TDLNA3024QFN

2 – 22 GHz Low Noise Amplifier with Adjustable Gain Control

Product Overview

Teledyne e2v HiRel's TDLNA3024QFN is a distributed Low Noise Amplifier with Adjustable Gain Control (AGC) which operates between 2 and 22 GHz.

It is designed for a wide range of applications, such as electronic warfare, X and Ku Point-to-Point Radio, and test instrumentation. The circuit is manufactured with a pHEMT process, 0.15 µm gate length, via holes through the substrate, air bridges and electron beam gate lithography.

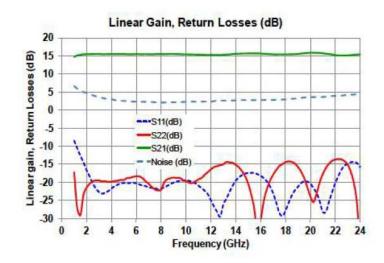
Packaged in a RoHS compliant 16-Lead SMD package.

Features

• Frequency Range: 2 - 22 GHz

• Noise Figure: 3 dB (typical)

• Linear Gain: 15 dB (typical)


• Up to 30 dB adjustable gain with V_{G2}

• dc Bias: $VD = 5 V @ IDQ = 100 mA, V_{G1} = -0.3 V$

and $V_{G2} = 1.7 V$

• MSL Level: 3

Absolute Maximum Ratings (1)

Tamb.= +25 °C

Symbol	Parameter	Values	Unit
Vd	Drain bias voltage	7V	V
ldq	Drain bias current	190	mA
V_{G1}	Gate bias voltage	-2 to 0	V
V_{G2}	Gate bias voltage (AGC)	-2 to 2	V
P1N	Maximum CW input power overdrive	15	dBm

⁽¹ Operation of this device above anyone of these parameters may cause permanent damage.

Main Electrical Characteristics

Tamb.= +25 $^{\circ}$ C Vd=+SV V_{G2}= 1.7 V V_G1set to have I_{DQ} = 100 mA

Symbol	Parameter	Min	Тур	Max	Unit
Freq	Frequency range	2		22	GHz
Gain	Linear Gain		15		dB
NF	Noise Figure		3		dB
Pout	Output Power@1dB comp.		18		dBm

Electrical Specifications

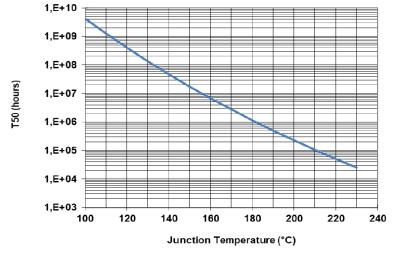
Tamb.= +25 $^{\circ}$ C Vd = +5 V V_{G2} = 1.7 V, V_{G1} set to have I_{DQ} = 100 mA

Symbol	Parameter	Min	Тур	Max	Unit
Freq	Frequency range	2		22	GHz
Gain	Linear Gain	14	15		dB
ΔG	Gain control		30		dB
NF	Noise Figure		3		dB
IRL	Input Return Loss		10		dB
ORL	Output Return Loss		10		dB
P1dB	Output power for 1 dB Gain Compression		18		dBm
P sat	Saturated output power		22		dBm
I _{DQ}	Quiescent current on Vd		100		mA
V_D	Supply voltage on Vd	4.5	5	5.5	V
I _D	Drain current @ 3 dB gain compression		125		mA

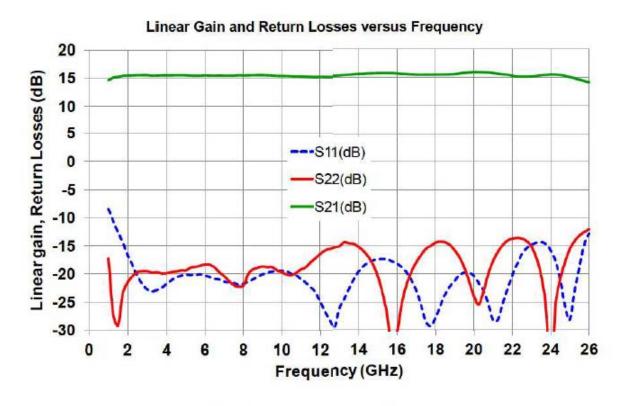
Temperature Range

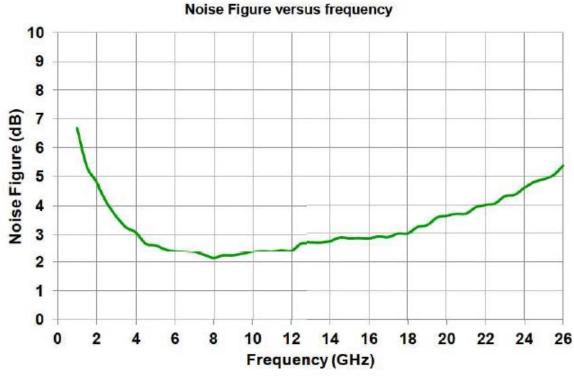
Та	Operating Temperature Range	-40 to 95	${\mathbb C}$
Tstg	Storage Temperature Range	-55 to 150	\mathbb{C}

Typical Bias Conditions

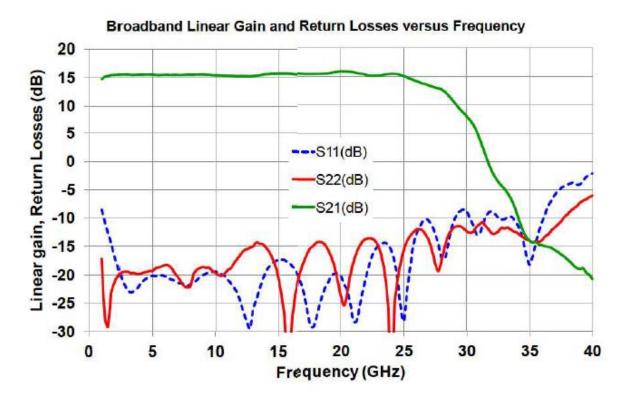

Tamb.= +25°C

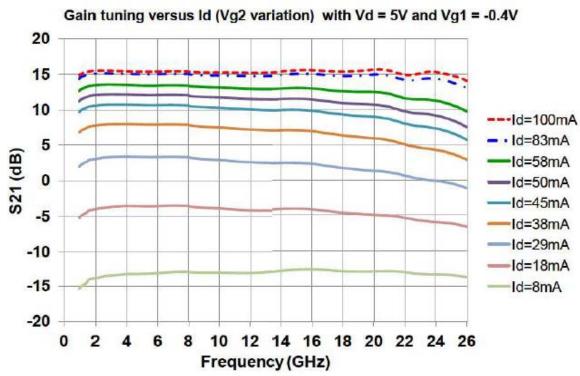
Symbol	Pad #	Parameter	Values	Unit
V_{G1}	13	Maximum Gain	-0.4	V
V_{G2}	18	Mean Value to reach I _{DQ} = 100mA	1.7	V
V_{D}	14	Drain Bias Voltage	5	V

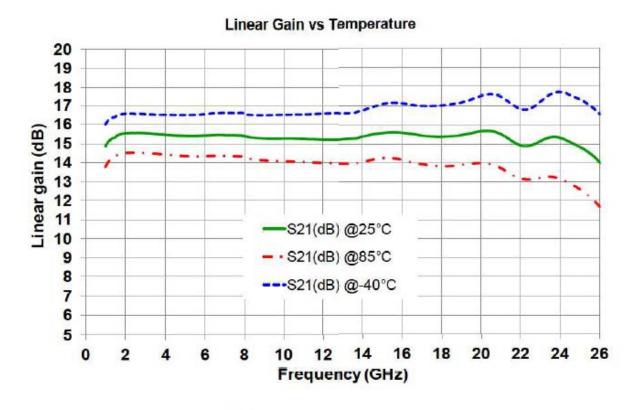

Device Thermal Performance

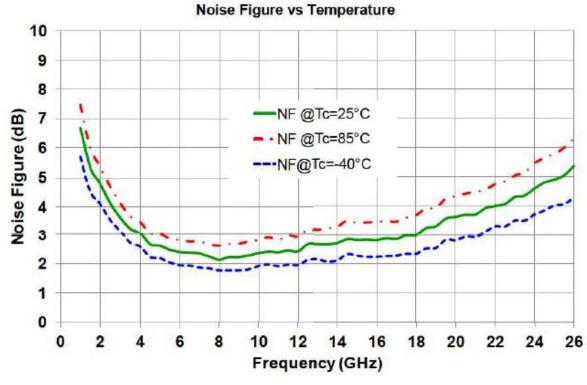

All the figures given in this section are obtained assuming that the QFN device is only cooled down by conduction through the package thermal pad (no convection mode considered). The temperature is monitored at the package back-side interface (T case). The system maximum temperature must be adjusted in order to guarantee that Tjunction remains below the maximum value specified in the Absolute Maximum Ratings table. So, the system PCB must be designed to comply with this requirement.

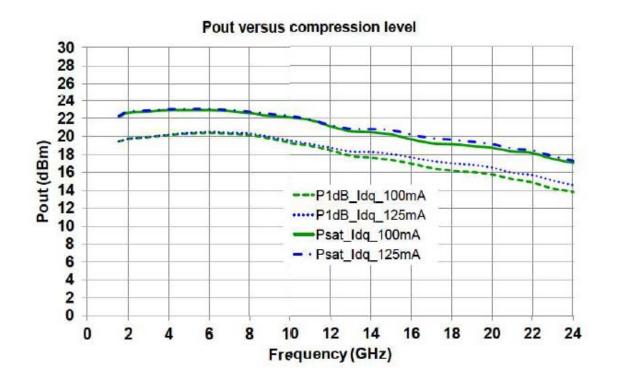
Parameter	Biasing conditions	Tjunction (C)	RTH (C/W	TSO (hours)
R _{TH} ⁽¹⁾ Thermal Resistance (Junction to Case)	Vd=5 V Id=100 mA Pdiss=0.5 W	114	57.7	8.05E+08

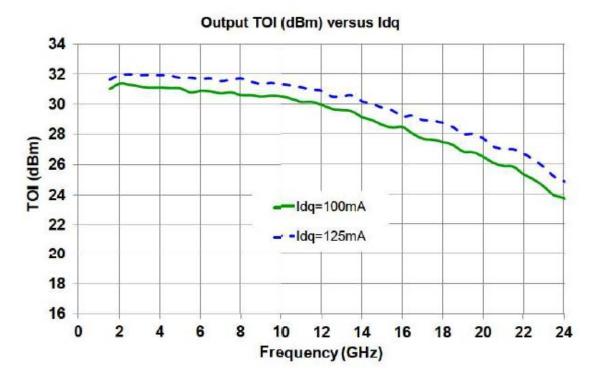


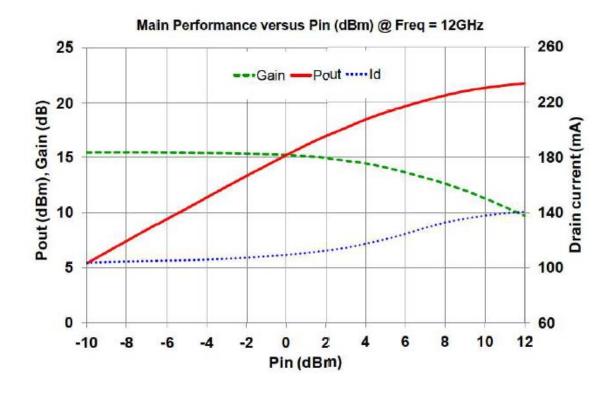

Tamb.= +25 °C Vd = +5 V V_{G2} =1.7 V, V_{G1} set to have I_{DQ} = 100 mA

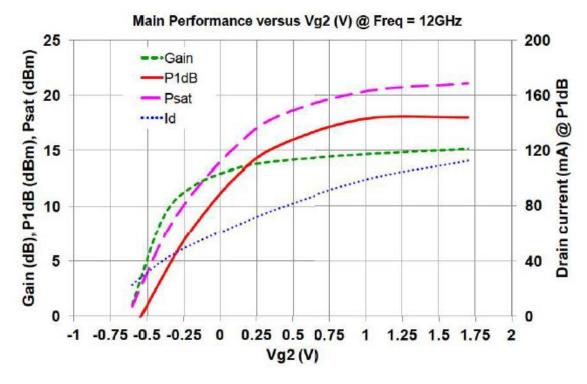

Tamb.= +25 °C Vd=+5 V, V_{G2} = 1.7V, V_{G1} set to have I_{DQ} = 100 mA

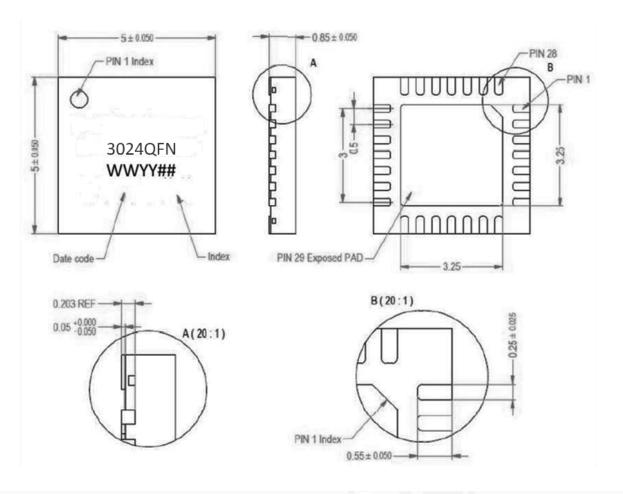





Tamb. = +25 °C, +85 °C, -40 °C, Vd = 5 V, Vg1 set in order to get ldq = 100 mA, Vg2 = 1.7 V


Tamb.= +25 °C Vd = +5 V V_{G2} = 1.7 V V_{G1} set to have I_{DQ} = 100/125 mA




Tamb.= +25 °C Vd = +5 V V_{G2} = 1.7 V, V_{G1} set to have I_{DQ} = 100 mA

Package Outline 1

Units : mm Finish Matt tin

Matte tin, Lead Free	(Green)	1-	VG2	11-	Nc	21-	Nc
Units:	mm	2-	Nc	12-	Nc	22-	Nc
From the standard :	JEDEC MO-220	3-	Nc	13-	VG1	23-	Nc
	(VHHD)	4-	RF in	14-	Nc	24-	Nc
29-	GND	5-	GND ⁽¹⁾	15-	Nc	25-	VD
		6-	Nc	16-	Nc	26-	Nc
	[7-	Nc	17-	Nc	27-	Nc
	1	8-	Nc	18-	GND ⁽¹⁾	28-	Nc
	[9-	Nc	19-	RF out		
		10-	Nc	20-	Nc		

All dimensions are in mm

¹ It is strongly recommended to ground all pins marked "Gnd" through the PCB board. Ensure that the PCB board is designed to provide the best possible ground to the package.

Ordering Information

Order Code	Description	Package	Shipping Method
TDLNA3024QFN	2 - 22 GHz Low Noise Amplifier	5 x 5 28p Plastic QFN	Tray

Revision Information

Document	Description / Date	Change/Revision Details
TDLNA3024QFN-03-2024 Rev 01	TDLNA3024QFN / Oct 2023	Initial Release

Document Categories and Definitions:

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Teledyne e2v HiRel Electronics reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Teledyne e2v HiRel Electronics decides to change the specifications, Teledyne e2v HiRel Electronics will notify customers of the intended changes by issuing a CNF (Customer Notification Form

Sales Contact

For additional information, Email us at: hirel@teledyne.com website: www.tdehirel.com

Disclaimers

The information in this document is believed to be reliable. However, Teledyne e2v HiRel Electronics assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. Teledyne e2v's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Teledyne e2v product could create a situation in which personal injury or death might occur. Teledyne e2v assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Copyright and Trademark

Trademarks are the property of their respective owners.

©2024, Teledyne e2v HiRel Electronics. All rights reserved.

