ADVANCE INFO

3A, 26V Synchronous Rectified Step-Down Converter

Features

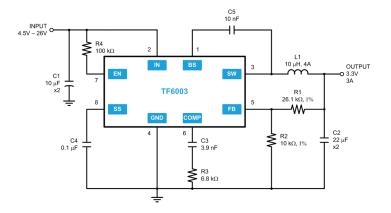
- 3A continuous (4A peak) output current
- Wide input voltage range: 4.5V to 26V
- Wide output voltage range: 0.923V to 23V
- High, >90%, efficiency (V_{IN} = 5V, 0.15A < I_L < 3A) enabled by integrated 100 m Ω MOSFET switches
- Operates at fixed 340 kHz frequency for small filter size
- 3 μA (MAX) shut-down supply current
- Programmable soft-start, cycle-by-cycle over-current protection and input under-voltage lockout
- Industrial temperature range: -40 °C to +85 °C
- Drop-in replacement for MP2307

Applications

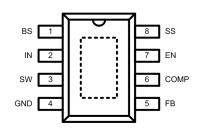
- High-Density Point-of-Load Regulators
- Distributed Power Systems
- Notebook and Netbook Computers
- Power Supplies for FPGAs, DSP Blocks and ASICs
- Set-Top Boxes
- xDSL Modems

Description

The TF6003 is a monolithic synchronous buck regulator featuring integrated 100 m Ω MOSFETs that provide continuous 3A output load current. It operates over a wide 4.5V to 26V input voltage range and provides output voltage from 0.923V to 23V at up to 93% efficiency. Its current mode control circuitry provides fast transient response and cycle-by-cycle current limit.


The TF6003 operates at fixed 340 kHz switching frequency. It features programmable soft-start which prevents inrush current at turn-on. In shut-down mode it draws only 3 μ A (MAX).

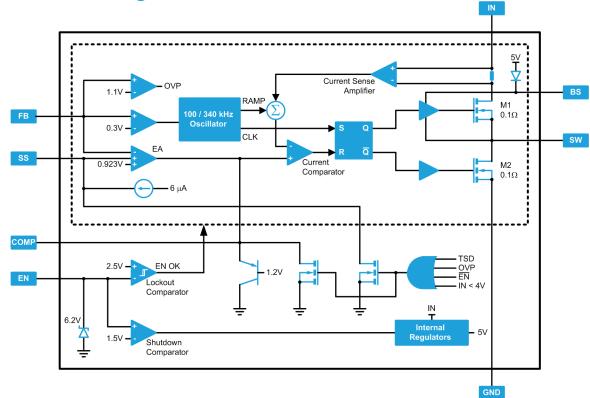
The TF6003 is offered in a thermally enhanced 8-pin SOIC package. It operates over an extended -40 $^{\circ}$ C to +85 $^{\circ}$ C temperature range.


Ordering Information

PART NUMBER	PACKAGE	PACKING
TF6003-TPU	SOIC-8EP	Tube
TF6003-TPH	SOIC-8EP	Tape & Reel

Typical Application

Pin Diagram



Top View

Functional Block Diagram

Pin Descriptions

PIN NAME	PIN NUMBER	PIN DESCRIPTION	
BS	1	High-side gate drive boost input pin. The BS pin supplies the drive for the high-side N-Channel MOSFET switch. Connect a 0.01 μF or greater capacitor from SW to BS to power up the high-side switch.	
IN	2	Power input pin. The IN pin supplies the power to the IC and the step-down converter switches. Drive the IN pin with a 4.5V to 26V power source. Bypass the IN pin to GND pin with an appropriate large capacitor to minimize noise on the input to the device.	
SW	3	Power switching output pin. The SW pin is the switching node that supplies power to the output. Connect a LC filter from SW pin to the output load. Note that a capacitor is needed from SW pin to BS pin to power the high-side switch.	
GND	4	Ground pin.	
FB	5	Feedback input pin. The FB pin senses the output voltage to regulate that voltage. Drive the FB pin with a resistive voltage divider from the output voltage. The feed- back threshold is 0.923V.	
СОМР	6	Compensation input pin. The COMP pin is used to compensate the regulation control loop. Connect a series RC filter from COMP to GND pin to compensate the regulation loop. In some cases, additional capacitor is needed.	
EN	7	Enable input pin. The EN pin is a digital input pin that enables or disables the regulator. Set the EN pin to high to turn the regulator on; set it to low, to turn the regulator off. Use 100 k Ω pull-up resistor for automatic start-up.	
SS	8	Soft-start control input pin. The SS pin controls the soft-start period. Connect a capacitor from the SS pin to the GND pin to set the soft-start period. A 0.1 μ F capacitor sets the soft-start period to 15 ms. To disable the soft-start feature, leave the SS pin unconnected.	

Absolute Maximum Ratings (NOTE1)

V _{IN} - Supply voltage	0.3V to +28V
V _{sw} - Switch voltage	
V _{BS} - Boost voltage	
All other pins	

SOIC-8N Thermal Resistance (NOTE2)

Θ_{IC}	10 °C/W
$\Theta_{1a}^{\mathcal{H}}$	
JA	
T ₁ - Junction operating temperature	+150 °C
T _L - Lead temperature (soldering, 10s)	
T _{stq} - Storage temperature range	65 °C to +150 °C

NOTE1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE2 When mounted on a standard JEDEC 2-layer FR-4 board.

Electrical Characteristics

 $T_A = 25 \text{ °C}, V_{IN} = 12V$, unless otherwise specified.

ESD Susceptibility	
HBM <i>(NOTE3)</i>	
MM (NOTE4)	
CDM <i>(N0TE5)</i>	1.5 kV

Recommended Operating Conditions

V _{IN} - Input voltage	4.5V to +26V
V _{sw} - Output voltage	0.923V to 23V
T_{A}^{sw} - Operating ambient temperature range	

NOTE3 Human Body Model, applicable standard JESD22-A114-C **NOTE4** Machine Model, applicable standard JESD22-A115-A **NOTE5** Field Induced Charge Device Model, applicable standard JESD22-C101-C

Symbol	Parameter	Conditions	MIN	ТҮР	МАХ	Unit
l _{sd}	Shutdown supply current	$V_{EN} = 0V$		0.3	3	μΑ
I _{IN}	Supply current	$V_{EN} = 2V, V_{FB} = 1V$		1.3	1.5	mA
V _{FB}	Feedback voltage	4.5V < V _{IN} < 26V	0.9	0.923	0.946	V
V _{FBth}	Feedback over-voltage threshold			1.1		V
A _{EA}	Error amplifier voltage gain	(NOTE6)		400		V/V
G _{EA}	Error amplifier transcon- ductance	$\Delta I_c = 10 \ \mu A$		820		μA / V
R _{DS(ON)1}	High-side switch ON resis- tance	(NOTE6)		100		mΩ
R _{DS(ON)2}	Low-side switch ON resis- tance	(NOTE6)		100		mΩ
I _{DS(off)}	High-side switch leakage current	$V_{EN} = 0V, V_{SW} = 0V$			10	μΑ
I DS(lim)1	Upper switch current limit	Minimum duty cycle	4.0	5.8		А
I _{DS(lim)2}	Lower switch current limit	From drain to source		0.9		A
G _{cs}	COMP to current sense transconductance			5.2		A/V

Symbol	Parameter	Conditions	MIN	ТҮР	MAX	Unit
f _{osc}	Oscillator frequency		300	340	380	kHz
f _{osc(sc)}	Short-circuit oscillator frequency	V _{FB} =0V		110		kHz
D _{MAX}	Maximum duty cycle	$V_{FB} = 1V$		90		%
t _{onmin}	Minimum ON time	(NOTE6)		220		ns
$V_{\text{EN(sd_th)}}$	Enable shutdown threshold voltage	V _{EN} rising	1.1	1.5	2.0	V
$V_{\text{EN(sd_th_hyst)}}$	Enable shutdown threshold voltage hysteresis			220		mV
$V_{\text{EN(lo_th)}}$	Enable lockout thresh- old voltage		2.2	2.5	2.7	V
$V_{\rm EN(lo_th_hyst)}$	Enable lockout thresh- old voltage hysteresis			210		mV
$V_{\rm IN(lo_th)}$	Input under-voltage lockout threshold volt- age	V _{IN} rising	3.8	4.0	4.4	V
$V_{IN(lo_{th}hyst)}$	Input under-voltage lockout threshold volt- age hysteresis			210		mV
I _{ss}	Soft-start current	$V_{ss} = 0V$		6		μA
t _{ss}	Soft-start period	$C_{ss} = 0.1 \ \mu F$		15		ms
T _{sd}	Thermal shutdown	(NOTE6)		160		°C

NOTE6 Guaranteed by design and not production tested.

Application Information

The TF6003 is a monolithic synchronous buck regulator featuring integrated 100 m Ω Power MOSFETs that can provide up to 3A of load current. It regulates input voltages from 4.5V to 26V down to an output voltage as low as 0.923V while providing soft-start, cycle-by-cycle over-current, under-voltage lockout and over-temperature protection.

This section of the datasheet describes typical application circuits, provides recommendations on component selection, and discusses thermal and layout design considerations.

TYPICAL APPLICATIONS

The TF6003 uses a fixed frequency, current-mode step-down regulator architecture to deliver constant voltage to the load. Figure 1 shows a typical application circuit.

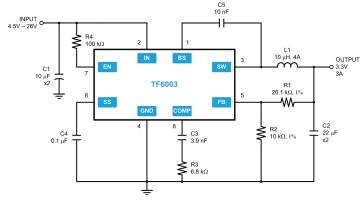


Figure 1. Typical Application Circuit

The circuit of Figure 1 takes an input voltage between 4.5V and 26V and regulates it down to 3.3V while bringing 3A of load current.

SETTING THE OUTPUT VOLTAGE

Based on the circuit of Figure 1, the output voltage depends on the feedback voltage, $V_{_{FB}}$, and the resistor divider network consisting of R1 and R2, as expressed with the following equation:

$$V_{OUT} = V_{FB} \bullet \frac{R_1 + R_2}{R_2}$$

The R2 resistor value may be as high as 100 k Ω , however 10 k Ω resistor value is typically recommended. Given this and the typical V_{FB} of 0.923V, the R1 resistor may easily be calculated for a desired output voltage. Table 1 exemplifies several standard resistor values needed to achieve desired output voltage. If standard resistor values are not available a parallel combination of two standard resistors may also be used.

ν _{ουτ} [ν]	R1 [k Ω]	R2 [k Ω]
1.8	9.53	10
2.5	16.9	10
3.3	26.1	10
5	44.2	10
12	121	10

Table 1. Examples of Standard Value Resistors for a DesiredOutput Voltage

COMPONENT SELECTION

Inductor: High frequency operation of the TF6003 allows the use of small surface mount inductors. The minimum inductance value is inversely proportional to the operating frequency and is bounded by the following limits:

$$L = \frac{V_{OUT} \bullet (V_{IN} - V_{OUT})}{f_{S} \bullet I_{L(MAX)ripple} \bullet V_{IN}} [H]$$

where

- $f_s = Operating frequency [Hz]$
- I_{L(MAX)ripple} = Allowable maximum inductor current ripple [A]
- $V_{IN} = Input voltage [V]$
- V_{OUT} = Output voltage [V]

The inductor current ripple is typically set to 20% to 40% of the maximum load current. Given this, the operating frequency and the input and output voltages for the TF6003 regulator circuits, it is easy to calculate the optimal inductor value which typically ranges between 10 and 47 μ H. Note that a larger value inductor will result in less ripple current and ultimately in lower output ripple voltage. However, the larger value inductor will have a larger physical size, higher series resistance, and lower saturation current.

Choose an inductor that will not saturate under the maximum inductor peak current. The peak inductor current is given in the following equation:

$$I_{L(peak)} = I_{LOAD} + \frac{V_{OUT} \cdot (V_{IN} - V_{OUT})}{2 \cdot f_{s} \cdot L \cdot V_{IN}} [A]$$

For high efficiency, it is recommended to select an inductor with a high frequency core material (e.g. ferrite) to minimize core losses. Low ESR (equivalent series resistance) is another preferred inductor characteristic when designing for low losses. The inductor must handle the peak inductor current at full load without saturating. Note that the peak inductor current must be below the maximum switch current limit. Chip inductors typically do not have enough core to support the peak inductor currents above 1A and are not suitable for the TF6003 applications. Lastly, select a toroid, pot core or shielded bobbin inductor for low radiated noise. Table 2 provides a list of recommended inductor series.

Inductor Series	Supplier	Website
SRU1048	Bourns Inc.	www.bourns.com
MSS1038	Coilcraft	www.coilcraft.com
DR1050	Coiltronics	www.coiltronics.com
CDRH8D43/HP	Sumida	www.sumida.com

Table 2. List of Recommended Inductor Series

Optional Schottky Diode: During the transition between the high-side switch and the low side switch, the body diode of the low-side switch (N-channel power MOSFET) conducts the inductor current. Forward voltage of this body diode is relatively high, therefore, an optional Schottky diode may be paralleled between SW and GND pins. The Schottky diode which features low forward voltage and fast recovery time will result in improved peak efficiency of the buck regulator circuits. Table 3 provides a list of recommended diode series.

Diode Series	Supplier	Website
MBR130	МСС	www.mcc.com
SBR	Diodes Inc.	www.diodes.com
B130	Vishay	www.vishay.com

Table 3. List of Recommended Schottky Diode Series

The connection of the optional Schottky diode (D1) is shown in Figure 2.

Input Capacitor: The input current to the buck regulator is discontinuous, therefore, a capacitor is required to supply AC current to the regulator while maintaining the DC input voltage.

The input capacitor of Figure 1 (C1) absorbs the input switching current, therefore, it requires adequate ripple current rating. The RMS current in the input capacitor can be estimated using the following equation:

$$I_{C1} = I_{LOAD} \bullet \sqrt{\frac{V_{OUT}}{V_{IN}}} \bullet \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

The worst case condition occurs when V_{IN} is twice the value of V_{OUT} . In this case, the I_{CI} is equal to the half of the load current. As a rule of thumb, select the input capacitor with the RMS current rating greater than the half of the maximum load current.

The input capacitor reduces peak currents drawn from the input source and reduces input switching noise. The input voltage ripple caused by the input capacitor can be estimated using the following equation:

$$\Delta V_{IN} = \frac{I_{LOAD}}{C_1 \bullet f_s} \bullet \frac{V_{OUT}}{V_{IN}} \bullet \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

The input capacitor values in the range between 10 and 47 μ F are sufficient in most cases. Low ESR capacitors are recommended for a low loss operation. Ceramic capacitors with X5R or X7R dielectrics are preferred, however, tantalum and electrolytic capacitors are acceptable as well. When using electrolytic or tantalum capacitors, a small (e.g. 0.1 μ F), ceramic capacitors should also be used and placed as close to the IN pin as possible. Table 4 provides a list of recommended capacitor series.

Output Capacitor: The value of the output capacitor of Figure 1 (C2) has an effect on the output voltage ripple as expressed in the following equation:

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_s \bullet L_1} \bullet \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \bullet \left(ESR_{C2} + \frac{1}{8 \bullet f_s \bullet C_2}\right)$$

where

- $f_s = Operating frequency [Hz]$
- ESR_{C2} = Equivalent series resistance of C2
- $V_{IN} = Input voltage [V]$
- V_{OUT} = Output voltage [V]

The output capacitor, C2, can be ceramic, tantalum or electrolytic type. When using ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance, therefore, the above equation may be simplified as the following:

$$\Delta V_{OUT} = \frac{V_{OUT}}{8 \cdot f_s \cdot L_1 \cdot C_2} \cdot \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

When using tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency, therefore, the original output voltage ripple equation can be re-written as the following expression:

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_s \bullet L_1} \bullet \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \bullet ESR_{C2}$$

The output capacitor values in the range between 10 and 47 μ F provide low output voltage ripple in most cases. Table 4 provides a list of recommended capacitor series.

Capacitor Series	Supplier	Website
0201-2225 Ceramic TPS, TPM Tantalum	AVX	www.avx.com
MK107, MK212, MK316 Ceramic	Taiyo Yuden	www.t-yuden.com
POSCAP Electrolytic	Sanyo	edc.sanyo.com

Table 4.	List of Recommended	Capacitor Series
----------	---------------------	------------------

Compensation Components: TF6003 employs current mode control for easy compensation and fast transient response. System stability and transient response are controlled via COMP pin. COMP pin is the output of the internal transconductance error amplifier. A series RC network (C3 and R3 of Figure 1) sets a pole-zero combination and controls the characteristics of the control system. The DC gain of the voltage feedback loop is given by the following equation:

$$A_{VDC} = R_{LOAD} \bullet G_{CS} \bullet A_{VEA} \bullet \frac{V_{FB}}{V_{OUT}}$$

where

- G_{cs} = Current sense transconductance
- A_{VEA} = Error amplifier voltage gain

The system has two poles of importance. One is due to the compensation capacitor (C3 of Figure 1) and the output resistor of the error amplifier. The other one is due to output capacitor (C2 of Figure 1) and the load resistor. These poles are located at:

$$f_{P1} = \frac{G_{EA}}{2\pi \cdot C_3 \cdot A_{VEA}}$$
$$f_{P2} = \frac{1}{2\pi \cdot C_2 \cdot R_{LOAD}}$$

where

• G_{EA} = Error amplifier transconductance

The system has one zero of importance, due to the compensation capacitor (C3) and the compensation resistor (R3). The zero is located at:

$$f_{Z1} = \frac{1}{2\pi \cdot C_3 \cdot R_3}$$

The system may also have another zero of importance due to high output capacitance and ESR of C2 (output capacitor of Figure 1). The zero is located at:

$$f_{Z2} = \frac{1}{2\pi \cdot C_2 \cdot ESR_{C2}}$$

The C6 may be added to compensate for the ESR of C2. The C6 together with R3 creates another pole which is located at:

$$f_{P_3} = \frac{1}{2\pi \bullet C_6 \bullet R_3}$$

The aim of the compensation design is to shape the converter transfer function to get a desired loop gain. The system crossover frequency where the feedback loop has the unity gain is important. Lower crossover frequencies result in slower line and load transient responses, while higher crossover frequencies could cause system to be unstable. As a rule of thumb, the crossover frequency (f_c) below one tenth of the switching frequency is recommended. This is expressed using in the following inequality:

$$f_c < \frac{f_s}{10}$$

The following steps may be used for optimizing the compensation components:

1. Select the compensation resistor, R3 to set the desired crossover frequency. The R3 resistor value can be determined using the following equation:

$$R_3 = \frac{2\pi \bullet C_2 \bullet f_C}{G_{EA} \bullet G_{CS}} \bullet \frac{V_{OUT}}{V_{FB}}$$

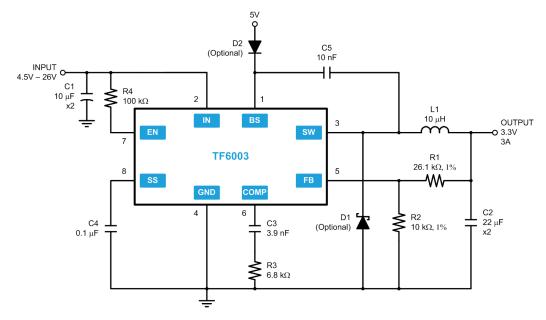
2. Select the compensation capacitor C3 to achieve the desired phase margin. For applications with typical inductor values, setting the compensation zero, f_{z_1} , below one quarter of the crossover frequency provides sufficient phase margin. The C3 capacitor value can be determined using the following inequality:

$$C_{3} > \frac{4}{2\pi \bullet R_{3} \bullet f_{C}}$$

3. Determine if the second compensation capacitor, C6, is needed. It is needed if the ESR zero (f_{z2}) of the output capacitor (C2) is located at less than half of the switching frequency as expressed in the following inequality:

$$\frac{f_s}{2} > \frac{1}{2\pi \cdot C_2 \cdot ESR_{C2}}$$

TELEFUNKEN Semiconductors

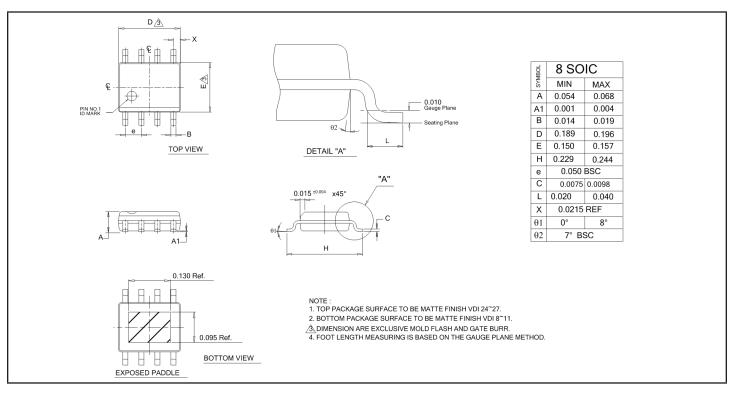

If the above inequality is valid, add the second compensation capacitor, C6, to set the third pole, $f_{P3'}$ at the location of the ESR zero, f_{z2} . The C6 capacitor value can be determined using the following equation:

$$C_6 = \frac{C_2 \cdot ESR_{C2}}{R_2}$$

External Bootstrap Diode: To improve the efficiency of the regulator, an external bootstrap diode may be added when any or combination of the following conditions occur in the regulator circuit:

- The system has a 5V fixed input
- The power supply generates a 5V output
- The regulator operates with high duty cycle (>65%)
- The output voltage is above 12V ($V_{OUT} > 12V$)

The optimized application circuit is shown in Figure 2. Note that the floating pin of D2 needs to be connected to a 5V supply. This may be available at either input or the output of the regulator. The diode D2 can be a low cost diode such as BAT54 or IN4148.


TYPICAL PERFORMANCE

Package Dimensions (SOIC-8EP)

