

February 7, 2006

13 - 15 GHz 4W Power Amplifier

TGA2502

Chip Dimensions 2.5 mm x 2.7 mm x 0.1 mm

Fixtured Measured Performance

Bias Conditions: Vd = 7V, Idq = 1.3A

Key Features

- 0.5 um pHEMT Technology
- >25 dB Nominal Gain
- >36 dBm Nominal Psat
- 44 dBm Nominal IP3 @ 14 GHz
- Bias 7V @ 1.3A Idq, 2.1A under RF drive
- Chip Dimensions 2.5mm x 2.7mm x 0.1 mm

Primary Applications

Ku-Band VSAT Transmit

Note: This device is early in the characterization process prior to finalizing all electrical specifications. Specifications are subject to change without notice.

Ľ

TABLE IMAXIMUM RATINGS 1/

Symbol	Parameter	Value	Notes
V ⁺	Positive Supply Voltage	8V	
I ⁺	Positive Supply Current	2.3 A	<u>2</u> /
P _D	Power Dissipation	TBD	
P _{IN}	Input Continuous Wave Power	24 dBm	
Т _{СН}	Operating Channel Temperature	150 °C	<u>3</u> /, 4/
Τ _M	Mounting Temperature (30 seconds)	320 °C	
T _{STG}	Storage Temperature	-65 °C to 150 °C	

- 1/ These values represent the maximum operable values of this device
- 2/ Total current for the entire MMIC
- <u>3/</u> These ratings apply to each individual FET
- <u>4</u>/ Junction operating temperature will directly affect the device mean time to failure (MTTF). For maximum life it is recommended that junction temperatures be maintained at the lowest possible levels.

TABLE II ELECTRICAL CHARACTERISTICS (Ta = 25°C ± 5°C)

UNITS PARAMETER TYPICAL Drain Operating Voltage 7 V Quiescent Current 1.3 А Small Signal Gain 25 dB Gain Flatness (Freq=13.5 - 15 GHz) 0.1 dB/100MHz Input Return Loss (Linear Small Signal) 16 dB Output Return Loss (Linear Small Signal) 16 dB **Reverse** Isolation <-50 dB CW Output Power @ Psat at 14.5Ghz 36 dBm Power Add Efficiency @ Psat % 30 P1dB Temperature Coeff. TC (-40 to + 70 $^{\circ}$ C) dB/⁰C -0.01

TABLE IV THERMAL INFORMATION

PARAMETER	TEST CONDITIONS	Т _{сн} (^о С)	R _{θJC} (°C/W)	T _M (HRS)
R _{eJC} Thermal Resistance (channel to Case)	Vd = 7 V Id = 1.3 A Pdiss = 9.1 W	123	5.8	1.2E+7

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

Measured Fixtured Data

(4)

Measured Fixtured Data

(5)

Measured Fixtured Data

Bias Conditions: Vd = 7V, $Idq = 1.3A \pm 5\%$

TGA2502

Chip & Assembly Diagram

(7)

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Advance Product Information February 7, 2006

TGA2502

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300⁰C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200^oC.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

(9)