

TIP119

Six Channel 16 bit Quadrature Decoder Counter

Version 1.0

User Manual

Issue 1.1 September 2006

D75119800

TIP119-10

Six Channel 16 bit Quadrature Decoder Counter

This document contains information, which is proprietary to TEWS TECHNOLOGIES GmbH. Any reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any effort to ensure that this manual is accurate and complete. However TEWS TECHNOLOGIES GmbH reserves the right to change the product described in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any damage arising out of the application or use of the device described herein.

Style Conventions

Hexadecimal characters are specified with prefix 0x, i.e. 0x029E (that means hexadecimal value 029E).

For signals on hardware products, an ,Active Low' is represented by the signal name with # following, i.e. IP_RESET#.

Access terms are described as:

W Write Only
R Read Only
R/W Read/Write
R/C Read/Clear
R/S Read/Set

©2005-2006 by TEWS TECHNOLOGIES GmbH

IndustryPack is a registered trademark of SBS Technologies, Inc

Issue	Description	Date
1.0	Initial Issue	December 2005
1.1	Removed typos / Indexing clarification	September 2006

Table of Contents

1	PRODUCT DESCRIPTION	6
2	TECHNICAL SPECIFICATION	
- 3	ID PROM CONTENTS	
3 4	IP ADDRESSING	
4		
	4.1 I/O Addressing	9
	4.2 Counter Channel	9
	4.3 Reset all Channels	
	4.4 Overflow Register	10
	4.5 Index Register	10
	4.6 Up/Down Register	
	4.7 Interrupt Vector Register	
	4.8 Interrupt Overflow Mask Register	
	4.9 Interrupt Index Mask Register	11
5	FUNCTIONAL PROCEDURES	12
	5.1 Initialization	12
	5.2 Virtual Counter	
	5.3 Indexing	
	5.4 Interrupt Setup	12
6	PIN ASSIGNMENT – I/O CONNECTOR	13

Table of Figures

FIGURE 1-1 :	BLOCK DIAGRAM	6
FIGURE 2-1 :	TECHNICAL SPECIFICATION	7
FIGURE 3-1 :	ID PROM CONTENTS	8
FIGURE 4-1 :	REGISTER SET	9
FIGURE 4-2 :	COUNTER CHANNEL	9
FIGURE 4-3 :	OVERFLOW REGISTER	10
FIGURE 4-4 :	INDEX REGISTER	10
FIGURE 4-5 :	UP/DOWN REGISTER	10
FIGURE 4-6 :	INTERRUPT VECTOR REGISTER	11
	INTERRUPT OVERFLOW MASK REGISTER	
	INTERRUPT INDEX MASK REGISTER	
FIGURE 6-1 :	PIN ASSIGNMENT I/O CONNECTOR	13
FIGURE 6-2 :	IP CONNECTOR ORIENTATION	14

1 Product Description

The TIP119 is an IndustryPack® compatible module providing six channels of quadrature decoder inputs. Each channel has a dedicated 16 bit wide quadrature decoder counter.

The input signals can be of RS422A and RS423A level and pass a digital filter for noise suppression before they are fed into the counter.

An interrupt can be generated at counter over- or underflow or on assertion of the index input. An 8 bit interrupt vector is supported.

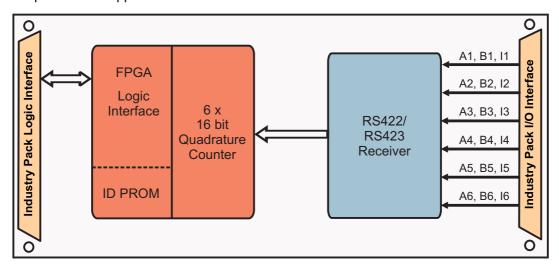


Figure 1-1: Block Diagram

2 Technical Specification

IP Interface				
Interface	Single Size ANSI/VITA	IndustryPack® Logic Interface compliant to 4-1995		
ID ROM Data	Format I			
I/O Space	1 wait state			
Memory Space	not used			
Interrupts	INT0 / INT1	used		
DMA	Not support	ed		
Clock Rate	8 MHz			
Module Type	Type I			
I/O Interface				
Interface Connector	50-conducto	50-conductor flat cable		
Input Signal Level	RS422A, RS423A			
Input Common Mode Volt.	±15V			
Input Differential Voltage	±25V			
Input Impedance	220Ω			
Max. Encoder Tracking Freq.	1.3MHz			
Power Requirements	230 mA typi	cal @ +5V DC		
Physical Data				
Temperature Range	Operating Storage	0 °C to +70 °C -40°C to +125°C		
MTBF	738000 h			
Humidity	5 – 95 % no	n-condensing		
Weight	26 g			

Figure 2-1: Technical Specification

3 ID PROM Contents

Address	Function	Contents
0x01	ASCII 'I'	0x49
0x03	ASCII 'P'	0x50
0x05	ASCII 'A'	0x41
0x07	ASCII 'C'	0x43
0x09	Manufacturer ID	0xB3
0x0B	Model Number	0x3D
0x0D	Revision	0x10
0x0F	Reserved	0x00
0x11	Driver-ID Low - Byte	0x00
0x13	Driver-ID High - Byte	0x00
0x15	Number of bytes used	0x0C
0x17	CRC	0xF7

Figure 3-1: ID PROM Contents

4 IP Addressing

4.1 I/O Addressing

The complete register set of the TIP119 is accessible in the I/O space of the IP.

Address	Symbol	Description	Size (Bit)	Access
0x00	-	Counter channel 1	16	R
0x02	-	Counter channel 2	16	R
0x04	-	Counter channel 3	16	R
0x06	-	Counter channel 4	16	R
0x08	-	Counter channel 5	16	R
0x0A	-	Counter channel 6	16	R
0x0C	-	Reset All Channels Register	16	R
0x0E	-	-	-	-
0x10	-	Overflow Register	16	R/W
0x12	-	Index Register	16	R/W
0x14	-	Up/Down Register	16	R
0x16	-	Interrupt Vector Register	16	W
0x18	-	Interrupt Overflow Mask Register	16	W
0x1A	-	Interrupt Index Mask Register	16	W

Figure 4-1: Register Set

4.2 Counter Channel

Bit	Symbol	Description	Access	Reset
15:0		Each channel's count can be read with a 16 bit wide read access.	R	0

Figure 4-2: Counter Channel

The counters multiply the resolution of the input signals by four.

4.3 Reset all Channels

A single read access to this register resets all the channel counters.

4.4 Overflow Register

Bit	Symbol	Description	Access	Reset
15:6		Reserved. Undefined for read access.	-	-
5	CH6	Counter overflow	R/W	1
4	CH5	Read access:	R/W	1
3	CH4	0 – asserted (counter overflow)	R/W	1
2	CH3	1 – nonasserted	R/W	1
1	CH2	Write:	R/W	1
0	CH1	A write clears the state of all channels in the Overflow and the Up/Down Register.	R/W	1

Figure 4-3: Overflow Register

4.5 Index Register

Bit	Symbol	Description	Access	Reset
15:6		Reserved. Undefined for read access.	-	-
5	CH6	Counter index	R/W	1
4	CH5	Read access:	R/W	1
3	CH4	0 – asserted (index passed)	R/W	1
2	CH3	1 – nonasserted	R/W	1
1	CH2	Write:	R/W	1
0	CH1	A write clears the state of all channels. The register bits stay '0' until cleared.	R/W	1

Figure 4-4: Index Register

4.6 Up/Down Register

Bit	Symbol	Description	Access	Reset
15:6		Reserved. Undefined for read access.	-	-
5	CH6	Counter up/down	R	1
4	CH5	Read access:	R	1
3	CH4	0 – up	R	1
2	CH3	1 – down	R	1
1	CH2	Bits are set when the corresponding Overflow Register bit is set. This register is cleared by a write to the	R	1
0	CH1	Overflow Register.	R	1

Figure 4-5: Up/Down Register

4.7 Interrupt Vector Register

Bit	Symbol	Description	Access	Reset
15:8	-	Reserved. Undefined for read access.	-	-
7:1	IVEC	Interrupt Vector	W	0xFE
0	A1	Interrupt acknowledge response This bit reflects the A1 address line during an interrupt acknowledge cycle 0 – INTRQ0 interrupt acknowledge cycle 1 – INTRQ1 interrupt acknowledge cylce	-	0

Figure 4-6: Interrupt Vector Register

4.8 Interrupt Overflow Mask Register

Bit	Symbol	Description	Access	Reset
15:6	-	Reserved. Undefined for read access.	-	-
5	CH6	Overflow interrupt mask	W	1
4	CH5	0 – unmask overflow interrupt.	W	1
3	CH4	1 – mask interrupt.	W	1
2	CH3		W	1
1	CH2		W	1
0	CH1		W	1

Figure 4-7: Interrupt Overflow Mask Register

Each of the channels interrupts may be masked by setting the interrupt mask register; the overflow register will have the channel's bit latched asserted but will not cause an interrupt to the host.

4.9 Interrupt Index Mask Register

Bit	Symbol	Description	Access	Reset
15:6	-	Reserved. Undefined for read access.	-	-
5	CH6	Index interrupt mask	W	1
4	CH5	0 – unmask Index interrupt. 1 – mask interrupt.	W	1
3	CH4		W	1
2	CH3		W	1
1	CH2		W	1
0	CH1		W	1

Figure 4-8: Interrupt Index Mask Register

Each of the channels interrupts may be masked by setting the interrupt mask register; the index register will have the channel's bit latched asserted but will not cause an interrupt to the host.

5 Functional Procedures

5.1 Initialization

- Read to offset 0x0C to reset the counters.
- Clear both Overflow and Index Register.

5.2 Virtual Counter

The interrupt on counter over- or underflows can be used by the software driver to maintain an infinitely wide virtual counter.

- Set up an interrupt service routine for INTRQ0.
- In the ISR increment or decrement the virtual counter, depending on the Up/Down Register bit.
- Reset the Overflow Register to acknowledge the interrupt request.

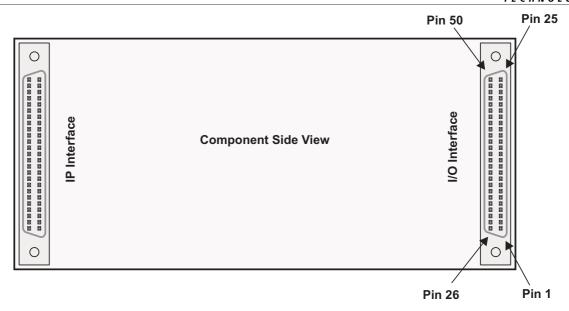
5.3 Indexing

- · Set up an interrupt service routine for INTRQ1.
- Save the counter value in the ISR.
- Reset the Index Register to acknowledge the interrupt request.

The index input is low-active.

5.4 Interrupt Setup

An Interrupt Vector can be set in the lower byte of the Interrupt Vector Register. The vector is presented on an interrupt acknowledge cycle. The D0-bit indicates which interrupt line is going to be acknowledged. Unused channels can be masked in the Interrupt Overflow and Interrupt Index Mask Registers.


6 Pin Assignment – I/O Connector

Pin	Channel	Signal
1	GND	
2	Channel 6	l+
3	Channel 6	I-
4	Channel 6	B+
5	Channel 6	B-
6	GND	
7	Channel 6	A+
8	Channel 6	A-
9	GND	
10	Channel 5	l+
11	Channel 5	I-
12	Channel 5	B+
13	Channel 5	B-
14	GND	
15	Channel 5	A+
16	Channel 5	A-
17	GND	
18	Channel 4	+
19	Channel 4	I-
20	Channel 4	B+
21	Channel 4	B-
22	GND	
23	Channel 4	A+
24	Channel 4	A-
25	GND	

Pin	Channel	Signal
26	GND	
27	Channel 3	+
28	Channel 3	I-
29	Channel 3	B+
30	Channel 3	B-
31	GND	
32	Channel 3	A+
33	Channel 3	A-
34	GND	
35	Channel 2	+
36	Channel 2	I-
37	Channel 2	B+
38	Channel 2	B-
39	GND	
40	Channel 2	A+
41	Channel 2	A-
42	GND	
43	Channel 1	 +
44	Channel 1	I-
45	Channel 1	B+
46	Channel 1	B-
47	GND	
48	Channel 1	A+
49	Channel 1	A-
50	GND	

Figure 6-1: Pin Assignment I/O Connector

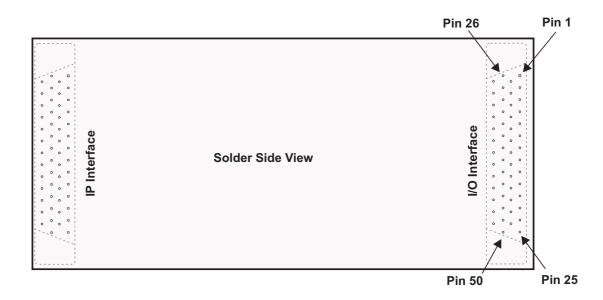


Figure 6-2: IP Connector Orientation