

36 to 40 GHz 1W Power Amplifier

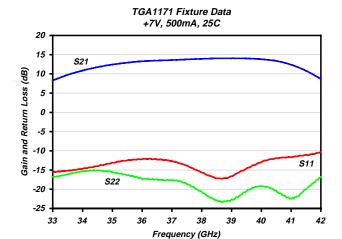
TGA1171-SCC

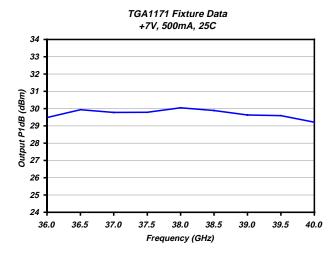
Product Description

The TriQuint TGA1171-SCC is a two-stage PA MMIC design using TriQuint's proven 0.25 µm Power pHEMT process to support a variety of millimeter wave applications including point-to-point digital radio and point-to-multipoint systems.

The balanced design consists of four 400 μm input devices driving eight 400 μm output devices.

The TGA1171 provides 29 dBm of output power at 1 dB gain compression and >30 dBm saturated output power across 36-40 GHz with a typical small signal gain of 14 dB. Typical Input/Output RL is typically greater than 12-15 dB across the band.


The TGA1171 requires minimal off-chip components. Each device is 100% DC and RF tested on-wafer to ensure performance compliance. The device is available in chip form.


Key Features and Performance

- 0.25 um pHEMT Technology
- 36-40 GHz Frequency Range
- 29 dBm Nominal Pout @ P1dB, 38 GHz
- 14 dB Nominal Gain
- OTOI 36 dBm at 40 GHz typical
- Bias 6-7 V @ 500 mA
- Chip Dimensions: 2.863 mm x 2.740 mm x 0.1016 mm

Primary Applications

- Point-to-Point Radio
- Point-to-Multipoint Radio

TGA1171-SCC

TABLE I MAXIMUM RATINGS

Symbol	Parameter <u>5</u> /	Value	Notes
V^+	Positive Supply Voltage	8 V	<u>4/</u>
V-	Negative Supply Voltage Range	-5V TO 0V	
\mathbf{I}^{+}	Positive Supply Current (Quiescent)	960 mA	<u>4/</u>
I _G	Gate Supply Current	56.32 mA	
P _{IN}	Input Continuous Wave Power	27 dBm	<u>4/</u>
P_D	Power Dissipation	5.25 W	<u>3</u> / <u>4/</u>
T_{CH}	Operating Channel Temperature	150 °C	<u>1</u> / <u>2</u> /
T_{M}	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings apply to each individual FET.
- Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- $\underline{3}$ / When operated at this bias condition with a base plate temperature of 70 0 C, the median life is reduced from 9.5 E+6 to 6.1 E+5 hours.
- $\underline{4}$ / Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D .
- 5/ These ratings represent the maximum operable values for this device.

TGA1171-SCC

TABLE II DC PROBE TEST (TA = 25 °C \pm 5 °C)

Symbol	Parameter	Minimum	Maximum	Unit
Idss (Q3-6)	Saturated Drain Current	160	752	mA
Gm _(Q3-6)	Transconductance	352	848	mS
V _P	Pinch-off Voltage	-1.5	-0.5	V
BVGS _(Q3-6)	Breakdown Voltage Gate- Source	-30	-11	V
BVGD _(Q3-6)	Breakdown Voltage Gate- Drain	-30	-11	V

TABLE III AUTOPROBE FET PARAMETER MEASUREMENT CONDITIONS

FET Parameters	Test Conditions
$I_{DSS}: \text{Maximum drain current } (I_{DS}) \text{ with gate voltage } \\ (V_{GS}) \text{ at zero volts.}$	$V_{GS} = 0.0 \text{ V}$, drain voltage (V_{DS}) is swept from 0.5 V up to a maximum of 3.5 V in search of the maximum value of I_{DS} ; voltage for I_{DSS} is recorded as VDSP.
G_m : Transconductance; $\frac{(I_{DSS} - IDS 1)}{VG1}$	For all material types, V_{DS} is swept between 0.5 V and VDSP in search of the maximum value of I_{ds} . This maximum I_{DS} is recorded as IDS1. For Intermediate and Power material, IDS1 is measured at $V_{GS} = VG1 = -0.5$ V. For Low Noise, HFET and pHEMT material, $V_{GS} = VG1 = -0.25$ V. For LNBECOLC, use $V_{GS} = VG1 = -0.10$ V.
V_P : Pinch-Off Voltage; V_{GS} for $I_{DS} = 0.5$ mA/mm of gate width.	V_{DS} fixed at 2.0 V, V_{GS} is swept to bring I_{DS} to 0.5 mA/mm.
V_{BVGD} : Breakdown Voltage, Gate-to-Drain; gate-to-drain breakdown current (I_{BD}) = 1.0 mA/mm of gate width.	Drain fixed at ground, source not connected (floating), 1.0 mA/mm forced into gate, gate-to-drain voltage ($V_{\rm GD}$) measured is $V_{\rm BVGD}$ and recorded as BVGD; this cannot be measured if there are other DC connections between gate-drain, gate-source or drain-source.
$\label{eq:VBVGS} V_{BVGS}: Breakdown \ Voltage, \ Gate-to-Source; \ gate-to-source \ breakdown \ current \ (I_{BS}) = 1.0 \ mA/mm \ of \ gate \ width.$	Source fixed at ground, drain not connected (floating), 1.0 mA/mm forced into gate, gate-to-source voltage (V_{GS}) measured is V_{BVGS} and recorded as BVGS; this cannot be measured if there are other DC connections between gate-drain, gate-source or drain-source.

TGA1171-SCC

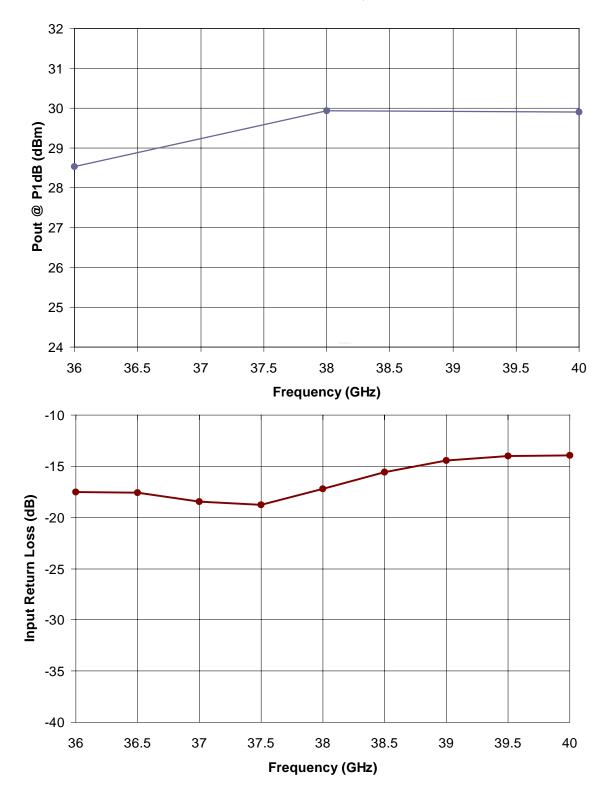
TABLE IV RF WAFER CHARACTERIZATION TEST

 $(T_A = 25^{\circ}C \pm 5^{\circ}C)$ (Vd = 7V, Id = 500 mA ±5%)

Parameter	Unit	Min	Typical	Max
Frequency	GHz	36		40
Output P1dB	dBm	26	29	
Small Signal Gain	dB	12	14	
Input Return Loss	dB		-15	
Output Return Loss	dB		-15	
Output TOI	dBm		36	

TABLE V
THERMAL INFORMATION*

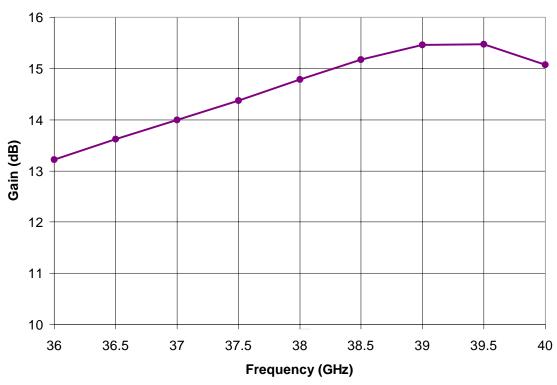
Parameter	Test Conditions	T _{CH} (°C)	R _{θJC} (°C/W)	T _M (HRS)
$R_{\theta JC}$ Thermal Resistance (channel to backside of carrier)	$Vd = 7V$ $I_D = 500 \text{ mA}$ $Pdiss = 3.5 \text{ W}$	125.03	15.79	9.5 E+6

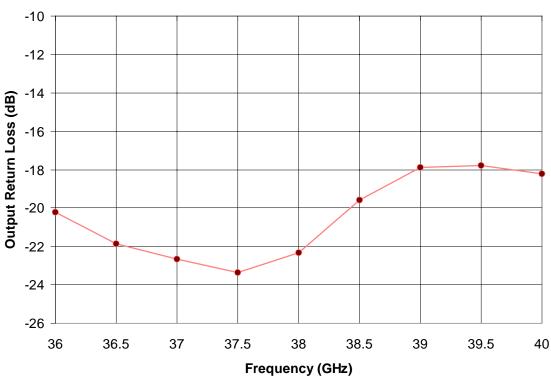

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

* This information is a result of a thermal model analysis.

TGA1171-SCC

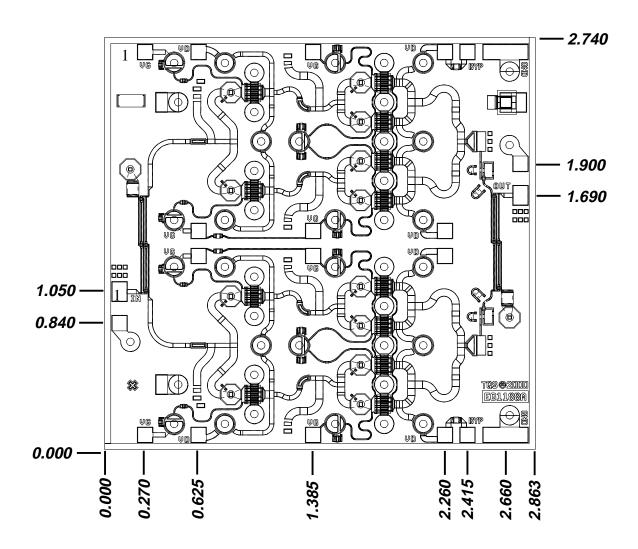
Data Based on the 50th percentile On-Wafer RF Probe Test Results, Sample Size = 13971 Devices


Bias Conditions: Vd = 7 V, Id = 500 mA



TGA1171-SCC

Data Based on the 50th percentile On-Wafer RF Probe Test Results, Sample Size = 13971 Devices

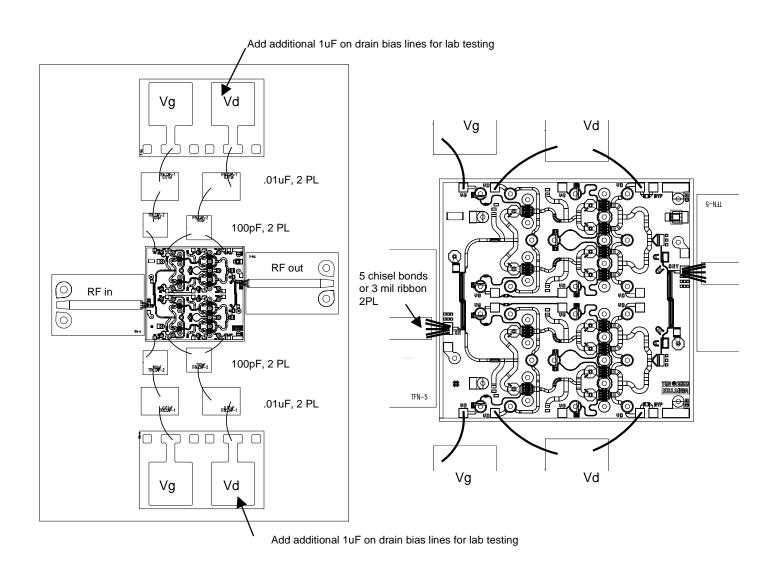

Bias Conditions: Vd = 7 V, Id = 500 mA

TGA1171-SCC

Mechanical Characteristics

Dimensions in mm

RF Pads: 130x100 μ m


DC Pads: 100x100 μ m

Die Area: 7.845 mm²

TGA1171-SCC

Chip Assembly and Bonding Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

TGA1171-SCC

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200 °C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.