LCD Module Specification

Model: TG322430FFEGB-T1

DATA IMAGE CORPORATION

LCD Module Specification

ITEM NO.: TG322430FFEGB-T1

Table of Contents

1.	COVER & CONTENTS	1
2.	RECORD OF REVISION ······	2
3.	GENERAL SPECIFICATIONS	3
4.	ABSOLUTE MAXIMUM RATINGS	4
5.	ELECTRICAL CHARACTERISTICS	5
6.	ELECTRO-OPTICAL CHARACTERISTIC	5
7.	TIMING CHARACTERISTICS	8
8.	PIN CONNECTIONS	14
9.	POWER SUPPLY ·····	14
10.	BLOCK DIAGRAM ······	15
11	TOUCH PANEL CHARACTERISTICS	17
12.	QUALITY ASSURANCE	19
13.	LOT NUMBERING SYSTEM ·····	23
14.	LCM NUMBERING SYSTEM ·····	23
15.	PRECAUTIONS IN USE LCM ······	24
16	OUTLINE DRAWING	25
17.	PACKAGE INFORMATION	26

R&D Dept.	Q.C. Dept.	Eng. Dept.	Prod. Dept.
Alex	Tric	Ten	heien
Version:	Issued Date:	Sheet Code:	Total Pages:
С	2003/12/22		26

Page: 1 / 26

2. RECORD OF REVISION

Rev	Date	Item	Page	Comment
В	31/MAR/03	5,7.1,9,10	5,11,14-15	Modify 1. ELECTRICAL CHARACTERISTICS 2. ELECTRO-OPTICAL CHARACTERISTIC 3. TIMING CHART 4. POWER SUPPLY 5. BLOCK DIAGRAM
С	22/DEC/03	16,17	25,26	Stick adhesive tape to the point of weld 2. Change Package Information.

Page: 2 / 26

3. GENERAL SPECIFICATION

Display Format :	320 (W) \times 240 (H) dots
Dots Size :	0.225 (W) × 0.225 (H) mm
View Area :	80.3 (W) × 61.8 (H) mm
General Dimensions :	89.0 (W) × 70.45 (H) × 12.0 (T) mm Max
Weight:	81.4 g max.
LCD Type& Background Color :	STN Blue STN Yellow V FSTN Gray
Polarizer mode :	Reflective V Transflective
	TransmissiveNegative
View Angle :	V 6 O'clock 12 O'clock Others
Backlight :	LED VEL CCFL
Backlight Color :	Yellow green Amber V Green
	White Others
Controller / Driver :	NT7701/NT7702
Temperature Range :	Normal V Wide Temperature Operating 0 to 50°C Operating -20 to 60°C Storage -20 to 70°C Storage -30 to 80°C
Pixel Color: Dark Blue	

Page: 3 / 26

4. ABSOLUTE MAXIMUM RATINGS

4.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

 $V_{SS}=0V$, $Ta=25^{\circ}C$

Item	Symbol	Min.	Max.	Unit
Supply Voltage (Logic)	VDD-VSS	0	7.0	V
Supply Voltage (LCD Driver)	VLCD-VSS	0	24	V
Operating Temperature	Тор	-20	60	°C
Storage Temperature	Tstg	-30	80	°C

4.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

Itom	Operating		Sto	rage	Comment	
Item	(Min.)	Max.)	(Min.)	(Max.)	Comment	
Ambient Temp	-20	60	-30	80	Note (1)	
Humidity	Note	Note (2)		te(2)	Without Condensation	
Vibration		4.9M/S ²		19.6M/S ²	XYZ Direction	
Shock		29.4M/S ²		490M/S ²	XYZ Direction	

Note(1) Ta = 0° C : 50Hr Max. Note(2) Ta $\leq 40^{\circ}$ C : 90% RH Max.

Ta ≥ 40 °C: Absolute humidity must be lower than the humidity of 90% RH at 40°C.

Page: 4 / 26

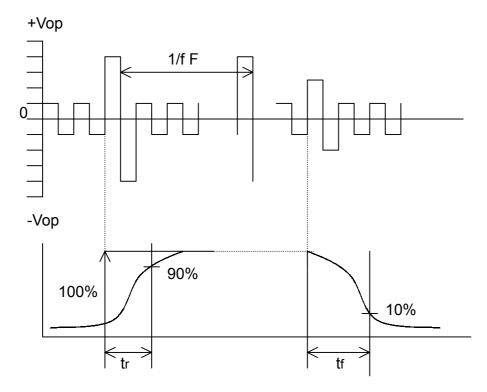
5. ELECTRICAL CHARACTERISTICS

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage (Logic)	VDD-VSS		2.5	3.3	5.5	V
		-20°C	23	23.5	23.9	V
Supply Voltage (LCD)	VLCD	25°C	20.4	21.2	21.9	
		70°C	19.7	20.1	20.8	
Input Voltage	VIH		0.8*VDD		Vdd	V
Input Voltage	VIL		Vss		0.2*VDD	V
	Inn	LCD-ON		10.5		
Lagia Cupply Current	IDD	LCD-OFF		0.08		m A
Logic Supply Current	Iri	IF EL B/L=ON		25.4		mA
	İEL	IF EL B/L=OFF		0.02		

6. ELECTRO-OPTICAL CHARACTERISTICS

ITEM	Symbol	Condition	Min.	Тур.	Max.	Unit	Ref.
Diag Time	Tr	0°C		-	-	mo	
Rise Time	11	25°C		260	520	ms	Note (1)
Fall Time	Tf	0°C				me	Note (1)
raii Tiille	11	25°C	-	310	620	ms	
Contrast	CR	25°C	2	6			Note (3)
View Angle	θ1~θ2	25°C &	60				Note (2)
view Arigie	Ø1, Ø2	CR≥2	-45	1	45		Note (2)
Frame Frequency	Ff	25°C		70		Hz	

Note (1) & (2): See next page

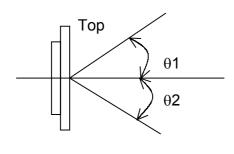

Note (3): Contrast ration is defined under the following condition:

CR= <u>Brightness of non-selected condition</u>
Brightness of selected condition

- (a). Temperature ----- 25°C
- (b). Frame frequency ---- 70Hz
- (c). Viewing angle ----- $\theta = 0^{\circ}$, $\emptyset = 0^{\circ}$
- (d). Operating voltage --- 21.2

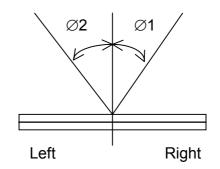
Page: 5 / 26

Note (1) Response time is measured as the shortest period of time possible between the change in state of an LCD segment as demonstrated below:



Condition:

- (a). Temperature -----25°C
- (b). Frame frequency ----- 70Hz
- (c). View Angle ----- $\theta = 0^{\circ}, \varnothing = 0^{\circ}$
- (d). Operating voltage ----- 21.2V


Note (2) Definition of View Angle

Top – Bottom direction

Bottom

Right -- Left direction

6.1 ELECTRIC - OPTICAL CHARACTERISTIC

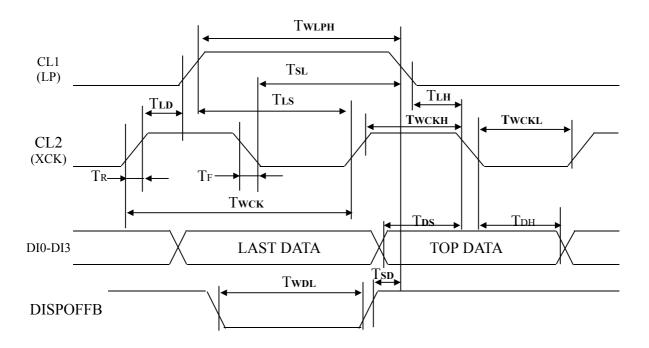
(TEMP : 20°C)

ITEM	CONDITION	CONDITION DIMENION		STANDARD			
I I EIVI	CONDITION	DIMENI	JIN	MIN	TYP	MAX	
BRIGHTNESS	400H _{Z,} 100Vrms SINE WAVE	cd/m ²		45	56		
UNIFORMITY	400H _{Z,} 100Vrms SINE WAVE	%		85	90		
CURRENT CONSUMPTION	400H _{Z,} 100Vrms SINE WAVE	mA/cm	2	1	0.12	0.17	
	400H _z .100Vrms	GREEN	Х	0.180	0.181	0.184	
CHROMATICITY			Υ	0.459	0.460	0.462	
CHICOMATION	SINE WAVE	White	Х	0.30	0.32	0.34	
		vvriite	Υ	0.34	0.36	0.38	

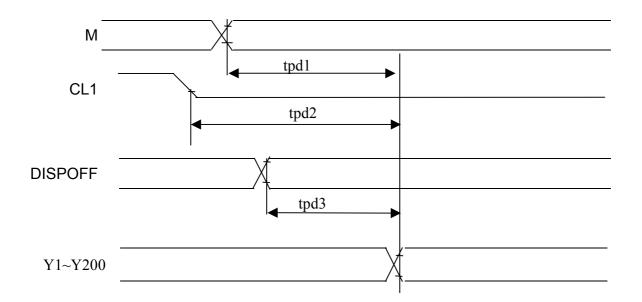
Note: Measured at the EL panel unit.

Page: 7 /26

7. TIMING CHARACTERISTICS

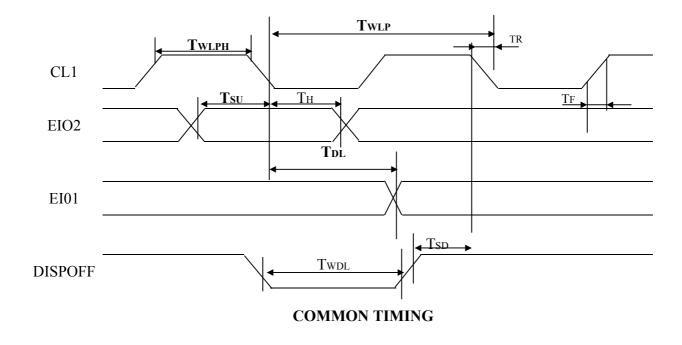

Segment timing:

Item	Symbol	Condition	Min.	Typ.	Max.	Units
Shift Clock Period *1	Тиск	Tr,Tr≤10ns	125			ns
Shift Clock Pulse Width	Twckh Twckl		51			ns
Data Set Up Time	Tos		30			ns
Data Hold Time	Тон		40			ns
Latch Pulse "H" Pulse Width	TWLPH		51			ns
Shift Clock Rise to Latch Pulse Rise Time	Tld		0			ns
Shift Clock Fall to Latch Pulse Fall Time	Tsl		51			ns
Latch Pulse Rise to Shift Clock Rise Time	TLS		51			ns
Latch Pulse Fall to Shift Clock Fall Time	Тін		51			ns
Input Signal Rise/ Fall Time *2	Tr, Tf				50	ns
Enable Setup Time	Ts		36			ns
DISPOFFB Removal Time	Tsd		100			ns
DISPOFFB "L" Pulse Width	Twdl		1.2			u
Output Delay Time (1)	Тр	CL=15pF			78	ns
Output Delay Time (2)	TPD1, TPD2	CL=15pF			1.2	us
Output Delay Time (3)	Трдз	CL=15pF			1.2	us

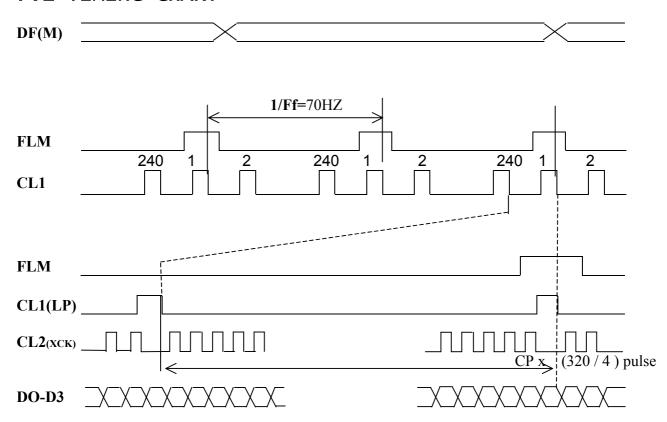

Note: *1. Take the cascade connection into consideration.

Page: 8 /26

^{*2.} $(T_{WCK-}T_{WCKL})/2$ is maximum in the case of high speed operation.



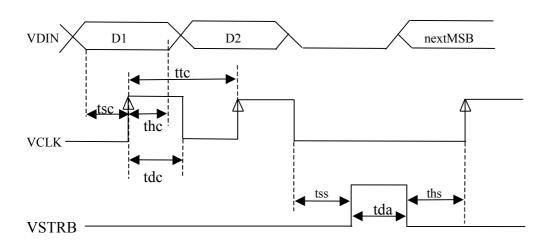
SEGMENT TIMING


common timing:

Item	Symbol	Condition	Min.	Тур.	Max.	Units
Shift Clock Period	TWLP	Tr,Tr≤20ns	250			ns
D1	Т	VDD=+5.0V±10%	15	250 15 30 30 50 50 100 1.2 200 1.2	ns	
Pulse "H" Pulse Width	TWLPH	VDD=+2.5V ~+4.5V	30			
Data Set Up Time	Tsu		30			ns
Data Hold Time	Тн		50			ns
Input Signal Rise/ Fall Time	Tr, Tf				50	ns
DISPOFFB Removal Time	Tsd		100			ns
DISPOFFB "L" Pulse Width	TWDL		1.2			u
Output Delay Time (1)	TDL	CL=15pF			200	ns
Output Delay Time (2)	Тр д 1, Тр д 2	CL=15pF			1.2	us
Output Delay Time (3)	Трр3	CL=15pF			1.2	us

Page: 10 /26

7.1 TIMING CHART



Page: 11 /26

7.3 S-8330 Timing

common timing:

Item	Symbol	Condition	Min	Tym	May	Units
Item	Symbol	Condition	Min.	Typ.	Max.	Units
Output Voltage range	VOUT	S-8330A24	12	-	24	V
Potential division accuracy			-	-	±2.4	%
Electric volume resolution			-	1/256	-	
Error in linearity			-	-	±1/2	LSB
Data setup time	tsc		0.5	-	-	μs
Data hold time	thc		0.5	-	-	μs
VCLK falling edge to	4		0.5			
VSTRB rising edge	tss		0.5	-	-	μs
VSTRB pulse width	tda		0.5	-	-	μs
VSTRB falling edge to	ths		0.5			
VCLK rising edge	uis		0.3	-	-	μs
VCLK pulse width	tdc		0.5	4.17	-	μs
VCLK period	ttc		5	8.33	-	μs
VDIN, VCLK, VSTRB input	VSHC1	V _{IN} ≥3.0V	2.4	-	-	V
voltage "H" level	VSHC2	$V_{IN} \leq 3.0V$	1.6	-	-	·
VDIN, VCLK, VSTRB input	VCLC				0.2	
voltage "L" level	VSLC		-	-	0.2	
VDIN,VCLK,VSTRB input	ISLC	V -0V	-1		1	۸
leakage current	ISLC	$V_{IN}=9V$	-1	-	1	μΑ

Data input Timing

Note 1: An electric volume has 8-bit resolution. However, its error in linearity may exceed $\pm 1/2$ LSB only before and after switching from 127 to 128(from 01111111 to 10000000) and vice versa. When the electric volume is used within the variable range of 12 V,its error in linearity corresponds to 6 bits ($\pm 2.4\%$ potential division accuracy is ensured).

Page: 12 /26

Electric Volume

The S-8330/31 series incorporates an electric volume with an 8-bit shift register and an 8-bit latch. The output voltage is variable in the width of 12V. The output voltage can be held in the data transmission mode because the data read in the shift register is fetched into the latch by unshyncronized strobe input. Figure 1 shows a block diagram and timing charts

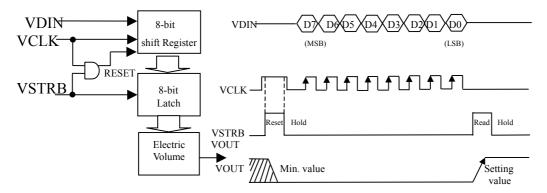
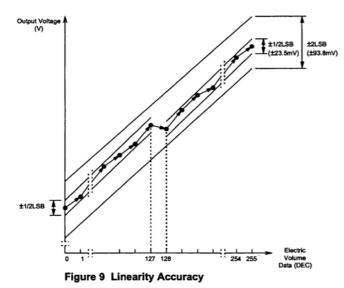



Figure 1 Block Diagram and Timing

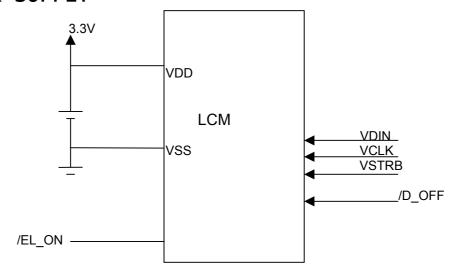
VDIN :Inputs data to the electric volume. "Data 1" is input at "H" level; "Data 0" is input at "LOW" level.

VCLK :Inputs clock to the electric volume. Fetches data at VDIN pin into the shift register at the rising edge of clocks. When clocks of over 8 bits are input, the read data is shifted in succession for each clock, and data corresponding to 8 bits which was input lastly is valid.

VSTRB :Inputs strobe signal . The contents of the shift register are latched by turning the strobe signal to "H". When the data fetched into the latch is directly transmitted to the electric volume, the output voltage changes. Data in the latch is held by turning the strobe signal to "L".

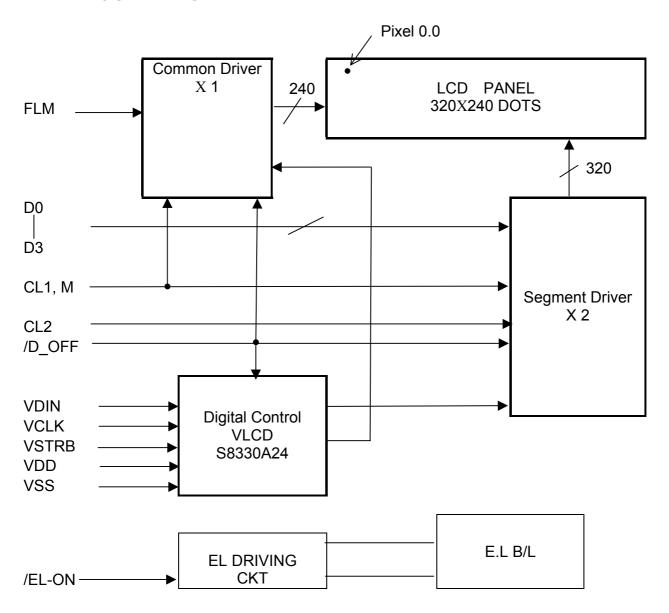
The electric volume has 8-bit resolution. An error in linearity may exceed $\pm 1/2$ LSB (± 23.5 mV) only before or after data changeover of $127 \leftarrow -128$ (01111111 $\leftarrow -10000000$) (see Figure 9).

The error in linearity corresponds to 6 bits (±93.8 mV) when used in the 12 V variable range.

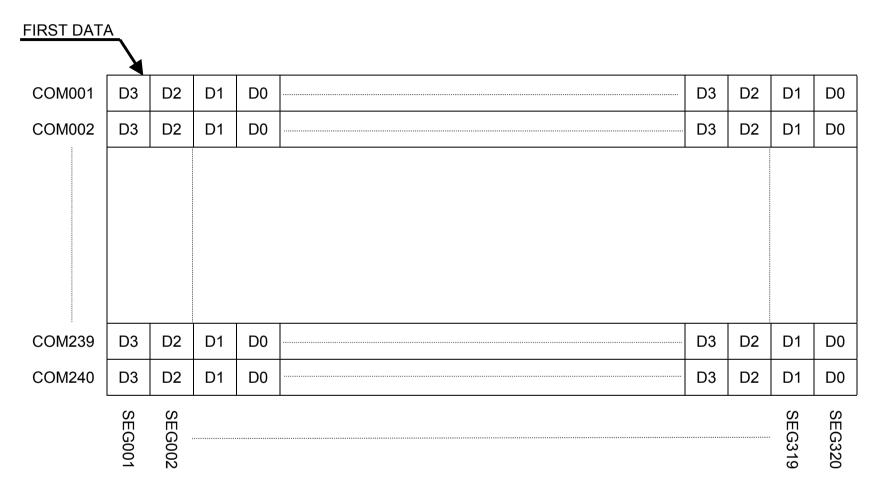

In an application where the variable range of output voltage is 6 V or less, it is possible to use it with high linearity accuracy with appropriate product selection. For example, if you want to change output voltage within the range from 12 V to 18 V, select the S-8330A24FS and use it within the range of 0←→127 (00000000←→01111111). If so, high linearity accuracy (within±1/2LSB) can be obtained.

Seiko Instruments Inc.

8. PIN CONNECTIONS


No.	Symbol	Function
1	VDIN	Electric Volume data input pin.
2	VCLK	Electric Volume clock input pin
3	VSTRB	Electric Volume strobe signal input pin
4	VDD	Power Supply for Logic
5	FLM	First line mark.
6	VSS	Ground, 0V
7	CL1	Data latch pulse.
8	VSS	Ground, 0V
9	N.C	No Connection.
10	/D-OFF	Display ON/ OFF control input ("H"=ON, "L"=OFF)
11	CL2	Data shift pulse.
12	NC	NO Connection.
13	NC	NO Connection.
14	D3	Input data signal 3.
15	D2	Input data signal 2.
16	D1	Input data signal 1.
17	D0	Input data signal 0.
18	N.C	NO Connection.
19	TP-R (N.C)	Touch Panel Pin Output Right. (NO Connection.)
20	TP-U (N.C)	Touch Panel Pin Output UP. (NO Connection.)
21	TP-L (N.C)	Touch Panel Pin Output Left. (NO Connection.)
22		
23	N.C	No Connection.
24	/EL-ON	EL Back light ON/OFF ("H"= OFF, "L"= ON)

9. POWER SUPPLY


Page: 14 /26

10. BLOCK DIAGRAM

Page: 15 /26

10.1 DISPLAY PATTERN

320*240 Dots Matrix

Page: 16/26

11. TOUCH PANEL CHARACTERISTICS

1. Scope

This specification is applied to DATA IMAGE Display Devices Product/ TG24324

2. Features

Type: Analog Resistive Type Touch Panel

Input Mode: Pen or Finger

Structure: PET-----Non Glare ITO Film, 175μm Clear ITO Film, 175μm

Glass-----ITO Glass, 0.7mm/1.1mm/1.8mm

Tape Gasket----60μm

Dot pitch-----1.0 mm(Optional)

Connector: FPC

3. General Specification

Item	Specification	Unit
ITO Glass	$0.7\pm0.07(T)/1.1\pm0.1(T)/1.8\pm0.1(T)$	mm
FPC (ITO Film)	175±15(ITO Film)	μm
Connector	FPC,4-pin connector (L23.3*W5.5),Pitch=1.0	mm
Total Thickness	87.3±0.3(W)*69.3±0.3(H)*0.95±0.15(T)	mm

4. RATING

4.1 The maximum voltage: DC 7Volts

4.2 Usable Temperature Range From: −20°C to 60 °C(20~90%)

4.3 Storage Temperature Range From: -40°C to 80 °C(20~90%)

5. Electrical Specification

5.1 Resistance between leads: FILM(X axis) GLASS (Y axis):200~900Ω

5.2 Linearity: X axis $\pm 1.5\%$, Y axis $\pm 1.5\%$

5.3 Insulation resistance: $20\text{m}\Omega\uparrow$ @DC 25V

5.4 Chattering Time : 10msec @100KΩ↓ Pull -UP

6. Mechanical Specification

6.1 Input Method pen or Finger

6.2 Operating Force: 80g↓ With R8.0 HS40° Silicon Rubber

80g↓ With R0.8 Polyacetal pen

6.3 Surface Hardness: 2H (Pencil Test) ,Hard Coated PET

6.4 Light Transmission: 75%↑ (Non Glare Type),80%↑ (Clear Type) (@,550nm, Spectro Photometer Hitachi U3300)

7. Durability

7.1 Durability against Writing Characters

After writing 200,000 characters in the same area (20mm*20mm),

Force: 250g, Speed: 1,000 characters/hour

• Resistance Between Leads : FILM (X axis) GLASS (Y axis)

• Linearity: X axis $\pm 1.0\% \downarrow$, Y axis $\pm 1.0\% \downarrow$

Insulation Resistance: 20mΩ↑ @DC 25V

7.2 Punching Life

After Punching 1,200,000 Times with the R8.0 silicon rubber

Force: 250g, Speed:2/sec

• Resistance Between Leads: FILM (X axis) GLASS (Y axis)

• Linearity: X axis $\pm 1.0\% \downarrow$, Y axis $\pm 1.0\% \downarrow$

Page: 17 /26

Confidential Document

Insulation Resistance: 20mΩ↑ @DC 25V

7.3 Impact Resistance:

No damage when ϕ 9mm steel ball is dropped on the surface from 30cm height at 1 time.

- 7.4 Flexible Pattern Heat Seal Peeling Strength :1.5N/cm (peeling upward by 90deg. Speed:50mm/min)
- 7.5 Flexible Pattern Bending Resistance Bending: 3 times or more by bending radius R1.0mm.
- 7.6 Flexible Pattern insert/pull out Resistance 5 times at least.

The requirements in 5.1 shall be satisfied.

7.7 Vibration Resistance (In operation)

No faulty operation when sweep vibration of 0.2G 10~55Hz (1min.) is given for 30min. each in the directions of X,Y,Z.

(Not in operation)

The requirements in 6.2 and 5.1~5.4 shall be satisfied after sweep vibration of 2g 10~55Hz (1min.) is given for 30min. each in the directions of X,Y,Z.

7.8 Package Drop

No damage to the product.(1 corner edge, 2 ridges, 4 surfaces, drop from 50 cm height:65cm for the bottom)

8. Reliability

8.1 High Temperature Test

After putting Panels at 80°C for 120 hours, then leaving for 24 hours at room temperature.

- Resistance Between Leads: FILM (X axis) GLASS(Y axis)
- Linearity: X axis $\pm 1.5\% \downarrow$, Y axis $\pm 1.5\% \downarrow$
- Insulation Resistance: 20mΩ↑ @DC 25V
- Operating Fore: 80g↓ With R8.0 HS40° Silicon Rubber

80g↓ With R0.8 Polyacetal pen

8.2 Low Temperature Test

- After putting panels at-40°C for 120 hours, then leaving for 24 hours at room temperature.
- Resistance Between Leads : FILM (X axis) GLASS(Y axis)
- Linearity: X axis $\pm 1.5\%$, Y axis $\pm 1.5\%$
- Insulation Resistance: 20mΩ↑ @DC 25V
- Operating Fore: 80g↓ With R8.0 HS40° Silicon Rubber

80g↓ With R0.8 Polyacetal pen

8.3 Temperature and Humidity Test: After putting panels at 60°C, 90%RH for 120 hours,

then leaving for 24 hours at room temperature

- Resistance Between Leads: FILM (X axis) GLASS(Y axis)
- Linearity: X axis $\pm 1.5\%$, Y axis $\pm 1.5\%$
- Insulation Resistance: 20mΩ↑ @DC 25V
- Operating Fore: 80g↓ With R8.0 HS40° Silicon Rubber

80g↓ With R0.8 Polyacetal pen

8.4 Repetition of High and Low Temperature

After putting panels at the condition of -40°C for 30minutes, and then 80°C for 30 minutes and this process is repeated by 10 cycles, then leaving for 24 hours at room temperature.

- Resistance Between Leads : FILM (X axis) GLASS(Y axis)
- Linearity: X axis $\pm 1.5\%$, Y axis $\pm 1.5\%$
- Insulation Resistance: 20mΩ↑ @DC 25V
- Operating Fore: 80g↓ With R8.0 HS40° Silicon Rubber

80g↓ With R0.8 Polyacetal pen

12. QUALITY ASSURANCE

12.1 Test Condition

12.1.1 Temperature and Humidity(Ambient Temperature)

 $\begin{array}{lll} \mbox{Temperature} & : & 20 \pm 5^{\circ} \mbox{C} \\ \mbox{Humidity} & : & 65 \pm 5\% \\ \end{array}$

12.1.2 Operation

Unless specified otherwise, test will be conducted with LCM in operation.

12.1.3 Container

Unless specified otherwise, vibration test will be conducted on module only.

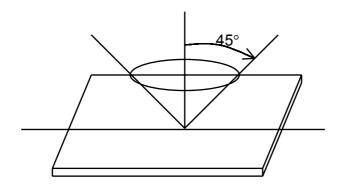
12.1.4 Test Frequency Single cycle.

12.1.5 Test Method

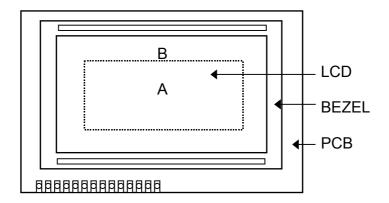
No.	Parameter	Conditions	Regulations
1	High Temperature Operating	60 ± 2 °C	Note 3
2	Low Temperature Operating	-20 ± 2 °C	Note 3
3	High Temperature Storage	80 ± 2 °C	Note 3
4	Low Temperature Storage	-30 ± 2 °C	Note 3
5	Vibration Test (Non-operation state)	Total fixed amplitude: 1.5mm Vibration Frequency: 10 ~ 55Hz One cycle 60 seconds to 3 directions of X.Y.Z. for each 15 minutes	Note 3
6	Damp Proof Test (Non-operation state)	40°C ± 2°C, 90~95%RH, 96h	Note 1,2
7	Shock Test (Non-operation state)	To be measured after dropping from 60cm high once concrete surface in packing state	Note 3

Note 1: Returned under normal temperature and humidity for 4 hrs.

Page: 19 /26


Note 2: No dew condensation to be observed.

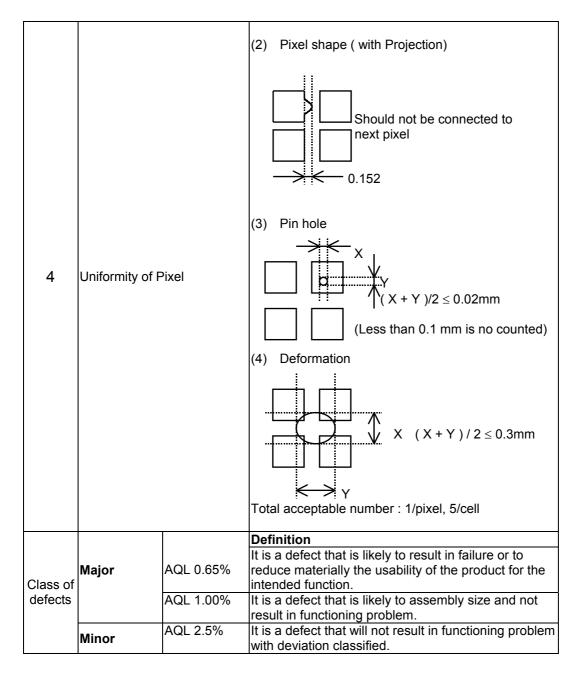
Note 3: No change on display and in operation under the test condition


12.2 Inspection condition

12.2.1 Inspection conditions

The LCD shall be inspected under 40W white fluorescent light.

12.2.2 Definition of applicable Zones


A : Display Area B : Non-Display Area

Page: 20 /26

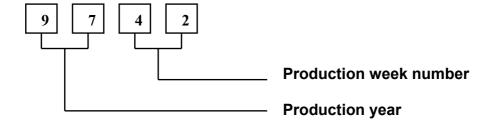
12.2.3 Inspection Parameters

No.	Parameter		Criteria				
1	Black or White spots	Zone Acceptable Class AOI					
		Dimension		nber B	Of Defects	AQL Level	
			* 4 2 0	* 4 2 1	Minor	2.5	
		D = (Long + Short) / 2 *: Disregard					
2	Scratch, Substances	Zone X (mm) Y(mm) * $0.04 \ge 1$ $3.0 \ge L$ $0.06 \ge 1$ $2.0 \ge L$ $0.08 \ge 1$ — $0.1 < V$	W * W 2	* * 4 4 2 3	Of Defects Minor	AQL Level	
		X : Length Y : Width * : Disregard Total defects should not exceed 4/module					
3	Air Bubbles (between glass & polarizer)						
		Zone	Acceptable number A B		Class of Defects	AQL Level	
		D ≤ 0.15 0.15 < D ≤ 0.25 0.25 < D * : Disregard Total defects	* 2 0 shall no	* * 1 ot excess	Minor 3/module.	2.5	
4	Uniformity of Pixel	(1) Pixel shape (with Dent) 0.152					

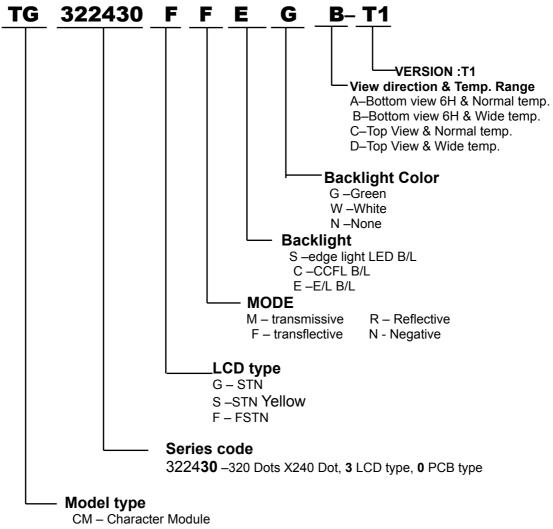
Page: 21 /26

12.3 Sampling Condition

Unless otherwise agree in written, the sampling inspection shall be applied to the incoming inspection of customer.


Lot size: Quantity of shipment lot per model.

Sampling type: normal inspection, single sampling


Sampling table: MIL-STD-105E Inspection level: Level II

Page: 22 /26

13. LOT NUMBERING SYSTEM

14. LCM NUMBERING SYSTEM

GM - Graphic Module

TG-Single TAB/COG Graphic Module

TX-Custom Single TAB/COG Graphic Module

15. PRECAUTION FOR USING LCM

1. LIQUID CRYSTAL DISPLAY (LCD)

LCD is made up of glass, organic sealant, organic fluid, and polymer based polarizers. The following precautions should be taken when handing.

- (1). Keep the temperature within range of use and storage. Excessive temperature and humidity could cause polarization degredation, polarizer peel off or bubble.
- (2). Do not contact the exposed polarizers with anything harder than an HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzin.
- (3). Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.
- (4). Glass can be easily chipped or cracked from rough handling, especially at corners and edges.
- (5). Do not drive LCD with DC voltage.

2. Liquid Crystal Display Modules

2.1 Mechanical Considerations

- LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.
- (1). Do not tamper in any way with the tabs on the metal frame.
- (2). Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.
- (3). Do not touch the elastomer connector, especially insert an backlight panel (for example, EL).
- (4). When mounting a LCM make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- (5). Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.

2.2. Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

- (1). The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.
- (2). The modules should be kept in antistatic bags or other containers resistant to static for storage.
- (3). Only properly grounded soldering irons should be used.
- (4). If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

- (5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.
- (6). Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

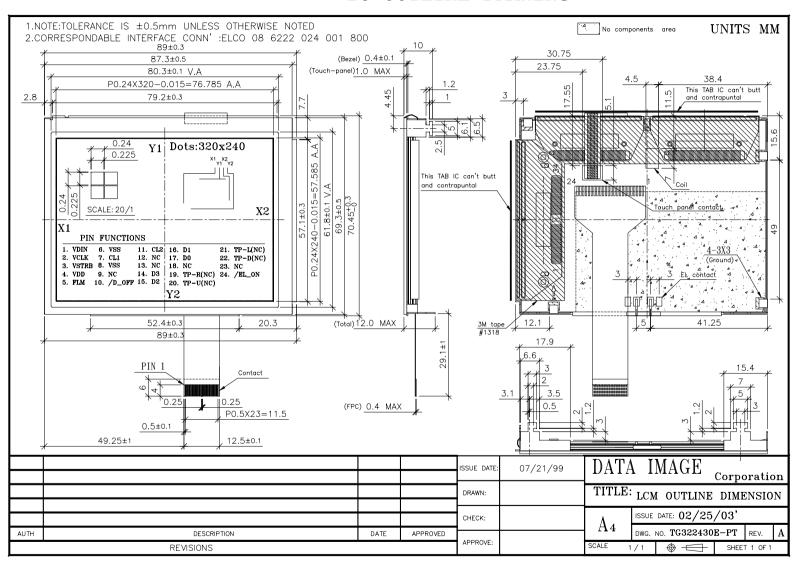
2.3 Soldering

- (1). Solder only to the I/O terminals.
- (2). Use only soldering irons with proper grounding and no leakage.
- (3). Soldering temperature : $280^{\circ}\text{C} \pm 10^{\circ}\text{C}$
- (4). Soldering time: 3 to 4 sec.
- (5). Use eutectic solder with resin flux fill.
- (6). If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed after wards.

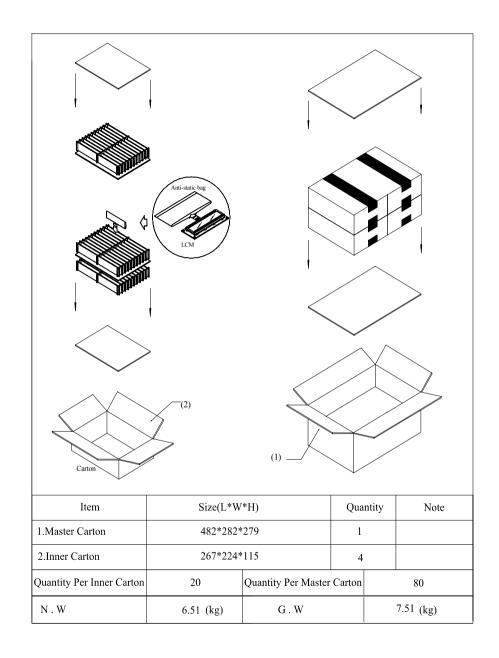
2.4 Operation

- (1). The viewing angle can be adjusted by varying the LCD driving voltage V0.
- (2). Driving voltage should be kept within specified range; excess voltage shortens display life.
- (3). Response time increases with decrease in temperature.
- (4). Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".
- (5). Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

2.5 Storage


If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

2.6 Limited Warranty


Unless otherwise agreed between DATA IMAGE and customer, DATA IMAGE will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with DATA IMAGE acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DATA IMAGE is limited to repair and/or replacement on the terms set forth above. DATA IMAGE will not responsible for any subsequent or consequential events.

Page: 24 /26

16 OUTLINE DRAWING

17. PACKAGE INFORMATION

Page: 26 /26