LINEAR INTEGRATED CIRCUIT

MULTIFUNCTION SYSTEM FOR TAPE PLAYERS

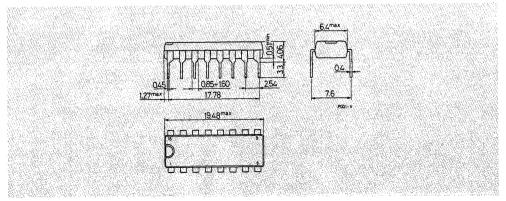
The TDA 7270S is a multifunction monolithic integrated circuit in a 16-lead dual in-line plastic package specially designed for use in car radios cassette players, but suitable for all applications requiring tape playback.

It has the following functions:

- Motor speed regulator
- Automatic stop
- Manual stop
- Pause
- Cassette ejection
- Radio Playback automatic switching.

The circuit incorporates also:

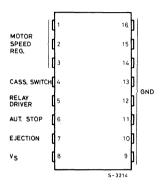
- Thermal protection
- Short circuit protection to ground (all the pins)

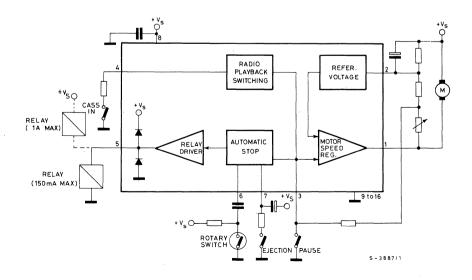

ABSOLUTE MAXIMUM RATINGS

V,	Supply voltage	20	v
1	Sink peak current at pin 1	2	А
15	Sink peak current at pin 5	2	А
P _{tot}	Power dissipation at $T_{amb} \le 80^{\circ}C$	1	w
T _{stg} ;T _j	Storage and junction temperature	-40 to 150	°C

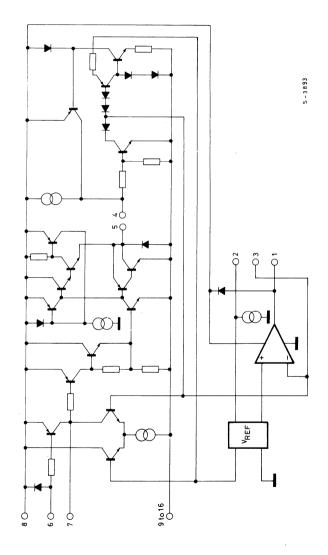
ORDERING NUMBER: TDA 7270 S

MECHANICAL DATA

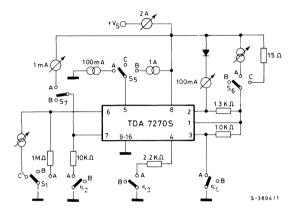

Dimensions in mm



CONNECTION DIAGRAM


(top view)

BLOCK DIAGRAM



SCHEMATIC DIAGRAM

847

TEST CIRCUIT

THERMAL DATA

R _{th j-amb}	Thermal resistance junction-ambient	max	70	°C/W
R _{th j-case}	Thermal resistance junction-pins	max	15	°C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; T_{amb} = 25°C; V_s = 14V; S_7 at B, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
۷s	Supply voltage		6		18	v
I _d	Quiescent drain current	Automatic stop-S ₃ at B S ₄ at B		5	10	mA
		Pause – S ₃ at A; S ₄ at A		9	15	
1 ₅	Maximum output current for relay driving		150			mA
т _{sd}	Thermal shut-down case temperature	$P_{tot} = 1W$ ($\frac{\Delta V_{ref}}{V_{ref}} = -5\%$)	105	125		°C

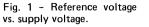
Parameter	Test conditions	Min.	Тур.	Max.	Unit
MOTOR SPEED CONTROL					
I _{MS} Starting current (pin 1)		1			А
V _{ref} Reference voltage (pin 2-3)	I _M = 100 mA	1.15	1.25	1.35	V
$\frac{\Delta V_{ref}}{V_{ref}} / \Delta V_{s}$	I _M = 100 mA V _s = 8 to 18V		0.1	0.4	%/V
∆V _{ref} V _{ref} /∆I _M	I _M = 50 to 400 mA		0.01	0.03	%/mA
$\frac{\Delta V_{ref}}{V_{ref}} / \Delta T$	I _M = 100 mA T _{amb} = -20 to 70°C		0.01		%/°C
V ₂ Operating voltage	I_{M} = 100 mA ΔV_{ref} = -5%	2.4			v
K Reflection coeff.(K= I_M/I_T see fig. 12)	I _M = 100 mA	18	20	22	-
$\frac{\Delta K}{K} / \Delta V_s$	I _M = 100 mA V _s = 8V to 18V		0.3	1	%/V
$\frac{\Delta K}{K} / \Delta I_{M}$	I _M = 50 to 400 mA		0.005	0.02	%/mA
<u>ΔΚ</u> Κ	I _M = 100 mA T _{amb} = −20 to 70°C		0.01		%/°C

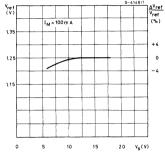
TDA7270S

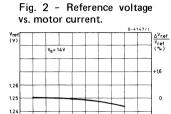
PAUSE

13	Current consumption	S ₄ at A	1.4		mA
V ₈₋₁		S ₄ at A		0.2	v

EJECTION


1 ₇		S ₂ in A	20			μA
V ₅₋₈	Saturation voltage	l ₅ = 100 mA		2.1	3	v
V ₅	Saturation voltage	I ₅₋₈ = 1.5A		2.2	3	v
V ₄	(Pause condition)	S ₁ at A S ₃ at A S ₄ at A	6			v
V ₄	(Radio)	S ₁ at A S ₃ at B S ₄ at B	6	9		v
V ₄	(Таре)	S ₁ at A S ₃ at A S ₄ at B			1.7	v
Ro	Output impedance at pin 4	S ₃ at B		16	22	KΩ


AUTOMATIC STOP


V ₈₋₁	Saturation voltage	S ₁ at B	S ₂ at B	S ₃ at B			1	μA
1 ₆	Minimum current to avoid stop	S ₁ at C					1	μA
1 ₇₋₈	Load current for delay circuit	I ₆ = 0	S ₇ at A	S ₂ at B	10.5	15	19.5	μA

849

-1.6

400 IM (mA)

Fig. 3 – Reference voltage vs. ambient temperature.

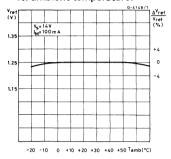


Fig. 4 - Saturation voitage (pins 5-8) vs. pin 5 current.

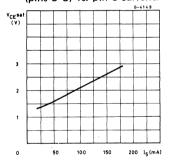


Fig. 5 - Reflection coefficient vs. supply voltage.

0 100 200 300

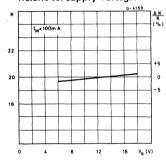


Fig. 6 - Reflection coefficient vs. motor current.

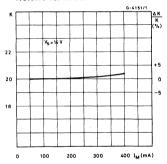


Fig. 7 - Reflection coefficient vs. ambient temperature.

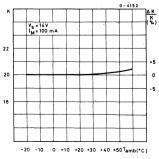
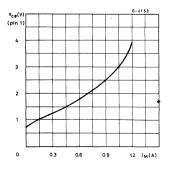



Fig. 8 - Pin 1 saturation voltage vs. motor current.

APPLICATION INFORMATION

The TDA 7270S incorporates four different functional blocks:

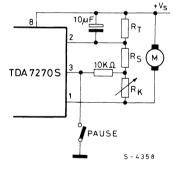
1) Motor speed control.

- 2) Autostop circuit.
- 3) Radio/Playback switching

4) Relay driver.

The motor speed control is a conventional circuit providing correction for the internal losses of the motor. Fig. 9 shows the external circuit.

TDA7270S


The values of R_T , R_S and R_K determine the regulation characteristics and motor speed.

$$R_T = K \cdot R_M$$

where K = the IC regulator reflection coefficient and $R_M =$ motor internal resistance. The following condition must be always satisfied

 $R_{S} \leq 4 R_{T}$

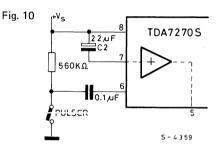
The voltage applied across the motor is given by

$$V_{B-1} = V_{ref} \left[1 + \frac{R_T}{R_S} (1 + \frac{1}{K}) + \frac{R_K}{R_S} \right]$$

and this is proportional to R_K which therefore adjusts the speed. The voltage between pin 2 and the supply must not fall below 0.3V and so

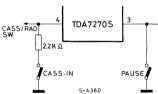
$$[V_{ref min} \ (\frac{R_T}{R_S}) + I_{M min} \ (\frac{R_T}{K_{max}})] > 0.3V$$

The "pause" condition corresponds to $V_3 < 50 \text{ mV}$; in this condition the motor will stop ($V_{1-8} < 0.2V$), the capacitor C_2 on the autostop circuit (see below) will no longer be charged and the pin 4 (cassette/radio switch output) will be pulled high.


APPLICATION INFORMATION (continued)

The autostop circuit is shown in fig. 10.

In normal operation the capacitor C_2 (22 μ F) is slowly charged by a constant current drawn by pin 7 of 15 μ A, and each time the pulser (a switch on the cassette take-up speed shaft) closes, C_2 is discharged. If the cassette stops, and the pulse stops, the voltage on pin 7 falls.


This switches the power amplifier state and pin 5 goes low. Pin 5 can be used for one of two purposes:

- 1) to drive a stop warning light connected from pin 5 supply V_s .
- 2) to actuate a solenoid wired either to ground (to release the cassette) or to supply (to eject the cassette).

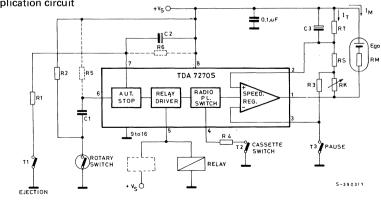

The **pause and/or cassette/radio switching** shown in fig. 11 has an input/output on pin 4. If pin 4 is not used it should be grounded.

Fig. 11

This pin has the following logic.

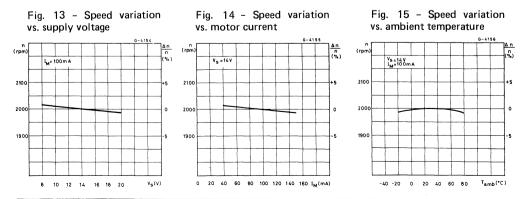
Cass IN	Pause	Pin 4	Function
Open	Open	>6V	motor off/radio on
Open	Close	>6V	motor off/radio on
Close	Open	< 1.7V	motor on/cass. on
Close	Close	> 6V	pause/radio on

DESCRIPTION OF OPERATION (Refer to fig. 12)

When the cassette is introduced the switch T_2 closes, the motor start to turn and the rotary switch generates the pulses which keep the levels of pin 5 and pin 7 high. A relay between pin 5 and ground holds the cassette. If there are no pulses at pin 6 (because tape stopped) or if the ejection switch T_1 is closed, the voltages at pin 5 and pin 7 drop; the relay is thus de-energized and the cassette ejected; as soon as the cassette is ejected, the switch T_2 opens and the motor stops. The capacitor at pin 7 discharges allowing the system to start again when another cassette is inserted. In other types of mechanical systems the cassette is ejected by energizing a relay; in this case the relay must be connected between pin 5 and the supply; the sequence of operations is then the same as described above. If the pause switch T_3 is closed, the motor stops even though there are no pulses at pin 6, the voltage levels at pins 7 and 5 remain high so the cassette is not ejected and the motor is ready to start again as soon as the pause key is released. A voltage for driving the radio-tape switching is available at pin 4. This voltage level is high (> 6V) with stopped motor and is low (< 1.7V) with running motor.

Component	Recommended value	Purpose	Larger than recommended value	Smaller than recommended value	Allowe Min.	d range Max.
R ₁	10 ΚΩ	Limits current from pin 7	Delayed ejection. Possibility that ejection does not work	High driving current at pin 7	0	100KΩ
R ₂	560 ΚΩ	By rotary switch it produces pulses which disable the automatic stop	Undesired operation of automatic switch	Possibility of audio interference spikes	100ΚΩ	2MΩ
R ₃	10 KΩ	Limits the motor current during pause (T ₃ closed)	Reference voltage variation	Higher motor current during pause (T ₃ closed) with delayed stop of motor	1ΚΩ	47ΚΩ
R ₄	2.2 ΚΩ	Fixes voltage of pin 4 during pause and playback	Voltage at pin 4 increases	Voltage at pin 4 decreases. Radio- Playback switching could not work	1.5KΩ	2.7ΚΩ
R ₅	560 ΚΩ	Compensates for current loss between pin 6 and ground	Limited compensation	Necessity to increase C_1 and decrease R_2	100ΚΩ	90
R ₆	1 ΜΩ	Compensates for current loss between pin 7 and ground. Also reduces recovery time	Limited compensation	Possibility that automatic stop will not work	-5 60 ΚΩ	∞
R _T	K・R _M (typical values)	Compensates for voltage drops at motor terminals vs. Δ I _M	Danger of oscillations	Poor speed regulation versus Δ I _M		note «t page

APPLICATION SUGGESTION (See figure 12)


853

APPLICATION SUGGESTION (continued)

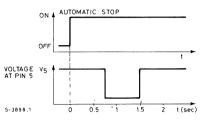
Component	Recommended value	Purpose	Larger than recommended	Smaller than recommended	Allowed range	
	value		value	value	Min.	Max.
R _S	See Note (*)	Fixes the current value in R_T and and R_K for I_M = 0	Danger of saturation of non inverting input of regulator (pin 2). Considerable speed variation for small variation of R _K	Impossibility to obtain a low motor speed		4 R _T
Rĸ	See Note (*)	Fixes the requested V ₈₋₁	Wide speed variation versus △ ℞ _K	Limited speed variation versus △ R _K		
C1	0.1 µF	DC isolation	Electrolytic capacitors cannot be used	Undesired automatic stop	0.047 μF	
C ₂	22 µF	Integrates the pulses of the rotary switch	High recovery time	Low recovery time. Undesired automatic stop	3.3 µF	
C ₃	10 µ F	By pass	Wow and flutter problems	Instability at low temperature	5 µF	22 µF
Rotary switch frequency	20 Hz	Keeps automatic stop off	Possibility of audio interference spikes	Necessity to increase C_1 and C_2		

NOTE (*): $V_{8-1} = V_{ref} \left[1 + \frac{R_T}{R_S} \left(1 + \frac{1}{K} \right) + \frac{R_K}{R_S} \right]$ from which it can be seen that V_{8-1} varies linearly with R_K .

- The voltage between pin 2 and the supply must not fall below 0.5V, so the following expression must be verified $\left[V_{ref\,min} \left(\frac{R_T}{R_S}\right) + I_{M\,min} \left(\frac{R_T}{K_{max}}\right)\right] > 0.3V$ - During the pause, the voltage between pin 3 and ground must be lower than 1.3V.

Re

10 K Ω


т2

Pause

5-3897

APPLICATION SUGGESTION (continued)

Fig. 16 - Delay time of the relay driver $(C_2 = 2.2 \,\mu F)$

1<u>κ</u>Ω 1N4148

2 2 JuF

TDA 7270S

Automatic Stop Indicator

560 K 0

0.1 ALE

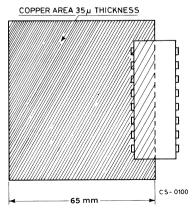
╢

Rotary

Switch

1) motor speed regulation

- 2) automatic stop
- 3) autostop warning light
- 4) pause.


The circuit incorporates an additional resistor/diode from pin 3 to pin 5. When the cassette stops, and the pulser no longer generates pulses, pin 5 falls to a low level and the stop indicator is on.

Pin 3 is pulled low through the 1 K α resistor and the diode, however pin 3 must not be pulled lower than 1.3V since this would cause pin 5 to go high again. The current of about 1 mA out of pin 3 causes V_{3-5} to be about 1.5V.

In this way the motor remains stopped and pin 5 remains low.

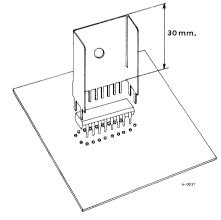

MOUNTING INSTRUCTIONS

Fig. 18 - Example of heatsink using PC board copper

Figures 18 and 19 show two ways to make the device dissipate. In both cases, $R_{th} = 35^{\circ}C/W$.

Fig. 19 - Example of external heatsink

