

TLE 4267

5-V Low Drop Voltage Regulator

TLE 4267 TLE 4267 G TLE 4267 S TLE 4267 GM

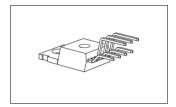
Data Sheet

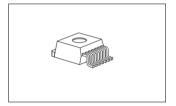
Rev. 2.51, 2012-01-20

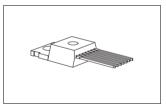
Automotive Power

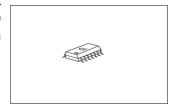
5-V Low Drop Voltage Regulator

TLE 4267




Features


- Output voltage tolerance ≤ ±2%
- · 400 mA output current capability
- · Low-drop voltage
- Very low standby current consumption
- Input voltage up to 40 V
- Overvoltage protection up to 60 V (≤ 400 ms)
- Reset function down to 1 V output voltage
- ESD protection up to 2000 V
- · Adjustable reset time
- On/off logic
- Overtemperature protection
- Reverse polarity protection
- Short-circuit proof
- Wide temperature range
- Suitable for use in automotive electronics
- Green Product (RoHS compliant)
- AEC Qualified


Functional Description

TLE 4267 is a 5-V low drop voltage regulator for automotive applications in the PG-TO220-7 or PG-DSO-14-30 package. It supplies an output current of > 400 mA. The IC is shortcircuit-proof and has an overtemperature protection circuit.

Туре	Package	Туре	Package
TLE 4267	PG-TO220-7-11	TLE 4267 S	PG-TO220-7-12
TLE 4267 G	PG-TO263-7-1	TLE 4267 GM	PG-DSO-14-30

Application

The IC regulates an input voltage $V_{\rm I}$ in the range of 5.5 V < $V_{\rm I}$ < 40 V to a nominal output voltage of $V_{\rm Q}$ = 5.0 V. A reset signal is generated for an output voltage of $V_{\rm Q}$ < $V_{\rm RT}$ (typ. 4.5 V). The reset delay can be set with an external capacitor. The device has two logic inputs. A voltage of $V_{\rm E2}$ > 4.0 V given to the E2-pin (e.g. by ignition) turns the device on. Depending on the voltage on pin E6 the IC may be hold in active-state even if $V_{\rm E2}$ goes to low level. This makes it simple to implement a self-holding circuit without external components. When the device is turned off, the output voltage drops to 0 V and current consumption tends towards 0 μ A.

Design Notes for External Components

The input capacitor $C_{\rm l}$ is necessary for compensation of line influences. The resonant circuit consisting of lead inductance and input capacitance can be damped by a resistor of approx. 1 Ω in series with $C_{\rm l}$. The output capacitor is necessary for the stability of the regulating circuit. Stability is guaranteed at values of \geq 22 μ F and an ESR of \leq 3 Ω within the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturating of the power element.

The reset output RO is in high-state if the voltage on the delay capacitor $C_{\rm D}$ is greater or equal $V_{\rm UD}$. The delay capacitance $C_{\rm D}$ is charged with the current $I_{\rm D}$ for output voltages greater than the reset threshold $V_{\rm RT}$. If the output voltage gets lower than $V_{\rm RT}$ a fast discharge of the delay capacitor $C_{\rm D}$ sets in and as soon as $V_{\rm CD}$ gets lower than $V_{\rm LD}$ the reset output RO is set to low-level (see **Figure 6**). The reset delay can be set within wide range by dimensioning the capacitance of the external capacitor.

Table 1 Truth Table for Turn-ON/Turn-OFF Logic

E2, Inhibit	E6, Hold	V_{Q}	Remarks
L	Χ	OFF	Initial state, Inhibit internally pulled-up
Н	Χ	ON	Regulator switched on via Inhibit, by ignition for example
Н	L	ON	Hold clamped active to ground by controller while Inhibit is still high
X	L	ON	Previous state remains, even ignition is shut off: self-holding state
L	L	ON	Ignition shut off while regulator is in self-holding state
L	Н	OFF	Regulator shut down by releasing of Hold while Inhibit remains Low, final state. No active clamping required by external self-holding circuit (μ C) to keep regulator in off-state.

Inhibit: E2 Enable function, active High

Hold: E6 Hold and release function, active Low

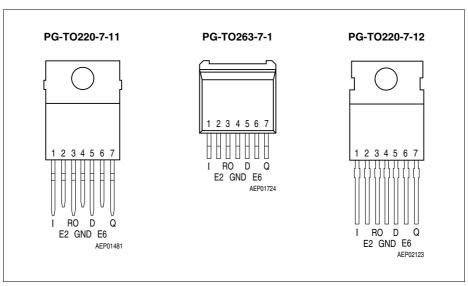


Figure 1 Pin Configuration (top view)

Table 2 Pin Definitions and Functions

Pin	Symbol	Function
1	I	Input; block to ground directly at the IC by a ceramic capacitor
2	E2	Inhibit; device is turned on by High signal on this pin; internal pull-down resistor of 100 $\mbox{k}\Omega$
3	RO	Reset Output; open-collector output internally connected to the output via a resistor of 30 $k\Omega$
4	GND	Ground; connected to rear of chip
5	D	Reset Delay; connect via capacitor to GND
6	E6	Hold; see Table 1 for function; this input is connected to output voltage via a pull-up resistor of 50 $k\Omega$
7	Q	5-V Output ; block to GND with 22-μF capacitor, ESR < 3 Ω

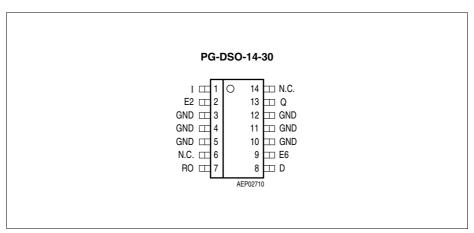


Figure 2 Pin Configuration (top view)

Table 3 Pin Definitions and Functions

Pin	Symbol	Function
1	I	Input; block to ground directly at the IC by a ceramic capacitor
2	E2	Inhibit; device is turned on by High signal on this pin; internal pull-down resistor of 100 $k\Omega$
7	RO	Reset Output; open-collector output internally connected to the output via a resistor of 30 $\rm k\Omega$
3, 4, 5, 10, 11, 12	GND	Ground; connected to rear of chip
8	D	Reset Delay; connect with capacitor to GND for setting delay
9	E6	Hold; see Table 1 for function; this input is connected to output voltage via a pull-up resistor of 50 kΩ
13	Q	5-V Output; block to GND with 22-μF capacitor, ESR \leq 3 Ω
6, 14	N.C.	Not Connected

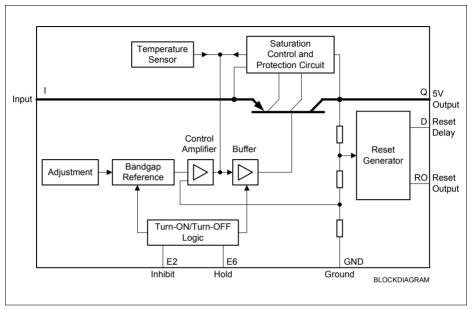


Figure 3 Block Diagram

Table 4 Absolute Maximum Ratings

 $T_{\rm J}$ = -40 to 150 °C

Parameter	Symbol	Limit Values		Unit	Notes	
		Min.	Max.			
Input	'					
Voltage	V_{I}	-42	42	V	_	
Voltage	V_{I}	_	60	V	<i>t</i> ≤ 400 ms	
Current	I_{I}	_	_	-	internally limited	
Reset Output			•			
Voltage	V_{RO}	-0.3	7	V	_	
Current	I_{RO}	_	_	-	internally limited	
Reset Delay	·		·			
Voltage	V_{D}	-0.3	42	V	_	
Current	I_{D}	_	_	-	_	
Output		•		•		
Voltage	V_{Q}	-0.3	7	V	_	
Current	I_{Q}	_	_	-	internally limited	
Inhibit		•		•		
Voltage	V_{E2}	-42	42	V	_	
Current	I_{E2}	-5	5	mA	<i>t</i> ≤ 400 ms	
Hold		•		•		
Voltage	V_{E6}	-0.3	7	V	_	
Current	I_{E6}	_	_	mA	internally limited	
GND		•	•	•		
Current	I_{GND}	-0.5	_	Α	_	
Temperatures	1	'				
Junction temperature	T_{J}	_	150	°C	_	
Storage temperature	$T_{\rm stg}$	-50	150	°C	_	
				1		

Table 5 Operating Range

Parameter	Symbol	Limit	Values	Unit	Notes	
		Min. Max.				
Input voltage	V_1	5.5	40	٧	see diagram	
Junction temperature	T_{J}	-40	150	°C	_	
Thermal Resistance	-	1		1		
Junction ambient	$R_{ m thja}$	_	65	K/W	PG-TO220-7-11 package	
Junction-case	$R_{ m thjc}$	-	6	K/W	PG-TO220-7-11 package	
Junction-case	$Z_{ m thjc}$	-	2	K/W	T < 1 ms PG-TO220-7-11 package	
Junction ambient	$R_{ m thja}$	_	70	K/W	PG-TO263-7-1 (SMD) package	
Junction-case	$R_{ m thjc}$	_	6	K/W	PG-TO263-7-1 (SMD) package	
Junction-case	Z_{thjc}	-	2	K/W	T < 1 ms PG-TO263-7-1 (SMD) package	
Junction ambient	$R_{ m thja}$	-	65	K/W	PG-TO220-7-12 package	
Junction-case	$R_{ m thjc}$	_	6	K/W	PG-TO220-7-12 package	
Junction-case	$Z_{ m thjc}$	-	2	K/W	T < 1 ms PG-TO220-7-12 package	
Junction ambient	$R_{ m thja}$	_	70	K/W	PG-DSO-14-30 package	
Junction-pin	R_{thjp}	_	30	K/W	PG-DSO-14-30 package	

Table 6 Characteristics

 $V_{\rm I}$ = 13.5 V; -40 °C < $T_{\rm J}$ < 125 °C; $V_{\rm E2}$ > 4 V (unless specified otherwise)

Parameter	Symbol	Limit Values			Unit	Test Condition
		Min.	Тур.	Max.		
Output voltage	V_{Q}	4.9	5	5.1	V	$\begin{array}{c} \text{5 mA} \leq I_{\text{Q}} \leq \text{400 mA} \\ \text{6 V} \leq V_{\text{I}} \leq \text{26 V} \end{array}$
Output voltage	V_{Q}	4.9	5	5.1	V	$\begin{array}{c} \text{5 mA} \leq I_{\text{Q}} \leq \text{150 mA} \\ \text{6 V} \leq V_{\text{I}} \leq \text{40 V} \end{array}$
Output current limiting	I_{Q}	500	-	-	mA	<i>T</i> _J = 25 °C
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	_	50	μА	IC turned off
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	1.0	10	μА	$T_{\rm J}$ = 25 °C IC turned off
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	1.3	4	mA	$I_{\rm Q}$ = 5 mA IC turned on
Current consumption $I_{\rm q} = I_{\rm l} - I_{\rm Q}$	I_{q}	_	_	60	mA	$I_{\rm Q}$ = 400 mA
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	_	80	mA	$I_{\rm Q}$ = 400 mA $V_{\rm I}$ = 5 V
Drop voltage	V_{Dr}	-	0.3	0.6	V	$I_{\rm Q}$ = 400 mA ¹⁾
Load regulation	ΔV_{Q}	ı	ı	50	mV	$5 \text{ mA} \le I_{\text{Q}} \le 400 \text{ mA}$
Supply-voltage regulation	ΔV_{Q}	_	15	25	mV	$V_{\rm I}$ = 6 to 36 V; $I_{\rm Q}$ = 5 mA
Supply-voltage rejection	SVR	_	54	_	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 Vpp
Longterm stability	ΔV_{Q}	-	0	_	mV	1000 h
Reset Generator						
Switching threshold	V_{RT}	4.2	4.5	4.8	V	_
Reset High level	_	4.5	_	_	V	$R_{\rm ext} = \infty$
Saturation voltage	$V_{RO,SAT}$	_	0.1	0.4	٧	$R_{\rm R} = 4.7 \; {\rm k}\Omega^{2}$
Internal Pull-up resistor	R_{RO}	-	30	-	kΩ	_
Saturation voltage	$V_{D,SAT}$	-	50	100	mV	$V_{\rm Q} < V_{\rm RT}$
Charge current	I_{D}	8	15	25	μΑ	$V_{\rm D}$ = 1.5 V
Upper delay switching threshold	V_{UD}	2.6	3	3.3	V	_

Table 6 Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; -40 °C < $T_{\rm J}$ < 125 °C; $V_{\rm E2}$ > 4 V (unless specified otherwise)

Parameter	Symbol	Limit Values			Unit	Test Condition
		Min.	Тур.	Max.		
Delay time	t_{D}	_	20	_	ms	$C_{\rm d} = 100 \; {\rm nF}$
Lower delay switching threshold	V_{LD}	_	0.43	-	V	-
Reset reaction time	t_{RR}	_	2	_	μS	$C_{\rm d} = 100 \; {\rm nF}$
Inhibit						
Turn on voltage	$V_{U,INH}$	-	3	4	٧	IC turned on
Turn off voltage	$V_{L,INH}$	2	-	_	V	IC turned off
Pull-down resistor	R_{INH}	50	100	200	kΩ	_
Hysteresis	ΔV_{INH}	0.2	0.5	0.8	٧	_
Input current	I_{INH}	_	35	100	μА	$V_{INH} = 4\;V$
Hold voltage	$V_{U,HOLD}$	30	35	40	%	Referred to $V_{\rm Q}$
Turn off voltage	$V_{L,HOLD}$	60	70	80	%	Referred to $V_{\rm Q}$
Pull-up resistor	R_{HOLD}	20	50	100	kΩ	_
Overvoltage Protection					•	
Turn off voltage	$V_{I,OV}$	42	44	46	٧	$V_{\rm I}$ increasing
Turn on voltage	$V_{ m I,turn~on}$	36	_	-	V	$V_{\rm I}$ decreasing after turn off
-						

¹⁾ Drop voltage = $V_{\rm I}$ - $V_{\rm Q}$ (measured when the output voltage $V_{\rm Q}$ has dropped 100 mV from the nominal value obtained at $V_{\rm I}$ = 13.5 V)

²⁾ The reset output is Low for 1 V < $V_{\rm Q} < V_{\rm RT}$

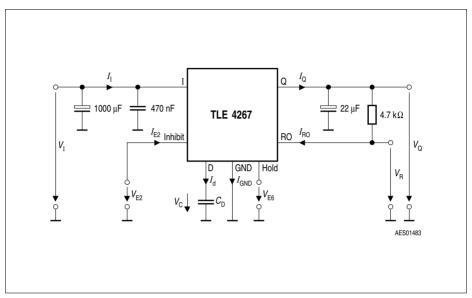


Figure 4 Test Circuit

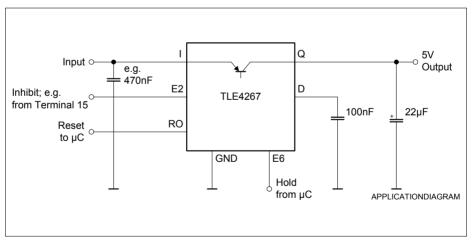


Figure 5 Application Circuit

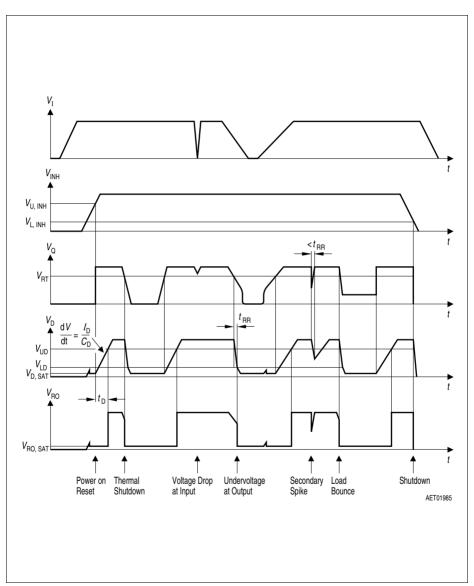
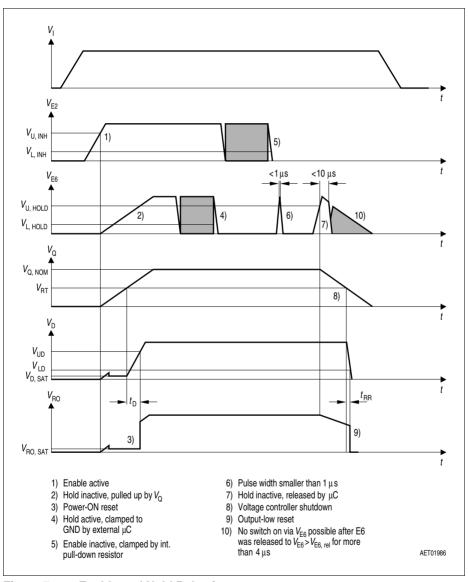
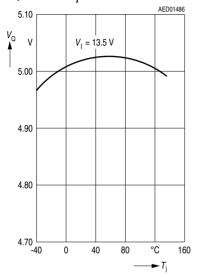
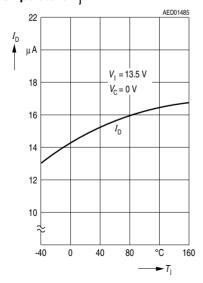
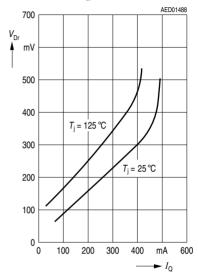
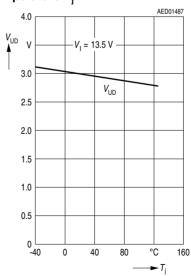


Figure 6 Time Response

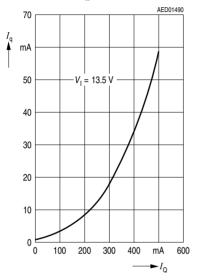




Figure 7 Enable and Hold Behavior

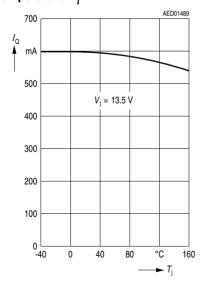

Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm i}$

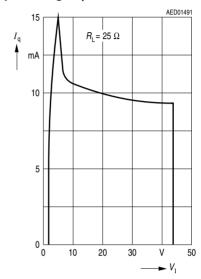

Charge Current $I_{\rm D}$ versus Temperature $T_{\rm i}$

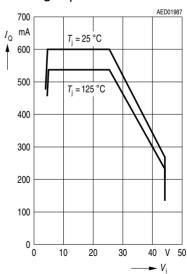
$\begin{array}{l} {\rm Drop\ Voltage}\ V_{\rm Dr}\ {\rm versus} \\ {\rm Output\ Current}\ I_{\rm O} \end{array}$



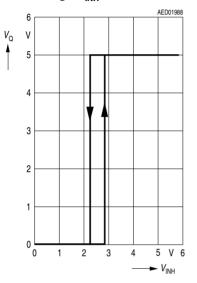
Delay Switching Threshold V_{UD} versus Temperature T_{i}



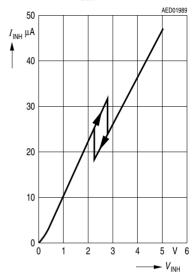

Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$


Output Current Limiting $I_{\rm Q}$ versus Temperature $T_{\rm i}$

Current Consumption $I_{\rm q}$ versus Input Voltage $V_{\rm l}$



Output Current Limiting $I_{\rm Q}$ versus Input Voltage $V_{\rm I}$



Output Voltage V_{Q} versus Inhibit Voltage V_{INH}

Inhibit Current I_{INH} versus Inhibit Voltage V_{INH}

Package Outlines

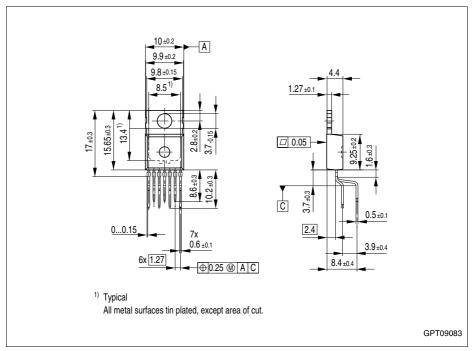


Figure 8 PG-TO220-7-11 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

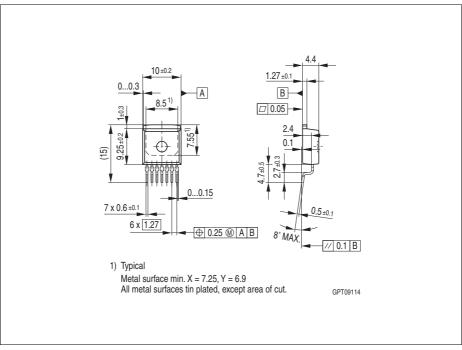


Figure 9 PG-TO263-7-1 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

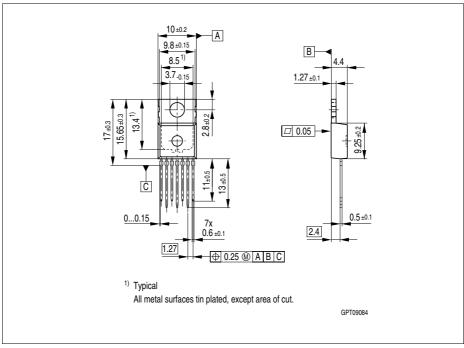


Figure 10 PG-TO220-7-12 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Rev. 2.51, 2012-01-20

Figure 11 PG-DSO-14-30 (Plastic Dual Small Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Rev. 2.51, 2012-01-20

Revision History

Version	Date	Changes
Rev. 2.51	2012-02-20	Page 1: Coverpage added. Page 7: Figure 3 "Block Diagram" updated with clear label for reset output pin. Page 12: Figure 5 "Application Circuit" updated with clear labels for inhibit, hold, reset and reset delay pin.
Rev. 2.5	2007-03-20	Initial version of RoHS-compliant derivate of TLE 4267 Page 2: AEC certified statement added Page 2 and Page 18 ff: RoHS compliance statement and Green product feature added Page 2 and Page 18 ff: Package changed to RoHS compliant version Legal Disclaimer updated

Edition 2012-01-20
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.