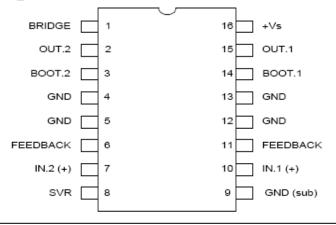

Description

The TEA2025 is a monolithic integrated audio amplifier in a 16-pin plastic dual in line package. It is designed for portable cassette players and radios. The IC features monolithic silicon chip.


Features

- Working Voltage down to 3V.
- ◆ Few External components.
- ♦ High Channel isolation.
- Voltage gain up to 45dB(Adjustable. with external resistor).
- Soft clipping.
- ◆ Internal Thermal protection.

Functional Diagram

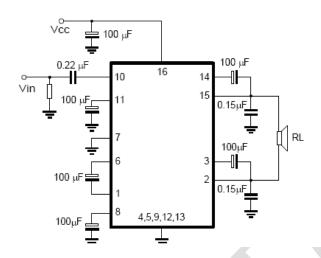
Pin Configurations

Absolute Maximum Ratings

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	Vs	15	V
Output Peak Current	l _o	1.5	Α
Junction Temperature	Tj	150	$^{\circ}$
Storage Temperature	Tstg	-40 ~ +150	$^{\circ}$

Electrical Characteristics (Ta=25°C,VCC=9V,Stereo,Unless otherwise specified)

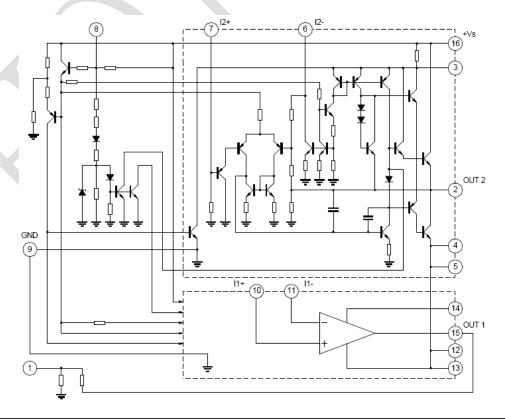
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vs		3		12	V
Quiescent Current	ΙQ			40	50	mA
Quiescent output voltage	Vo			4.5		V
Voltage gain	A _V	Stereo	43	45	47	dB
		Bridge	49	51	53	
Voltage gain difference	ΔA_V				±1	dB
Input impedance	Ri			30		kΩ
Output Power		f=1kHz;d=10% Stereo per channel V_{CC} =9V; R_L =4 Ω R_L =8 Ω	1.7	2.3 1.3		
	Po	V_{CC} =6 V ; R_L =4 Ω RL =8 Ω	0.7	1 0.6		W
		$V_{CC}=3V;R_{L}=4\Omega$		0.1		
		Bridge $V_{CC}=9V;R_L=8\Omega$		4.7		
		$V_{CC}=6V;R_{L}=4\Omega$		2.8		
Distortion	d	V_{CC} =9V;R _L =4 Ω f=1kHz;P _O =250mW Stereo		0.3	1.5	%
		Bridge		0.5		
Supply voltage Rejection	SVR	R_G =0; A_V =45dB Vripple=150mVRMS Fripple=100Hz	40	46		dB
Input noise Voltage	Vn	A_V =200 Bandwidth: 20Hz to 20kHz R _G =0 R _G =10k Ω		1.5 3	3 6	μV
Cross-Talk	C.T.	R_G =10k Ω ; f=1kHz; R_L =4 Ω P_O =1W	40	55		dB


Thermal Resistance

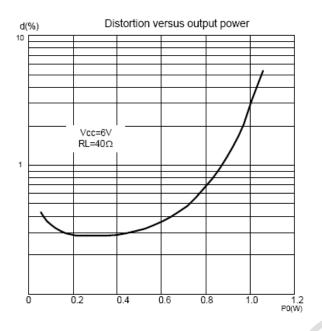
Rth(j-c):Junction to case thermal resistance 15°C/W

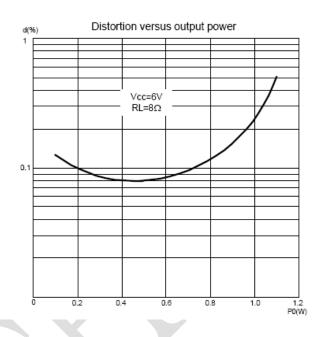
Rth(j-a):Junction to ambient thermal resistance 60°C/W

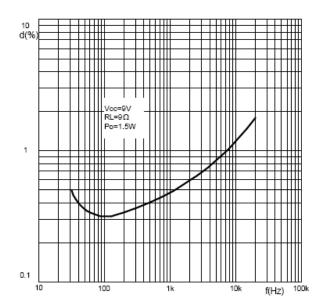
Application Circuit


Bridge Application:

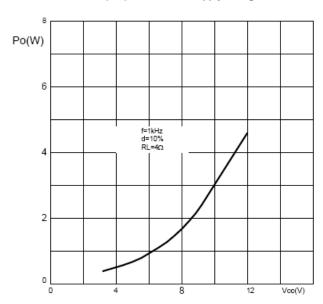
Stereo Application:



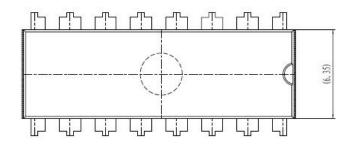

Schematic Diagram

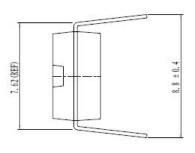


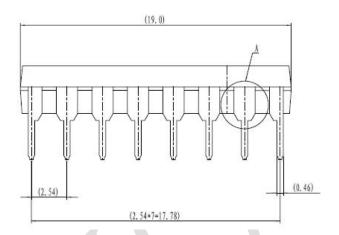
Typical Performance Characteristics

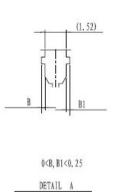


Distortion versus output Frequency


Output power/versus supply voltage






Package Description

DIP16 PACKAGE OUTLINE DIMENSIONS

Copyright © 2008 by HOTCHIP TECHNOLOGY CO., LTD.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, HOTCHIP assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and HOTCHIP makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. HOTCHIP's products are not authorized for use as critical components in life support devices or systems. HOTCHIP reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.hotchip.net.cn.