THB6128(暂定) 规格概要

- 1. 用途: PWM 电流控制步进电机驱动芯片
- 2. 封装: MFP30KR
- 3. 特点
 - ·内置1通道PWM电流控制步进电机驱动电路
 - · BiCDMOS 工艺 IC
 - ・输出 ON 阻抗(上侧 0.3Ω、下侧 0.25Ω, 上下合计 0.55Ω; Ta=25℃, Io=2.0A)
 - ・可选择 2、1-2、W1-2、2W1-2、4W1-2、8W1-2、16W1-2、32W1-2 相励磁
 - · 仅需 Step 信号输入就可以进行 Step 励磁
 - 正反控制均可
 - Iomax = 2.0A
 - 内置过电流保护电路
 - · 内置 TSD 电路
 - 内置输入下拉电阻入力
 - ·附有 Reset、Enable 端子

4. 绝对最大定格 / Ta=25℃

项目	符号	条件	定格值	符号
电源电压	VMmax		36	V
输出电流	Iomax		2. 0	A
逻辑输入电压	VINmax		6	V
VREF 输入电压	VREFmax		6	V
MO 输入电压	VMOmax		6	V
DOWN 输入电压	VD0max		6	V
容许耗散功率1	Pd max1	IC 单体		W
容许耗散功率 2	Pd max2	随基板		W
工作环境温度	Topg		$-20 \sim +85$	$^{\circ}\mathbb{C}$
保存环境温度	Tstg		$-55 \sim +150$	$^{\circ}\!\mathbb{C}$


5. 推荐工作范围 / Ta=25℃

项目	符号	条件	定格值	符号
电源电压范围	VM		9~32	V
逻辑输入电压范围	VIN		0~5	V
VREF 入力電圧範囲	VREF		0~3	V
CLK 端子输入频率	Fc1k		\sim \star	KHz

6. 电气特性 / Ta=25℃, VM=24V、VREF=1.5V

项目	符号	条件	最小	标准	最大	符号
待机时消耗电流	IMstn	ST=" L"		200		μА
消耗电流	IM	ST="H"、OE="H"、无负载		4		mA
TSD 温度	TSD	设计保证		180		$^{\circ}$
Thermal Hysteresis 值	Δ TSD	設計保証		40		$^{\circ}$
逻辑端子输入电流	IinL1	VIN=0.8V		8		μА
	IinH1	VIN=5V		50		μА
逻辑输入"H"Level 电压			2.0			V
逻辑输入"L"Level 电压					0.8	V
FDT 端子"H" Level 电压	Vfdth		3.5			V
FDT 端子"M" Level 电压			1.1		3. 1	V
FDT 端子"L" Level 电压	Vfdtl				0.8	V
斩波频率	Fch	Cosc1=100pF		100		KHz
0SC1 端子充放电电流	Iosc1			10		μА
斩波振荡电路	Vtup1			1		V
电压阈值	Vtdown1			0.5		V
VREF 端子输入电流	Iref	VREF=1.5V	-0.5			μА
DOWN 输出残电压	VolDO	Idown=1mA			400	mV
MO 端子残电压	Vo1MO	Imo=1mA			400	mV
通电锁定切换频率	Falert	Cosc2=1500pF		1.6		Hz
0SC2 端子充放电电流	Iosc2			TBD		μА
通电锁定切换振荡电路	Vtup2			TBD		V
电压阈值	Vtdown2			TBD		V
REG1 输出电压	Vreg1			5		V
REG2 输出电压	Vreg2			19		V
Blanking 时间	Tb1			1		uS
输出部					_	-
输出 ON 阻抗	Ronu	Io=2.0A、上側 ON 抵抗		0.3		Ω
	Rond	Io=2.0A、下側 ON 抵抗		0.25		Ω
输出漏电流	Ioleak	VM=36V			50	μА
二极管正向压降	VD	ID = -2.0A		1		V
电流设定基准电压	VRF	VREF=1.5V、電流比 100%		300		mV
输出短路保护部						
Timer Latch 时间	Tscp			256		μs

7. PIN 配置图 (案)

8. 端子功能的说明

端子 No	端子符号	端子说明
17	DOWN	通电锁定时输出端子
14	SGND	信号地
20	OSC1	斩波频率设定电容连接端子
18	FDT	Decay mode 选择电压输入端子
15	VREF	定电流控制基准电压输入端子
11	VMB	B 相 电机电源连接端子
28	M1	励磁模式切换端子
27	M2	励磁模式切换端子
26	M3	励磁模式切换端子
13	OUT2B	B相 OUTB输出端子
10	NFB	B 相 电流检测电阻连接端子
9	OUT1B	B相 OUTA输出端子
21	PGNDB	B相 功率地
7	OUT2A	A 相 OUTB 输出端子
6	NFA	A 相 电流检测电阻连接端子
3	OUT1A	A 相 OUTA 输出端子
4	PGNDA	A 相 功率地
25	ENABLE	输出 Enable 信号输入端子
24	RESET	RESET 信号输入端子
5	VMA	A 相 电机电源连接端子
21	CLK	Clock Pulse 信号输入端子
22	CW/CCW	正 / 反转信号输入端子
19	OSC2	通电锁定检出时间设定电容连接端子
16	MO	位置检出 Monitor 端子
30	VREG1	内部稳压器用电容连接端子
1	VREG2	内部稳压器用电容连接端子
2	VM	电机电源连接端子
29	ST/VCC	Chip Enable 端子

9. 功能说明

9-1) 待机功能 (Standby)

ST/VCC 端子为 Low 时,IC 进入待机模式,所有的逻辑被重置,输出为 OFF。ST/VCC 端子为 High 时解除待机模式。

9-2) Step 端子功能

通过向 CLK 端子输入 Step 信号进行 Step 励磁。

输入		动作模式
ST/VCC	CLK	
L	*	待机模式
Н		送励磁 Step
Н		保持励磁 Step

9-3) 励磁设定

通过 M1, M2, M3 端子的设定, 励磁模式以下表方式设定。

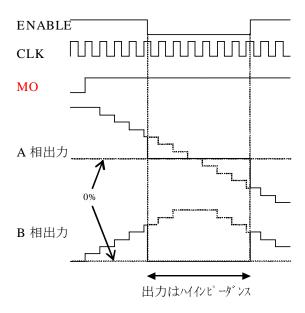
输入			模式	初识	初识位置	
М3	M2	M1	(励磁)	A 相电流	B相电流	
L	L	L	2 相	100%	-100%	
L	L	Н	1-2 相	100%	0%	
L	Н	L	W1-2 相	100%	0%	
L	Н	Н	2W1-2 相	100%	0%	
Н	L	L	4W1-2 相	100%	0%	
Н	L	Н	8W1-2 相	100%	0%	
Н	Н	L	16W1-2 相	100%	0%	
Н	Н	Н	32W1-2 相	100%	0%	

初识位置为对于各励磁模式,电源上升时的初期状态,Counter Reset 时的蠡测位置。

9-4)输出电流设定方法

输出电流可由 VREF 端子电压,以及 NFA(B)端子-GND 间连接的电阻值,依据以下公式设定。

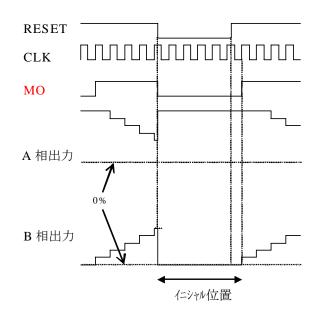
Iout = (VREF / 5) / NFA(B)电阻


※上述设定值为各励磁模式的100%输出电流。

(例) VREF=1.5V、NFA(B) 电阻为 0.3Ω时,设定电流为:

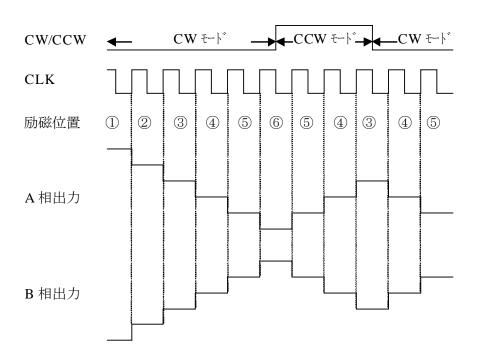
Iout = (1.5V/5) / 0.3Ω = 1.0A

9-5) 输出 Enable 功能


ENABLE 端子为 Low 时,输出强制 OFF,为高阻状态。但是,由于内部逻辑电路仍在动作,如果在 CLK 端子输入信号,励磁位置仍在进行。因此,将 ENABLE 重新置为 High 时,根据 CLK 输入,遵循进行的励磁位置的 level 输出。

输出为高阻

9-6) Reset 功能


RESET 端子为 Low 时,输出为初始模式。励磁位置不再与 CLK、CW/CCW 端子关联,而被固定在初始位置。初识位置时,MO 端子输出 L。(Open Drain 连接)

初始位置

9-7)正转/反转切换功能

CW/CCW	工作模式
L	CW
Н	CCW

IC内部的DA比较器,对应输入CLK端子的每个上升沿信号前进1bit。

另外,根据CW/CCW端子的设定,切换CW/CCW模式。

CW 模式, B 相电流依据 A 相电流而看时,相位会延迟 90°。

CCW 模式, B 相电流依据 A 相电流而看时, 相位会超前 90°。

9-8) DECAY 模式设定

通过 FDT 端子的电压,依据下表可选择电流 DECAY 方式。

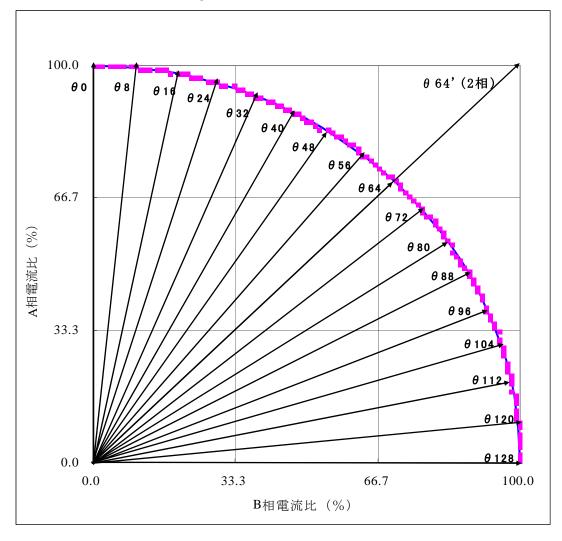
FDT 电压	DECAY 方式
3.5V∼	SLOW DECAY
1.1V∼3.1V	
或 OPEN	MIXED DECAY
~0.8V	FAST DECAY

9-9) DOWN、MO 输出端子

输出端子为 Open Drain 连接。各端子在设定状态下 ON,输出 Low Level。

端子状态	DOWN	MO
Low	通电锁定时	初始位置
OFF	通电时	初识以外

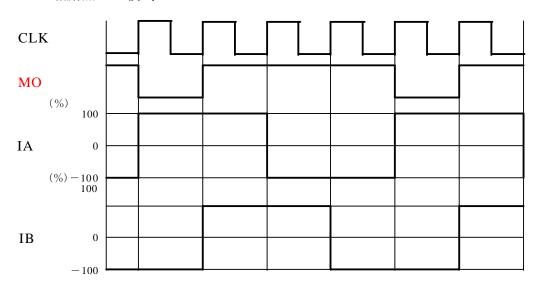
9-10) 斩波频率设定功能

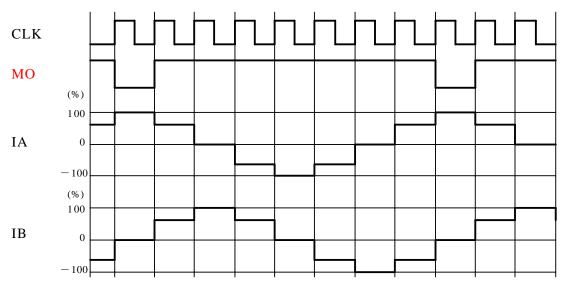

斩波频率由 OSC1 端子端子-GND 间连接的电容,依据下面的公式设定。

Fcp = 1 /
$$(Cosc1 / 10 \times 10^{-6})$$
 (Hz)

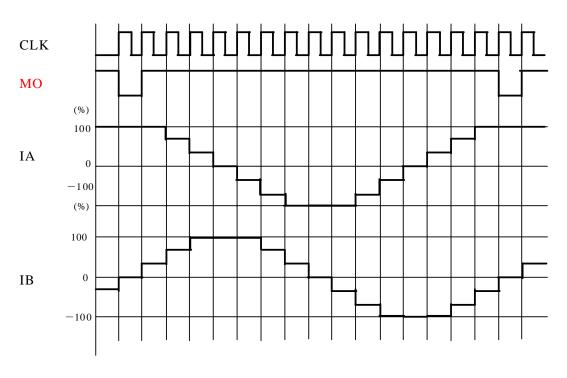
(例) Cosc1=100pF 时, <mark>斩波频率</mark>如下。

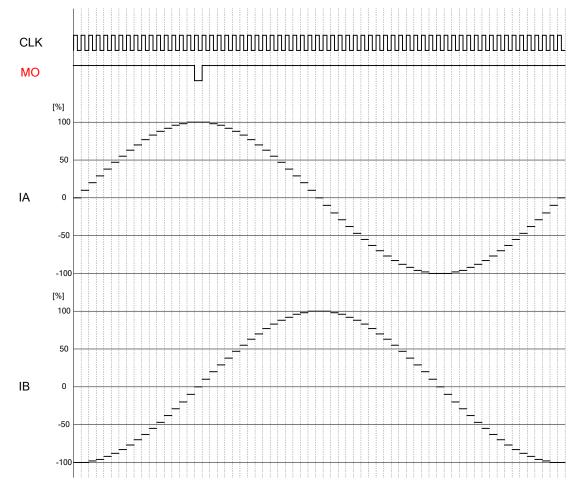
Fcp = 1
$$/ (100 \times 10^{-12} / 10 \times 10^{-6}) = 100 \text{ (kHz)}$$


9-11) 输出电流矢量轨迹(1Step 以 90 度正规)


暂定 Version No. 0.2 各励磁模式下的电流设定比

| 2W1-2相(%) 6W1-2相(%) 8W1-2相(%) 4W1-2相(%) 2W1-2相(%) W1-2相(%) | 1-2相(%) 2相(%) | STEP | Ach | Bch | Ach | Ach | Bch | Ach 2相(%) Ach Bch 72 73 74 $\frac{\theta}{\theta}$ 66 100 2 100 θ 67 θ 68 67 θ3 θ4 θ 69 9 70 θ 6 θ 72 θ 73 θ 74 100 62 78 10 100 θ8 θ9 60 99 80 80 60 81 82 58 82 83 56 84 84 53 85 86 51 θ 12
θ 13
θ 14
θ 15
θ 16
θ 17
θ 18
θ 19
θ 20 99 58 57 56 55 θ 79 98 θ 80 θ 81 22 23 52 51 98 θ 82 θ 83 86 87 θ 84 97 25 θ 85 θ 86 49 θ21 θ 22 θ 23 θ 24 28 29 96 96 27 88 θ 87 46 θ 88 46 89 45 89 45 44 90 43 90 43 42 91 41 91 41 θ 89 95 95 θ 90 33 34 35 θ 91 θ 92 θ 26 θ 27 94 θ 93 θ 94 θ 29 93 92 38 37 92 93 θ 30 θ 95 38 92 38 θ 32 θ 97 θ 33 θ 98 θ 34 θ 99 90 90 94 34 95 95 31 43 θ 100 θ 36 θ 37 θ 101 θ 102 θ 38 θ 103 θ 39 θ 104 96 97 97 97 97 27 25 24 θ 40 48 88 47 θ 105 θ 106 θ 41 49 87 49 θ 42 θ 107 θ 43 θ 44 22 21 20 θ 109 θ 44 θ 45 θ 46 θ 47 θ 48 θ 49 θ 50 θ 51 84 84 98 98 *θ* 110 θ 111 55 θ 112 82 57 θ 113 θ 114 99 99 82 58 81 59 θ 115 θ 116 15 80 60 θ 52 θ 117 θ 53 θ 54 θ 55 θ 56 θ 118 θ 119 100 10 100 63 θ 120 10 100 0 121 θ 122 θ 123 θ 124 θ 125 θ 57 66 6 100 5 100 4 100 θ 60 68 θ 62 θ 127 θ 128 0 100 0 100 0 100 0 100


9-12) 各励磁模式下的电流波形例(2相、1-2相、W1-2相、4W1-2相) 2相励磁(CW模式)


1-2相励磁 (CW 模式)

W1-2相励磁(CW模式)

4 W 1 - 2 相励磁 (C W模式)

9-13)输出短路保护电路

该 IC 为防止对电源或对地短路导致 IC 损坏的情况,内置了短路保护电路,使输出置于待机模式。检测出输出短路状态时,短路检出电路动作,一度输出 OFF。此后,Timer Latch 时间(typ:256uS)之后再度输出 ON,如果输出仍然短路的话,将输出固定于待机模式。

由输出短路保护电路动作而使输出固定于待机模式的场合,通过使 ST= "L"可以解除锁定。

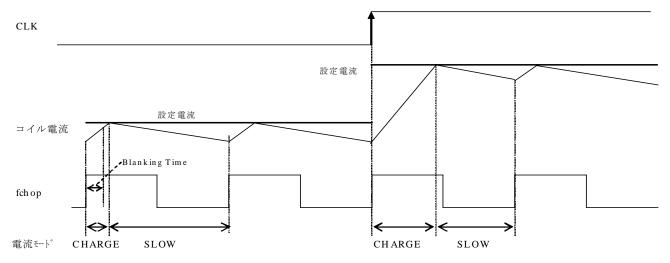
9-14) 通电锁定电流切换用 Open Drain 端子

输出端子为 Open Drain 连接,从 CLK 输入的一个上升沿脉冲开始,在由 OSC2-GND 间连接的电容决定的时间以内,下一个 CLK 的上升沿脉冲没有输出时切换为 ON,输出 Low Level。一次 ON 的 Open Drain 输出由下一个 CLK 的上升沿脉冲置为 OFF。

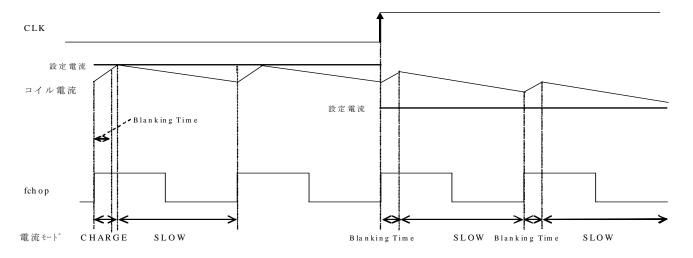
保持通电电流切换时间(Tdown)由 OSC2 端子-GND 间连接的电容由如下的公式设定。

 $\frac{\text{Tdown}}{\text{Tdown}} = \cos 2 \times 0.4 \times 10^9 \text{ (s)}$

(例)Cosc2=1500pF时,保持通电电流切换时间如下。


 $Tdown = 1500pF \times 0.4 \times 10^9 = 0.6 (s)$

10. 电流控制动作

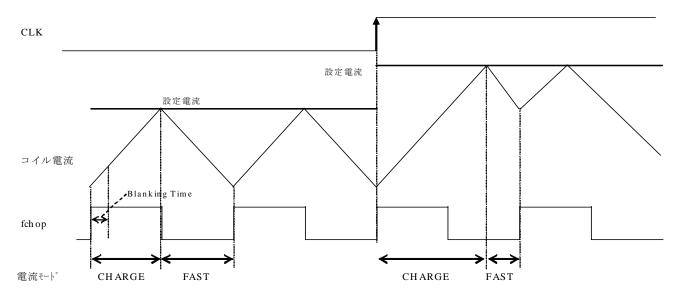

10-1) SLOW DECAY 电流控制动作

FDT 端子电压为 3.5V 以上时,定电流控制以 SLOW DECAY 方式进行。

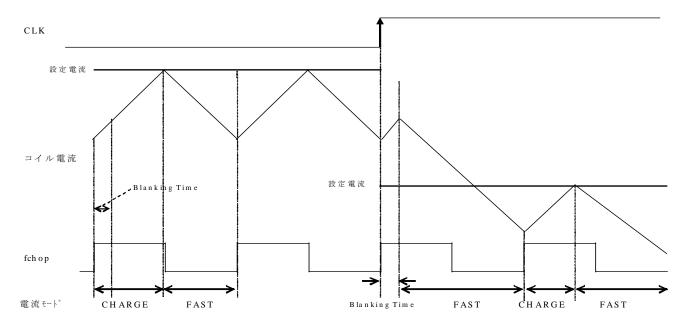
(正弦波增加方向)

(正弦波减少方向)

各电流模式依以下时序动作。


- ・斩波振荡上升沿时为 CHARGE 模式。(与 coil 电流(ICOIL)及设定电流(IREF)的大小无关,强制为 CHARGE 模式的区间(Blanking Time)存在大约 1μs。
- ·Blanking Time 区间结束后,直到 ICOIL ≥ IREF 为止均为 CHARGE 模式。此后切换到 SLOW DECAY 模式,斩波 1 周期结束为止以 SLOW DECAY 进行 coil 电流的衰减。

由 SLOW DECAY 进行电流控制时,由于电流衰减慢,coil 电流跟随设定电流有可能需要时间(有可能无法追随)。

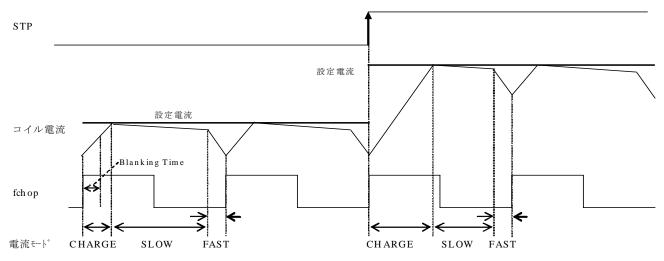

10-2) FAST DECAY 电流控制动作

FDT 端子电压为 0.8V 以下时, 定电流控制以 FAST DECAY 方式进行。

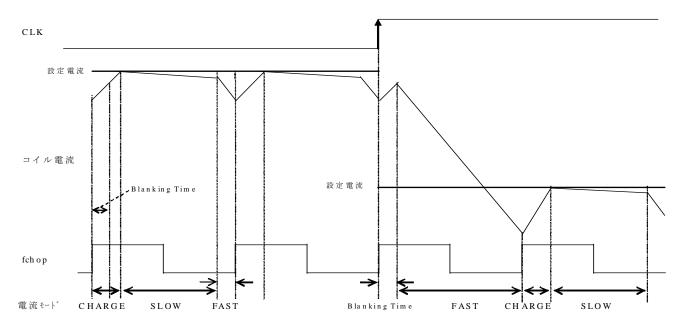
(正弦波增加方向)

(正弦波减少方向)

各电流模式依以下时序动作。


- · 斩波振荡上升沿时为 CHARGE 模式。(与 coil 电流(ICOIL) 及设定电流(IREF)的大小无关,强制为 CHARGE 模式的区间(Blanking Time)存在大约 1 μ s。
- ·Blanking Time 区间结束后,直到 ICOIL ≥ IREF 为止均为 CHARGE 模式。此后切换到 FAST DECAY 模式,斩波 1 周期结束为止以 FAST DECAY 进行 coil 电流的衰减。

由 FAST DECAY 进行电流控制时,由于电流衰减快,coil 电流跟随设定电流快,但有可能导致电流纹波变大。


10-3) MIXED DECAY 电流控制动作

FDT 端子电压为 1.1~3.1V 或者 OPEN 时, 定电流控制以 MIXED DECAY 方式进行。

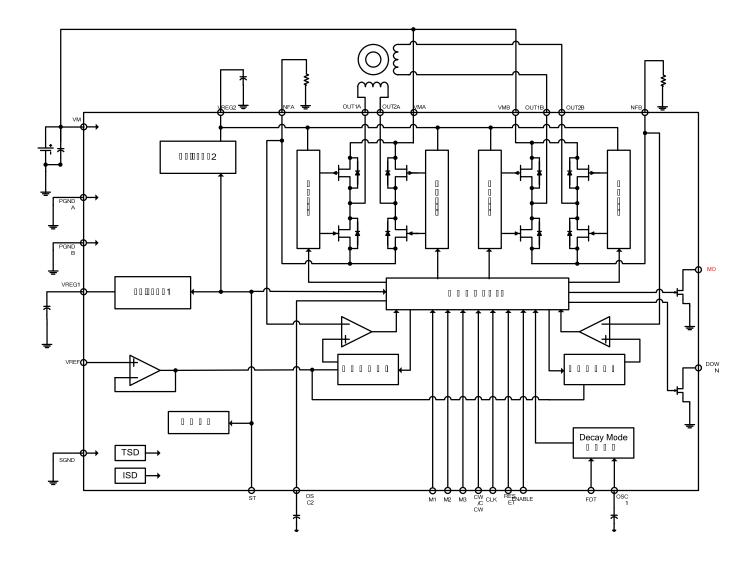
(正弦波增加方向)

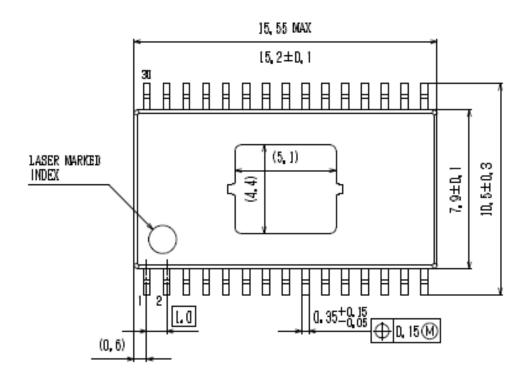
(正弦波減少方向)

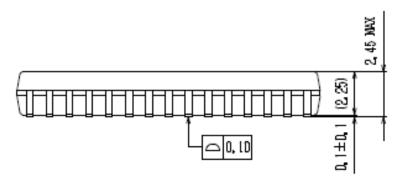
各电流模式依以下时序动作。

- · 斩波振荡上升沿时为 CHARGE 模式。(与 coil 电流(ICOIL) 及设定电流(IREF)的大小无关,强制为 CHARGE 模式的区间(Blanking Time)存在大约 1 μ s。
- ·Blanking Time 区间结束后,将 coil 电流(ICOIL)及设定电流(IREF)进行比较。。

(ICOIL<IREF)存在时


到 ICOIL ≥ IREF 为止为 CHARGE 模式。此后切换到 SLOW DECAY 模式。最后约 1 μ s 的区间切换到 FAST DECAY 模式。


(ICOIL < IREF) 不存在时


切换到 FAST DECAY 模式,到斩波 1 周期结束为止以 FAST DECAY 方式进行 coil 电流衰减。

反复进行上述动作。通常,正弦波增加方向,SLOW(+FAST)DECAY 模式。正弦波减少方向,到电流衰减到设定值为 止时为 FAST DECAY 模式,此后为 SLOW(+FAST)DECAY 模式。

11. Block 图

