peak to peak)	1 - 10/	f = 1KHz		24		V
		d = 1%	f = 100KHz		22		V
Vo	Output voltage (rms)	R _x = 8.2KΩ	f = 1KHz	6	8		V
			f = 20KHz	6	8		V
RW	Power bandwidth	V ₀ = 20 Vpp	, R _x = 8.2 KΩ		160		KHz
0	Class and	G _v = 30dB)dB		14		- ∨/µs
ən	Siew rate	G _v = 50dB (C F	$G_v = 50 dB (C_3 = 330 pF) R_5 = 470 \Omega$		50		
d	Total harmonic	V ₀ = 3V	f = 1KHz		0.035		%
	distortion		f = 20 KHz		0.035		%
d ₂	Second order CCIF intermodulation distortion	$V_{01} = 1V$ $V_{02} = 1V$	f2 - f1 = 1 KHz		0.01	0.1	%
d ₃	Third order CCIF intermodulation distortion	f1 = 14KHz f2 = 15KHz	$2f_1 - f_2 = 13 \text{ KHz}$		0.03	0.1	%
* T		$\begin{array}{c} R_{g} = 600\Omega\\ R_{g} = 3.3K\Omega \end{array}$	·•)		0.6 1.0	0.8	μV
εN	rotal input hoise	$R_g = 600\Omega$ $R_g = 3.3K\Omega$	¹⁰⁰)		0.75 1.2		μV
C/N	* Signal to noise ratio	V _o = 500mV	R _g = 3.3K R _g = 600 (°) R _g = 0		74 78 80		dB
5/11			R _g = 3.3K R _g = 600 (∘∘) R _g = 0		72 76 78		dB
Cs	Channel separation	f = 20KHz R _g = 600Ω			100		dB
CMR	Common mode rejection	R _g = 600Ω			95		dB
SVR	Supply voltage rejection	$R_g = 600\Omega$		1	85		dB
l _{sh}	Output short circuit current				15		mA

Fig. 3 – Harmonic distortion vs. output level.

Fig. 6 – Output voltage swing vs. load resistance.

Fig. 4 – Harmonic distortion vs. frequency.

Fig. 5 - Output voltage swing vs. frequency.

Fig. 7 – Total input noise vs. source resistance.

Fig. 8 – Noise density vs. frequency.

Fig. 9 - Open loop frequency response.

Fig. 10 - Closed loop gain vs. frequency.

Fig. 11 - Two tone CCIF intermod. distortion.

779

APPLICATION INFORMATION

Fig. 12 – Very low dynamic distortion stereo RIAA preamplifier. $V_s = \pm 15V$ RIAA frequency response (20Hz to 20KHz) = ± 0.5 dB

Harmonic distortion = 0.02% (f = 20KHz)

Fig. 13 - RIAA preamplifier response.

Fig. 14 – Two tone intermodulation distortion vs. input level.

Fig. 15 - Maximum output level of high quality magnetic cartridge vs. frequency.

APPLICATION INFORMATION (continued)

Fig. 16 – Dynamic range of disc music.

As shown in fig. 15 the maximum expected output level of an high quality magnetic cartridge playing modern discs is lower than 80mV rms.

TDA2310

The dynamic range needed is about 70dB (fig. 16).

The TDA2310 is perfectly suited to RIAA preamplifier applications due to the \sim 100 dB dynamic range (150mV input 0.1% distortion to 1 μ V noise).

APPLICATION INFORMATION (continued)

Fig. 18 - Hi-Fi tape preamplifier (EQ. = 70μ s).

Fig. 19 - Frequency response of graphic equalizer of fig. 20

* 18K Ω for EQ = 120 μ s.

Fig. 20 - Four band graphic equalizer

APPLICATION INFORMATION (continued)

The table shows the suggested compensation networks depending on the slew-rate and gain required in the application.

Slew-Rate (V/μs)	G _v min. (dB)	Compensation Network	_	Note
50	50	C + 1/2 TDA 2 310 S - 4 071	R = 470Ω C = 330pF	High gain Applications
14	30	C + 1/2 TDA 2 310 S - 4 071	R = 68Ω C = 3.3nF	RIAA Preamplifier
14	10	R1 R2 TDA 2310 R3 H	$R_1 = 56K\Omega$ $R_2 = 180K\Omega$ $R_3 = 680\Omega$ $C_1 = 10nF$	Inverting Configuration
	0	$\mathbf{F} = 68\Omega \qquad \mathbf{C} = 3.3nF$	$R_1 = R_2 = 56K\Omega$ $R_3 = 680\Omega$ $C_1 = 10nF$	
5	20	C T T T T T T T T T T T T T	R = 33 Ω C = 10nF	Low Slew-Rate Applications
2	6	C + 1/2 TDA 2 310 - - - - - - - - - - - - -	R = 10 Ω C = 47 nF	