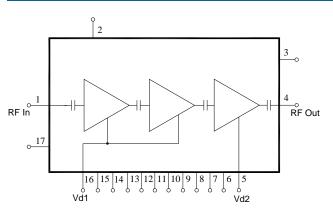


Applications


- Point-to-Point Radio
- Military Ku-Band
- Ku-Band Space
- VSAT

Product Features

- 12 to 16.5 GHz Bandwidth
- 28 dB Nominal Gain
- 20 dBm Nominal P1dB
- Bias: 6 to 9 V, 85 mA Self-Bias
- pHEMT Technology Chip Dimensions: 1.84 x 0.88 x 0.1 mm

Functional Block Diagram

Pin Configuration

Pin No.	Label
1	RF IN
2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17	NC
4	RF OUT
4 5	Vd2
16	Vd1

General Description

The TriQuint TGA2243 is a Ku-Band driver amplifier. The TGA2243 operates over a bandwidth of 12 to 16.5 GHz and is designed using TriQuint's pHEMT production process.

The TGA2243 typically provides 28 dB of gain, and a 1dB gain compression point of 20 dBm output power.

Lead-free and RoHS compliant.

Ordering Information				
Part No.	ECCN	Description		
TGA2243	EAR99	Ku-Band Driver Amplifier		

Standard T/R size = 500 pieces on a 7" reel

Absolute Maximum Ratings

Parameter	Rating
Drain Voltage,Vd	9 V
Drain Current, Id	114 mA
Power Dissipation, Pdiss	1.03 W
RF Input Power, CW, 50Ω , T = 25° C	20 dBm
Channel Temperature, Tch	200 °C
Mounting Temperature (30 Seconds)	260 °C
Storage Temperature	-40 to 150 °C

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

Recommended Operating Conditions

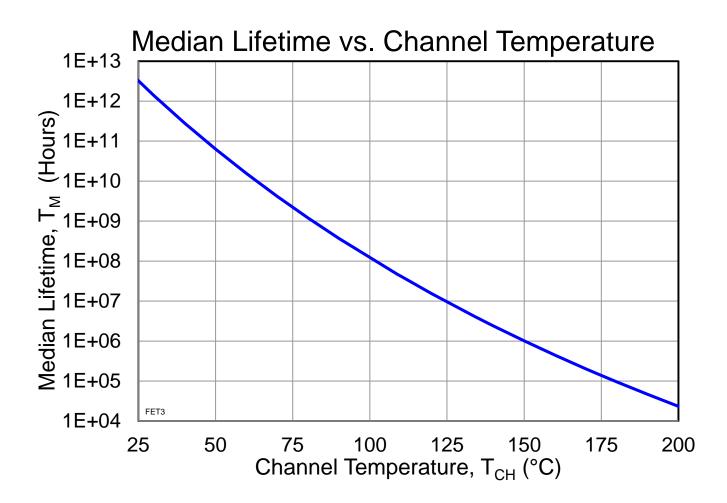
Parameter	Min	Тур	Max	Units
Operating Temp. Range	-40	+25	+85	°C
Vd	6	7		V
ld		85		mA
Id drive (Under RF Drive)		85		mA

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

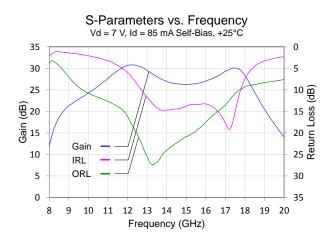
Electrical Specifications

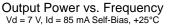
Conditions for specifications below unless otherwise noted: Vd = 7 V, Id = 85 mA self-bias. Temperature = +25°C

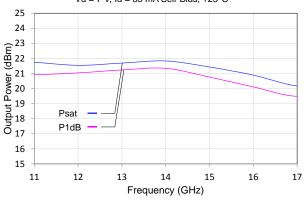
Parameter	Min	Тур	Max	Units
RF Frequency Range	12		16.5	GHz
Small Signal Gain		28		dB
Input Return Loss, IRL		15		dB
Output Return Loss, ORL		20		dB
Output Power at Saturation, Psat		21		dBm
Output Power at 1dB Gain Compression, P1dB		20		dBm
Gain Temperature Coefficient		-0.07		dB/°C
Power Temperature Coefficient		-0.003		dBm/°C

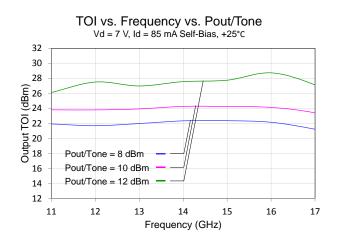

ł

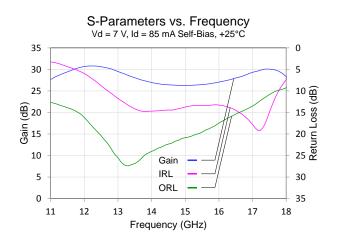
Specifications

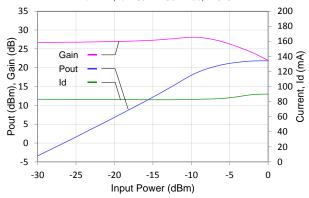

Thermal and Reliability Information

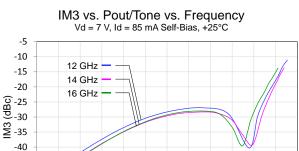

Parameter	Conditions	Rating
Thermal Resistance, θ_{JC} , measured to back of package	Tbase = 70 °C	$\theta_{\rm JC} = 80 ^{\circ}{\rm C/W}$
Channel Temperature (Tch), and Median Lifetime (Tm)	Tbase = 70 °C Vd = 7 V, Id = 85 mA Pdiss = 0.6 W	Tch = 118 °C Tm = 1.9E+7 Hours
Channel Temperature (Tch), and Median Lifetime (Tm) at 15 dBm Pout	Tbase = 70 °C Vd = 7 V, Id = 85 mA Pdiss = 0.6 W	Tch = 118 °C Tm = 1.9E+7 Hours

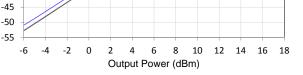




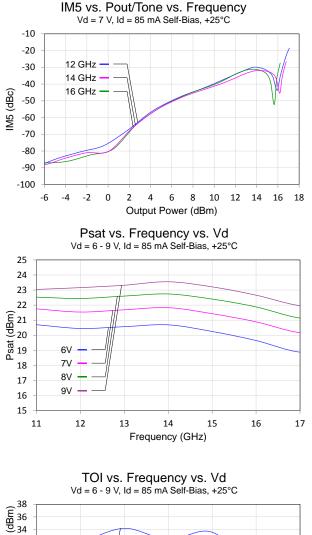

Typical Performance

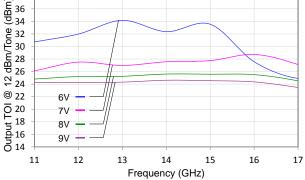


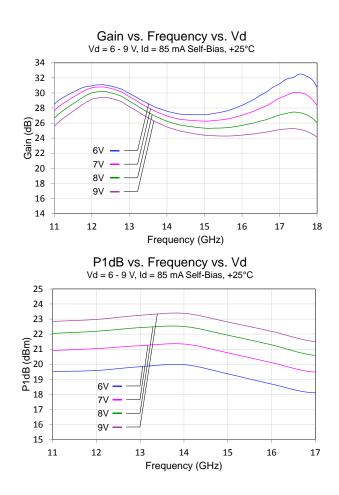




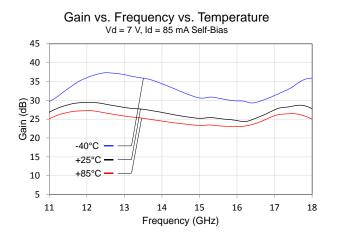
Pout, Gain, Id vs. Pin @ 14 GHz Vd = 7 V, Id = 85 mA Self-Bias, +25°C

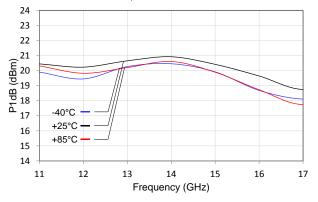


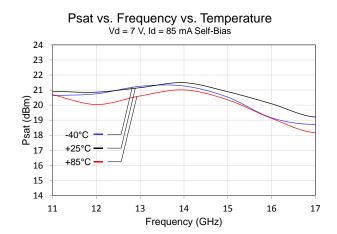




Typical Performance

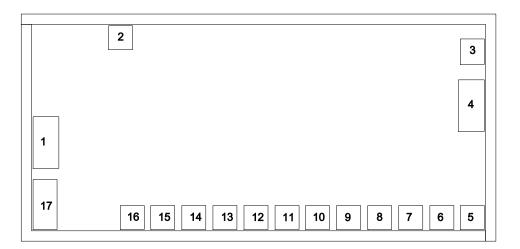




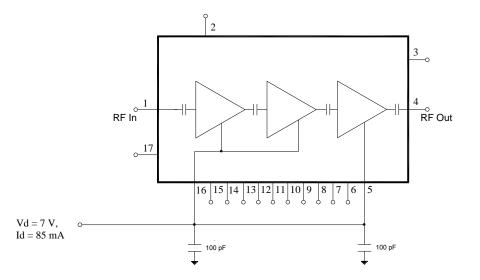


Typical Performance

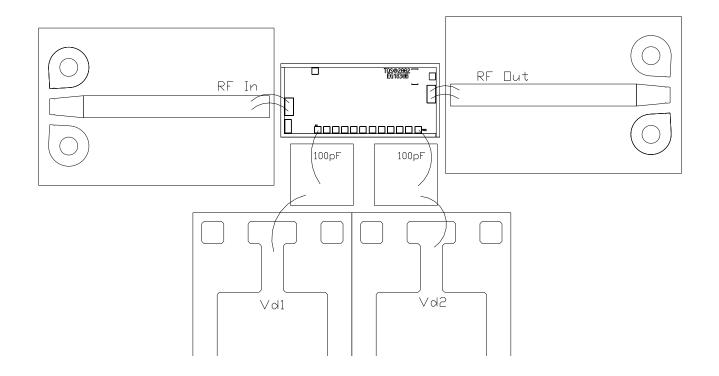
P1dB vs. Frequency vs. Temperature Vd = 7 V, Id = 85 mA Self-Bias



Bond Pad Description

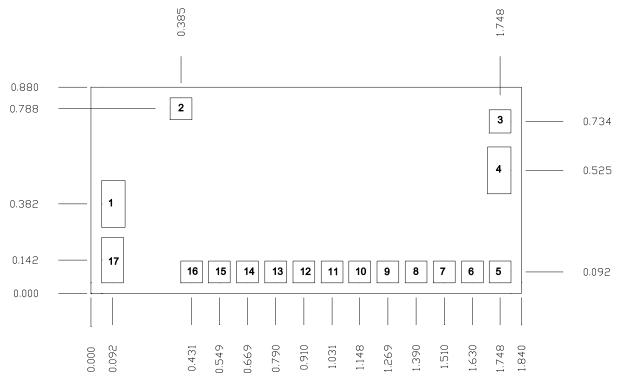


Pin No.	Label	Description
1	RF IN	RF Input, matched to 50 ohms, AC Coupled.
4	RF OUT	RF Output, matched to 50 ohms, AC Coupled.
2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17	NC	No connection
5	Vd2	Drain voltage. Bias network is required; see Application Circuit on page 9 as an example.
16	Vd1	Drain voltage. Bias network is required; see Application Circuit on page 9 as an example.


Application Circuit

Bias-up Procedure	Bias-down Procedure
Vd set to +7 V	Turn off RF signal
Id is nominally 85 mA, self-biased	Turn Vd to 0 V
Apply RF signal	

Application Circuit



Mechanical Information

Package Marking and Dimensions

All dimensions are in millimeters.

Unit: millimeters Thickness: 0.100 Die x, y size tolerance: +/- 0.050 Chip edge to bond pad dimensions are shown to center of pad Ground is backside of die

Bond Pad	Symbol	Pad Size
1	RF In	0.200 x 0.100
2	NC	0.093 x 0.093
3	NC	0.099 x 0.093
4	RF Out	0.200 x 0.100
5	Vd2	0.093 x 0.093
6 thru 15	NC	0.093 x 0.093
16	Vd1	0.093 x 0.093
17	NC	0.193 x 0.093

Product Compliance Information

ESD Sensitivity Ratings

ESD Rating:	TBD
Value:	TBD
Test:	Human Body Model (HBM)
	Charge Device Model (CDM)
Standard:	JEDEC Standard JESD22-A114

Solderability

Compatible with AuSn solder (320 C max) process. Time at peak temperature should be less than 30 seconds.

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Assembly Notes

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment (i.e. epoxy) can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.

Reflow process assembly notes:

- Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- Do not use any kind of flux.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0007-inch wire.

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triguint.com	Tel:	+1.972.994.8465
Email:	info-sales@tqs.com	Fax:	+1.972.994.8504

For technical questions and application information:

Email: info-networks@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.