
Ka-Band Medium Power Amplifier

Measured Performance

Bias conditions: Vd = 5 V, Id = 170 mA, Vg = -0.6 V,

Key Features

Frequency Range: 27 - 32 GHzPsat: 24 dBm, P1dB: 22 dBm

Gain: 15 dB

Return Loss: 10 dB

 Bias: Vd = 5 V, Id = 170 mA, Vg = -0.6 V Typical

5.

Package Dimensions: 4 x 4 x 0.85 mm

Primary Applications

- Vsat and Digital Radio
- Point-to-Multipoint Communications

Product Description

The TriQuint TGA4903-SM is a Ka-Band packaged medium Power Amplifier. The TGA4903-SM operates from 27-32 GHz and is designed using TriQuint's proven standard pHEMT production process.

The TGA4903-SM typically provides 22 dBm of output power at 1 dB gain compression, with small signal gain of 15 dB.

The TGA4903-SM is ideally suited for VSAT ground terminals, Point-to-Point Radios and Point-to-Multipoint communications.

Evaluation Boards are available.

Lead-free and RoHS compliant.

Datasheet subject to change without notice.

Table I

Absolute Maximum Ratings 1/

Symbol	Parameter	Value	Notes
Vd-Vg	Drain to Gate Voltage	12 V	
Vd	Drain Voltage	8 V	<u>2</u> /
Vg1 Vg2	Gate #1 Voltage Range Gate #2 Voltage Range	-5 to 0 V -5 to 0 V	
ld1 ld2	Drain #1 Current Drain #2Current	352 mA 320 mA	<u>2</u> /
lg1 lg2	Gate #1 Current Range Gate #2 Current Range	-0.9 to 16.5 mA -0.8 to 15 mA	
Pin	Input Continuous Wave Power	18 dBm	<u>2</u> /
Tchannel	Channel Temperature	200 °C	

- These ratings represent the maximum operable values for this device. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and / or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed the maximum power dissipation listed in Table IV.

Table II Recommended Operating Conditions

Symbol	Parameter <u>1</u> /	Value
Vd	Drain Voltage	5 V
ld	Drain Current	170 mA
Id_Drive	Drain Current under RF Drive 300 mA	
Vg Gate Voltage -0.6 V		-0.6 V

1/ See Bias Procedures section for bias instructions.

Table III RF Characterization Table

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	NOMINAL	UNITS
Gain	Small Signal Gain	f = 27 GHz	13	16	dB
Gain	Small Signal Gain	f = 28-30 GHz	12	15	dB
Gain	Small Signal Gain	f = 31-32 GHz	11	14	dB
IRL	Input Return Loss	f = 27-32 GHz		10	dB
ORL	Output Return Loss	f = 27-32 GHz		10	dB
Psat	Saturated Output Power	f = 27-32 GHz	22	24	dBm
P1dB	Output Power @ 1dB Compression	f = 27-32 GHz		22	dBm
TOI	Output TOI	f = 27-32 GHz		27	dBm
NF	Noise Figure	f = 27-32 GHz		12	dB

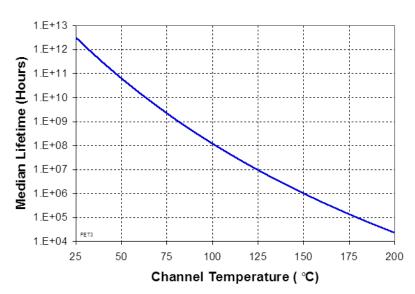
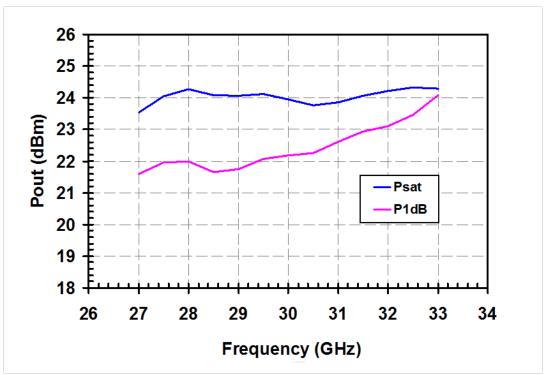
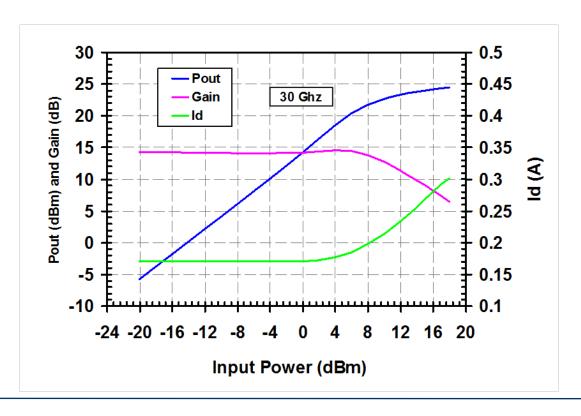
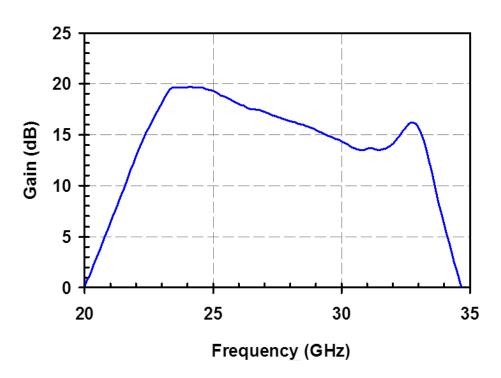


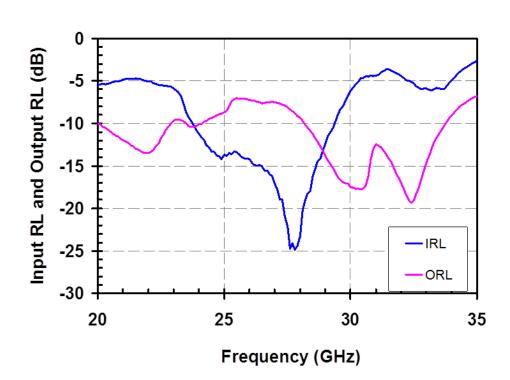
Table IV Power Dissipation and Thermal Properties

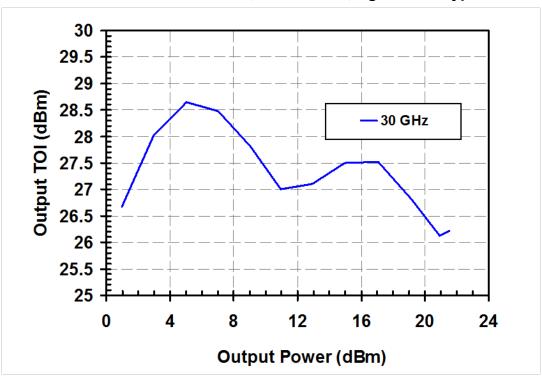

Parameter	Test Conditions	Value	Notes
Maximum Power Dissipation	Tbaseplate = 70°C	Pd = 2.0 W Tchannel = 200 °C Tm = 2.3 E4 Hrs	<u>1</u> / <u>2</u> /
Thermal Resistance, θjc	Vd = 5 V Id = 170 mA Pd = 0.85 W Tbaseplate = 70 °C	θjc = 65.2 °C/W Tchannel = 125 °C Tm = 9.13 E6 Hrs	
Thermal Resistance, θjc Under RF Drive	Vd = 5 V Id = 300 mA Pout = 24.5 dBm Pd = 1.25 W Tbaseplate = 70 °C	θjc = 65.2 °C/W Tchannel = 151 °C Tm = 8.92 E5 Hrs	
Mounting Temperature	30 Seconds	320 °C	
Storage Temperature		-65 to 150 °C	

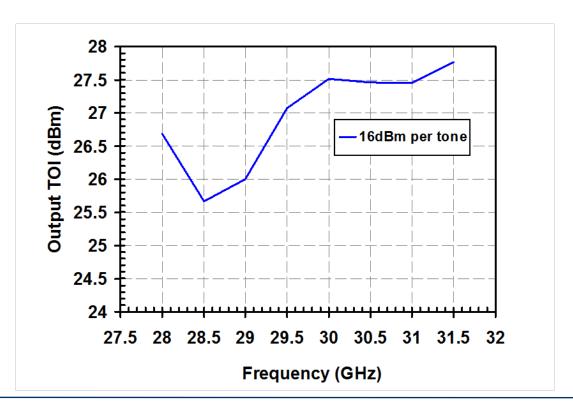

- $\underline{1}$ / For a median life of 1E+6 hours, Power Dissipation is limited to
 - $Pd(max) = (150 °C Tbase °C)/\theta jc.$
- 2/ Channel operating temperature will directly affect the device lifetime. For maximum life, it is recommended that channel temperatures be maintained at the lowest possible levels.

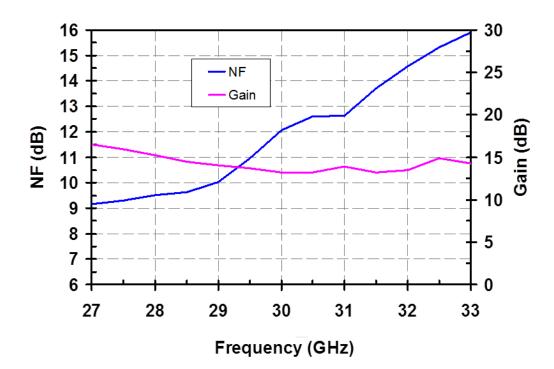
Median Lifetime (Tm) vs. Channel Temperature











Electrical Schematic

Bias Procedures

D			Pro	~~d:	ıro
	เสร-	ub	Proc	ceat	ıre

Bias-down Procedure

Connect Vg1 and Vg2 together. ("Vg") Connect Vd1 and Vd2 together. ("Vd") Turn off RF supply

Vg set to -1.5 V

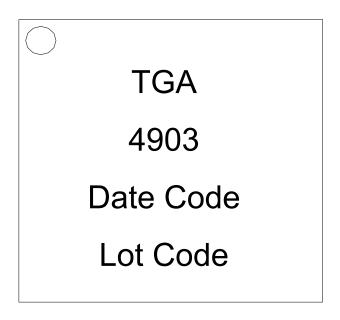
Reduce Vg to -1.5V. Ensure Id ~ 0 mA

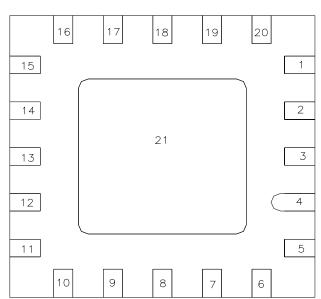
Vd set to +5 V

Turn Vd to 0 V

Adjust Vg more positive until Id is 170 mA. This will

Turn Vg to 0 V

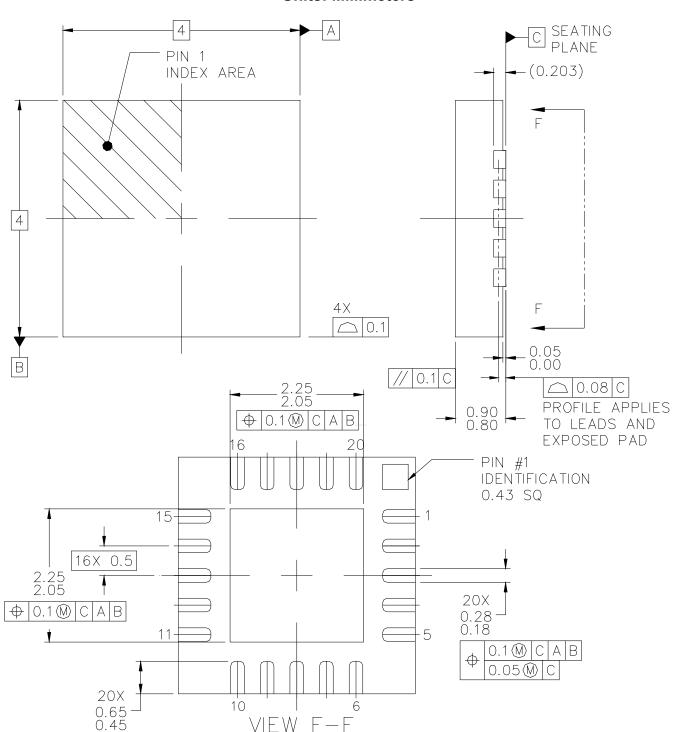

be $\sim Vg = -0.6 V$


Apply RF signal to input

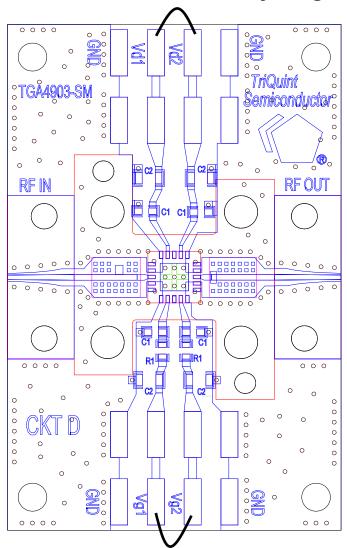
Package Pinout Diagram

Top View

Dot indicates Pin 1


Bottom View

Pin	Description
1, 2, 4, 5, 6, 10, 11, 12, 14, 15, 16, 20, 21	GND
8,18	NC
3	RF Input
7	Vg1
9	Vg2
13	RF Output
17	Vd2
19	Vd1

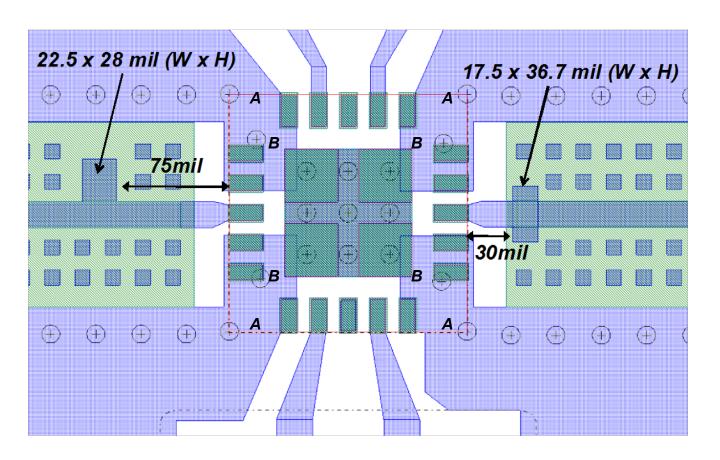

Mechanical Drawing Units: Millimeters

TGA4903-SM

Recommended Assembly Diagram

• C1: 0402 100pF cap

• C2: 0603 1uF cap


• R1: 0402 10 ohm resistor

In / Out tuning stubs for gain & power improvements

 Rogers RO4003C 8mil thick with 0.5oz cladding

Recommended Board Tuning for Maximum Output Power

NOTE: Ground vias located at sites A and B, above, and grounded metal pads on PCB top metal, located under the package "GND" pads (see page 10), are critical for RF performance

Assembly Notes

Recommended Surface Mount Package Assembly

- Proper ESD precautions must be followed while handling packages.
- Clean the board with alcohol. Allow the circuit to fully dry.
- TriQuint recommends using a conductive solder paste for attachment. Follow solder paste and reflow oven vendors' recommendations when developing a solder reflow profile. Typical solder reflow profiles are listed in the table below.
- Hand soldering is not recommended. Solder paste can be applied using a stencil printer or dot
 placement. The volume of solder paste depends on PCB and component layout and should be well
 controlled to ensure consistent mechanical and electrical performance.
- Clean the assembly with alcohol.

Reflow Profile	SnPb	Pb Free	
Ramp-up Rate	3 °C/sec	3 °C/sec	
Activation Time and Temperature	60 – 120 sec @ 140 – 160 °C	60 – 180 sec @ 150 – 200 °C	
Time above Melting Point	60 – 150 sec	60 – 150 sec	
Max Peak Temperature	240 °C	260 °C	
Time within 5 °C of Peak Temperature	10 – 20 sec	10 – 20 sec	
Ramp-down Rate	4 – 6 °C/sec	4 – 6 °C/sec	

Ordering Information

Part	Package Style	
TGA4903-SM	QFN 4x4 Surface Mount	