Dual Supply Grand Earthing System Audio Signal Mute IC ### **FEATURES** - Wide Voltage Range (±2.5 to ±5.5 V) - High Volume Attenuation (typ. -89dB) - Very Low Signal Distortion (typ. 0.0025%) - High Maximum Input Voltage (max. 5.2 V_{p.p}) - Very Low Standby Current (typ. 0.6 mA) - **■** Minimal External Component Circuitry ### **APPLICATIONS** - Audio Systems - Television - VTR - MD - **■** CD ### **DESCRIPTION** The TK15125M is a dual power supply Mute IC of the Grand Earthing System that was developed as a low frequency signal attenuator for audio products. The mute function includes two channels which operate simultaneously by one control key. The optional time for the Attack/Release action can be set up by an external timing control capacitor. The TK15125M is available in a SOP-14 Surface Mount Package. July 1999 TOKO, Inc. Page 1 ### ABSOLUTE MAXIMUM RATINGS | Supply Voltage ±6 V | Storage Temperature Range55 to +150 °C | |----------------------------|---| | Power Dissipation (Note 3) | Operating Temperature Range20 to +60 °C | | Input Frequency100 kHz | Signal Input Voltage V _{ss} to V _{pp} | ### TK15121M ELECTRICAL CHARACTERISTICS Test conditions: $V_{CC} = \pm 5 \text{ V}$, $T_A = 25 \text{ °C}$, f = 1 kHz, $V_{SIN} = 5 \text{ V}_{P-P}$ unless otherwise specified. | SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |-----------------------|-----------------------------------|--|-----------------------|--------|-----------------------|------------------| | V _{DD} | Operating Voltage | | 2.5 | 5.0 | 5.5 | V | | V _{SS} | Operating Voltage | | -2.5 | -5.0 | -5.5 | V | | I _{DD (OFF)} | Operating Current, Mute Off | | | 0.6 | 0.9 | mA | | I _{DD (ON)} | Operating Current, Mute On | Operating Current, Mute On | | 12.0 | 17.0 | mA | | ATT | Attenuation | ation $R_{IN} = 300 \Omega \text{ (Note 1)}$ -85 | | -89 | | dB | | CI _{ON} | Mute On Charge Current | | 8.0 | 12.0 | 18.0 | μA | | CI _{OFF} | Mute Off Discharge Current | (Note 2) | 1.8 | 3.0 | 5.0 | μA | | SWV _{OFF} | Mute Control SW, Mute Off Voltage | | V _{SS} | | V _{SS} + 0.4 | V | | SWV _{ON} | Mute Control SW, Mute On Voltage | | V _{SS} + 2.4 | | V _{DD} | V | | SWI _{ON} | Mute Control SW, Mute On Current | | | 16 | 25 | μA | | V _{OSAT} | Mute On Output DC Voltage | | | 2.4 | 3.7 | mV | | THD 1 | Mute Off Total Harmonic | | | 0.0025 | 0.0070 | % | | THD 2 | Distortion | JIS-A Filter ON | | 0.0007 | 0.0030 | % | | GVA | Voltage Gain | dB = ~20 kHz | -0.5 | 0 | +0.5 | dB | | V _{IN (MAX)} | Maximum Input Voltage | THD < 0.01% | | | 5.2 | V _{P-P} | | MR | Inner Attenuation Resistance | | 168 | 240 | 312 | Ω | July 1999 TOKO, Inc. Page 2 Note 1: If an R_{IN} other than 300 Ω is used, the volume attenuation and attack/release times change. Note 2: In the standard application a capacitor is connected between Pin 13 and V_{SS} . Attack is the term used to describe the action of changing the unit from 'mute off' to 'mute on'. Release is the term used to describe the action of changing the unit from 'mute on' to 'mute off'. The standard timing control capacitance is 0.047 µF. Note 3: Power dissipation is 350 mW when mounted as recommended. Derate at 2.8 mW/°C for operation above 25°C. ### **TEST CIRCUIT AND TESTING METHODS** **TESTING METHODS** - 1) POWER SUPPLY CURRENT - · 'MUTE OFF' Mode Measure current 'A1' while control, Pin 9, is 'Lo' (or open). · 'MUTE ON' Mode Measure current 'A1' while control, Pin 9, is 'Hi'. #### 2) ATTENUATION VOLUME Attenuation is calculated by the following equation while control, Pin 9, is 'Hi': - 3) CAPACITOR PIN CHARGING AND DISCHARGING CURRENT - Charging Current Measure outflow current 'A2' while control, Pin 9, is 'Hi' and the voltage at Pin 13 is V_{ss} + 0.75 V. Discharging Current Measure inflow current 'A2' while control, Pin 9, is 'Lo (or open)' and the voltage at Pin 13 is V_{ss} + 0.75 V. - 4) CONTROL SWITCH VOLTAGE - · 'MUTE OFF' Mode Gradually elevate Pin 9 voltage above V_{ss} . When the Attack action (Mute On) is implemented at Pin 1 (Pin 7), measure the voltage 'V1'. 'MUTE ON' Mode Gradually lower Pin 9 voltage below V_{DD} . When the Release action (Mute Off) is implemented at Pin 1 (Pin 7), measure the voltage 'V1'. - 5) 'MUTE ON' OUTPUT DC VOLTAGE - · Measure output voltage at Pin 1 (Pin 7) while control, Pin 9, is 'Hi' and there is no input. - 6) TOTAL HARMONIC DISTORTION - · Measure the distortion of the Pin 1 (Pin 7) output while control, Pin 9, is 'Lo' (or open). - 7) SIGNAL VOLTAGE GAIN - Signal gain is calculated by the following equation while control, Pin 9, is 'Lo' (or open). - 8) INNER ATTENUATION RESISTANCE - Using a multimeter, measure the resistance between Pin 1 (Pin 7) and Pin 2 (Pin 6) while the power supply is off. - 9) MAXIMUM INPUT SIGNAL VOLTAGE - While control, Pin 9, is 'Lo' (or open), gradually elevate Pin 2 (Pin 6) voltage above 0 V_{P-P}. When the distortion becomes 0.01% at the output of Pin 1 (Pin 7), measure the AC voltage. July 1999 TOKO, Inc. Page 3 ### TYPICAL PERFORMANCE CHARACTERISTICS $T_A = 25$ °C, unless otherwise specified. Page 4 July 1999 TOKO, Inc. ### **TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)** $T_A = 25$ °C, unless otherwise specified. Cross Talk Test Circuit ### STANDARD APPLICATION July 1999 TOKO, Inc. Page 5 ### TERMINAL VOLTAGE AND EQUIVALENT CIRCUIT | PIN
NO. | SYMBOL | DC
VOLTAGE | EQUIVALENT CIRCUIT | EXPLANATION | |------------------|--|--|------------------------------------|---| | 1
2
6
7 | OUT/IN 1
IN/OUT 1
IN/OUT 2
OUT/IN 2 | Floating / 0 V
Floating / 0 V
Floating / 0 V
Floating / 0 V | VDD 120 = | Pin 1: Output for Pin 2. Pin 2: Input for Pin 1. Pin 6: Input for Pin 7. Pin 7: Output for Pin 6. Note 1 | | 3
4
5 | GND 1
GND 2
GND 3 | 0 V
0 V
0 V | GND pin. | Ground pin. Note 2 | | 8 | V _{ss} | -5.5 ~ -2.5 V | V _{ss} pin. | Negative Voltage Pin. | | 9 | Control | -5.0 V | 47 K VSS | Control Pin for the Mute on/off. | | 10
11
12 | NC
NC
NC | Floating
Floating
Floating | | No Connection Pin. Note 3 | | 13 | Mute-C | -5.0 V / 3.2 V | V _{DD}
V _{SS} | Pin for Timing Capacitor for Attack/Release time. | | 14 | V _{DD} | 2.5 ~ 5.5 V | V _{DD} Pin. | Positive Voltage Pin. | Note 1: Even if the input and output became opposite, the action is the same. Note 2: Connect all GND pins to the Ground. Note 3: Although all NC pins are not connected internally to the IC, signals should not be externally applied to these pins. Note 4: In the standard application a capacitor is connected between Pin 13 and V_{ss} . Attack is the term used to describe the action of changing the unit from 'mute on' to 'mute off'. The standard timing control capacitance is 0.047 μF . Page 6 July 1999 TOKO, Inc. ### TIMING-CHART AND ACTION TIME AT MUTE Test conditions: $V_{CC} = \pm 5$ V, Timing Capacitor = 0.047 μ F The following values are typical characteristics; accordingly they are not guaranteed values. #### ATTACK ACTION START (MUTE ON) When the attack action is started ('mute on' is initiated), the capacitor on Pin 13 starts to charge. The voltage at the capacitor on Pin 13 rises by 1.8 V. The 1.8 V rise time can be calculated by the following equation: T1 $$\approx \frac{\text{Capacitance X 1.8 V}}{\text{Charge Current}} = \frac{0.047 \,\mu\text{F X 1.8 V}}{12 \,\mu\text{A}} = 7.1 \,\text{msec}$$ When the capacitor of Pin 13 rises by 1.8 V to -3.2 V as detected by the upper limit circuit, the mute action functions $(V_{SS} + 1.8 \text{ V} = -3.2 \text{ V})$. In this estimate, when the capacitor on Pin 13 has risen by 0.7 V to 0.8 V, the attenuation is approximately 90% of the final attenuation achieved. This results in the following calculation and timing chart. T2 $$\approx \frac{0.047 \,\mu\text{F X 0.75 V}}{12 \,\mu\text{A}}$$ = 2.9 msec This time is the attack time. #### **RELEASE ACTION START (MUTE OFF)** When the release action is started ('mute off' is initiated) the capacitor on Pin 13 starts to discharge. The voltage at the capacitor on Pin 13 falls to V_{SS} + 10 mV. This fall time can be calculated by the following equation: T3 $$\approx \frac{\text{Capacitance X 1.8 V}}{\text{Disharge Current}} = \frac{0.047 \,\mu\text{F X 1.8 V}}{3 \,\mu\text{A}} = 28 \,\text{msec}$$ In this estimate, when the capacitor on Pin 13 has fallen to $V_{SS} + 0.7 \text{ V}$ to 0.8 V, the signal is restored to approximately 90% of its value. This results in the following calculation and timing chart: T4 $$\approx \frac{0.047 \,\mu\text{F X 1.05 V}}{3 \,\mu\text{A}}$$ = 16 msec This time is the release time. Accordingly, the release action time is 12 msec (T3 - T4 = 28 msec - 16 msec = 12 msec). July 1999 TOKO, Inc. ### PACKAGE OUTLINE # RITOKO Toko America, Inc. Headquarters 1250 Feehanville Drive, Mount Prospect, Illinois 60056 Tel: (847) 297-0070 Fax: (847) 699-7864 ### TOKO AMERICA REGIONAL OFFICES Midwest Regional Office Toko America, Inc. 1250 Feehanville Drive Mount Prospect, IL 60056 Tel: (847) 297-0070 Fax: (847) 699-7864 Western Regional Office Toko America, Inc. 2480 North First Street , Suite 260 San Jose, CA 95131 Tel: (408) 432-8281 Eastern Regional Office Toko America, Inc. 107 Mill Plain Road Danbury, CT 06811 Tel: (203) 748-6871 Fax: (203) 797-1223 Semiconductor Technical Support Toko Design Center 4755 Forge Road Colorado Springs, CO 80907 Tel: (719) 528-2200 Fax: (719) 528-2375 #### Visit our Internet site at http://www.tokoam.com Fax: (408) 943-9790 The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.