
The Embedded I/O Company

TIP119-SW
Linux Device D

Six Channel 16 bit Quadrature

Version 1.0.

User Manu

Issue 1.0.0

July 2007

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
-82
river

Decoder Counter

x

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 2 of 21

TIP119-SW-82

Linux Device Driver

Six Channel 16 bit Quadrature Decoder Counter

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2007 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue July 6, 2007

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 3 of 21

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build and install the device driver...5
2.2 Uninstall the device driver.. ...6
2.3 Install device driver into the running kernel ...6
2.4 Remove device driver from the running kernel7
2.5 Change Major Device Number...7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8
3.1 open().. ..8
3.2 close()..10
3.3 ioctl()................................ ...11

3.3.1 TIP119_IOCX_COUNTERREAD ...13
3.3.2 TIP119_IOCX_WAITFORINDEX..15
3.3.3 TIP119_IOCX_WAITFOROVERFLOWSW..17
3.3.4 TIP119_IOCX_WAITFOROVERFLOWHW..19

4 DEBUGGING.. 21

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 4 of 21

1 Introduction
The TIP119-SW-82 Linux device driver allows the operation of TIP119 IPAC modules on Linux
operating systems.

Because the TIP119 device driver is stacked on the TEWS TECHNOLOGIES IPAC carrier driver, it is
necessary to install also the appropriate IPAC carrier driver. Please refer to the IPAC carrier driver
user manual for further information.

The TIP119 device driver includes the following features:

 read counter channel value
 reset counter channels
 wait for interrupts (overflow, index)
 counter width enhanced to 32bit by driver
 counter value rrad on index interrupt by driver

The TIP119-SW-82 supports the modules listed below:

TIP119-10 Six Channel 16 bit Quadrature Decoder
Counter

IndustryPack® compatible

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TIP119 User manual

TIP119 Engineering Manual
CARRIER-SW-82 IPAC Carrier User Manual

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 5 of 21

2 Installation
The directory TIP119-SW-82 on the distribution media contains the following files:

TIP119-SW-82-1.0.0.pdf This manual in PDF format
TIP119-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
Release.txt Release information
ChangeLog.txt Release history

The GZIP compressed archive TIP119-SW-82-SRC.tar.gz contains the following files and directories:

tip119/tip119.c Driver source code
tip119/tip119def.h Driver include file
tip119/tip119.h Driver include file for application program
tip119/makenode Script to create device nodes on the file system
tip119/Makefile Device driver make file
tip119/example/tip119exa.c Example application
tip119/example/Makefile Example application make file
tip119/include/tpmodule.h Kernel independent library header file
tip119/include/tpmodule.c Kernel independent library source code file

In order to perform an installation, extract all files of the archive TIP119-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TIP119-SW-82-SRC.tar.gz’ will extract the files into
the local directory.

Before building a new device driver, the TEWS TECHNOLOGIES IPAC carrier driver must be
installed properly, because this driver includes the header file ipac_carrier.h, which is part of
the IPAC carrier driver distribution. Please refer to the IPAC carrier driver user manual in the
directory path CARRIER-SW-82 on the separate distribution media.

2.1 Build and install the device driver
 Login as root

 Change to the target directory

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

For Linux kernel 2.6.x, there may be compiler warnings claiming some undefined ipac_*
symbols. These warnings are caused by the IPAC carrier driver, which is unknown
during compilation of this TIP driver. The warnings can be ignored.

 Also after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load the correct IPAC carrier driver modules.

depmod –aq

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 6 of 21

2.2 Uninstall the device driver
 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

 Update kernel module dependency description file:

depmod –aq

2.3 Install device driver into the running kernel
 To load the device driver into the running kernel, login as root and execute the following

commands:

modprobe tip119drv

 After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TIP119 module found. The first
TIP119 can be accessed with device node /dev/tip119_0, the second TIP119 with device node
/dev/tip119_1, the third TIP119 with device node /dev/tip119_2 and so on.

The allocation of device nodes to physical TIP119 modules depends on the search order of the IPAC
carrier driver. Please refer to the IPAC carrier user manual.

Loading of the TIP119 device driver will only work if kernel KMOD support is installed,
necessary carrier board drivers already installed and the kernel dependency file is up to date.
If KMOD support isn’t available you have to build either a new kernel with KMOD installed or
you have to install the IPAC carrier kernel modules manually in the correct order (please refer
to the IPAC carrier driver user manual).

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 7 of 21

2.4 Remove device driver from the running kernel
 To remove the device driver from the running kernel login as root and execute the following

command:

modprobe tip119drv –r

If your kernel has enabled devfs or sysfs (udev), all /dev/tip119_x nodes will be automatically removed
from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tip119drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

2.5 Change Major Device Number
The TIP119 driver uses dynamic allocation of major device numbers by default. If this isn’t suitable for
the application it’s possible to define a major number for the driver. If the kernel has enabled devfs the
driver will not use the symbol TIP119_MAJOR.

To change the major number edit the file tip119.c, change the following symbol to appropriate value
and enter make install to create a new driver.

TIP119_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means dynamic
number allocation.

Example:

#define TIP119_MAJOR 122

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 8 of 21

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C). See also the GNU C Library
documentation for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/tip119_0”, O_RDWR);
if (fd < 0)
{

/* handle error condition */
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 9 of 21

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open.

SEE ALSO

GNU C Library description – Low-Level Input/Output

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 10 of 21

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0) {
/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 11 of 21

3.3 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tip119.h:

Symbol Meaning

TIP119_IOCX_COUNTERREAD Read Counter Value of specific channel
TIP119_IOC_COUNTERRESET Reset all counter channels

TIP119_IOCX_WAITFORINDEX Wait for Index interrupt
TIP119_IOCX_WAITFOROVERFLOWSW Wait for Software Counter Overflow

TIP119_IOCX_WAITFOROVERFLOWHW Wait for Hardware Counter Overflow

See behind for more detailed information on each control code.

To use these TIP119 specific control codes the header file tip119.h must be included in the
application

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 12 of 21

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
requested ioctl function is unknown. Please check
the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TIP119 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 13 of 21

3.3.1 TIP119_IOCX_COUNTERREAD

NAME

TIP119_IOCX_COUNTERREAD - Read Counter Value of specific channel

DESCRIPTION

This ioctl function returns the counter value of the specified channel. A pointer to the caller’s buffer
(TIP119_COUNTER_DATA) is passed by the parameter argp to the driver.

typedef struct
{

unsigned char Channel;
unsigned long Data;

} TIP119_COUNTER_DATA, *PTIP119_COUNTER_DATA;

Channel
Specifies the counter channel number to be read. The channel number is 1-based, i.e. specify
“1” for channel 1, “2” for channel 2 and so on. Possible values are 1 to 6.

Data
Returns the counter data of the specified channel. The actual 16bit counter hardware value is
virtually enhanced to 32bit by evaluating overflow interrupts.

EXAMPLE

#include “tip119.h”

int fd;
int result;
TIP119_COUNTER_DATA CounterData;

/*
** Read Counter Value of Channel 1
*/
CounterData.Channel = 1;
result = ioctl(fd, TIP119_IOCX_COUNTERREAD, &CounterData);

if (result >= 0) {
printf(“Counter = 0x%08lX\n”, CounterData.Data);

} else {
/* handle ioctl error */

}

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 14 of 21

ERRORS

Error code Description

EFAULT Error copying data to or from user space.
EINVAL Invalid channel specified.

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 15 of 21

3.3.2 TIP119_IOCX_WAITFORINDEX

NAME

TIP119_IOCX_WAITFORINDEX - Wait for Index interrupt

DESCRIPTION

This ioctl waits for an incoming Index interrupt. The counter value is read by the interrupt service
routine on the interrupt. A pointer to the caller’s buffer (TIP119_WAIT_STRUCT) is passed by the
parameter argp to the driver.

typedef struct
{

unsigned char Channel;
int Timeout;
unsigned long CounterValue;
unsigned long OverflowDirection;

} TIP119_WAIT_STRUCT, *PTIP119_WAIT_STRUCT;

Channel
Specifies the counter channel number. The channel number is 1-based, i.e. specify “1” for
channel 1, “2” for channel 2 and so on. Possible values are 1 to 6.

Timeout
Specifies the number of system ticks to wait for this interrupt. Specify 0 to wait indefinitely.

CounterValue

Returns the counter data of the specified channel, read by the driver interrupt service routine.
The actual 16bit counter hardware value is virtually enhanced to 32bit by evaluating overflow
interrupts.

Note that there is a delay between the real index and the reading of the counter value
caused by the system interrupt latency.

OverflowDirection

Not used for this function.

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 16 of 21

EXAMPLE

#include “tip119.h”

int fd;
int result;
TIP119_WAIT_STRUCT WaitStruct;

/*
** Wait at least 100 system ticks for an Index Interrupt on Channel 1
*/
WaitStruct.Channel = 1;
WaitStruct.Timeout = 100;

result = ioctl(fd, TIP119_IOCX_WAITFORINDEX, &WaitStruct);

if (result >= 0) {
printf(“Index Interrupt occurred.\n”);
printf(“Read Counter = 0x%08lX\n”, WaitStruct.CounterValue);

} else {
/* handle ioctl error */

}

ERRORS

Error code Description
EFAULT Error copying data to or from user space.

EINVAL Invalid channel specified.
ETIME Timeout happened before Interrupt.

EBUSY There is already a pending job waiting for this interrupt on
this channel.

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 17 of 21

3.3.3 TIP119_IOCX_WAITFOROVERFLOWSW

NAME

TIP119_IOCX_WAITFOROVERFLOWSW - Wait for Software Counter Overflow

DESCRIPTION

This ioctl waits for an incoming Software Counter (32bit) Overflow interrupt. The counter value is read
by the interrupt service routine on the interrupt. A pointer to the caller’s buffer
(TIP119_WAIT_STRUCT) is passed by the parameter argp to the driver.

typedef struct
{

unsigned char Channel;
int Timeout;
unsigned long CounterValue;
unsigned long OverflowDirection;

} TIP119_WAIT_STRUCT, *PTIP119_WAIT_STRUCT;

Channel
Specifies the counter channel number. The channel number is 1-based, i.e. specify “1” for
channel 1, “2” for channel 2 and so on. Possible values are 1 to 6.

Timeout
Specifies the number of system ticks to wait for this interrupt. Specify 0 to wait indefinitely.

CounterValue

Returns the counter data of the specified channel, read by the driver interrupt service routine.
The actual 16bit counter hardware value is virtually enhanced to 32bit by evaluating overflow
interrupts.

Note that there is a delay between the real index and the reading of the counter value
caused by the system interrupt latency.

OverflowDirection

This value returns the overflow direction. The following values are possible:

Value Description
TIP119_OVERFLOW_UP Counter Overflow from 0xFFFFFFFF to

0x00000000 (up).

TIP119_OVERFLOW_DOWN Counter Overflow from 0x00000000 to
0xFFFFFFFF (down).

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 18 of 21

EXAMPLE

#include “tip119.h”

int fd;
int result;
TIP119_WAIT_STRUCT WaitStruct;

/*
** Wait at least 100 system ticks for a Software-Counter Overflow
** on Channel 1
*/
WaitStruct.Channel = 1;
WaitStruct.Timeout = 100;

result = ioctl(fd, TIP119_IOCX_WAITFOROVERFLOWSW, &WaitStruct);

if (result >= 0) {
printf(“Overflow Interrupt (SW) occurred.\n”);
printf(“Read Counter = 0x%08lX\n”, WaitStruct.CounterValue);
printf(“Overflow Direction: %s\n”,

(WaitStruct.OverflowDirection==TIP119_OVERFLOW_UP)?”UP”:”DOWN”);
} else {

/* handle ioctl error */
}

ERRORS

Error code Description
EFAULT Error copying data to or from user space.

EINVAL Invalid channel specified.

ETIME Timeout happened before Interrupt.
EBUSY There is already a pending job waiting for this interrupt on

this channel.

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 19 of 21

3.3.4 TIP119_IOCX_WAITFOROVERFLOWHW

NAME

TIP119_IOCX_WAITFOROVERFLOWHW - Wait for Hardware Counter Overflow

DESCRIPTION

This ioctl waits for an incoming Hardware Counter (16bit) Overflow interrupt. The counter value is read
by the interrupt service routine on the interrupt. A pointer to the caller’s buffer
(TIP119_WAIT_STRUCT) is passed by the parameter argp to the driver.

typedef struct
{

unsigned char Channel;
int Timeout;
unsigned long CounterValue;
unsigned long OverflowDirection;

} TIP119_WAIT_STRUCT, *PTIP119_WAIT_STRUCT;

Channel
Specifies the counter channel number. The channel number is 1-based, i.e. specify “1” for
channel 1, “2” for channel 2 and so on. Possible values are 1 to 6.

Timeout
Specifies the number of system ticks to wait for this interrupt. Specify 0 to wait indefinitely.

CounterValue

Returns the counter data of the specified channel, read by the driver interrupt service routine.
The actual 16bit counter hardware value is virtually enhanced to 32bit by evaluating overflow
interrupts.

Note that there is a delay between the real index and the reading of the counter value
caused by the system interrupt latency.

OverflowDirection

This value returns the overflow direction. The following values are possible:

Value Description
TIP119_OVERFLOW_UP Counter Overflow from 0xFFFF to 0x0000

(up).

TIP119_OVERFLOW_DOWN Counter Overflow from 0x0000 to 0xFFFF
(down).

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 20 of 21

EXAMPLE

#include “tip119.h”

int fd;
int result;
TIP119_WAIT_STRUCT WaitStruct;

/*
** Wait at least 100 system ticks for a Hardware-Counter Overflow
** on Channel 1
*/
WaitStruct.Channel = 1;
WaitStruct.Timeout = 100;

result = ioctl(fd, TIP119_IOCX_WAITFOROVERFLOWHW, &WaitStruct);

if (result >= 0) {
printf(“Overflow Interrupt (HW) occurred.\n”);
printf(“Read Counter = 0x%08lX\n”, WaitStruct.CounterValue);
printf(“Overflow Direction: %s\n”,

(WaitStruct.OverflowDirection==TIP119_OVERFLOW_UP)?”UP”:”DOWN”);
} else {

/* handle ioctl error */
}

ERRORS

Error code Description
EFAULT Error copying data to or from user space.

EINVAL Invalid channel specified.

ETIME Timeout happened before Interrupt.
EBUSY There is already a pending job waiting for this interrupt on

this channel.

Free Datasheet http://www.0PDF.com

TIP119-SW-82 - Linux Device Driver Page 21 of 21

4 Debugging
For debugging output see tip119.c. You will find the following symbol:

#undef TIP119_DEBUG_VIEW
To enable a debug output replace “undef” with “define”.

The TIP119_DEBUG_VIEW symbol controls debugging output from the whole driver.

You can retrieve these messages from the /proc file system using the following command:

cat /proc/kmsg

TIP119 - Quadrature Decoder Counter - version 1.0.0 (2007-07-06)<6>
TIP119: Probe new TIP119 mounted on <TEWS TECHNOLOGIES - (Compact)PCI IPAC
Carrier> at slot A

TIP119: IP I/O Memory Space
00000000 : FF 7B 00 00 00 00 00 00 00 00 00 00 FF FF FF FF
00000010 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Free Datasheet http://www.0PDF.com

	Introduction
	Installation
	Build and install the device driver
	Uninstall the device driver
	Install device driver into the running kernel
	Remove device driver from the running kernel
	Change Major Device Number

	Device Input/Output functions
	open()
	close()
	ioctl()
	TIP119_IOCX_COUNTERREAD
	TIP119_IOCX_WAITFORINDEX
	TIP119_IOCX_WAITFOROVERFLOWSW
	TIP119_IOCX_WAITFOROVERFLOWHW

	Debugging

