

| MODEL NO :     | TM043NBH02        |          |
|----------------|-------------------|----------|
| MODEL VERSION: | 40                |          |
| SPEC VERSION : | 2.2               | $\Delta$ |
| ISSUED DATE:   | 2015-11-29        |          |
|                | Specification     |          |
| orinal Produ   | ict Specification |          |

| Customer : |             |       |
|------------|-------------|-------|
|            | Approved by | Notes |
|            | 3           |       |

#### **TIANMA Confirmed :**

| Prepared by | Checked by    | Approved by |
|-------------|---------------|-------------|
| Lifeng Chen | Xiaoxing Ding | Feng Qin    |

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.



# **Table of Contents**

| Tab | ble of Contents                   | 2  |
|-----|-----------------------------------|----|
| Red | cord of Revision                  | 3  |
| 1   | General Specifications            | 4  |
| 2   | Input/Output Terminals            |    |
| 3   | Absolute Maximum Ratings          |    |
| 4   | Electrical Characteristics        | 8  |
| 5   | Timing Chart                      | 10 |
| 6.  | Touch Screen Panel Specifications | 14 |
| 7   | Optical Characteristics           |    |
| 8   | Environmental / Reliability Test  | 20 |
| 9   | Mechanical Drawing                | 21 |
| 10  | Packing Drawing                   |    |
| 11  |                                   |    |
|     |                                   |    |

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.



# **Record of Revision**

| Rev | Issued Date | Description                        | Editor        |
|-----|-------------|------------------------------------|---------------|
| 1.0 | 2010-08-23  | Preliminary Specification Release  | Kelly.hu      |
| 1.1 | 2010-9-13   | Updated LCM thickness              | Kelly.hu      |
| 1.2 | 2010-9-30   | Corrected RA temperature condition | Kelly.hu      |
| 2.0 | 2011-10-17  | Final Specification Release        | Longping.Deng |
| 2.1 | 2011-11-29  | Add LCM Weight                     | Longping.Deng |
| 2.2 | 2015-11-29  | Replace LC & IC, update new format | Lifeng Chen   |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             | $\mathbf{>}$                       |               |
|     |             |                                    |               |
|     |             | ÷                                  |               |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             |                                    |               |
|     |             |                                    |               |

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.



## **1** General Specifications

| -                             | Feature                        | Spec                    |  |  |
|-------------------------------|--------------------------------|-------------------------|--|--|
|                               | Size                           | 4.3 inch                |  |  |
|                               | Resolution                     | 480(RGB)x272            |  |  |
|                               | Technology Type                | RGB 24 bits             |  |  |
|                               | Pixel Configuration            | R.G.B Vertical Stripe   |  |  |
| Display Spec.                 | Pixel pitch(mm)                | 0.198 x0.198            |  |  |
|                               | Display Mode                   | TN,NW                   |  |  |
|                               | Surface Treatment              | AG                      |  |  |
|                               | Viewing Direction              | 6 o'clock               |  |  |
|                               | Gray Scale Inversion Direction | 12 o'clock              |  |  |
|                               | LCM (W x H x D) (mm)           | 105.50x67.20x4.10       |  |  |
|                               | Active Area(mm)                | 95.040x53.856           |  |  |
| Mechanical<br>Characteristics | With /Without TSP              | Without TSP             |  |  |
| Characteristics               | Matching Connection Type       | FH19SC-40S-0.5SH(HIROS) |  |  |
|                               | LED Numbers                    | 10 LEDS                 |  |  |
|                               | Weight (g)                     | 58                      |  |  |
| Ele stris el                  | Interface                      | RGB24bits               |  |  |
| Electrical<br>Characteristics | Color Depth                    | 16.7M                   |  |  |
|                               | Driver IC                      | ST7282T2                |  |  |

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift.

- Note 2: Requirements on Environmental Protection: Q/S0002
- Note 3: LCM weight tolerance: ± 5%

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.



## 2 Input/Output Terminals

Matched connector:FH19SC-40S-0.5SH(HIROS)

| Pin<br>No. | Symbol | I/O | Matched connector:FH19SC-40S-0.5SH(F<br>Function | Rémark |  |  |  |  |
|------------|--------|-----|--------------------------------------------------|--------|--|--|--|--|
| 1          | VLED-  | Р   | Back light cathode                               |        |  |  |  |  |
| 2          | VLED+  | Р   | Back light anode                                 |        |  |  |  |  |
| 3          | GND    | Р   | Ground                                           |        |  |  |  |  |
| 4          | VDD    | Р   | Power supply                                     |        |  |  |  |  |
| 5          | R0     | I   | Red Data input                                   |        |  |  |  |  |
| 6          | R1     | I   | Red Data input                                   |        |  |  |  |  |
| 7          | R2     | I   | Red Data input                                   |        |  |  |  |  |
| 8          | R3     | 1   | Red Data input                                   |        |  |  |  |  |
| 9          | R4     | 1   | Red Data input                                   |        |  |  |  |  |
| 10         | R5     | I   | Red Data input                                   |        |  |  |  |  |
| 11         | R6     | 1   | Red Data input                                   |        |  |  |  |  |
| 12         | R7     | 1   | Red Data input                                   |        |  |  |  |  |
| 13         | G0     | 1   | Green Data input                                 |        |  |  |  |  |
| 14         | G1     | I   | Green Data input                                 |        |  |  |  |  |
| 15         | G2     | I   | Green Data input                                 |        |  |  |  |  |
| 16         | G3     | 1   | Green Data input                                 |        |  |  |  |  |
| 17         | G4     | 1   | Green Data input                                 |        |  |  |  |  |
| 18         | G5     | I   | Green Data input                                 |        |  |  |  |  |
| 19         | G6     | 1   | Green Data input                                 |        |  |  |  |  |
| 20         | G7     |     | Green Data input                                 |        |  |  |  |  |
| 21         | B0     |     | Blue Data input                                  |        |  |  |  |  |
| 22         | B1     |     | Blue Data input                                  |        |  |  |  |  |
| 23         | B2     |     | Blue Data input                                  |        |  |  |  |  |
| 24         | B3     | 1   | Blue Data input                                  |        |  |  |  |  |
| 25         | B4     | 1   | Blue Data input                                  |        |  |  |  |  |
| 26         | B5     | 1   | Blue Data input                                  |        |  |  |  |  |
| 27         | B6     | 1   | Blue Data input                                  |        |  |  |  |  |
| 28         | B7     | 1   | Blue Data input                                  |        |  |  |  |  |
| 29         | GND    | Р   | Ground                                           |        |  |  |  |  |



| 30 | DCLK  | I | Clock signal; latching data at the rising edge                                                                             |  |
|----|-------|---|----------------------------------------------------------------------------------------------------------------------------|--|
| 31 | DISP  | I | Display control/standby mode selection, Internal pull low DISP="Low": Standby; DISP="High": Normal display                 |  |
| 32 | HSYNC | I | Horizontal sync signal; negative polarity                                                                                  |  |
| 33 | VSYNC | 1 | Vertical sync signal; negative polarity                                                                                    |  |
| 34 | DE    | I | Data input enable. Active High to enable the data input<br>When not used in SYNC mode, user should connect it to<br>"Low". |  |
| 35 | NC    |   | No Connection                                                                                                              |  |
| 36 | GND   | Р | Ground                                                                                                                     |  |
| 37 | X_R   | 0 | XR                                                                                                                         |  |
| 38 | Y_B   | 0 | YD                                                                                                                         |  |
| 39 | X_L   | 0 | XL                                                                                                                         |  |
| 40 | Y_T   | 0 | YU                                                                                                                         |  |

Note1: Please add the FPC connector type and matched one if necessary .

Note2: I-Input, O-Output, P-Power/Ground

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.



~ • • • •

~ · ·

# 3 Absolute Maximum Ratings

|                            |                 |               |            |                  | GND=0V                                           |
|----------------------------|-----------------|---------------|------------|------------------|--------------------------------------------------|
| Item                       | Symbol          | MIN           | MAX        | Unit             | Remark                                           |
| Power Voltage              | VCC             | -0.3          | 4.6        | V                | Natad                                            |
| Input voltage              | V <sub>IN</sub> | -0.3          | 4.6        | V                | Note1                                            |
| Operating Temperature      | Тор             | -30           | 85         | °C               |                                                  |
| Storage Temperature        | Tst             | -40           | 125        | °C               |                                                  |
|                            | RH              |               | ≪95        | %                | <b>Ta≤40</b> ℃                                   |
| Deletive Uveridity         |                 |               | ≪85        | %                | <b>40°</b> ℃ <b><ta< b=""><b>≤50°</b>℃</ta<></b> |
| Relative Humidity<br>Note2 |                 |               | ≤55        | %                | 50°C <ta≤60°c< td=""></ta≤60°c<>                 |
| NOLEZ                      |                 |               | ≤36        | %                | 60°C <i>&lt;</i> Ta≤70°C                         |
|                            |                 |               | ≤24        | %                | <b>70°</b> ℃ <b>&lt;</b> Ta <b>≤80°</b> ℃        |
| Absolute Humidity          | AH              |               | ≪70        | g/m <sup>3</sup> | Ta>70℃                                           |
|                            | Table 2 A       | healuta Maxir | num Doting |                  |                                                  |

Table 3 Absolute Maximum Ratings

- Note1: Input voltage include R0~R5, G0~G5, B0~B5, Dotclk, Hsync, Vsync, Enable, R/L, U/D.(For your reference)
- Note2: Ta means the ambient temperature.

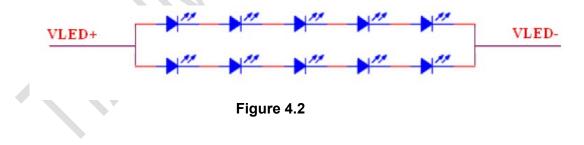
It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed.



## 4 Electrical Characteristics

## 4.1 Driving TFT LCD Panel

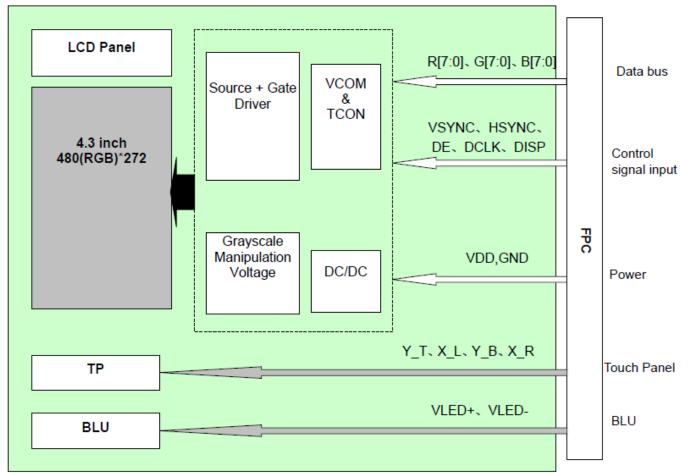
| Item                  |               | Symbol | MIN     | TYP | MAX      | Unit | Remark |
|-----------------------|---------------|--------|---------|-----|----------|------|--------|
| Supply Voltage        |               | VDD    | 3.0     | 3.3 | 3.6      | V    |        |
| NVW Supply Volta      | ige           | VPP    | 7.4     | 7.5 | 7.6      | V    |        |
| Input Signal Voltage  | Low<br>Level  | VIL    | DGND    | -   | 0.3×VDD  | V    |        |
| input oignal voitage  | High<br>Level | Viн    | 0.7×VDD | —   | VDD      | V    |        |
| Output Signal Voltage | Low<br>Level  | Vol    | DGND    | -   | DGND+0.4 | V    |        |
|                       | High<br>Level | Vон    | VDD-0.4 | -   | VDD      | V    |        |


#### 4.2 Backlight Unit

| Item            | Symbol | MIN   | ТҮР     | MAX | Unit | Remark    |
|-----------------|--------|-------|---------|-----|------|-----------|
| Forward Current | lF     |       | 40      | 50  | mA   | 10 LEDs   |
| Forward Current | VF     | 15    | 16      | 18  | V    | (2 LED    |
| Voltage         |        |       |         |     |      | Serial,5  |
| Backlight Power | WвL    |       | 640     | _   | mW   | LED       |
| Consumption     |        |       |         |     |      | Parallel) |
| LED life time   |        | 10000 | (20000) | -   | Hrs  |           |

Note1: The LED driving condition is defied for each LED module (5 LED Serial,2 LED Parallel). Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only.

Note3: IF is defined for one channel LED. Optical performance should be evaluated at Ta=25 $^{\circ}$ C only if LED is driven by high current, high ambient temperature & Humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

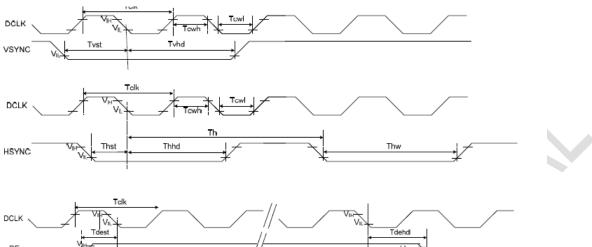

Note4: The LED driving condition is defined for each LED module.





## 4.3 Block Diagram

### LCD Module diagram

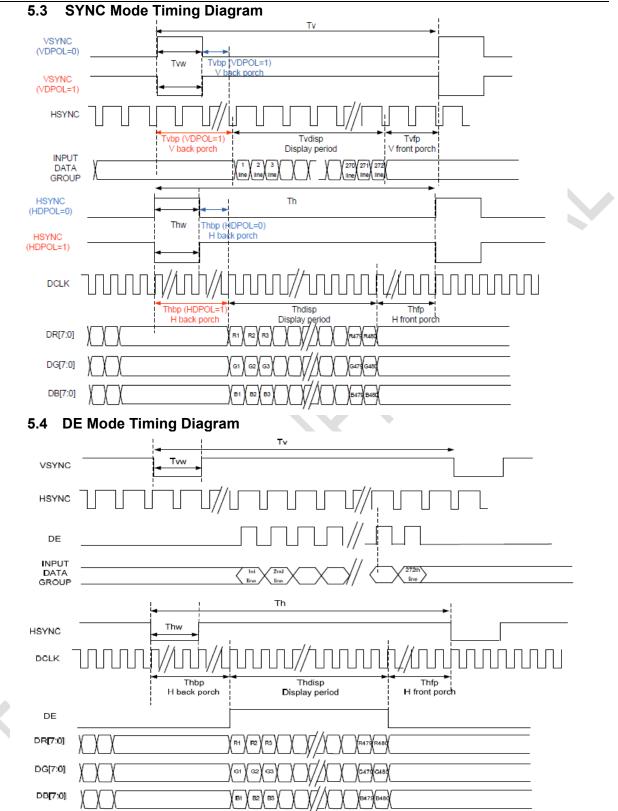



The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.



## 5 Timing Chart

#### 5.1 Clock and Data Input Timing Diagram

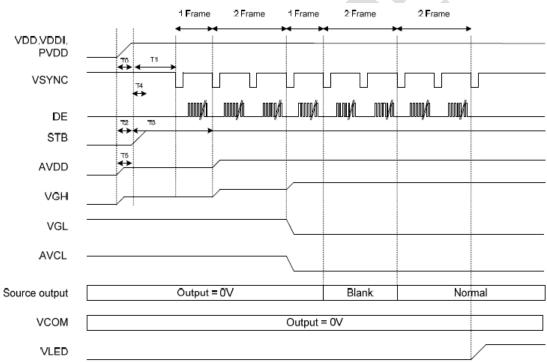





#### 5.2 AC Characteristics

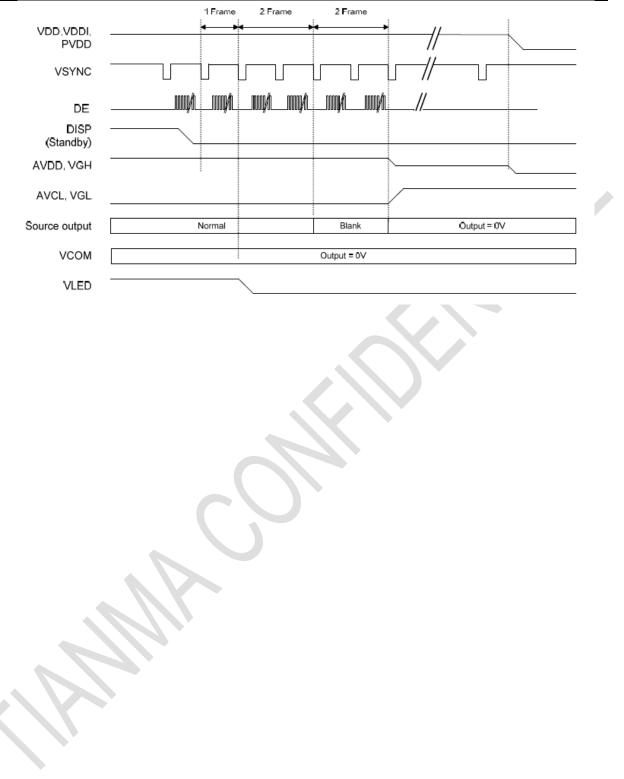
| VDDI= 3.3V, VDD= 3.3V, AGND= 0V |        | _    |      |      |      |                          |
|---------------------------------|--------|------|------|------|------|--------------------------|
| Item                            | Symbol | Min. | Тур. | Max. | Unit | Conditions               |
| System operation timing         |        | -    | -    | -    | -    |                          |
| VDD power source slew time      | TPOR   | -    | -    | 20   | ms   | From 0V to 99% VDD       |
| GRB pulse width                 | tRSTW  | 10   | 50   | -    | us   | R=10Kohm, C=1uF          |
| Input/ Output timing            |        |      |      |      |      |                          |
| CLK pulse duty                  | Tcw    | 40   | 50   | 60   | %    |                          |
| Hsync width                     | Thw    | 1    | -    | -    | DCLK |                          |
| Hsync period                    | Th     | 55   | 60   | 65   | us   |                          |
| Vsync setup time                | Tvst   | 12   | -    | -    | ns   |                          |
| Vsync hold time                 | T∨hd   | 12   | -    | -    | ns   |                          |
| Hsync setup time                | Thst   | 12   | -    | -    | ns   |                          |
| Hsync hold time                 | Thhd   | 12   | -    | -    | ns   |                          |
| Data setup time                 | Tdsu   | 12   | -    | -    | ns   |                          |
| Data hold time                  | Tdhd   | 12   | -    | -    | ns   |                          |
| DE setup time                   | Tdest  | 10   | -    | -    | ns   |                          |
| DE hold time                    | Tdehd  | 10   | -    | -    | ns   |                          |
| SD output stable time           | Tst    | -    | -    | 12   | us   | Output settled within    |
|                                 |        |      |      |      |      | +20mV Loading =          |
|                                 |        |      |      |      |      | 6.8k+28.2pF.             |
| GD output rise and fall time    | Tgst   | -    | -    | 6    | us   | Output settled (5%~95%), |
|                                 |        |      |      |      |      | Loading = 4.7k+29.8pF    |
| 3-wire serial communication     |        |      |      |      |      |                          |
| Delay between CSB and Vsync     | Tcv    | 1    |      |      | us   |                          |
| CS input setup time             | Ts0    | 50   |      |      | ns   |                          |
| Serial data input setup time    | Ts1    | 50   |      |      | ns   |                          |
| CS input hold time              | Th0    | 50   |      |      | ns   |                          |
| Serial data input hold time     | Th1    | 50   |      |      | ns   |                          |
| SCL pulse high width            | Twh1   | 50   |      |      | ns   |                          |
| SCL pulse low width             | Twl1   | 50   |      |      | ns   |                          |
| CS pulse high width             | Tw2    | 400  |      |      | ns   |                          |








|                   | ltem           | Symbol | Min. | Тур. | Max. | Unit | Remark                |   |
|-------------------|----------------|--------|------|------|------|------|-----------------------|---|
| DCLK Frequency    |                | Fclk   | 8    | 9    | 12   | MHz  |                       |   |
| DCLK Period       |                | Tclk   | 83   | 111  | 125  | ns   |                       |   |
| HSYNC Period Time |                | Th     | 485  | 531  |      | DCLK |                       |   |
|                   | Display Period | Thdisp |      | 480  |      | DCLK |                       |   |
|                   | Back Porch     | Thbp   | 3    | 43   |      | DCLK | By H_Blanking setting |   |
|                   | Front Porch    | Thfp   | 2    | 8    |      | DCLK |                       |   |
|                   | Pulse Width    | Thw    | 2    | 4    |      | DCLK |                       |   |
| VSYNC             | Period Time    | Τv     | 276  | 292  |      | н    |                       |   |
|                   | Display Period | Tvdisp |      | 272  |      | н    |                       |   |
|                   | Back Porch     | Tvbp   | 2    | 12   |      | н    | By V_Blanking setting |   |
|                   | Front Porch    | Tvfp   | 2    | 8    |      | н    |                       | 1 |
|                   | Pulse Width    | Tvw    | 2    | 4    |      | н    |                       |   |


Note: It is necessary to keep Tvbp =12 and Thbp =43 in sync mode. DE mode is unnecessary to keep it.

#### 5.5 Power ON Sequence



5.7 Power Off Sequence







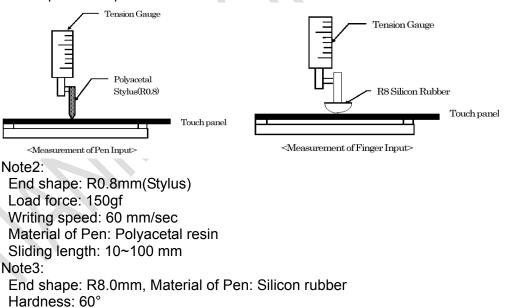
## 6. Touch Screen Panel Specifications

6.1 Electrical Characteristics

| Item              |         | Min. | Тур. | Max. | Unit |                    |
|-------------------|---------|------|------|------|------|--------------------|
| Linearity         |         |      |      | 1.5% |      | Each axis: X and Y |
| Operating Voltage |         |      | 5.0  | 10.0 | V    | DC                 |
| Resistance        | X axis: | 480  |      | 1100 | Ω    |                    |
| Resistance        | Y axis: | 120  |      | 450  | Ω    |                    |
| Chattering Time   |         |      |      | 10.0 | ms   |                    |
| Insulation Resis  | tance   | 20   |      |      | MΩ   | @DC25V             |

#### 6.2 Touch Panel Mechanical & Reliability Characteristics

| Item               | Value        |     | Unit | Remark     |           |
|--------------------|--------------|-----|------|------------|-----------|
|                    | Min          | Тур | Max  |            |           |
| Activation         | 80           | -   | 160  | gf         | Note 1    |
| Durability-surface | Write 100000 | -   | -    | characters | Note 2    |
| scratching         |              |     |      |            |           |
| Durability-surface | 1000000      | -   |      | touches    | Note 3    |
| pitting            |              |     |      |            |           |
| Surface            | 3            |     |      | Н          | JIS K5400 |
| hardness           |              |     |      |            |           |

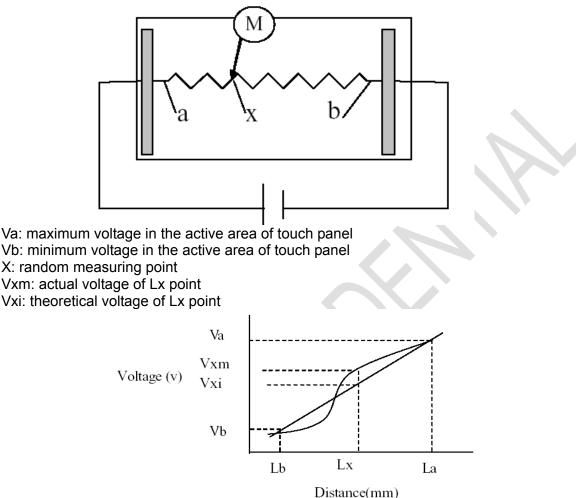

Note1:

1. Input DC 5V on X direction , Drop off Polyacetal Stylus(R0.8), until output voltage stabilize , then get the activation force;

2. R8 Silicon rubber for finger Activation force test;

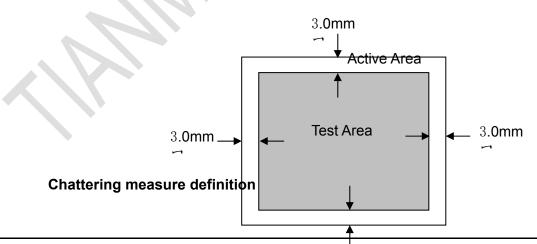
3. Test point: 9 points.

Load force: 100gf Frequency: 2 Hz







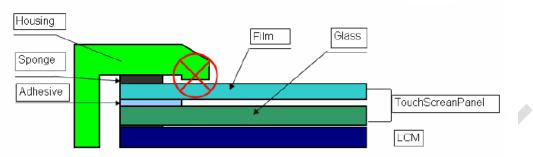


**6.2 Electrical Characteristic** 



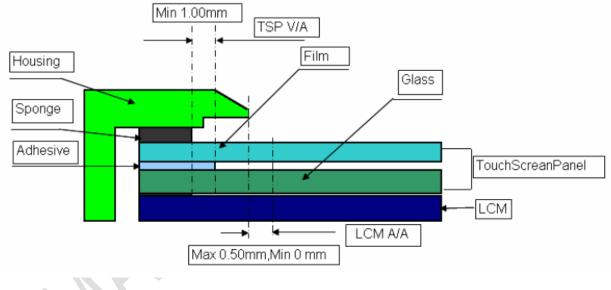


Linearity = [|Vxi-Vxm |/(Va-Vb)]\*100%

**Note:** Test area is as follows and operation force is 150gf(single layer ITO Film), polyacetal stylus: R0.8mm.







#### 6.3.Housing design guide

Housing design follow as below

- 1. Avoid the design that housing overlap and press on the active area of the LCM
- 2. Give enough gap(Over 0.5mm at compressed) between the housing and TSP to Protect wrong operating.



- 3. Use a buffer material(Gasket) between the TSP and housing to protect damage and wrong operating
- 4. Avoid the design that buffer material overlap and press on the inside of TSP view area.



The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

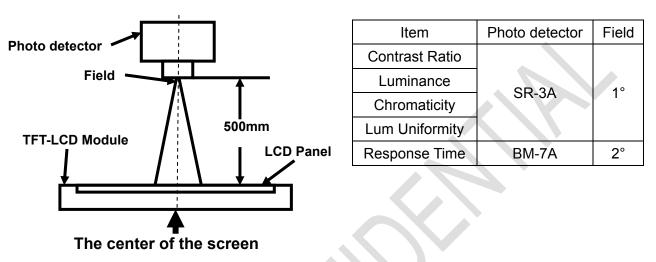


## 7 Optical Characteristics

| ltem             |               | Symbol          | Condition          | Min   | Тур   | Мах   | Unit              | Remark   |
|------------------|---------------|-----------------|--------------------|-------|-------|-------|-------------------|----------|
| View Angles      |               | θΤ              | - CR≧10            | 60    | 70    | -     |                   | Note2,3  |
|                  |               | θΒ              |                    | 40    | 50    | -     | Degree            |          |
|                  |               | θL              |                    | 60    | 70    | -     |                   |          |
|                  |               | θR              |                    | 60    | 70    | -     |                   |          |
| Contrast Ratio   | )             | CR              | θ=0°               | 400   | 450   | -     |                   | Note 3   |
|                  |               | T <sub>ON</sub> | <b>25</b> ℃        |       | 20    | 30    | ms                | Note 4   |
| Response min     | Response Time |                 | <b>23</b> C        | -     |       |       |                   |          |
|                  | White         | x               | Backlight is<br>on | 0.265 | 0.315 | 0.365 |                   | Note 1,5 |
|                  | vvnite        | у               |                    | 0.278 | 0.328 | 0.378 |                   |          |
|                  | Red           | x               |                    | 0.540 | 0.590 | 0.640 |                   | Note 1,5 |
| Chromaticity     | Rea           | у               |                    | 0.300 | 0.350 | 0.400 |                   |          |
| Chromaticity     | Croop         | x               |                    | 0.290 | 0.340 | 0.390 |                   | Note 1,5 |
|                  | Green         | у               |                    | 0.500 | 0.550 | 0.600 |                   |          |
|                  | Blue          | x               |                    | 0.094 | 0.144 | 0.194 |                   | Note 1,5 |
|                  | Diue          | у               |                    | 0.050 | 0.100 | 0.150 |                   |          |
| Uniformity       |               | U               |                    |       | 75    | -     | %                 | Note 6   |
| NTSC             |               |                 |                    | -     | 50    | -     | %                 | Note 5   |
| Luminance        |               | L               |                    | 230   | 280   | -     | cd/m <sup>2</sup> | Note 7   |
| Test Conditions: |               |                 |                    |       |       |       |                   |          |

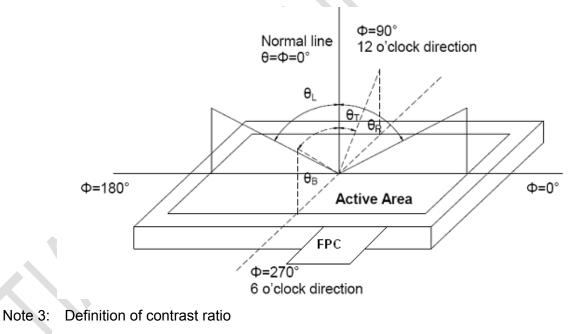
**Test Conditions:** 

1.  $I_F$ = 22 mA, and the ambient temperature is 25 °C.


2. The test systems refer to Note 1 and Note 2.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.




Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

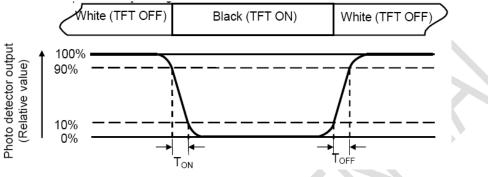


Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).



Contrast ratio (CR) = <u>Luminance measured when LCD is on the "White" state</u> <u>Luminance measured when LCD is on the "Black" state</u> "White state ": The state is that the LCD should drive by Vwhite.


"Black state": The state is that the LCD should drive by Vblack.



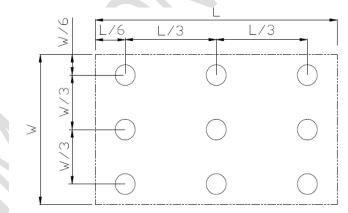
Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time  $(T_{ON})$  is the time between photo detector output intensity changed from 90% to 10%. And fall time  $(T_{OFF})$  is the time between photo detector output intensity changed from 10% to 90%.



Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/ Lmax

L-----Active area length W----- Active area width



Lmax: The measured Maximum luminance of all measurement position.

Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

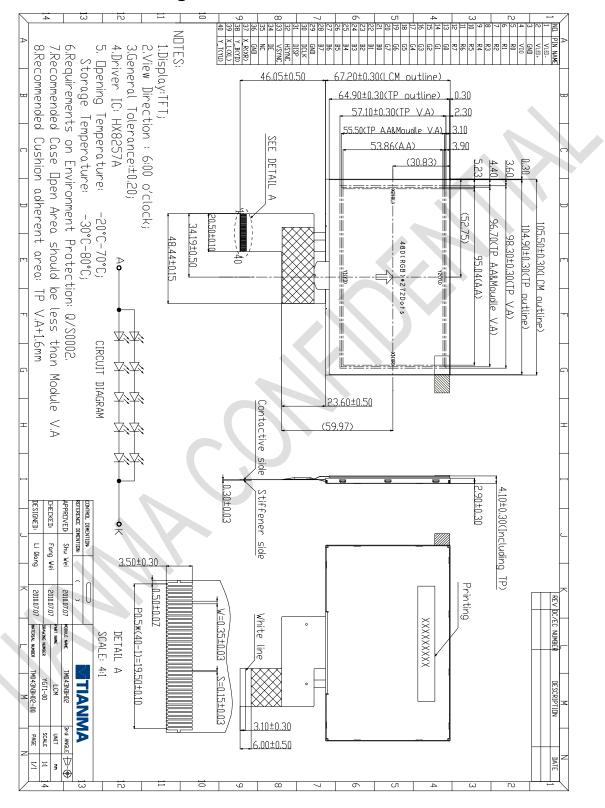
The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.



## 8 Environmental / Reliability Test

| No | Test Item                                      | Condition                                                                                                                                          | Remarks                                                                                                   |
|----|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1  | High Temperature<br>Operation                  | Ts=+60℃, 240hrs                                                                                                                                    | IEC60068-2-1:2007<br>GB2423.2-2008                                                                        |
| 2  | Low Temperature<br>Operation                   | Ta=-20℃, 240hrs                                                                                                                                    | IEC60068-2-1:2007<br>GB2423.1-2008                                                                        |
| 3  | High Temperature<br>Storage                    | Ta=+70℃, 240hrs                                                                                                                                    | IEC60068-2-1:2007<br>GB2423.2-2008                                                                        |
| 4  | Low Temperature<br>Storage                     | Ta=-30℃, 240hrs                                                                                                                                    | IEC60068-2-1:2007<br>GB2423.1-2008                                                                        |
| 5  | Storage at High<br>Temperature and<br>Humidity | Ta=+60℃, 90% RH<br>240 hours                                                                                                                       | IEC60068-2-78 :2001<br>GB/T2423.3—2006                                                                    |
| 6  | Thermal Shock<br>(non-operation)               | -30℃ 30 min~+70℃ 30 min,<br>Change time:5min, 20 Cycles                                                                                            | Start with cold<br>temperature,<br>End with high<br>temperature,<br>IEC60068-2-14:1984,G<br>B2423.22-2002 |
| 7  | ESD                                            | C=150pF, R=330Ω , 5points/panel<br>Air:±8KV, 5times;<br>Contact:±4KV, 5 times;<br>(Environment: 15°C~35°C,<br>30%~60%, 86Kpa~106Kpa)               | IEC61000-4-2:2001<br>GB/T17626.2-2006                                                                     |
| 8  | Vibration Test                                 | Frequency range:10~55Hz,<br>Stroke:1.5mm<br>Sweep:10Hz~55Hz~10Hz 2 hours<br>for each direction of X.Y.Z.<br>(6 hours for total)(Package condition) | IEC60068-2-6:1982<br>GB/T2423.10—1995                                                                     |
| 9  | Mechanical Shock<br>(Non OP)                   | 60G 6ms, ±X,±Y,±Z 3times,<br>for each direction                                                                                                    | IEC60068-2-27:1987<br>GB/T2423.5—1995                                                                     |
| 10 | Package Drop Test                              | Height:80 cm,<br>1 corner, 3 edges, 6 surfaces                                                                                                     | IEC60068-2-32:1990<br>GB/T2423.8—1995                                                                     |
| 11 | Package Vibration<br>Test                      | Random Vibration:<br>0.015GxG/Hz for 5-200Hz,<br>-6dB/Octave from 200-500Hz<br>2 hours for each direction of X,Y,Z<br>(6 hours for total)          | IEC60068-2-34<br>GB/T2423.11                                                                              |

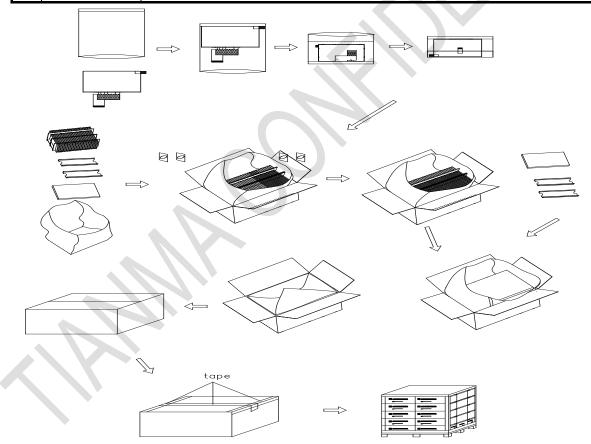
Note1: Ts is the temperature of panel's surface.


Note2: Ta is the ambient temperature of sample.

Note3: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Note 4: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

# V TIANMA


## 9 Mechanical Drawing





# 10 Packing Drawing

| No | ltem              | Model (Material) | Dimensions(mm)      | Unit<br>Weight(Kg) | Quantity | Remark      |
|----|-------------------|------------------|---------------------|--------------------|----------|-------------|
| 1  | LCM module        | TM043NBH02       | 105.5x67.2x4.1      | 0.0584             | 112      |             |
| 2  | Partition_1       | Corrugated Paper | 513x333x106         | 0.7                | 2        |             |
| 3. | Anti-Static Bag   | PE               | 175.8x125x0.05      | 0.0007             | 112      | Anti-static |
| 4  | Dust-Proof<br>Bag | PE               | 700x530             | 0.0600             | 1        |             |
| 5  | Partition_2       | Corrugated Paper | 505x332x4.00        | 0.09               | 3        |             |
| 6  | Corrugated<br>Bar | Corrugated Paper | 513x117x3           | 0.04               | 8        |             |
| 7  | Carton            | Corrugated Paper | 530x350x250         | 1.1000             | 1        |             |
| 8  | Total weight      |                  | 9.77 <u>+</u> 5% Kg |                    |          |             |





## **11 Precautions for Use of LCD Modules**

11.1 Handling Precautions

11.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

11.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

11.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

11.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

11.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

Isopropyl alcohol

Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 11.1.6 Do not attempt to disassemble the LCD Module.
- 11.1.7 If the logic circuit power is off, do not apply the input signals.

11.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- 11.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 11.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.

11.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.

11.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

11.2 Storage precautions

11.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

11.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature :  $0^{\circ}$ C  $\sim 40^{\circ}$ C Relatively humidity:  $\leq 80\%$ 

11.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

- 11.3 Transportation Precautions
  - 11.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.