

十速

TM52F2230B/34B

DATA SHEET

Rev 0.95

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses **tenx** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **tenx** and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that **tenx** was negligent regarding the design or manufacture of the part.

cAMENDMENT HISTORY

Version	Date	Description
V0.90	Jan, 2015	New release
V0.91	Dec, 2015	Remark: DS-TM52F2230_34 change Doc No. to DS-TM52F2230_30B_34_34B. 1. Add F2230B/F2234B device 2. Working voltage (p5, p6, p21) 3. Device comparison table (p9) 4. ICE interface (p9, p70) 5. IAPWE description (p18) 6. VCON setting guide (p23) 7. LVR setting guide (p25) 8. CLKPSC description (p28) 9. Add SRC Diagram (p87) 10. Add LVR1/POR vs Temperature Diagram (p88) 11. Other details of the modifications
V0.92	Apr, 2016	 Flash description (P16) Stop mode description (P30, P35) ICE mode figure (P70)
V0.93	Sep, 2016	 Remove F2230/F2234 device Other details of the modifications
V0.94	Oct, 2017	 Operating voltage suggest modifications Modify SPI Block diagram
V0.95	May, 2018	 Add package type QFN-32 Other details of the modifications

DS- TM52F2230B_34B_E 2 Rev 0.95, 2018/05/10

CONTENTS

AMI	ENDMENT HISTORY	2
TM5	52 F22xx FAMILY	5
GEN	NERAL DESCRIPTION	6
BLC	OCK DIAGRAM	6
	ATURES	
PIN	ASSIGNMENT	10
PIN	DESCRIPTION	12
	SUMMERY	
	NCTIONAL DESCRIPTION	
	CPU Core	
1.		
	1.1 Accumulator (ACC) 1.2 B Register (B)	
	1.3 Stack Pointer (SP)	
	1.4 Dual Data Pointer (DPTRs)	
	1.5 Program Status Word (PSW)	
2.	Memory	17
	2.1 Program Memory	17
	2.2 Data Memory	
3.	Power Management	22
4.		
	4.1 Power on Reset	26
	4.2 External Pin Reset	26
	4.3 Software Reset	
	4.4 Watch Dog Timer Reset	
	4.5 Low Voltage Reset #1 (LVR1)	
	4.6 Low Voltage Reset #2 (LVR2)	
5.	Clock Circuitry & Operation Mode	28
	5.1 System Clock	
	5.2 Operation Modes	31
6.	Interrupt & Wake-up	32
	6.1 Interrupt Enable and Priority Control	32
	6.2 Pin Interrupt	
	6.3 Idle mode Wake up and Interrupt	
	6.4 Stop mode Wake up and Interrupt	
7.	I/O Ports	38
	7.1 Port1 & Port3	38

7.2 P2.7	43
7.3 P2.6~P2.0 & Port0	43
8. Timers	46
8.1 Timer0/Timer1	
8.3 Timer3	
8.4 T1O, T1B and T2O output Control	
9. UART	52
10. Resistance to Frequency Converter (RFC)	54
11. PWM	57
12. I80 interface	60
13. Touch Key (F2230B only)	62
14. Serial Peripheral Interface (SPI)	66
15. 6-bit SAR ADC	70
16. In Circuit Emulation (ICE) Mode	71
SFR & CFGW MAP	72
SFR & CFGW DESCRIPTION	74
INSTRUCTION SET	83
ELECTRICAL CHARACTERISTICS	86
Absolute Maximum Ratings	86
DC Characteristics	86
BandGap Reference Voltage	87
Clock Timing	87
LVR1/POR Level	89
PACKAGE INFORMATION	90

TM52 F22xx FAMILY

Common Feature

CPU	Flash Program memory	RAM bytes	Dual Clock	Operation Mode	Timer0 Timer1 Timer2	UART	Real-time Timer3	LBD	LVR
Fast 8051 (2T)	8K~32K with IAP, ISP, ICP	512 ~ 2304	SXT SRC FXT FRC	Fast Slow Idle Stop	8051 St	andard	0.5~61ppm Adjustable	2.4V ~ 3.1V	1.6V

Family Members Features

P/N	Flash	RAM bytes	IO Pin	RFC ADC	SAR ADC	Touch Key	LCD	LED	SPI	others
TM52-F2261	16K	768	32	3-ch		14-ch	43 x 10 1.0~1.5V	30x6 40mA hi-	Yes	
TM52-F2264	1010	/08	32	3-011	_	_	adjBias	Sink	1 68	_
TM52-F2260	16K	1280	25	3-ch	_	_	36 x 4 1.0V bias	_		_
TM52-F2280B	8K	512	22	2 -1-	6bit	15-ch	23 x 8	10x4	Yes	
TM52-F2284B	AK	512	32	3-ch	7-ch	_	1.0~1.5V adjBias	40mA hi- Sink	res	_
TM52-F2230B	32K	2304	32	3-ch	6bit	15-ch			Yes	PWM
TM52-F2234B	32 K	2304	32	3-CII	7-ch		_ _		ies	P W W

P/N	Operation Voltage			it (V _{BAT} =3V) up & LVR (Max. System Clock (Hz)				
P/IN		TK Off LCD Off	TK Off LCD On	TK On LCD Off	TK On LCD On	SXT	SRC	FXT	FRC
TM52-F2261	2.0. 4.20	0.8uA	1.4uA	1.3uA	1.9uA	32K			4M
TM52-F2264	2.0~4.2V			_	_		_		
TM52-F2260	2.0~4.2V	0.7uA	1.0uA	_	_	32K	_	_	4M
TM52-F2280B	2.0~5.5V	1.3uA	2.4uA	1.7uA	2.8uA	32K	80K	8M	7.37M
TM52-F2284B	2.0~3.3 V	1.3uA		_	_	32K	OUK	OIVI	
TM52-F2230B	2.0~5.5V	1.4uA	_	1.8uA		22V	90IZ	OM	7 27M
TM52-F2234B	2.0~3.3 V			_	_	32K	80K	8M	7.37M

DS- TM52F2230B_34B_E 5 Rev 0.95, 2018/05/10



GENERAL DESCRIPTION

TM52_{series} **F2230B/34B** are versions of a new, fast 8051 architecture for an 8-bit microcontroller single chip with an instruction set fully compatible with industry standard 8051, C language development platform, and retains most 8051 peripheral's functional block. Typically, the **TM52-F2230B/34B** executes instructions six times faster than the standard 8051 architecture.

The **TM52-F2230B/34B** provides improved performance, lower cost and fast time-to-market by integrating features on the chip, including 32K Bytes Flash program memory, 2304 Bytes SRAM, Low Voltage Reset (LVR1/2), Low Battery Detector (LBD), dual clock power saving operation mode, SPI Interface, 8051 standard UART and Timer0/1/2, adjustable real time clock Timer3, 15 channels Touch Key with ATK (F2230B only), 6-bit SAR ADC, Resistance to Frequency Converter (RFC) and Watchdog Timer. Its high reliability and low power consumption feature can be widely applied in consumer and home appliance products.

BLOCK DIAGRAM

TM52 series F2230B/34B

DS- TM52F2230B_34B_E 6 Rev 0.95, 2018/05/10

FEATURES

1. Standard 8051 Instruction set, fast machine cycle

• Executes instructions six times faster than the standard 8051.

2. 32K Bytes Flash Program Memory

- Support "In Circuit Programming" (ICP) or "In System Programming" (ISP) for the Flash code
- Byte Write "In Application Programming" (IAP) mode is convenient as Data EEPROM access
- Code Protection Capability

3. Total 2304 Bytes SRAM (IRAM+XRAM)

- 256 Bytes IRAM in the 8051 internal data memory area
- 2048 Bytes XRAM in the 8051 external data memory area (accessed by MOVX Instruction)

4. Five System Clock type Selections

- Fast clock from Crystal (FXT, 1~8 MHz)
- Fast clock from Internal RC (FRC, 7.3728 MHz @V_{BAT}=2.8V~5.5V)
- Fast clock from External RC (RFC)
- Slow clock from Crystal (SXT, 32768 Hz)
- Slow clock from Internal RC (SRC, 80 KHz @V_{DD}=3V, 40 KHz @V_{DD}=1.5V)
- System Clock can be divided by 1/2/4/8/16/32 option
- System Clock output pin (TCO) for EL/IR application

5. 8051 Standard Timer – Timer 0/1/2

- 16-bit Timer0, also supports RFC or SXT clock input counting
- 16-bit Timer1, also supports T1O/T1B clock output for Buzzer/IR application
- 16-bit Timer2, also supports T2O clock output for Buzzer/IR application

6. 23-bit Timer3 used for Real Time 32768 Hz Crystal counting

- \pm 0.5 ppm ~ 61 ppm interrupt rate adjustable
- MSB 8-bit overflow auto-reload
- 0.25 sec, 0.5 sec, 1.0 sec or overflow Interrupt

7. 15-Channel Touch Key (F2230B only)

- 1~4 Key H/W Auto Scan Mode (ATK), Sensitivity Adjustable for each Key
- Interrupt / Wake-up CPU while Key Pressed

8. 6-bit ADC for low pin count key scan

• Up to 100KHz conversion rate

9. Resistance to Frequency Converter (RFC)

- RFC clock divided by 1/4/16/64 signal can be assigned as Timer0 event count input
- RFC clock can be used as System clock source

DS- TM52F2230B_34B_E 7 Rev 0.95, 2018/05/10

10. 8051 Standard UART

• One Wire UART option can be used for ISP or other application

11. An independent "8+2" bits PWM with prescaler/period-adjustment

12. SPI Interface

- Master or Slave mode selectable
- Programmable transmit bit rate
- Serial clock phase and polarity options
- MSB-first or LSB-first selectable

13. I80 Interface

14. 11-Sources, 4-level priority Interrupt

- Timer0/Timer1/Timer2/Timer3 Interrupt
- INT0/INT1 Falling-Edge/Low-Level Interrupt
- Port1 Pin Change Interrupt
- UART TX/RX Interrupt
- P2.7 (INT2) Interrupt
- Touch Key Interrupt
- SPI Interrupt

15. Pin Interrupt can Wake up CPU from Power-Down (Stop) mode

- P3.2/P3.3 (INT0/INT1) Interrupt & Wake-up
- P2.7 (INT2) Interrupt & Wake-up
- Each Port1 pin can be defined as Interrupt & Wake-up pin (by pin change)

16. Max. 32 Programmable I/O pins

- CMOS Output
- Pseudo-Open-Drain, or Open-Drain Output
- Schmitt Trigger Input
- Pin Pull-up can be Enabled or Disabled

17. BandGap Voltage Reference for Low Battery Detection (LBD)

• Detect V_{BAT} voltage level from 2.4V to 4.5V

18. Built-in tiny current LDO Regulator for chip internal power supply (V_{DD})

• V_{DD} voltage level can be set to $0.4*V_{BAT} \sim 0.66*V_{BAT}$ in different mode

19. Watch Dog Timer based on System Clock

- Running in Fast/Slow Mode, Stop counting in Idle/Stop Mode
- 32K or 64K counts overflow Reset

20. Six types Reset

- Power on Reset
- Selectable External Pin Reset
- Selectable Watch Dog Reset
- Software Command Reset
- Selectable Battery Low Voltage Reset #1 (LVR1, when V_{BAT}<1.6V)
- Selectable Battery Low Voltage Reset #2 (LVR2, when V_{BAT}<2.4V~4.5V)

21. 4 Power Operation Modes

• Fast/Slow/Idle/Stop Mode

22. On-chip Debug/ICE interface

• Use P1.2/P1.3 or P2.2 / P2.3pin, share with ICP programming pin

23. Operating Voltage and Current

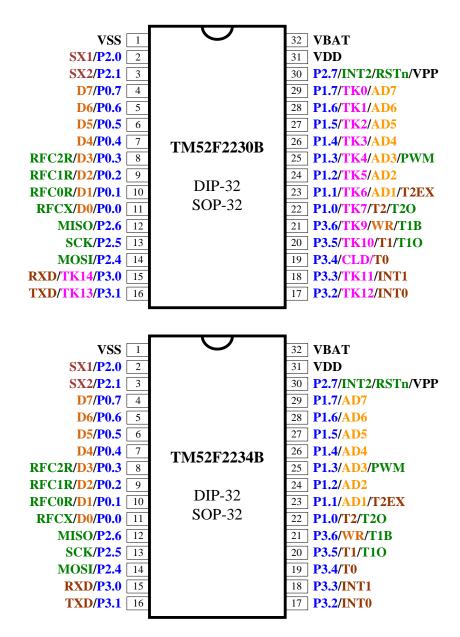
- $V_{BAT} = 2.0 V \sim 5.5 V$
- 0.1uA LVR1 Current @V_{BAT}=3V
- 1.1uA SXT/SRC and System Clock Current @V_{DD}=1.5V
- 0.5uA Touch Key Current @V_{BAT}=3V
- Total 1.8uA Idle mode Current with LVR1 on and TK scan @V_{BAT}=3V, V_{DD}=1.5V

24. Operating Temperature Range

• $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$

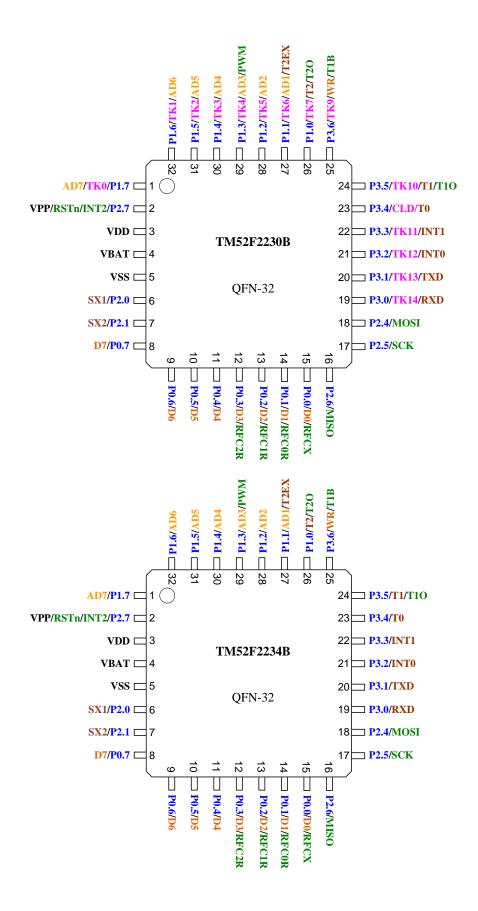
25. Package Types

- DIP 32-pin (600 mil)
- SOP 32-pin (300 mil)
- QFN32-pin (5x5x0.75-0.5mm)


F2230/F2230B/F2234/F2234B Features comparison table

Features	F2230	F2234	F2230B	F2234B		
Touch Key	Yes	n.a.	Yes	n.a.		
IAP Write Control	No IAPWI	E constrain	Need to enable IAPWE before IAP write			
Max. System Clock	6 MHz, o	or FRC/2	8 MHz, or FRC/1			

DS- TM52F2230B_34B_E 9 Rev 0.95, 2018/05/10



PIN ASSIGNMENT

DS- TM52F2230B_34B_E 10 Rev 0.95, 2018/05/10

PIN DESCRIPTION

Name	In/Out	Pin Description
P1.0~P1.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software. These pin's level change can interrupt/wake up CPU from Idle/Stop mode.
P3.0~P3.2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo open drain" output. Pull-up resistors are assignable by software.
P3.3~P3.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
P0.0~P0.7 P2.0~P2.6	I/O	Bit-programmable I/O port for Schmitt-trigger input or CMOS push-pull output. Pull-up resistors are assignable by software.
P2.7	I/O	Bit-programmable I/O port for Schmitt-trigger input or "open-drain" output. Pull-up resistor is fix enable.
INT0, INT1	I	External low level or falling edge Interrupt input, Idle/Stop mode wake up input
INT2	I	External falling edge Interrupt input, Idle/Stop mode wake up input
RXD	I/O	UART Mode0 transmit & receive data, Mode1/2/3 receive data
TXD	I/O	UART Mode0 transmit clock, Mode1/2/3 transmit data. In One Wire UART mode, this pin transmits and receives serial data.
MISO	I/O	SPI data input for Master mode, data output for Slave mode
MOSI	I/O	SPI data output for Master mode, data input for Slave mode
SCK	I/O	SPI clock output for Master or clock input for Slave mode
T0, T1, T2	I	Timer0, Timer1, Timer2 event count pin input
T2EX	I	Timer2 external trigger input
PWM	О	8+2 bit PWM output
T1O, T1B	О	Positive and Negative signal pair of Timer1 overflow divided by 2/3/4 output
T2O	О	Timer2 overflow divided by 2/3/4 output
TCO	О	System Clock divided by 1/2/3/4 output
RFC0R~RFC2R	О	RFC resistor connection pin
RFCX	I	RFC clock input pin
D0~D7	I/O	I80 interface data bus
WR	О	I80 interface write enable
RD	О	I80 interface read enable
AD1~AD7	I	6 bit ADC channel input
TK0~TK14	I	Touch Key Input (F2230B only)
CLD	I/O	Touch Key charge collection capacitor connection pin (F2230B only)
RSTn	I	External active low reset input, Pull-up resistor is fixed enable
SX1, SX2	_	32768 Crystal/Resonator oscillator connection for System Clock (SXT)
FX1, FX2	_	1~8 MHz Crystal / Resonator oscillator connection for System clock (FXT)
VPP	I	Flash memory programming high voltage input
VDD	_	LDO Regulator output and internal power supply, add 1 uF capacitor to V _{SS}
VBAT, VSS	P	Power input pin and ground, V _{BAT} is the I/O pin power supply

Note: Digital I/O pins voltage swing from V_{SS} to V_{BAT} .

PIN SUMMERY

2				Inp	out	O	utp	ut	A	Alte	rnat	ive	Function
DIP/SOP-32	QFN-32	Pin Name		Wake up	Ext. Interrupt	CMOS P.P.	P.O.D.	O.D.	Touch Key	ADC Input	Timer Input	180	Others
1	5	VSS	P										
2	6	SX1/P2.0	I/O			•							SXT
3	7	SX2/P2.1	I/O			•							SXT
4	8	D7/P0.7	I/O			•						•	
5	9	D6/P0.6	I/O			•						•	
6	10	D5/P0.5	I/O			•						•	
7	11	D4/P0.4	I/O			•						•	
8	12	RFC2R/D3/P0.3	I/O			•						•	RFC
9	13	RFC1R/D2/P0.2	I/O			•						•	RFC
10	14	RFC0R/D2/P0.1	I/O			•						•	RFC
11	15	RFCX/D1/P0.0	I/O			•					•	•	RFC
12	16	MISO/ P2.6	I/O			•							SPI
13	17	SCK/ P2.5	I/O			•							SPI
14	18	MOSI/ P2.4	I/O			•							SPI
15	19	RXD/TK14/ P3.0	I/O			•	•		•				UART
16	20	TXD/TK13/ P3.1	I/O			•	•		•				UART
17	21	INT0/TK12/ P3.2	I/O	•	•	•	•		•				
18	22	INT1/TK11/ P3.3	I/O	•	•	•		•	•				
19	23	T0/CLD/P3.4	I/O			•		•	•		•		
20	24	T1/T1O/TK10/P3.5	I/O			•		•	•		•		Clock out
21	25	T1B/WR/TK9/P3.6	I/O			•		•	•			•	Clock out
22	26	T2/T2O/TK7/P1.0	I/O	•	•	•		•	•		•		Clock out
23	27	T2EX/AD1/TK6/P1.1	I/O	•	•	•		•	•	•	•		
24	28	AD2/TK5/P1.2	I/O	•	•	•		•	•	•			
25	29	PWM/AD3/TK4/P1.3		•	•	•		•	•	•			PWM
26	30	AD4/TK3/P1.4		•	•	•		•	•	•			
27	31	AD5/TK2/P1.5	I/O	•	•	•		•	•	•			
28	32	AD6/TK1/P1.6	I/O	•	•	•		•	•	•			
29	1	AD7/TK0/P1.7	I/O	•	•	•		•	•	•			
30	2	VPP/RSTn/INT2/P2.7	I/O	•	•			•					Reset/VPP
31	3	VDD	_										
32	4	VBAT	P										

Symbol:

P.P. = CMOS Push-Pull Output

O.D. = Open Drain

P.O.D. = Pseudo Open Drain

PU = Pull up DL = Drive Low

FUNCTIONAL DESCRIPTION

1. CPU Core

In the 8051 architecture, the C programming language is used as a development platform. The TM52 device features a fast 8051 core in a highly integrated microcontroller, allowing designers to be able to achieve improved performance compared to a classic 8051 device. TM52 series microcontrollers provide a complete binary code with standard 8051 instruction set compatibility, ensuring an easy migration path to accelerate the development speed of system products. The CPU core includes an ALU, a program status word (PSW), an accumulator (ACC), a B register, a stack point (SP), DPTRs, a programg counter, an instruction decoder, and core special function registers (SFRs).

1.1 Accumulator (ACC)

This register provides one of the operands for most ALU operations. Accumulators are generally referred to as A or Acc and sometimes referred to as Register A. In this document, the accumulator is represented as "A" or "ACC" including the instruction table. The accumulator, as its name suggests, is used as a general register to accumulate the intermediate results of a large number of instructions. The accumulator is the most important and frequently used register to complete arithmetic and logical operations. It holds the intermediate results of most arithmetic and logic operations and assists in data transportation.

	SFR E0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Γ	ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
Γ	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Γ	Reset	0	0	0	0	0	0	0	0

E0h.7~0 **ACC:** Accumulator

1.2 B Register (B)

The "B" register is very similar to the ACC and may hold a 1 Byte value. This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. The B register is only used by two 8051 instructions, MUL and DIV. When A is to be multiplied or divided by another number, the other number is stored in B. For MUL and DIV instructions, it is necessary that the two operands be in A and B.

SFR F0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0h.7~0 **B:** B register

1.3 Stack Pointer (SP)

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into memory during LCALL and ACALL instructions and is used to retrieve the program counter from memory in RET and RETI instructions. The stack may also be saved or loaded using PUSH and POP instructions, which also increment and decrement the Stack Pointer. The Stack Pointer points to the top location of the stack.

DS- TM52F2230B_34B_E 14 Rev 0.95, 2018/05/10

SFR 81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
SP		SP											
R/W		R/W											
Reset	0	0	0	0	0	1	1	1					

81h.7~0 **SP:** Stack Point

1.4 Dual Data Pointer (DPTRs)

TM52 device has two DPTRs, which share the same SFR address. Each DPTR is 16 bits in size and consists of two registers: the DPTR high byte (DPH) and the DPTR low byte (DPL). The DPTR is used for 16-bit-address external memory accesses, for offset code byte fetches, and for offset program jumps. Setting the DPSEL control bit allows the program code to switch between the two physical DPTRs.

SFR 82h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
DPL	DPL									
R/W	R/W									
Reset	0	0	0	0	0	0	0	0		

82h.7~0 **DPL:** Data Point low byte

SFR 83h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DPH	DPH								
R/W	R/W								
Reset	0	0	0	0	0	0	0	0	

83h.7~0 **DPH:** Data Point high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	_	_	_	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

F8h.0 **DPSEL:** Active DPTR Select

1.5 Program Status Word (PSW)

This register contains status information resulting from CPU and ALU operations. The instructions that affect the PSW are listed below.

Instruction	Flag				
instruction	C	OV	AC		
ADD	X	X	X		
ADDC	X	X	X		
SUBB	X	X	X		
MUL	0	X			
DIV	0	X			
DA	X				
RRC	X				
RLC	X				
SETB C	1				

Instruction		Flag				
Instruction	C	ov	AC			
CLR C	0					
CPL C	X					
ANL C, bit	X					
ANL C, /bit	X					
ORL C, bit	X					
ORL C, /bit	X					
MOV C, bit	X					
CJNE	X					

A "0" means the flag is always cleared, a "1" means the flag is always set and an "X" means that the state of the flag depends on the result of the operation.

DS- TM52F2230B_34B_E 15 Rev 0.95, 2018/05/10

SFR D0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PSW	CY	AC	F0	RS1	RS0	OV	F1	P
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

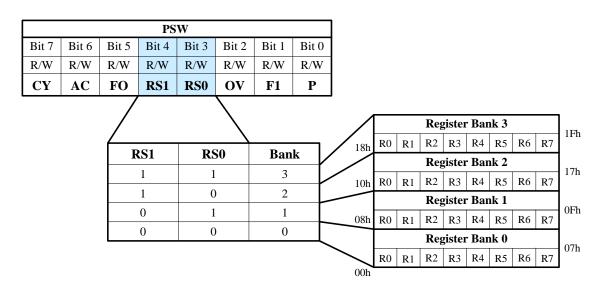
D0h.7 **CY:** ALU carry flag

D0h.6 **AC:** ALU auxiliary carry flag

D0h.5 **F0:** General purpose user-definable flag

D0h.4~3 **RS1, RS0:** The contents of (RS1, RS0) enable the working register banks as:

00: Bank 0 (00h~07h)
01: Bank 1 (08h~0Fh)


10: Bank 2 (10h~17h) 11: Bank 3 (18h~1Fh)

D0h.2 **OV:** ALU overflow flag

D0h.1 **F1:** General purpose user-definable flag

D0h.0 **P:** Parity flag. Set/cleared by hardware each instruction cycle to indicate odd/even number of "one"

bits in the accumulator.

DS- TM52F2230B_34B_E 16 Rev 0.95, 2018/05/10

2. Memory

2.1 Program Memory

The **F2230B/34B** has a 32K Bytes Flash program memory, which can support In Circuit Programming (ICP), In Application Programming (IAP) and In System Programming (ISP) function modes. The Flash write endurance is at least 10K cycles. The Flash program memory address continuous space (0000h~7FFFh) is partitioned to several sectors for device operation.

2.1.1 Program Memory Functional Partition

The last 2 bytes (7FFEh~7FFh) of program memory is defined as chip Configuration Word (CFGW), which is loaded into the device control registers upon power on reset (POR). The address space 7F00h~7FFDh is the IAP free area, while the 0000h~005Fh is occupied by Reset/Interrupt vectors as standard 8051 definition. In the in-circuit emulation (ICE) mode, user also needs to reserve the address space 3D00h~3FFFh for ICE System communication.

	32K Bytes program memory
0000h	D
	Reset/Interrupt Vector
005Fh	
0060h	
	User Code area
3CFFh	
3D00h	
	ICE mode reserve area
3FFFh	
4000h	
	User Code area
7FFFh	
7F00h	
	IAP-Free area
7FFDh	
7FFEh	CECW
7FFFh	CFGW

2.1.2 Flash ICP Mode

The Flash memory can be programmed by the tenx proprietary writer (**TWR98/TWR99**), which needs at least four wires (VBAT, VSS, P1.2, and P1.3 pins) to connect to this chip. To shorten the programming time, it is recommended to connect Writer with an additional fifth wire, which is the VPP (P2.7) pin. If the user wants to program the Flash memory on the target circuit board (In Circuit Programming, ICP), these pins must be reserved sufficient freedom to be connected to the Writer. More pins connected to Writer ensure more writing efficiency and speed.

Writer wire number	Pin connection
4-Wire	VBAT, VSS, P1.2, P1.3
5-Wire	VBAT, VSS, P1.2, P1.3, VPP
6-Wire	VBAT, VSS, P1.2, P1.3, VPP, P1.0

DS- TM52F2230B_34B_E 17 Rev 0.95, 2018/05/10

2.1.3 Flash IAP Mode

The **F2230B/34B** has "In Application Programming" (IAP) capability, which allows software to read/write data from/to the Flash memory during CPU run time as conveniently as data EEPROM access. The IAP function is byte writable, meaning that the **F2230B/34B** does not need to erase one Flash page before write. The available IAP data space is 254 Bytes after chip reset, and can be re-defined by the "MVCLOCK" and "IAPALL" control register as shown below.

	32K Bytes Flash Program memory
0000h	MOVGL
01FFh	MOVC-Lock area
0200h	
	IAP-All area
7EFFh	
7F00h	
7FFDh	IAP-Free area
7FFEh	
	CFGW area
7FFFh	

Flash memory	MVCLOCK	IAPALL	MOVC Accessible	MOVX (IAP) Accessible
	1	X	No	No
0000h~01FFh	0	0	Yes	No
	0	1	Yes	Yes
02001 75551	X	0	Yes	No
0200h~7FFFh	X	1	Yes	Yes
7F00h~7FFDh	X	X	Yes	Yes
7FFEh	X	0	Yes	No
/FFEN	X	1	Yes	Yes
7FFFh	X	X	Yes	No

In IAP mode, the program Flash memory is separated into four sectors: MOVC-Lock area, IAP-All area, IAP-Free area, and CFGW area. These four sectors are regulated differently.

In the **MOVC-Lock area,** IAP read/write is limited by MVCLOCK bit, which can be set to control the accessibility of the MOVC and MOVX instructions to this area. The size of this area is 512 Bytes. The lock function is made to protect the main program code against unconsciously writing Flash memory in IAP mode. Locking or unlocking the function should be performed by the tenx TWR98/99 writing to the CFGW in Flash memory.

The IAP-All area is protected by the IAPALL register to prevent IAP mode from writing application data to the program area, resulting in a program code error that cannot be repaired. The size of this area is 32000 Bytes. Enabling IAPALL requires writing 65h to SFR SWCMD 97h to set the IAPALL control flag. Then, software can use MOVX instructions to write application data to flash memory from 0200h to 7EFFh. If user wants to disable IAPALL function, user can write other values to SFR SWCMD 97h to clear the IAPALL control flag. User must be careful not to overwrite program code which is already resided on the same Flash memory area.

The **IAP-Free area** has no control bit to protect. It can be used to reliably store system application data that needs to be programmed once or periodically during system operation. Other areas of Flash memory can be used to store data, but this area is usually the best. The size of this area is 254 Bytes, equivalent to an EEPROM, and Flash memory can provide byte access to read and write commands. In the past, storage of configuration data required an additional EEPROM or the other storage device. However, this functionality can now be provided by on-chip Flash, reducing the chip count of embedded applications. An external EEPROM or SRAM may not be needed.

The CFGW area has 2 data bytes (CFGWH and CFGWL), which is located at the last 2 addresses of Flash memory. The CFGWH is not accessible to IAP, while the CFGWL can be read or written by IAP in case the IAPALL flag is set. CFGWL is copied to the SFR F7h after power on reset, software then

DS- TM52F2230B_34B_E 18 Rev 0.95, 2018/05/10

take over CFGWL's control capability by modifying the SFR F7h. The CFGWL is defined as FRC adjustment register in F2230B/34B.

2.1.4 IAP Mode Access Routines

Flash IAP write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address (0~7FFEh), and the ACC contains the data being written. The F2230B/34B accepts IAP Write command only when the IAPWE SFR is enabled; but F2230/34 does not have such constrain. Flash IAP writing requires approximately 500uS. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers and others) continue running during the writing time. The software must handle the pending interrupts after an IAP write. Flash IAP writing needs slower SYSCLK frequency as well as higher V_{DD} voltage. User must make a condition of $2.8V < V_{DD} < 3.6V$ for IAP write.

Because the Program memory and the IAP data space share the same entity, a Flash IAP read can be performed by the "MOVX A, @DPTR" or "MOVC" instruction as long as the target address points to the 0~7FFFh area. A Flash IAP read does not require extra CPU wait time.

; IAP ex	; IAP example code						
; need 2.	$.8V < V_{DD} < 3.6V$						
MOV	DPTR, #7F00h	; DPTR=7F00h=target IAP address					
MOV	A, #5Ah	; A=5Ah=target IAP write data					
MOV	A9h, #A0h	;IAPWE=1 for F2230B/34B					
MOVX	@DPTR, A	; Flash [7F00h] =5Ah, after IAP write					
		; 200µs~500µs H/W writing time, CPU wait					
MOV	A9h, #00h	; IAPWE=0 immediately after IAP write					
CLR	A	; A=0					
MOVX	A, @DPTR	; A=5Ah					
CLR	A	; A=0					
MOVC	A, @A+DPTR	; A=5Ah					

Flash 7FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE	MVCLOCK	WDTE	_	_	LVR1E	_

7FFFh.5 MVCLOCK: If 1, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SWCMD		IAPALL / SWRST									
R/W		W									
Reset			•	_	•	•		0			

97h.7~0 **IAPALL** (W): Write 65h to set IAPALL control flag; Write other value to clear IAPALL flag. It is recommended to clear it immediately after IAP access.

97h.0 **IAPALL (R):** Flag indicates Flash memory sectors can be accessed by IAP or not. This bit combines with MVCLOCK to define the accessible IAP area.

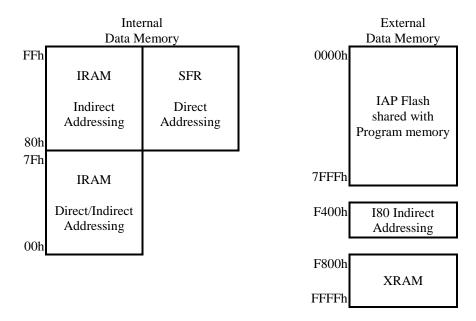
SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1		IAPWE		SPIE	TKIE	EX2	P1IE	TM3IE
R/W		R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.7~5 **IAPWE:** IAP write enable control (only for F2230B/34B)

101: Enable IAP write. It is recommended to clear it immediately after IAP write.

Others value: Disable IAP write.

DS- TM52F2230B_34B_E 19 Rev 0.95, 2018/05/10



2.1.5 Flash ISP Mode

The "In System Programming" (ISP) usage is similar to IAP, except the purpose is to refresh the Program code. User can use UART/SPI or other method to get new Program code from external host, then writes code as the same way as IAP. ISP operation is complicated; basically it needs to assign a Boot code area to the Flash which does not change during the ISP process.

2.2 Data Memory

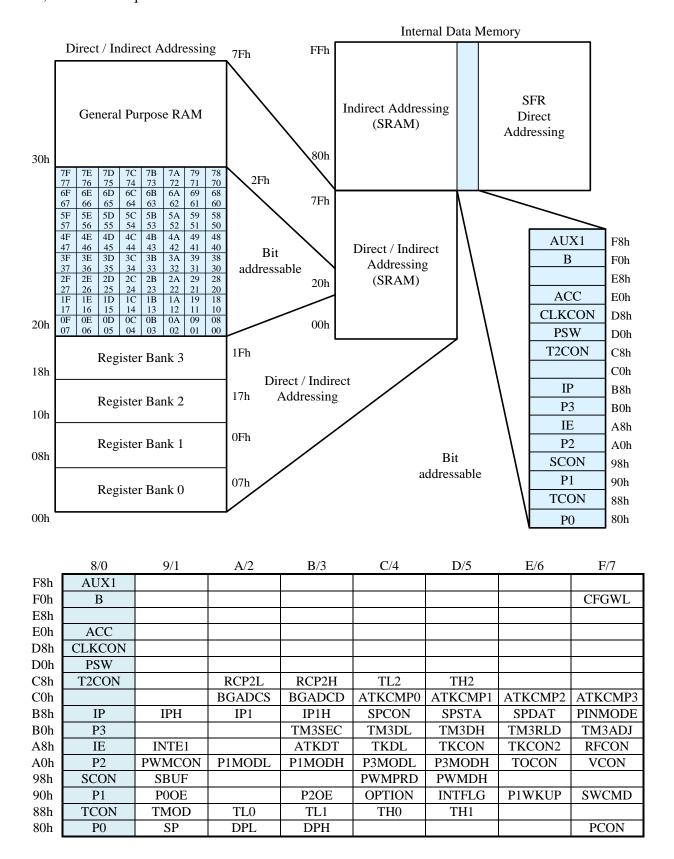
As the standard 8051, the **F2230B/34B** has both Internal and External Data Memory space. The Internal Data Memory space consists of 256 Bytes IRAM and 68 SFRs, which are accessible through a rich instruction set. The External Data Memory space consists of 2048 Bytes XRAM, I80 indirect addressing and IAP Flash, which can be only accessed by MOVX instruction.

2.2.1 IRAM

IRAM is located in the 8051 internal data memory space. The whole 256 Bytes IRAM are accessible using indirect addressing but only the lower 128 Bytes are accessible using direct addressing. There are four directly addressable register banks (switching by PSW), which occupy IRAM space from 00h to 1Fh. The address 20h to 2Fh 16 Bytes IRAM space is bit-addressable. IRAM can be used as scratch pad registers or program stack.

2.2.2 XRAM

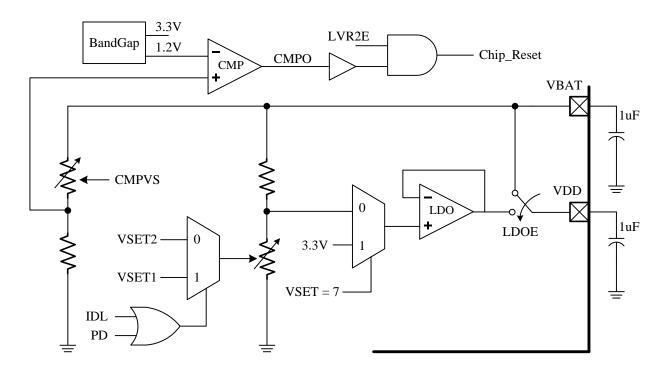
XRAM is located in the 8051 external data memory space (address from F800h to FFFFh). The 2048 Bytes XRAM can be only accessed by "MOVX" instruction.


2.2.3 SFRs

All peripheral functional modules such as I/O ports, Timers and UART operations for the chip are accessed via Special Function Registers (SFRs). These registers occupy upper 128 Bytes of direct Data Memory space locations in the range 80h to FFh. There are 14 bit-addressable SFRs (which means that eight individual bits inside a single byte are addressable), such as ACC, B register, PSW, TCON, SCON, and others. The remaining SFRs are only byte addressable. SFRs provide control and data exchange with the resources and peripherals of the **F2230B/34B**. The TM52 series of microcontrollers provides

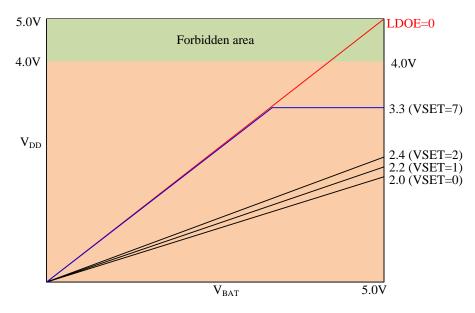
DS- TM52F2230B_34B_E 20 Rev 0.95, 2018/05/10

complete binary code with standard 8051 instruction set compatibility. Beside the standard 8051 SFRs, the **F2230B/34B** implements additional SFRs used to configure and access subsystems such as the SPI or I80, which are unique to the **F2230B/34B**.



3. Power Management

VBAT pin is the power supply for this chip. It provides voltage source to the built-in tiny current LDO Regulator for chip internal operation. The VDD is the LDO output pin, which needs an external 1uF capacitor connection to VSS for voltage level stability. If LDOE=0, the LDO is disable and the VDD is shorted to VBAT. If LDOE=1, the LDO is enable and the V_{DD} voltage level is defined by VSET 1/2 SFR. When VSET 1/2=0~6, $V_{DD} = V_{BAT}*12/30~V_{BAT}*19/30$ and the LDO module only consume 0.3uA. When VSET 1/2=7, $V_{DD}=V_{BG}*2.75=1.2V*2.75=3.3V$ and the Bandgap module consumes 15uA. The lower V_{DD} voltage level causes lower chip current consumption, but user must also consider the System clock rate. Higher clock rate requires higher V_{DD} voltage level. User must keep 1.7V < V_{DD} <4.0V for the device's proper operation. In IAP write mode, user also needs to set V_{DD} >2.8V


The 1.2V BandGap Voltage Reference module also support for Low Battery Detection (LBD) and LVR2. The Battery voltage is divided by resistor to certain level then compare to the BandGap voltage. User can refer to the V_{BAT} voltage level for setting the V_{DD} level by VSET1 or VSET2 SFR. The BandGap and Comparator consume un-neglect current, so user should not use them too often. Since V_{BAT} voltage level changes very slowly, user can detect it once an hour or once a day to reduce current consumption.

LDO Regulator & Comparator

DS- TM52F2230B_34B_E 22 Rev 0.95, 2018/05/10

VSET	V _{BAT}	V _{BAT} 5V
	$V_{ m DD}$	V_{DD}
7	3.00	3.30
6	1.88	3.13
5	1.76	2.94
4	1.65	2.75
3	1.54	2.56
2	1.43	2.38
1	1.31	2.19
0	1.2	2.00

 $V_{BAT} \ to \ V_{DD} \ selection \ table$

Note: must keep $1.7V < V_{DD} < 4.0V$

СМРО								CM	PVS							
CMPO	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$4.5V < V_{BAT}$	X	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$4.3V < V_{BAT} < 4.5V$	X	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
$4.1V < V_{BAT} < 4.3V$	X	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
$3.9V < V_{BAT} < 4.1V$	X	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
$3.7V < V_{BAT} < 3.9V$	X	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0
$3.5V < V_{BAT} < 3.7V$	X	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
$3.3V < V_{BAT} < 3.5V$	X	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
$3.1V < V_{BAT} < 3.3V$	X	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
$3.0V < V_{BAT} < 3.1V$	X	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
$2.9V < V_{BAT} < 3.0V$	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
$2.8V < V_{BAT} < 2.9V$	X	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
$2.7V < V_{BAT} < 2.8V$	X	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
$2.6V < V_{BAT} < 2.7V$	X	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$2.5V < V_{BAT} < 2.6V$	X	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$2.4V < V_{BAT} < 2.5V$	X	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V_{BAT} <2.4V	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Comparator Result vs V_{BAT} voltage level

DS- TM52F2230B_34B_E 23 Rev 0.95, 2018/05/10

SFR A7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VCON	_	LDOE		VSET2			VSET1	
R/W		R/W		R/W			R/W	
Reset	_	1	1	1	1	1	1	1

A7h.6 **LDOE:** Chip internal LDO Regulator enable control

0: LDO disable, V_{DD}=V_{BAT}

1: LDO enable, V_{DD} =LDO Regulator output

A7h.5~3 **VSET2:** V_{DD} voltage setting in Fast/Slow mode while LDOE=1.

0xx: Don't select

100: $V_{DD}=V_{BAT}*165/300$ in Fast/Slow mode

101: V_{DD}=V_{BAT}*176/300 in Fast/Slow mode

110: V_{DD}=V_{BAT}*188/300 in Fast/Slow mode

111: $V_{DD}=V_{BG}*2.75=1.2V*2.75=3.3V$ in Fast/Slow mode while $V_{BAT}>3.3V$.

A7h.2~0 **VSET1:** V_{DD} voltage setting in Idle/Stop mode while LDOE=1.

0xx: Don't select

100: $V_{DD} = V_{BAT} * 165/300$ in Idle/Stop mode

101: $V_{DD}=V_{BAT}*176/300$ in Idle/Stop mode

110: V_{DD}=V_{BAT}*188/300 in Idle/Stop mode

111: $V_{DD} = V_{BG} * 2.75 = 1.2V * 2.75 = 3.3V$ in Idle/Stop mode while $V_{BAT} > 3.3V$.

Note: If System Clock is FRC/FXT, the VCON setting should follow the rule below:

3V Mode: LDOE=0. $(V_{DD}=V_{BAT})$

5V Mode: LDOE=1, VSET=7. ($V_{DD}=V_{BAT}$ when $V_{BAT}<3.3V$, $V_{DD}=3.3V$ when $V_{BAT}>3.3V$)

Note: must keep $1.7V < V_{DD} < 4.0V$

SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BGADCS	LVR2E		ADCHS			CM	PVS	
R/W	R/W		R/W			R/	W	
Reset	0	0	0	0	0	0	0	0

C2h.3~0 **CMPVS:** Select V_{BAT} resistor divider for Comparator input to compare with the 1.2V Bandgap reference voltage. If LVR2E=1, the Low Voltage Reset #2 is triggered when V_{BAT} resistor divider is lower than 1.2V (CMPO=0).

0000: Comparator Disable

0001: the Comparator input is $V_{BAT}*12 / 24$, LVR2=2.4V

0010: the Comparator input is $V_{BAT}*12 / 25$, LVR2=2.5V

0011: the Comparator input is $V_{BAT}*12 / 26$, LVR2=2.6V

0100: the Comparator input is $V_{BAT}*12 / 27$, LVR2=2.7V

0101: the Comparator input is $V_{BAT}*12 / 28$, LVR2=2.8V

0110: the Comparator input is $V_{BAT}*12 / 29$, LVR2=2.9V

0111: the Comparator input is $V_{BAT}*12 / 30$, LVR2=3.0V

1000: the Comparator input is $V_{BAT}*12 / 31$, LVR2=3.1V

1001: the Comparator input is $V_{BAT}*12 / 33$, LVR2=3.3V

1010: the Comparator input is $V_{BAT}*12 / 35$, LVR2=3.5V

1011: the Comparator input is $V_{BAT}*12 / 37$, LVR2=3.7V

1100: the Comparator input is $V_{BAT}*12 / 39$, LVR2=3.9V

1101: the Comparator input is $V_{BAT}*12 / 41$, LVR2=4.1V

1110: the Comparator input is $V_{BAT}*12 / 43$, LVR2=4.3V 1111: the Comparator input is $V_{BAT}*12 / 45$, LVR2=4.5V

SFR C3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
BGADCD	CMPO	_		ADCDT						
R/W	R	_			F	3				
Reset	_	_	_	_	_	_	_	_		

C3h.7 **CMPO:** Compare result of BandGap voltage and V_{BAT} voltage divider. CMPO = 1 means the V_{BAT} divider voltage is higher. If LVR2E = 1, the CMPO = 0 can trigger LVR2.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXTO	GAIN	STPPCK	PWRFLT	UART1W	WDTPSC	TM3	PSC
R/W	R/	W	R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	0	0	0	0	1

94h.4 **PWRFLT:** Set 1 to enhance the chip's power noise immunity

DS- TM52F2230B_34B_E 25 Rev 0.95, 2018/05/10

4. Reset

The **F2230B/34B** has six types of reset methods. The CFGW controls the Reset functionality. The SFRs are returned to their default value after Reset.

4.1 Power on Reset

After Power on Reset, the device stays on Reset state for 20 ms as chip warm up time, then downloads the CFGW register from Flash's last two bytes (Other Reset will not reload the CFGW). The Power on Reset needs both V_{BAT} and V_{DD} voltage first discharge to near V_{SS} level, then rise beyond 1.8V.

4.2 External Pin Reset

External Pin Reset is active low. The RSTn pin needs to keep at least 2 SRC clock cycle long to be sampled by the chip. Pin Reset can be disabled or enabled by CFGW.

4.3 Software Reset

Software Reset is activated by writing the SFR 97h with data 56h.

4.4 Watch Dog Timer Reset

WDT overflow Reset is disabled or enable by CFGW. The WDT uses SYSCLK as its counting time base. It runs in Fast/Slow mode and stops in Idle/Stop mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit.

4.5 Low Voltage Reset #1 (LVR1)

LVR1 is disabled or enable by LVR1E in the CFGW. If enable, LVR1 resets the chip when $V_{BAT} < 1.5V$. LVR1 consumes very small current, typically 0.1uA @ $V_{BAT} = 3V$. It is designed to prevent the chip's abnormal function during power on-off.

4.6 Low Voltage Reset #2 (LVR2)

LVR2 is disabled or enable by LVR2E SFR bit. LVR2 is generated by the Bandgap Comparator module. When the V_{BAT} resister divider voltage is lower than the 1.2V Bandgap reference voltage (CMPO=0), the LVR2 occurs. F/W must setup the CMPVS SFR before set LVR2E=1 to prevent the LVR2 triggered during Bandgap unstable. LVR2's trigger level can be selected as V_{BAT} =2.4V~4.5V by the CMPVS SFR. Enable the LVR2 function consumes 15uA @ V_{BAT} =3V.

Note: LVR1 must be enable, also refer to AP-TM52XXXXX_02S for LVR1/LVR2 setting information

System Clock frequency	8 MHz	6 MHz	4 MHz	2 MHz	1 MHz
Minimum LVR1 / 2 level	LVR2=2.9V	LVR2=2.6V	LVR2=2.4V	LVR2=2.4V	LVR1=1.5V
	LVR1=1.5V	LVR1=1.5V	LVR1=1.5V	LVR1=1.5V	LVK1-1.3V

LVR1/2 setting table

Flash 7FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CEGWH	PROT	XRSTE	MVCLOCK	WDTE	_	_	LVR1F	_

7FFFh.6 **XRSTE:** Pin Reset enable, 1=enable.

7FFFh.4 **WDTE:** WDT Reset enable, 1=enable.

7FFFh.1 **LVR1E:** Low Voltage Reset #1 enable, 1=enable.

DS- TM52F2230B_34B_E 26 Rev 0.95, 2018/05/10

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SWCMD		IAPALL / SWRST									
R/W		W									
Reset				_				0			

97h.7~0 **SWRST (W):** Write 56h to generate S/W Reset.

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	_	_	_	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

F8h.3 **CLRWDT:** Set to 1 to clear Watch Dog Timer.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXTO	GAIN	STPPCK	PWRFLT	UART1W	WDTPSC	TM3	PSC
R/W	R/	W	R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	0	0	0	0	1

94h.2 **WDTPSC:** WDT prescaler.

0: WDT overflow at 65536 System clock count

1: WDT overflow at 32768 System clock count

SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
BGADCS	LVR2E		ADCHS			CMPVS				
R/W	R/W		R/W			R/	W			
Reset	0	0	0 0 0			0	0	0		

C2h.7 **LVR2E:** Low Voltage Reset #2 enable, 1=enable. This bit must be set to 1 after CMPVS setting done and the Bandgap voltage stable.

C2h.3~0 **CMPVS:** Select V_{BAT} resistor divider for Comparator input to compare with the 1.2V Bandgap reference voltage. If LVR2E=1, the Low Voltage Reset #2 is triggered when V_{BAT} resistor divider is lower than 1.2V (CMPO=0).

0000: Comparator Disable

0001: the Comparator input is V_{BAT}*12/24, LVR2=2.4V

0010: the Comparator input is $V_{BAT}*12/25$, LVR2=2.5V

0011: the Comparator input is $V_{BAT}*12/26$, LVR2=2.6V

0100: the Comparator input is V_{BAT}*12/27, LVR2=2.7V

0101: the Comparator input is $V_{BAT}*12/28$, LVR2=2.8V

0110: the Comparator input is $V_{BAT}*12/29$, LVR2=2.9V

0111: the Comparator input is $V_{BAT}*12/30$, LVR2=3.0V

1000: the Comparator input is $V_{BAT}*12/31$, LVR2=3.1V

1001: the Comparator input is $V_{BAT}*12/33$, LVR2=3.3V

1010: the Comparator input is $V_{BAT}*12/35$, LVR2=3.5V

1011: the Comparator input is $V_{BAT}*12/37$, LVR2=3.7V

1100: the Comparator input is $V_{BAT}*12/39$, LVR2=3.9V

1101: the Comparator input is $V_{BAT}*12/41$, LVR2=4.1V

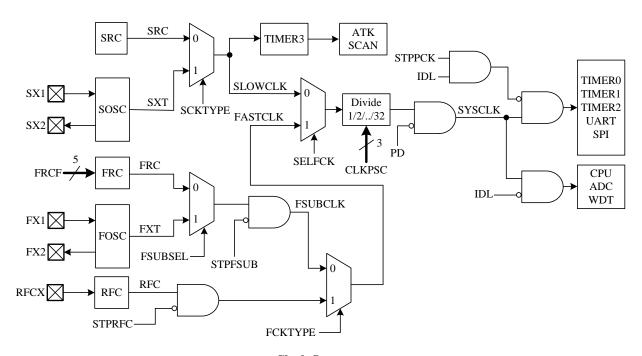
1110: the Comparator input is V_{BAT}*12/43, LVR2=4.3V

1111: the Comparator input is V_{BAT}*12/45, LVR2=4.5V

SFR C3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
BGADCD	CMPO	_		ADCDT						
R/W	R	_		R						
Reset	_	_	_							

C3h.7 **CMPO:** Compare result of BandGap voltage and V_{BAT} voltage divider. CMPO=1 means the V_{BAT} divider voltage is higher. If LVR2E=1, the CMPO=0 can trigger LVR2.

DS- TM52F2230B_34B_E 27 Rev 0.95, 2018/05/10


5. Clock Circuitry & Operation Mode

5.1 System Clock

The **F2230B/34B** is designed with dual-clock system. During runtime, user can directly switch the System clock from fast to slow or from slow to fast. It also can directly select a clock divider of 1, 2, 4, 8, 16 or 32. The Fast clock consists of **FRC** (Fast Internal RC, 7.3728 MHz), **FXT** (1~8 MHz) and **RFC**. The Slow clock can be selected as **SXT** (Slow Crystal, 32 KHz) or **SRC** (80 KHz @V_{DD}=3V, 40 KHz @V_{DD}=1.5V). Fast mode and Slow mode are defined as the CPU running at Fast and Slow clock speeds.

After Reset, the chip is running at Slow mode with SRC clock. Since Fast clock is useless in Slow mode, S/W can set STPFSUB=1 to stop FXT or FRC to reduce device's current consumption. Before the device switches to other clock rate, S/W must also consider the V_{DD} voltage level for device operation safety. The higher V_{DD} allows the device to run at higher System clock frequency. In typical condition, 7.3728 MHz System clock rate requires $V_{DD} > 2.8V$.

Before entering the Fast mode, S/W must select the Fast clock type in advance. If RFC is used as the Fast clock source, S/W also has to setup the pin mode and RFC related SFRs in advance. The FRC is the default Fast clock type. Its frequency is controlled by FRCF SFR, which is automatically loaded with CFGW data at power on reset. The FRC is trimmed to 7.3728 MHz in chip manufacturing.

Clock Structure

The CLKCON SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow clock type in Fast mode, and change the Fast clock type in Slow mode. Never to write both STPFSUB=1 & SELFCK=1 in FXT/FRC mode. It is recommended to write this register bit by bit.

DS- TM52F2230B_34B_E 28 Rev 0.95, 2018/05/10

This chip can also output the System clock to TCO pin (in CMOS format). TCO's frequency/duty is defined by TCOCON SFR. TCO pin's output enable is defined by P3MOD7 SFR (see section 7).

Flash 7FFEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_	_	_			FRCF		

FFEh.4~0 **FRCF:** FRC frequency adjustment.

FRC is trimmed to 7.3728 MHz in chip manufacturing. FRCF records the adjustment data.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_	_	_	FRCF				
R/W	_	_	_	R/W				
Reset	_	_	_	_	_	_	_	_

F7h.4~0 **FRCF:** FRC frequency adjustment. It is automatically loaded with Flash's 7FFEh data at power on reset and can be read/written as any other SFR register in normal mode. So the FRC clock speed can be changed on CPU run time by S/W.

00h=central frequency, 0Fh=highest frequency, 10h=lowest frequency.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	FCKTYPE	FSUBSEL	SELFCK	SCKTYPE	STPFSUB		CLKPSC	
R/W	R/W	R/W	R/W	R/W	R/W		R/W	
Reset	0	0	0	0	0	1	0	1

D8h.7 **FCKTYPE:** Fast clock type select, This bit can be changed only in Slow mode (SELFCK=0)

0: Fast clock is FSUBCLK (FRC or FXT)

1: Fast clock is RFC, S/W must setup RFC oscillating circuitry before set this bit to 1.

D8h.6 **FSUBSEL:** FSUBCLK select, This bit can be changed only in Slow mode (SELFCK=0).

0: FSUBCLK is FRC

1: FSUBCLK is FXT, P2.2 and P2.3 are crystal oscillator pins

D8h.5 **SELFCK:** System clock select. This bit can be changed only when STPFSUB=0 or FCKTYPE=1.

0: Slow clock (SRC/SXT)

1: Fast clock (FRC/FXT/RFC)

D8h.4 **SCKTYPE:** Slow clock Type. This bit can be changed only in Fast mode (SELFC =1).

0. SRC

1: SXT, P2.0 and P2.1 are crystal oscillator pins

D8h.3 **STPFSUB:** Set 1 to stop FXT/FRC for power saving in Slow/Idle mode. This bit can be changed only in Slow mode or RFC mode.

D8h.2~0 CLKPSC: System clock prescaler. max effective delay is 32 cycle, Refer AP-TM52XXXXX_01S.

000: System clock is Fast/Slow clock divided by 32

001: System clock is Fast/Slow clock divided by 16

010: System clock is Fast/Slow clock divided by 8

011: System clock is Fast/Slow clock divided by 4

100: System clock is Fast/Slow clock divided by 2

101: System clock is Fast/Slow clock divided by 1

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXTGAIN		STPPCK	PWRFLT	UART1W	WDTPSC	TM3	BPSC
R/W	R/W		R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	0	0	0	0	1

94h.7~6 **SXTGAIN:** 32768 SXT oscillator gain, 3=Highest gain, 0=Lowest gain. Higher gain can shorten the Crystal oscillation warm-up time. Lower gain can reduce oscillation current.

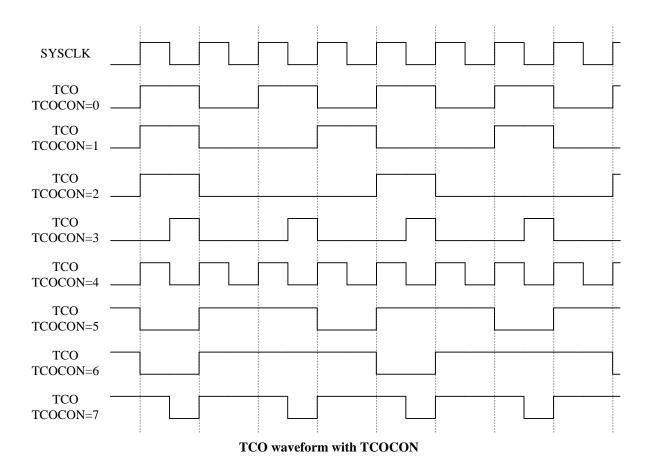
94h.5 **STPPCK:** Set 1 to stop UART/Timer0/Timer1/Timer2 clock in Idle mode for current reducing.

Note: In crystal mode, user should set the P2.2/P2.3 (FXT) or P2.0/P2.1 (SXT) pins as Input with Pull-up (section7).

		CI	LKCON (D8)	h)	
SYSCLK	bit7	bit6	bit5	bit4	bit3
	FCKTYPE	FSUBSEL	SELFCK	SCKTYPE	STPFSUB
Fast RFC (*1)	1	0/1	1	0/1	0/1
Fast FXT	0	1	1	0/1	0
Fast FRC	0	0	1	0/1	0
Slow SXT	0/1	0/1	0	1	0/1
Slow SRC	0/1	0/1	0	0	0/1
Fast type change	0 ← → 1	0 ← → 1	0	0/1	0/1
Slow type change	0/1	0/1	1	0 ← → 1	0/1(*2)
Stop FRC / FXT	0	0/1	0	0/1	0 → 1
Stop FRC / FXT	1	0/1	0/1	0/1	0 → 1
Switch to FRC/FXT	0	0/1	0 > 1	0/1	0
Switch to RFC (*1)	1	0/1	0 > 1	0/1	0/1
Switch to SRC / SXT	0	0/1	1 → 0	0/1	0
Switch to SRC / SXT	1	0/1	1 → 0	0/1	0/1

^(*1) also need RFC related SFRs proper setting

(*2) STPFSUB=1 is only valid for RFC Mode, FRC/FXT Mode needs STPFSUB=0


SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOCON	T10	CON		T2OCON			TCOCON	
R/W	R/	W		R/W		R/W		
Reset	0	0	0	0	0	0	0	0

A6h.2~0 **TCOCON:** TCO pin duty and frequency control

000: 1/2 duty, 1/2 SYSCLK frequency 001: 1/3 duty, 1/3 SYSCLK frequency 010: 1/4 duty, 1/4 SYSCLK frequency 011: 1/4 duty, 1/2 SYSCLK frequency 100: 1/2 duty, 1/1 SYSCLK frequency 101: 2/3 duty, 1/3 SYSCLK frequency 110: 3/4 duty, 1/4 SYSCLK frequency 111: 3/4 duty, 1/2 SYSCLK frequency

DS- TM52F2230B_34B_E 30 Rev 0.95, 2018/05/10

5.2 Operation Modes

There are four operation modes for this device. **Fast Mode** is defined as the CPU running at Fast clock speed. **Slow Mode** is defined as the CPU running at Slow clock speed. When the System clock speed is lower, the power consumption is lower.

Idle Mode is entered by setting the IDL bit in PCON SFR. Both Fast and Slow clock can be set as the System clock source in Idle Mode, but Slow clock is better for power saving. In Idle mode, the CPU puts itself to sleep while the on-chip peripherals stay active. The STPPCK bit can be set to furthermore reduce Idle mode current. If STPPCK=1, Timer0/1/2 and UART are stopped in Idle mode. The slower System clock rate also helps current saving. It can be achieved by setup the CLKPSC SFR to divide System clock frequency. Idle mode is terminated by Reset or enabled Interrupts wake up.

Stop Mode is entered by setting the PD bit in PCON SFR. This mode is the so-called "Power Down" mode in standard 8051. In Stop mode, all clocks stop. Stop Mode can be terminated by Reset or pin wake up.

Note: Chip cannot enter Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and Exn=1, n=0,1,2)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0		_	_	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter STOP mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter IDLE mode.

6. Interrupt & Wake-up

The **F2230B/34B** has an 11-source four-level priority interrupt structure. All enabled Interrupts can wake up CPU from Idle mode, but only the Pin Interrupts can wake up CPU from Stop mode. Each interrupt source has its own enable control bit. An interrupt event will set its individual Interrupt Flag, no matter whether its interrupt enable control bit is 0 or 1. The Interrupt vectors and flags are list below.

Vector	Flag	Description
0003	IE0	INTO external pin Interrupt (can wake up Stop mode)
000B	TF0	Timer0 Interrupt
0013	IE1	INT1 external pin Interrupt (can wake up Stop mode)
001B	TF1	Timer1 Interrupt
0023	RI+TI	Serial Port (UART) Interrupt
002B	TF2+EXF2	Timer2 Interrupt
0033		Reserved for ICE mode use
003B	TF3	Timer3 Interrupt
0043	P1IF	Port1 external pin change Interrupt (can wake up Stop mode)
004B	IE2	INT2 external pin Interrupt (can wake up Stop mode)
0053	TKIF	Touch Key Interrupt (F2230B only)
005B	SPIF+WCOL	SPI Interrupt

Interrupt Vector & Flag

6.1 Interrupt Enable and Priority Control

The IE and INTE1 SFRs decide whether the pending interrupt is serviced by CPU. The P1WKUP SFR controls the individual Port1 pin's wake-up and interrupt capability. The IP, IPH, IP1 and IP1H SFRs decide the interrupt priority. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
P1WKUP		P1WKUP							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

96h.7~0 **P1WKUP:** P1.7~P1.0 pin individual Wake-up / Interrupt enable control

0: Disable 1: Enable

DS- TM52F2230B_34B_E 32 Rev 0.95, 2018/05/10

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

A8h.7 **EA:** Global interrupt enable control.

0: Disable all Interrupts.

1: Each interrupt is enabled or disabled by its individual interrupt control bit

A8h.5 **ET2:** Timer2 interrupt enable

0: Disable Timer2 interrupt

1: Enable Timer2 interrupt

A8h.4 **ES:** Serial Port (UART) interrupt enable

0: Disable Serial Port (UART) interrupt

1: Enable Serial Port (UART) interrupt

A8h.3 **ET1:** Timer1 interrupt enable

0: Disable Timer1 interrupt

1: Enable Timer1 interrupt

A8h.2 **EX1:** External INT1 pin Interrupt enable and Stop mode wake up enable

0: Disable INT1 pin Interrupt and Stop mode wake up

1: Enable INT1 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no matter EA is 0 or 1.

A8h.1 **ET0:** Timer0 interrupt enable

0: Disable Timer0 interrupt

1: Enable Timer0 interrupt

A8h.0 **EX0:** External INTO pin Interrupt enable and Stop mode wake up enable

0: Disable INT0 pin Interrupt and Stop mode wake up

1: Enable INT0 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no matter EA is 0 or 1.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1		IAPWE		SPIE	TKIE	EX2	P1IE	TM3IE
R/W		R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.4 **SPIE:** SPI interrupt enable

0: Disable SPI interrupt

1: Enable SPI interrupt

A9h.3 **TKIE:** Touch Key (F2230B only) interrupt enable

0: Disable Touch Key interrupt

1: Enable Touch Key interrupt

A9h.2 **EX2:** External INT2 pin Interrupt enable and Stop mode wake up enable

0: Disable INT2 pin Interrupt and Stop mode wake up

1: Enable INT2 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no matter EA is 0 or 1.

A9h.1 **P1IE:** Port1 pin change interrupt enable. This bit does not affect the Port1 pin's Stop mode wake up capability.

0: Disable Port1 pin change interrupt

1: Enable Port1 pin change interrupt

A9h.0 **TM3IE:** Timer3 interrupt enable

0: Disable Timer3 interrupt

1: Enable Timer3 interrupt

SFR B9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPH	_	_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
R/W	_		R/W	R/W	R/W	R/W	R/W	R/W
Reset		_	0	0	0	0	0	0

SFR B8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP	_	_	PT2	PS	PT1	PX1	PT0	PX0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

B9h.5, B8h.5 **PT2H**, **PT2:** Timer2 Interrupt Priority control. (PT2H, PT2) =

11: Level 3 (highest priority)

10: Level 2 01: Level 1

00: Level 0 (lowest priority)

B9h.4, B8h.4 **PSH**, **PS:** Serial Port (UART) Interrupt Priority control. Definition as above.

B9h.3, B8h.3 **PT1H, PT1:** Timer1 Interrupt Priority control. Definition as above.

B9h.2, B8h.2 **PX1H**, **PX1:** External INT1 pin Interrupt Priority control. Definition as above.

B9h.1, B8h.1 **PT0H, PT0:** Timer0 Interrupt Priority control. Definition as above.

B9h.0, B8h.0 **PX0H**, **PX0:** External INT0 pin Interrupt Priority control. Definition as above.

SFR BBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1H	_	_	_	PSPIH	PTKIH	PX2H	PP1H	РТ3Н
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

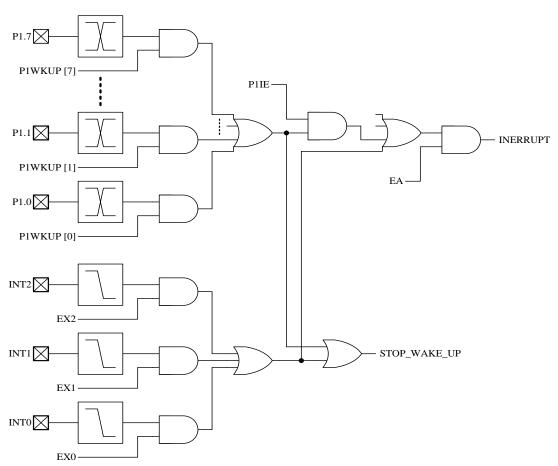
SFR BAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1	_			PSPI	PTKI	PX2	PP1	PT3
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_			0	0	0	0	0

BBh.4, BAh.4 **PSPIH, PSPI:** SPI Interrupt Priority control. Definition as above.

BBh.3, BAh.3 **PTKIH, PTKI:** Touch Key Interrupt Priority control. Definition as above. (F2230B only)

BBh.2, BAh.2 **PX2H, PX2:** External INT2 pin Interrupt Priority control. Definition as above.

BBh.1, BAh.1 **PP1H, PP1:** Port1 Pin Change Interrupt Priority control. Definition as above.


BBh.0, BAh.0 **PT3H, PT3:** Timer3 Interrupt Priority control. Definition as above.

DS- TM52F2230B_34B_E 34 Rev 0.95, 2018/05/10

6.2 Pin Interrupt

Pin Interrupts include INT0 (P3.2), INT1 (P3.3), INT2 (P2.7) and Port1 Change Interrupt. These pins also have the Stop mode wake up capability. INT0 and INT1 are falling edge or low level triggered as the 8051 standard. INT2 is falling edge triggered and Port1 Change Interrupt is triggered by any Port1 pin state change.

Pin Interrupt & Wake up

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

88h.3 **IE1:** External Interrupt 1 (INT1 pin) edge flag.

Set by H/W when an INT1 pin falling edge is detected, no matter the EX1 is 0 or 1.

It is cleared automatically when the program performs the interrupt service routine.

88h.2 **IT1:** External Interrupt 1 control bit

0: Low level active (level triggered) for INT1 pin

1: Falling edge active (edge triggered) for INT1 pin

88h.1 **IE0:** External Interrupt 0 (INT0 pin) edge flag

Set by H/W when an INT0 pin falling edge is detected, no matter the EX0 is 0 or 1.

It is cleared automatically when the program performs the interrupt service routine.

88h.0 **IT0:** External Interrupt 0 control bit

0: Low level active (level triggered) for INT0 pin

1: Falling edge active (edge triggered) for INT0 pin

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	_	_	_	_	TKIF	IE2	P1IF	TF3
R/W	_	_	_	_	R/W	R/W	R/W	R/W
Reset	_	_	_	_	0	0	0	0

95h.2 **IE2:** External Interrupt 2 (INT2 pin) edge flag

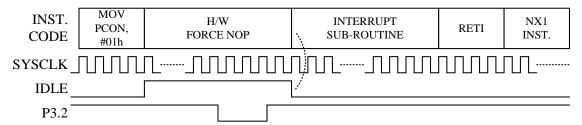
Set by H/W when a falling edge is detected on the INT2 pin, no matter the EX2 is 0 or 1.

It is cleared automatically when the program performs the interrupt service routine.

S/W can write FBh to INTFLG to clear this bit.

95h.1 **P1IF:** Port1 pin change interrupt flag

Set by H/W when a Port1 pin state change is detected and its interrupt enable bit is set (P1WKUP). P1IE does not affect this flag's setting.


It is cleared automatically when the program performs the interrupt service routine.

S/W can write FDh to INTFLG to clear this bit.

Note2: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

6.3 Idle mode Wake up and Interrupt

Idle mode is waked up by enabled Interrupts, which means individual interrupt enable bit (ex: EX0) and EA bit must be both set to 1 to establish Idle mode wake up capability. All enabled Interrupts (Pins, Timers, TK, SPI and UART) can wake up CPU from Idle mode. Upon Idle wake-up, Interrupt service routine is entered immediately. "The first instruction behind IDL (PCON.0) setting" is executed after interrupt service routine return.

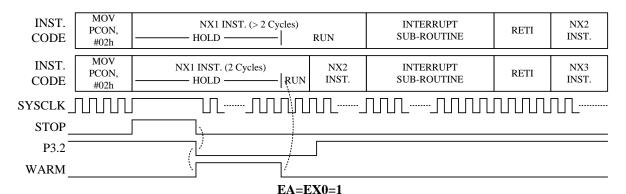
EA=EX0=1, Idle mode wake-up and Interrupt by P3.2 (INT0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W		_	_	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

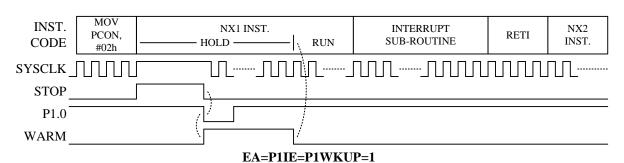
87h.1 **PD:** Power down control bit, set 1 to enter STOP mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter IDLE mode.

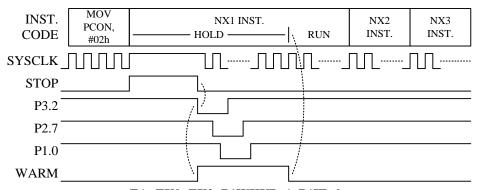
6.4 Stop mode Wake up and Interrupt

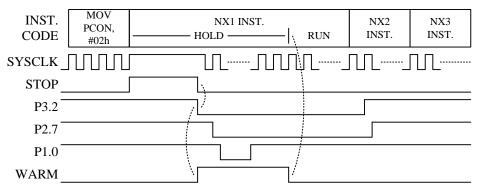

Stop mode wake up is simple, as long as the individual pin interrupt enable bit (ex: EX0) is set, the pin wake up capability is asserted. Set EX0/EX1/EX2 can enable INT0/INT1/INT2 pins' Stop mode wake up capability. Set P1WKUP bit 7~0 can enable P1.7~P1.0's Stop mode wake up capability. Upon Stop wake up, "the first instruction behind PD setting (PCON.1)" is executed immediately before Interrupt service. Interrupt entry requires EA=1 (P1WKUP also needs P1IE=1) and trigger state of the pin staying sufficiently long to be observed by the System clock. This feature allows CPU to enter or not enter Interrupt sub-routine after Stop mode wake up.

Note: Chip cannot enter Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and Exn=1, n=0,1,2)


Note: It is recommended to place the NX1/NX2 with NOP Instruction in figures below.

DS- TM52F2230B_34B_E 36 Rev 0.95, 2018/05/10




P3.2 (INT0) is sampled after warm-up, Stop mode wake-up and Interrupt

P1.0 change (not need clock sample), Stop mode wake-up and Interrupt

EA=EX0=EX2=P1WKUP=1, P1IE=0
Stop mode wake-up but not Interrupt, P3.2/P2.7 pulse too narrow

EX0=EX2=P1WKUP=P1IE=1, EA=0 Stop mode wake-up but not Interrupt

7. I/O Ports

The **F2230B/34B** has total 32 multi-function I/O pins. All I/O pins follow the standard 8051 "Read-Modify-Write" feature. The instructions that read the SFR rather than the Pin State are the ones that read a port or port bit value, possibly change it, and then rewrite it to the SFR. (ex: ANL P1, A; INC P2; CPL P3.0)

7.1 Port1 & Port3

These pins can operate in four different modes as below.

Mode	Port1, Port3 P3.0~P3.2	pin function Others	P1.n / P3.n SFR data	Pin State	Resistor Pull-up	Digital Input
M 1 0	Pseudo	Owen Davis	0	Drive Low	N	N
Mode 0	Open Drain	Open Drain	1	Pull-up	Y	Y
Mode 1	Pseudo	Onan Drain	0	Drive Low	N	N
Mode 1	Open Drain	Open Drain	1	Hi-Z	N	Y
Mode 2	CMOS	Output	0	Drive Low	N	N
Mode 2	Mode 2 CMOS O		1	Drive High	N	N
Mode 3	Alternative Funct	ion, such as ADC	X	_	Ν	N
Wiouc 3	and Cloc	k output	(don't care)		11	11

Port1, Port3 I/O Pin Function Table

If a Port1 or Port3 pin is used for Schmitt-trigger input, S/W must set the I/O pin to Mode0 or Mode1 and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry.

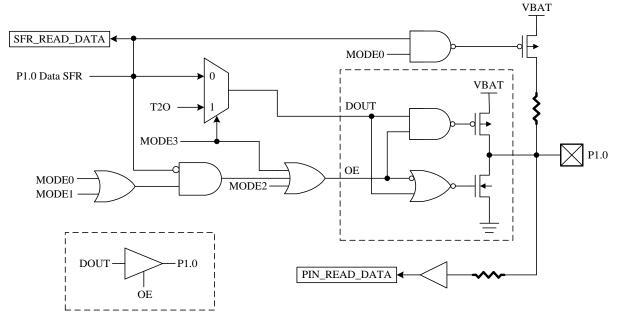
Beside I/O port function, each Port1 and Port3 pin has one or more alternative functions, such as Touch Key, ADC, I80 and Clock output. Most of the functions are activated by setting the individual pin mode control SFR to Mode3. Port1/Port3 pins also have standard 8051 auxiliary definition such as INT0/1, T0/1/2, or RXD/TXD. These pin functions need to set the pin mode SFR to Mode0 or Mode1 and keep the P1.n/P3.n SFR at 1.

Pin Name	8051	Wake-up	CKO	ADC	TK	I80	PWM	Mode3
P1.0	T2	Y	T2O		TK7			T2O
P1.1	T2EX	Y		ADC1	TK6			ADC1
P1.2		Y		ADC2	TK5			ADC2
P1.3		Y		ADC3	TK4		PWM	ADC3
P1.4		Y		ADC4	TK3			ADC4
P1.5		Y		ADC5	TK2			ADC5
P1.6		Y		ADC6	TK1			ADC6
P1.7		Y		ADC7	TK0			ADC7
P3.0	RXD				TK14			
P3.1	TXD				TK13			
P3.2	INT0	Y			TK12			
P3.3	INT1	Y			TK11			
P3.4	T0				CLD			CLD
P3.5	T1		T10		TK10			T10
P3.6			T1B		TK9	WR		T1B
P3.7			TCO		TK8	RD		TCO

Port1, Port3 multi-function Table

DS- TM52F2230B_34B_E 38 Rev 0.95, 2018/05/10

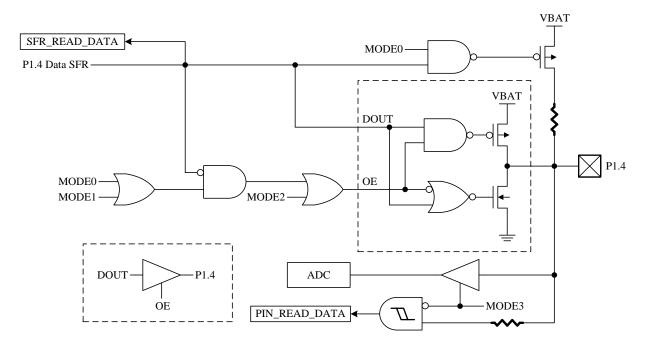
The necessary SFR setting for Port1/Port3 pin's alternative functions is list below.

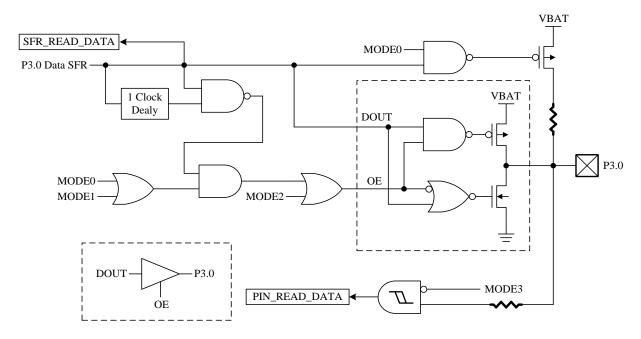

Alternative Function	Mode	Px.n SFR data	Pin State	Other necessary SFR setting
T0, T1, T2, T2EX,	0	1	Input with Pull-up	
INTO, INT1	1	1	Input	
DVD TVD	0	1	Input with Pull-up/Pseudo Open Drain Output	
RXD, TXD	1	1 Input/Pseudo Open Drain Output		
TCO, T1O, T1B, T2O	3	X	Clock Output (CMOS Push-Pull)	
RD, WR	2	X	I80 interface read/write enable	PINMODE
TK0~TK14	0	1	Touch Key Idling or Scanning	
CLD	3	X	Touch Key charge collection	
	0	X	PWM Open Drain Output with Pull-up	
PWM 1 X PWM Open Drain Output		PINMODE		
2 X PWM Output (CMO		PWM Output (CMOS Push-Pull)		
ADC1~ADC7	3	X	ADC analog Input	

Mode Setting for Port1, Port3 Alternative Function

For tables above, a "CMOS Output" pin means it can sink and drive at least 4mA current. It is not recommended to use such pin as input function.

An "**Open Drain**" pin means it can sink at least 4mA current but only drive a small current (<20uA). It can be used as input or output function and typically needs an external pull up resistor.


An 8051 standard pin is a "**Pseudo Open Drain**" pin. It can sink at least 4mA current when output is at low level, and drives at least 4mA current for 1~2 clock cycle when output transits from low to high, then keeps driving a small current (<20uA) to maintain the pin at high level. It can be used as input or output function.


P1.0 Pin Structure

DS- TM52F2230B_34B_E 39 Rev 0.95, 2018/05/10

P1.4 Pin Structure

P3.0 Pin Structure

SFR 90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

90h.7~0 **P1:** Port1 data

DS- TM52F2230B_34B_E 40 Rev 0.95, 2018/05/10

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

B0h.7~0 **P3:** Port3 data

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
P1MODL	P1M	OD3	P1MOD2		P1MOD1		P1MOD0		
R/W	R/	W	R/	R/W		R/W		R/W	
Reset	0	0	0	0	0	0	0	0	

A2h.7~6 **P1MOD3:** P1.3 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.3 is ADC input.

A2h.5~4 **P1MOD2:** P1.2 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.2 is ADC input.

A2h.3~2 **P1MOD1:** P1.1 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.1 is ADC input.

A2h.1~0 **P1MOD0:** P1.0 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.0 is "Timer2 overflow divided by 2/3/4" (T2O) CMOS push pull output.

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
P1MODH	P1M	OD7	P1MOD6		P1MOD5		P1MOD4		
R/W	R/	W	R/	R/W		R/W		R/W	
Reset	0	0	0	0	0	0	0	0	

A3h.7~6 **P1MOD7:** P1.7 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.7 is ADC input.

A3h.5~4 **P1MOD6:** P1.6 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.6 is ADC input.

A3h.3~2 **P1MOD5:** P1.5 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.5 is ADC input.

A3h.1~0 **P1MOD4:** P1.4 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.4 is ADC input.

DS- TM52F2230B_34B_E 41 Rev 0.95, 2018/05/10

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODL	P3M	OD3	P3MOD2		P3MOD1		P3MOD0	
R/W	R/	W	R/	W	R/W		R/W	
Reset	0	0	0	0	0	0	0	0

A4h.7~6 **P3MOD3:** P3.3 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3

A4h.5~4 **P3MOD2:** P3.2 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3

A4h.3~2 **P3MOD1:** P3.1 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3

A4h.1~0 **P3MOD0:** P3.0 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	P3M	OD7	P3MOD6		P3MOD5		P3MOD4	
R/W	R/	W	R/	W	R/W		R/W	
Reset	0	0	0	0	0	0	0	0

A5h.7~6 **P3MOD7:** P3.7 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.7 is "SYSCLK divided by 1/2/3/4" (TCO) CMOS push pull output.

A5h.5~4 **P3MOD6:** P3.6 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.6 is "Negative Timer1 overflow divided by 2/3/4" (T1B) CMOS push pull output.

A5h.3~2 **P3MOD5:** P3.5 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.5 is "Positive Timer1 overflow divided by 2/3/4" (T1O) CMOS push pull output.

A5h.1~0 **P3MOD4:** P3.4 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.4 is Touch Key charge collection (CLD).

DS- TM52F2230B_34B_E 42 Rev 0.95, 2018/05/10

7.2 P2.7

P2.7 can be only used as Schmitt-trigger input or open-drain output, with pull-up resistor always enable. P2.7 pin is shared with RSTn, INT2 and Flash VPP function.

7.3 P2.6~P2.0 & Port0

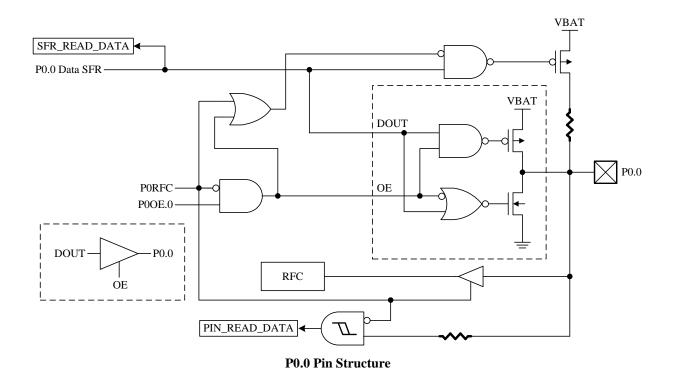
These pins are shared with RFC, SPI, I80 and crystal oscillator. If a Port0/2 pin is defined as I/O pin, it can be used as CMOS push-pull output or Schmitt-trigger input. The pin's pull up function is enable while SFR bit PxOE.n=0 and Px.n=1.

P2.6~P2.0/Port0 pin function	P2OE.n/ P0OE.n	P2.n/P0.n SFR data	Pin State	Resistor Pull-up	Digital Input
Innut	0	0	Hi-Z	N	Y
Input	0	1	Pull-up	Y	Y
CMOS Output	1	0	Drive Low	N	N
CMOS Output	1	1	Drive High	N	N

P2.6~P2.0 & Port0 I/O Pin Function Table

Pin Name	Wake-up	RFC	SPI	SXT/FXT	I80	Others
P0.0		RFCX			D0	
P0.1		RFC0R			D1	
P0.2		RFC1R			D2	
P0.3		RFC2R			D3	
P0.4					D4	
P0.5					D5	
P0.6					D6	
P0.7					D7	
P2.0				SX1		
P2.1				SX2		
P2.2				FX1		
P2.3				FX2		
P2.4			MOSI			
P2.5			SCK			
P2.6			MISO			
P2.7	Y					INT2, RSTn, VPP

Port0, Port2 multi-function Table


The necessary SFR setting for Port0/Port2 pin's alternative functions is list below.

Alternative Function	P2OE.n/ P0OE.n	P2.n/P0.n SFR data	Pin State	other necessary SFR setting
RFCX, RFC0R~RFC2R	0	X	RFC clock oscillation	RFCON
MOSI, SCK, MISO	0	0	SPI communication	SPCON
SX1, SX2, FX1, FX2	0	1	Crystal oscillation	CLKCON
D0~D7	0	0	I80 interface data bus without Pull up	PINMODE
D0~D7	0	1	I80 interface data bus with Pull-up	PINMODE

Mode Setting for Port0, Port2 Alternative Function

DS- TM52F2230B_34B_E 43 Rev 0.95, 2018/05/10

SFR 80h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

80h.7~0 **P0:** Port0 data, also controls the P0.n pin's pull-up function. If the P0.n SFR data is "1" and the corresponding P0OE.n= 0 (input mode), the pull-up is enabled.

SFR A0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

A0h.7 **P2.7:** P2.7 data, 0=Open Drain output low, 1=Schmitt-trigger input with pull up

A0h.6~0 **P2.6~P2.0:** P2.6~P2.0 data, also controls the P2.n pin's pull-up function. If the P2.n SFR data is "1" and the corresponding P2OE.n=0 (input mode), the pull-up is enabled.

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
POOE		POOE							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

91h.7~0 **POOE:** Port0 CMOS Push-Pull output enable control, 1=Enable.

SFR 93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
P2OE	_		P2OE						
R/W	_		R/W						
Reset	_	0	0	0	0	0	0	0	

93h.6~0 **P2OE:** P2.6~P2.0 pin CMOS Push-Pull output enable control, 1=Enable.

DS- TM52F2230B_34B_E 44 Rev 0.95, 2018/05/10

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	CPHA	_	LSBF	SP	CR
R/W	R/W	R/W	R/W	R/W		R/W	R/	W
Reset	0	0	0	0	_	0	0	0

BCh.7 **SPEN:** SPI Enable.

0: SPI Disable

1: SPI Enable, P2.4~P2.6 are SPI functional pins.

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFCON	POF	P0RFC		TOSEL		RFCPSC		CS
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	0	0	0	1	1	0	0

AFh.7~6 **P0RFC:** P0.0~P0.3 pin RFC mode control.

00: P0.0~P0.3 are not RFC pins

01: P0.0 and P0.1 are RFC pins, P0.2 and P0.3 are not RFC pins

10: P0.0~P0.2 are RFC pins, P0.3 is not RFC pin

11: P0.0~P0.3 are RFC pins

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMODE	I80EN	I80POL	PWMOE	_	_	_	_	_
R/W	R/W	R/W	R/W	_	_	_	_	_
Reset	0	0	0	_	_	_	_	_

BFh.7 **I80EN:** I80 interface enable.

0: Disable

1: Enable, Port0, P3.6 and P3.7 are I80 functional pin

BFh.6 **I80POL:** The polarity of RD/WR signal

0: RD/WR are low active1: RD/WR are high active

BFh.5 **PWMOE:** PWM signal output enable

0: Disable PWM signal output to P1.31: Enable PWM signal output to P1.3

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	FCKTYPE	FSUBSEL	SELFCK	SCKTYPE	STPFSUB		CLKPSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	()	0	()	1	()	1

D8h.6 **FSUBSEL:** Set 1 to enable P2.2 and P2.3 pin's FXT oscillation mode **SCKTYPE:** Set 1 to enable P2.0 and P2.1 pin's SXT oscillation mode

Note: In crystal mode, user should set the P2.2/P2.3 (FXT) or P2.0/P2.1 (SXT) pins as Input with Pull-up.

8. Timers

Timer0, Timer1 and Timer2 are provided as standard 8051 compatible timer/counter. Timer3 is provided for a real-time clock count. Compare to the traditional 12T 8051, the chip's Timer0/1/2 use 2 System clock cycle as the time base unit. That is, in timer mode, these timers increase at every "2 System clock" rate; in counter mode, T0/T1/T2 pin input pulse must be wider than 2 System clock to be seen by this device. In addition to the standard 8051 timers function, the T1O and T1B pin can output the positive and negative "Timer1 overflow divided by 2/3/4" signal, and the T2O pin can output the "Timer2 overflow divided by 2/3/4" signal. These outputs can be used for Buzzer application. Timer0's extra utility is to supports RFC/SXT count. The RFC clock divided by 1/4/16/64 signal or SXT clock can replace T0 pin as the Timer0's event count input.

8.1 Timer0/Timer1

TCON and TMOD are used to set the mode of operation and to control the running and interrupt generation of the Timer 0/1, with the timer/counter values stored in two pairs of 8-bit registers (TL0, TH0, and TL1, TH1).

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

88h.7 **TF1:** Timer1 overflow flag

Set by H/W when Timer/Counter 1 overflows

Cleared by H/W when CPU vectors into the interrupt service routine.

88h.6 **TR1:** Timer1 run control

0: Timer1 stops1: Timer1 runs

88h.5 **TF0:** Timer0 overflow flag

Set by H/W when Timer/Counter 0 overflows

Cleared by H/W when CPU vectors into the interrupt service routine.

88h.4 **TR0:** Timer0 run control

0: Timer0 stops 1: Timer0 runs

SFR 89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMOD	GATE1	CT1N	TMOD1		GATE0	CT0N	TMO	OD0
R/W	R/W	R/W	R/W		R/W	R/W	R/	W
Reset	0	0	0	0	0	0	0	0

89h.7 **GATE1:** Timer1 gating control bit

0: Timer1 enable when TR1 bit is set

1: Timer1 enable only while the INT1 pin is high and TR1 bit is set

89h.6 **CT1N:** Timer1 Counter/Timer select bit

0: Timer mode, Timer1 data increases at 2 System clock cycle rate

1: Counter mode, Timer1 data increases at T1 pin's negative edge

89h.5~4 **TMOD1:** Timer1 mode select

00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)

01: 16-bit timer/counter

10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow.

11: Timer1 stops

89h.3 **GATE0:** Timer0 gating control bit

0: Timer0 enable when TR0 bit is set

1: Timer0 enable only while the INT0 pin is high and TR0 bit is set

89h.2 **CT0N:** Timer0 Counter/Timer select bit

0: Timer mode, Timer0 data increases at 2 System clock cycle rate

1: Counter mode, Timer0 data increases at T0 pin's negative edge

89h.1~0 **TMOD0:** Timer0 mode select

00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0)

01: 16-bit timer/counter

10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow.

11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.

SFR 8Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TL0		TL0							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

8Ah.7~0 **TL0:** Timer0 data low byte

SFR 8Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TL1		TL1							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

8Bh.7~0 **TL1:** Timer1 data low byte

SFR 8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH0		TH0								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

8Ch.7~0 **TH0:** Timer0 data high byte

SFR 8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH1		TH1								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

8Dh.7~0 **TH1:** Timer1 data high byte

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFCON	POF	RFC	TOSEL		RFCPSC		RFCS	
R/W	R/	W	R/	W	R/W		R/	W
Reset	0	0	0	0	1	1	0	0

AFh.5~4 **T0SEL:** Timer0 Counter mode (CT0N=1) T0 input select

00: P3.4 pin (8051 standard)

01: RFC clock divided by 1/4/16/64

10: SXT clock

11: RFC clock divided by 1/4/16/64 gated by Timer2 overflow

AFh.3~2 **RFCPSC:** RFC clock divider to Timer0

00: divided by 64 01: divided by 16 10: divided by 4 11: divided by 1

8.2 Timer2

Timer2 is controlled through the TCON2 register with the low and high bytes of Timer/Counter2 stored in TL2 and TH2 and the low and high bytes of the Timer2 reload/capture registers stored in RCAP2L and RCAP2H.

SFR C8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

C8h.7 **TF2:** Timer2 overflow flag

Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.

C8h.6 **EXF2:** T2EX interrupt pin falling edge flag

Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.

C8h.5 **RCLK:** UART receive clock control bit

0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3

1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3

C8h.4 **TCLK:** UART transmit clock control bit

0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3

1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3

C8h.3 **EXEN2:** T2EX pin enable

0: T2EX pin disable

1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected

if RCLK=TCLK=0

C8h.2 **TR2:** Timer2 run control

0: Timer2 stops

1: Timer2 runs

C8h.1 CT2N: Timer2 Counter/Timer select bit

0: Timer mode, Timer2 data increases at 2 System clock cycle rate

1: Counter mode, Timer2 data increases at T2 pin's negative edge

C8h.0 CPRL2N: Timer2 Capture/Reload control bit

0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1.

1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1.

If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow.

SFR CAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2L		RCP2L								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

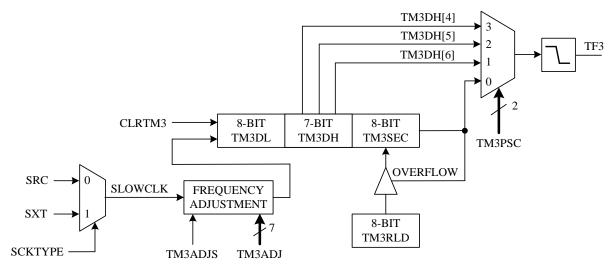
CAh.7~0 RCP2L: Timer2 reload/capture data low byte

SFR CBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2H		RCP2H								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CBh.7~0 **RCP2H:** Timer2 reload/capture data high byte

SFR CCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL2		TL2								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CCh.7~0 **TL2:** Timer2 data low byte


SFR CDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH2		TH2								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CDh.7~0 **TH2:** Timer2 data high byte

8.3 Timer3

The 23-bit wide Timer3 is reloadable for its 8-bit MSB when overflow. Its time base is Slow clock (SRC or SXT). Timer3 can generate interrupt periodically at different rate, and its counting data can be read out by CPU. It is recommended to read Timer3 data in Slow mode. While CPU clock is switched to Fast clock, the clock source of CPU and Timer3 are different, CPU may read a "under changing Timer3 data". User F/W must have some filter mechanism to avoid such kind un-stability. On the contrast, Timer3 interrupt has no ambiguous behavior no matter what the CPU clock source is.

Timer3 can control its counting rate by the TM3ADJ SFR. This feature compensates the 32768 SXT crystal's in-accuracy. While TM3ADJ=0, Timer3 increase its data count normally at each Slow clock cycle. If TM3ADJ is set to positive adjustment, Timer3 increase its data count by 2 in particular Slow clock cycles, resulting a faster counting rate. If TM3ADJ is set to negative adjustment, Timer3 stop increase in particular Slow clock cycles, resulting a slower counting rate. The adjustment is 0.477ppm per step, and the total adjustable range is $\pm 61ppm$.

Timer3 Structure

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	_		_	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W	_		_	R/W	R/W	R/W	R/W	R/W
Reset	_		_	0	0	0	0	0

F8h.2 **CLRTM3:** Set 1 to Clear Timer3 and force TM3SEC reload

DS- TM52F2230B_34B_E 49 Rev 0.95, 2018/05/10

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXTGAIN		STPPCK	PWRFLT	UART1W	WDTPSC	TM3	BPSC
R/W	R/W		R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	0	0	0	0	1

94h.1~0 **TM3PSC:** Timer3 Interrupt rate

00: Timer3 interrupt occurs when 23 bit count data overflow

01: Timer3 interrupt rate is 32768 Slow clock cycles (1.0 second for SXT)

10: Timer3 interrupt rate is 16384 Slow clock cycles (0.5 second for SXT)

11: Timer3 interrupt rate is 8192 Slow clock cycles (0.25 second for SXT)

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	_	_	_	_	TKIF	IE2	P1IF	TF3
R/W	_	_	_		R/W	R/W	R/W	R/W
Reset	_	_	_		0	0	0	0

95h.0 **TF3:** Timer3 Interrupt Flag

Set by H/W when Timer3 reaches TM3PSC setting cycles. Cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit. (*Note2*)

SFR B3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM3SEC		TM3SEC								
R/W		R								
Reset	_	-	_	_	_	_	-	_		

B3h.7~0 **TM3SEC:** Timer3 count data bit 22~15

SFR B4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TM3DL		TM3DL									
R/W				I	₹						
Reset	_	_	_	_	-	_	_	_			

B4h.7~0 **TM3DL:** Timer3 count data bit 7~0

SFR B5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM3DH	_		TM3DH							
R/W	_		R							
Reset	_	_	- - - - - - -							

B5h.6~0 **TM3DH:** Timer3 count data bit 14~8

SFR B6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TM3RLD		TM3RLD									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

B6h.7~0 **TM3RLD:** Timer3 overflow reload data for Timer3 bit 22~15 (TM3SEC)

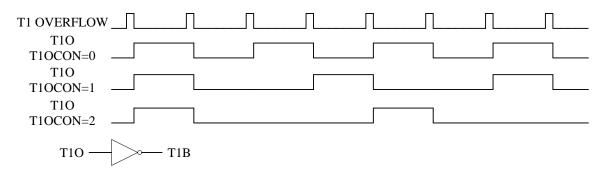
SFR B7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TM3ADJ	TM3ADJS		TM3ADJ								
R/W	R/W		R/W								
Reset	0	0	0 0 0 0 0 0								

B7h.7 **TM3ADJS:** Timer3 adjustment sign

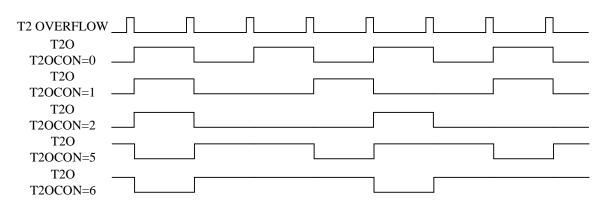
0: Timer3 positive adjust, to increase Timer3 counting rate

1: Timer3 negative adjust, to decrease Timer3 counting rate

B7h.6~0 **TM3ADJ:** Timer3 adjust magnitude, 0.477 ppm per LSB.


The adjustment is calculated as ±TM3ADJ*0.477ppm. The total adjustable range is ±61ppm.

DS- TM52F2230B_34B_E 50 Rev 0.95, 2018/05/10



8.4 T1O, T1B and T2O output Control

This device can generate various frequency or duty cycle waveform output (in CMOS push pull format) for Buzzer or Remote IR control application. The T1O, T1B and T2O waveform is derived by Timer1/Timer2 overflow signal. User can control their frequency by Timers auto reload value, as well as set their duty cycle by TOCON SFR. The pin output function is enabled by setting the P3MODH SFR to Mode3 for each pin (*see Section 7*).

T10, T1B waveform with T10CON

T2O waveform with T2OCON

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TOCON	T10	CON	T2OCON			TCOCON			
R/W	R/	W		R/W			R/W		
Reset	0	0	0	0	0	0	0	0	

A6h.7~6 **T10CON:** T10 pin duty and frequency control

00: 1/2 duty, 1/2 Timer1 overflow frequency

01: 1/3 duty, 1/3 Timer1 overflow frequency

10: 1/4 duty, 1/4 Timer1 overflow frequency

A6h.5~3 **T2OCON:** T2O pin duty and frequency control

000: 1/2 duty, 1/2 Timer2 overflow frequency

001: 1/3 duty, 1/3 Timer2 overflow frequency

010: 1/4 duty, 1/4 Timer2 overflow frequency

101: 2/3 duty, 1/3 Timer2 overflow frequency

110: 3/4 duty, 1/4 Timer2 overflow frequency

Note6: also refer to Section 6 for more information about Timer0/1/2/3 Interrupt enable and priority.

DS- TM52F2230B_34B_E 51 Rev 0.95, 2018/05/10

9. UART

The UART uses SCON and SBUF SFRs. SCON is the control register, SBUF is the data register. Data is written to SBUF for transmission and SBUF is read to obtain received data. The received data and transmitted data registers are completely independent. In addition to standard 8051's full duplex mode, this chip also provides one wire mode. If the UART1W bit is set, both transmit and receive data use P3.1 pin.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.7 **SMOD:** UART double baud rate control bit

0: Disable UART double baud rate

1: Enable UART double baud rate

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXTGAIN		STPPCK	PWRFLT	UART1W	WDTPSC	TM3PSC	
R/W	R/	R/W		R/W	R/W	R/W	R/	W
Reset	1 1		0	0	0	0	0	1

94h.3 **UART1W:** One wire UART mode enable, both TXD / RXD use P3.1 pin

0: Disable one wire UART mode

1: Enable one wire UART mode

SFR 98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

98h.7~6 **SM0,SM1:** Serial port mode select bit 0,1

00: Mode0: 8 bit shift register, Baud Rate=F_{SYSCLK}/2

01: Mode1: 8 bit UART, Baud Rate is variable

10: Mode2: 9 bit UART, Baud Rate=F_{SYSCLK} / 32 or/64

11: Mode3: 9 bit UART, Baud Rate is variable

98h.5 **SM2:** Serial port mode select bit 2

SM2 enables multiprocessor communication over a single serial line and modifies the above as follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop bit is received. In Mode 0, SM2 should be 0.

98h.4 **REN:** UART reception enable

0: Disable reception

1: Enable reception

98h.3 **TB8:** Transmit Bit 8, the ninth bit to be transmitted in Mode 2 and 3

98h.2 **RB8:** Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit in Mode 1 if SM2=0

98h.1 **TI:** Transmit interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes. Must be cleared by S/W.

98h.0 **RI:** Receive interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.

SFR 99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SBUF		SBUF									
R/W		R/W									
Reset	-	_	_	_	_	_	_	_			

99h.7~0 **SBUF:** UART transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

F_{SYSCLK} denotes System clock frequency, the UART baud rate is calculated as below.

• Mode 0:

Baud Rate=F_{SYSCLK}/2

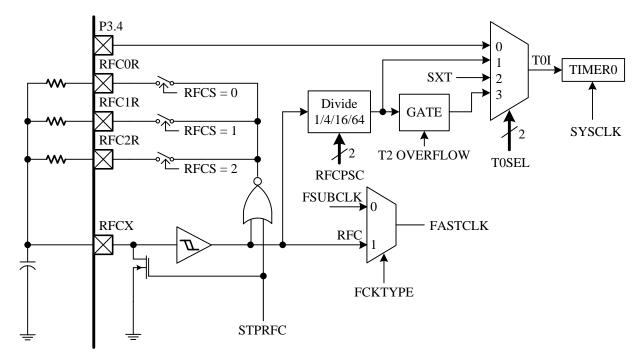
• Mode 1, 3: if using Timer1 auto reload mode Baud Rate= (SMOD+1) xF_{SYSCLK}/ (32x2x (256–TH1))

• **Mode 1, 3:** if using Timer2 Baud Rate=Timer2 overflow rate/16=F_{SYSCLK}/ (32x (65536–RCP2H, RCP2L))

• Mode 2:

Baud Rate= (SMOD+1) x F_{SYSCLK}/64

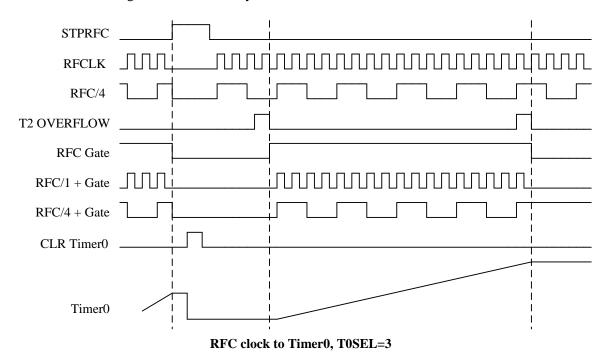
Note6: also refer to Section 6 for more information about UART Interrupt enable and priority.

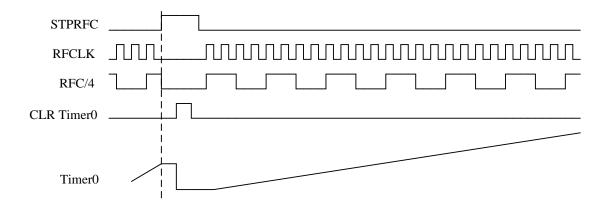

Note8: also refer to Section 8 for more information about how Timer2 controls UART clock.

DS- TM52F2230B_34B_E 53 Rev 0.95, 2018/05/10

10. Resistance to Frequency Converter (RFC)

The RFC module can build the RC oscillation circuitry with RFCX pin and RFC0R, RFC1R or RFC2R pins. Only one RC oscillation circuitry is active at a time. There are 2 methods to measure the RFC clock frequency. One is to set the RFC as the Timer0 Counter mode input, the other one is to set RFC as the System clock. Since SXT/FXT is a precise timing source, user can derive the RFC frequency by comparing the Timer's count data which running by RFC and SXT/FXT.


RFC Structure


DS- TM52F2230B_34B_E 54 Rev 0.95, 2018/05/10

The Timer0's event count input can be selected by T0SEL SFR. When T0SEL=3, the RFC clock is gated by Timer2's overflow period then go into the Timer0 for event counting. This function helps Timer0 to count the RFC clock with more accuracy by H/W automatically start and stop gating the RFC clock. The steps of this usage are described below.

- 1. Proper setting the RFCON SFR to setup the RFC oscillation circuitry.
- 2. CT0N=1 (Timer0 counter mode), CT2N=0 (Timer2 timer mode), T0SEL=3, FCKTYPE=0.
- 3. STPRFC=1, RFC gating is cleared and waiting for next Timer2 overflow to start
- 4. Clear Timer0, write TH2/TL2 with a data to accelerate Timer2 overflow (ex: FF00)
- 5. STPRFC=0, RFC starts, wait for next two Timer2 overflows.
- 6. The Timer0 counting the RFC clock only in between the two Timer2 overflows time slot.

DS- TM52F2230B_34B_E 55 Rev 0.95, 2018/05/10

RFC clock to Timer0, T0SEL=1

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFCON	POF	RFC	TOSEL		RFCPSC		RFCS	
R/W	R/	R/W		W	R/	W	R/	W
Reset	0	0	0	0	1	1	0	0

AFh.7~6 **PORFC:** P0.0~P0.3 pin RFC mode control.

00: P0.0~P0.3 are not RFC pins

01: P0.0 and P0.1 are RFC pins, P0.2 and P0.3 are not RFC pins

10: P0.0~P0.2 are RFC pins, P0.3 is not RFC pin

11: P0.0~P0.3 are RFC pins

AFh.5~4 **T0SEL:** Timer0 Counter mode (CT0N=1) T0 input select

00: P3.4 pin (8051 standard)

01: RFC clock divided by 1/4/16/64

10: SXT clock

11: RFC clock divided by 1/4/16/64 gated by Timer2 overflow

AFh.3~2 **RFCPSC:** RFC clock divider to Timer0

00: divided by 64

01: divided by 16

10: divided by 4

11: divided by 1

AFh.1~0 **RFCS:** Select RFC convert channel.

00: RFC0R (P0.1)

01: RFC1R (P0.2)

10: RFC2R (P0.3)

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	_	_	_	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

F8h.1 **STPRFC:** Set 1 to stop RFC clock oscillating

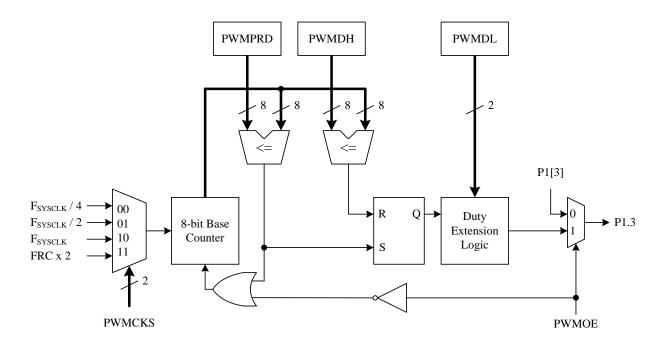
SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	FCKTYPE	FSUBSEL	SELFCK	SCKTYPE	STPFSUB	CLKPSC		
R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	()	()	()	()	1	()	1

D8h.7 **FCKTYPE:** Fast clock type select, This bit can be changed only in Slow mode (SELFCK=0)

0: Fast clock is FSUBCLK (FRC or FXT)

1: Fast clock is RFC, S/W must setup RFC oscillating circuitry before set this bit to 1.

DS- TM52F2230B_34B_E 56 Rev 0.95, 2018/05/10



11. PWM

The **F2230B/34B** has an independent PWM module. The PWM can generate a fixed frequency waveform with 1024 duty resolution on the basis of the PWM clock. The PWM clock can select FRC double frequency (FRCx2) or F_{SYSCLK} divided by 1, 2, or 4 as its clock source. A spread LSB technique allows PWM to run its frequency at the "PWM clock divided by 256" instead of at the "PWM clock divided by 1024", which means the PWM is four times faster than normal. The advantage of a higher PWM frequency is that the post RC filter can transform the PWM signal to a more stable DC voltage level.

The PWM output signal resets to a low level whenever the 8-bit base counter matches the 8-bit MSB of the PWM duty register. When the base counter rolls over, the 2-bit LSB of the PWM duty register decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay. The PWM period can be set by writing the period value to the 8-bit PWM period register.

The pin mode SFR controls the PWM output waveform format. Mode1 makes the PWM open drain output and Mode2 makes the PWM CMOS push-pull output. (see section 7)

PWM Structure

SFR 9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWMPRD		PWMPRD								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

9Ch.7~0 **PWMPRD:** PWM 8-bit period register

SFR 9Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMDH		PWMDH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

9Dh.7~0 **PWMDH:** bits 9~2 of the PWM 10-bit duty register

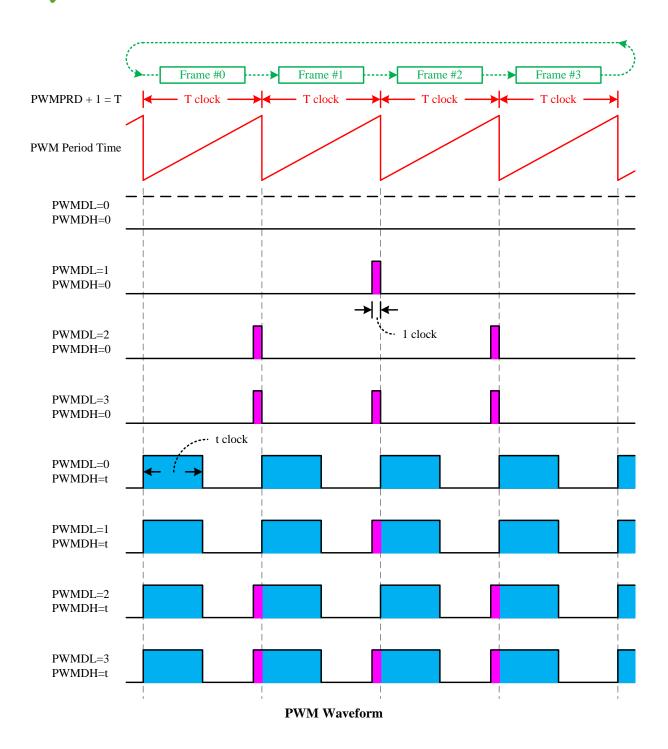
DS- TM52F2230B_34B_E 57 Rev 0.95, 2018/05/10

SFR A1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON	PWN	1CKS	PWMDL		_	_	_	_
R/W	R/	W	R/W		_	_	_	_
Reset	1	0	0	0	_	_		

A1h.7~6 **PWMCKS:** PWM clock source

 $00:\,F_{SYSCLK}\!/4$ 01: F_{SYSCLK}/2 10: F_{SYSCLK} 11: FRCx2

A1h.5~4 **PWMDL:** bits 1~0 of the PWM 10-bit duty register


SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMODE	I80EN	I80POL	PWMOE	_	_	_	_	_
R/W	R/W	R/W	R/W	_	_		_	_
Reset	0	0	0	_	_	_	_	_

BFh.5

PWMOE: PWM signal output enable 0: Disable PWM signal output to P1.3 1: Enable PWM signal output to P1.3

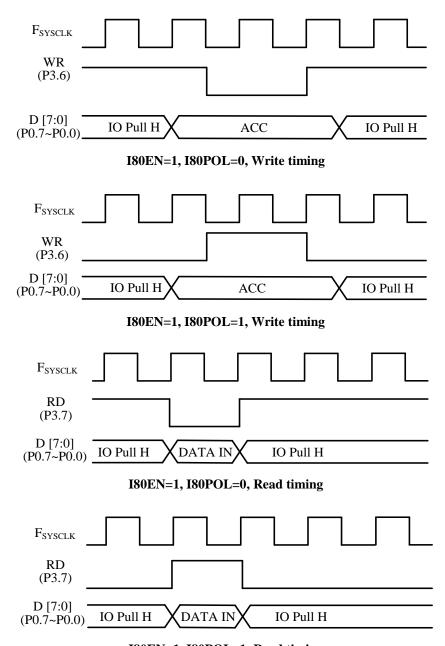
58 DS- $TM52F2230B_34B_E$ Rev 0.95, 2018/05/10

12. I80 interface

The **F2230B/34B** provides an easy way to access LCD module using I80 interface. If I80EN is set, Port 0, P36 and P37 switch to I80 DATA, I80 WR and I80 RD. I80 interface provide an easy way to read or write data from LCD module just only access from external ram address at 0xF400. It is simply achieved write/read LCD module by "MOVX @DPTR, A" or "MOVX A, @DPTR" instruction.

Pin Name	I80	P0OE.n	P0.n	Pin State
P07~P00 D7~D0 0 0		0	I80 interface data bus without Pull-up	
P0/~P00	טר~ט0	0	0 1 I80 interface data bus with P	

Pin Name	I80	Mode	P3.n	Pin State
P36	WR	2	X	I80 interface write enable, without Pull-up
P37	RD	2	X	I80 interface read enable, without Pull-up


After access external ram address at 0xF400, D7~D0, WR and RD will automatic generate read/write waveform as following figure. There are some control pins at LCM module such as CS and A0 need to be connected to GPIO and set manual.

;I80 Write example code						
MOV	PINMODE, #80h	; Enable I80 interface & low enable				
MOV	DPTR, #F400h	; DPTR=F400h=target I80 address				
MOV	A, #5Ah	; A=5Ah=target I80 write data				
MOVX	@DPTR, A	; Write 5A to LCM				

;I80 Read example code						
MOV	PINMODE, #80h	; Enable I80 interface & low enable				
MOV	DPTR, #F400h	; DPTR=F400h=target I80 address				
MOVX	A, @DPTR	; Read LCM data to A				

DS- TM52F2230B_34B_E 60 Rev 0.95, 2018/05/10

I80EN=1, I80POL=1, Read timing

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMODE	I80EN	I80POL	PWMOE	_	_	_	_	_
R/W	R/W	R/W	R/W	_	_	_	_	_
Reset	0	0	0	_	_	_	_	_

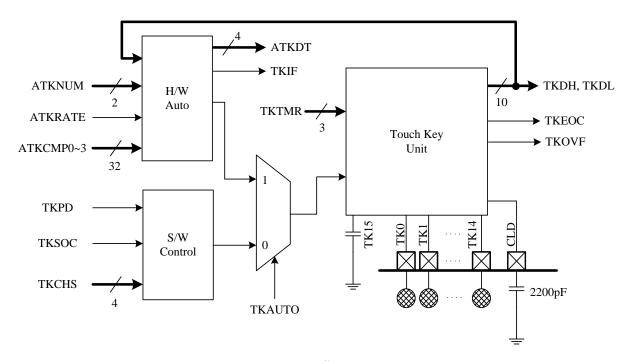
BFh.7 **I80EN:** I80 interface enable.

0: Disable 1: Enable

1: Enable

BFh.6 **I80POL:** The polarity of RD/WR signal

0: RD/WR are low active1: RD/WR are high active


Note: also refer to Section 7 for more information about I80 pins share with I/O pins

DS- TM52F2230B_34B_E 61 Rev 0.95, 2018/05/10

13. Touch Key (F2230B only)

The Touch Key offers an easy, simple and reliable method to implement finger touch detection. During the key scan operation, it only requires an external capacitor component on CLD pin. The device support 15 channels touch key detection with S/W manual mode and H/W Auto Mode (ATK). Only one mode can be active at a time.

Touch Key Structure

To use the Touch Key, user must setup the Pin Mode (*see Section 7*) correctly as below table. Setting Mode0 for a Touch Key pin can pull up the pin during idling and reduce the mutual interference between the adjacent keys. While a TK pin is under scanning, either being in S/W manual mode or H/W ATK mode, the Touch Key module automatically disable the pin's pull-up resistor.

P1MODx/P3MODx setting for Touch Key	TK0~TK3	TK4~TK14	CLD
Pin is Touch Key, Idling	Mode0	Mode0	Mode3
Pin is Touch Key, S/W Scanning	Mode0	Mode0	Mode3
Pin is Touch Key, H/W Auto Scan (ATK)	Mode0	-	Mode3

S/W Manual Mode Touch Key Detection

All Touch Key (TK0~TK14) can be used for S/W manual mode. To start a S/W scan mode, user assigns TKAUTO=0 and TKPD=0, then set the TKSOC bit to start touch key conversion, the TKSOC bit can be automatically cleared while end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate. TKEOC=0 means conversion is in process. TKEOC=1 means the conversion is finish, and the touch key counting result is stored into the 10 bits TK Data Counter TKDH and TKDL. The larger TK pin capacitance is the smaller TK data counter is. After TKEOC=1, user must wait at least 50 us for next conversion. If TKOVF=1, means the conversion transaction exceeds period time. Reduce/Increase TKTMR can reduce/increase TK Data Count to adapt the system board circumstances.

DS- TM52F2230B_34B_E 62 Rev 0.95, 2018/05/10

The Touch Key unit has an internal built-in reference capacitor to simulate the KEY behavior. Set TKCHS=15 and start the S/W scan mode can get the TK Data Count of this capacitor. Since the internal capacitor would not be affected by water or mobile phone, it is useful for comparing the environment background noise.

Note: CLD discharge time is in proportion to CLD capacitance, refer to AP-TM52_57XX_Touch_02S

H/W Auto Touch Key Detection (ATK)

Only TK0~TK3 are eligible for H/W auto mode. This function can work in Fast/Slow/Idle mode and save the S/W effort as well as minimize the chip current consumption. To use this function, user need to set TKAUTO=1 and TKPD=1 to enable H/W fully control the TK unit. H/W then automatically detects the TK0~TK3's TK Data Count at every 62ms or 125ms rate. If a Key's TK Data Count is less than the preset compare threshold (ATKCMP0~3), H/W generates interrupt and wake up CPU. User can switch the TK module back to S/W Manual Mode after the TK interrupt and identify/confirm the Key touch event.

SFR ADh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKCON	TKPD		TKTMR			TKCHS				
R/W	R/W		R/W			R/	W			
Reset	1	1	1 0 0			1	1	1		

ADh.7 **TKPD:** Touch Key Power Down (for S/W mode)

0: Touch Key enable

1: Touch Key disable

ADh.6~4 **TKTMR:** Touch Key Conversion Time (for both S/W and H/W ATK mode)

000: Conversion time shortest

. . .

111: Conversion time longest

ADh.3~0 **TKCHS:** Touch Key Channel Select (for S/W Mode)

0000: TK0 (P1.7)

0001: TK1 (P1.6)

0010: TK2 (P1.5)

0011: TK3 (P1.4)

0100: TK4 (P1.3)

0101: TK5 (P1.2)

0110: TK6 (P1.1)

0111: TK7 (P1.0)

1000: TK8 (P3.7)

1001: TK9 (P3.6)

1010: TK10 (P3.5)

1011: TK11 (P3.3)

1100: TK12 (P3.2)

1101: TK13 (P3.1)

1110: TK14 (P3.0)

1111: Internal Reference Capacitor

DS- TM52F2230B_34B_E 63 Rev 0.95, 2018/05/10

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	_	_	_	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W		_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

F8h.4 **TKSOC:** Rising edge of this bit will trigger a Touch Key conversion (for S/W Mode). Basically, this bit is automatically cleared by H/W after end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate issue.

SFR ABh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATKDT	TKEOC	TKOVF	TKDH			ATKDT			
R/W	R	R	R			I	R		
Reset	_	_	_	_	_	_	_	_	

ABh.7 TKEOC: Touch Key End of Conversion (for S/W Mode), TKEOC may have 3uS delay after

TKSOC=1, so F/W must wait enough time before polling this Flag.

0: Indicates conversion is in progress

1: Indicates conversion is finished

ABh.6 **TKOVF:** Touch Key Counter Overflow (for S/W Mode) ABh.5~4 **TKDH:** Touch Key Counter Data 9~8 (for S/W Mode)

ABh.3~0 **ATKDT:** Touch Key Auto Scan Result (for H/W ATK Mode)

xxx1: TK0 has a Touch event xx1x: TK1 has a Touch event x1xx: TK2 has a Touch event 1xxx: TK3 has a Touch event

SFR ACh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKDL		TKDL								
R/W		R								
Reset	_	_	_	_	_	_	_	_		

ACh.7~0 **TKDL:** Touch Key Counter Data 7~0 (for S/W Mode)

SFR AEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON2	_	_	_	_	TKAUTO	ATKRATE	ATK	NUM
R/W	_	_	_	_	R/W	R/W	R/	W
Reset	_	_	_	_	0	0	1	1

AEh.3 **TKAUTO:** Touch Key Auto Scan Mode Enable

0: S/W Mode

1: H/W ATK Mode

AEh.2 **ATKRATE:** Touch Key Scan Rate (for H/W ATK Mode)

0: ATK scan rate is 4096 Slow clock cycles (125ms if Slow clock is SXT)

1: ATK scan rate is 2048 Slow clock cycles (62ms if Slow clock is SXT)

AEh.1~0 ATKNUM: Touch Key Auto Scan Channel Number (for H/W ATK Mode)

00: ATK only detect TK0 01: ATK detect TK0 and TK1

10: ATK detect TK0~TK2

11: ATK detect TK0~TK3

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	_	_	_	_	TKIF	IE2	P1IF	TF3
R/W	_	_	_	_	R/W	R/W	R/W	R/W
Reset	_	_	_	_	0	0	0	0

95h.3 **TKIF:** Touch Key Interrupt Flag (for H/W ATK Mode)

Set by H/W when a TK channel's touch event is detected.

It is cleared automatically when the program performs the interrupt service routine.

S/W can write F7h to INTFLG to clear this bit. (*Note2*)

SFR C4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATKCMP0		ATKCMP0								
R/W		R/W								
Reset	0	1	0	0	0	0	0	0		

C4h.7~0 **ATKCMP0:** Data Threshold Compared with TK0 scan (for H/W ATK Mode)

SFR C5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATKCMP1		ATKCMP1								
R/W		R/W								
Reset	0	1	0	0	0	0	0	0		

C5h.7~0 **ATKCMP1:** Data Threshold Compared with TK1 scan (for H/W ATK Mode)

SFR C6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATKCMP2		ATKCMP2							
R/W		R/W							
Reset	0	1	0	0	0	0	0	0	

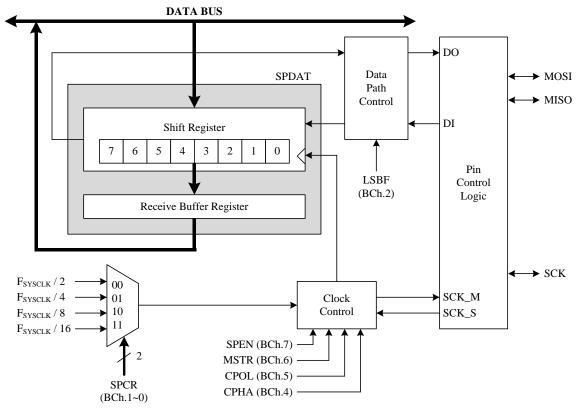
C6h.7~0 ATKCMP2: Data Threshold Compared with TK2 scan (for H/W ATK Mode)

SFR C7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATKCMP3		ATKCMP3								
R/W		R/W								
Reset	0	1	0	0	0	0	0	0		

C7h.7~0 **ATKCMP3:** Data Threshold Compared with TK3 scan (for H/W ATK Mode)

Note6: also refer to Section 6 for more information about Touch Key Interrupt enable and priority.

DS- TM52F2230B_34B_E 65 Rev 0.95, 2018/05/10



14. Serial Peripheral Interface (SPI)

The SPI module is capable of full-duplex, synchronous, serial communication between the **F2230B/34B** and peripheral devices. The peripheral devices can be other MCUs, A/D converter, sensors, or Flash memory, etc. The SPI runs at a baud rate up to the system clock divided by two. Firmware can read the status flags, or the operation can be interrupt driven.

The features of the SPI module include:

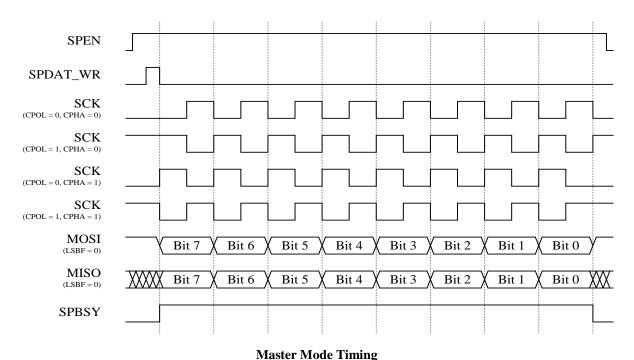
- Master or Slave mode operation
- 3-wire mode operation
- Full-duplex operation
- Programmable transmit bit rate
- Single Buffer receive
- Serial clock phase and polarity options
- MSB-first or LSB-first shifting selectable

SPI System Block Diagram

The MOSI (P2.4) signal is an output when SPI is operating in Master mode and an input when SPI is operating in Slave mode. The MISO (P2.6) signal is an input when SPI is operating in Master mode and an output when SPI is operating in Slave mode. Data is transferred MSB or LSB first by setting the LSBF bit. The SCK (P2.5) signal is an output from a Master device and an input to Slave devices. It is used to synchronize the data on the MOSI and MISO lines of Master and Slave. SPI generates the signal with eight programmable clock rates in Master mode.

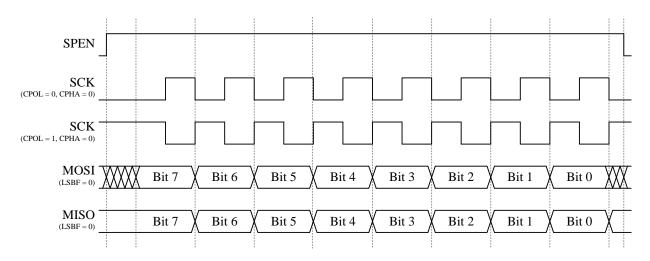
DS- TM52F2230B_34B_E 66 Rev 0.95, 2018/05/10

Master Mode

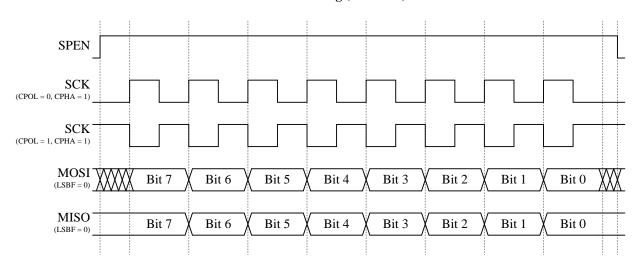

The SPI operates in Master mode by setting the MSTR bit in the SPCON. To start transmit, writing a data to the SPDAT. If SPBSY=0, the data will be transferred to the shift register and starts shift out on the MOSI line. The data of the Slave shift in from the MISO line at the same time. When the SPIF bit becomes set at the end of transfer, the receive data is written to receiver buffer and the RCVBF bit in the SPSTA is set. To prevent an overrun condition, software must read the SPDAT before next byte enters the shift register. The SPBSY bit will be set when writing a data to SPDAT to start transmit, and be cleared at the end of the eighth SCK period in Master mode.

Slave Mode

The SPI operates in Slave mode by clearing the MSTR bit in the SPCON. The transmission will start when the SPEN bit in the SPCON is set. The data from a Master will shift into the shift register through the MOSI line, and shift out from the shift register on the MISO line. When a byte enters the shift register, the data will be transferred to receiver buffer if RCVBF=0. If RCVBF=1, the newer received data will not be transferred to receiver buffer and the RCVOVF bit is set. After a byte enters the shift register, the SPIF and RCVBF bits are set. To prevent an overrun condition, software must read the SPDAT or write 0 to RCVBF before next byte enters the shift register. The maximum SCK frequency allowed in Slave mode is $F_{\text{SYSCLK}}/4$.


Serial Clock

The SPI has four clock types by setting the CPOL and CPHA bits in the SPCON register. The CPOL bit defines the level of the SCK in SPI idle state. The level of the SCK in idle state is low when CPOL=0, and is high when CPOL=1. The CPHA bit defines the edges used to sample and shift data. The SPI sample data on the first edge of SCK period and shift data on the second edge of SCK period when CPHA=0. The SPI sample data on the second edge of SCK period and shift data on first edge of SCK period when CPHA=1. Figures below show the detail timing in Master and Slave modes. Both Master and Slave devices must be configured to use the same clock type before the SPEN bit is set. The SPCR controls the Master mode serial clock frequency. This register is ignored when operating in Slave mode. The SPI clock can select System clock divided by 2, 4, 8, or 16 in Master mode.



DS- TM52F2230B_34B_E 67 Rev 0.95, 2018/05/10

Slave Mode Timing (CPHA=0)

Slave Mode Timing (CPHA=1)

In both Master and Slave modes, the SPIF interrupt flag is set by H/W at the end of a data transfer. If write data to SPDAT when SPBSY=1, the WCOL interrupt flag will be set by H/W. When this occurs, the data write to SPDAT will be ignored, and shift register will not be written.

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	СРНА	_	LSBF	SP	CR
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	
Reset	0	0	0	0	_	0	0	0

BCh.7 **SPEN:** SPI Enable.

0: SPI Disable

1: SPI Enable, P2.4~P2.6 are SPI functional pins.

BCh.6 **MSTR:** Master Mode Enable.

0: Slave Mode

1: Master Mode

BCh.5 **CPOL:** SPI Clock Polarity

0: SCK is low in idle state 1: SCK is high in idle state

DS- TM52F2230B_34B_E 68 Rev 0.95, 2018/05/10

BCh.4 **CPHA:** SPI Clock Phase

0: Data sampled on first edge of SCK period

1: Data sampled on second edge of SCK period

BCh.2 **LSBF:** LSB First.

0: MSB first

1: LSB first

BCh.1~0 SPCR: SPI Clock Rate.

00: F_{SYSCLK}/2 01: F_{SYSCLK}/4 10: F_{SYSCLK}/8 11: F_{SYSCLK}/16

SFR BDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPSTA	SPIF	WCOL	_	RCVOVF	RCVBF	SPBSY	_	_
R/W	R/W	R/W	_	R/W	R/W	R	_	_
Reset	0	0	_	0	0	_	_	_

BDh.7 **SPIF:** SPI Interrupt Flag

Set by H/W at the end of a data transfer. Cleared by H/W when interrupt is vectored into. Write 0 to this bit will clear this flag.

BDh.6 WCOL: Write Collision Interrupt Flag

Set by H/W if write data to SPDAT when SPBSY=1. Write 0 to this bit or rewrite data to SPDAT when SPBSY=0 will clear this flag.

BDh.4 **RCVOVF:** Receive Buffer Overrun Flag

Set by H/W at the end of a data transfer and RCVBF=1. Write 0 to this bit or read SPDAT register will clear this flag.

BDh.3 **RCVBF:** Receive Buffer Full Flag

Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag.

BDh.2 **SPBSY:** SPI Busy Flag (Read Only)

Set by H/W when a SPI transfer is in progress.

SFR BEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SPDAT		SPDAT								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

BEh.7~0 SPDAT: SPI Transmit and Receive Data

The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in Master mode. Reading SPDAT returns the contents of the receive buffer.

Note6: also refer to Section 6 for more information about SPI Interrupt enable and priority.

Note7: also refer to Section 7 for more information about SPI pins share with I/O pins

15. 6-bit SAR ADC

The 6-bit SAR ADC supports 7 channel analog inputs. To use the ADC, user only needs to select the ADC channel by setting ADCHS SFR. If ADCHS=0, The ADC stop converting and enters the power down mode. The ADC module uses 10 System clock cycles to make a conversion and launches next conversion immediately after the ADC convert result data latched. Lower System clock frequency may get more stable ADC performance. The ADC channel requires Mode3 pin setting to disable the pin's digital input path for power saving. User should not configure ADC and Touch Key channel on the same pin because of the channel input sensitivity issue.

SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BGADCS	LVR2E		ADCHS CMPVS					
R/W	R/W		R/W R/W					
Reset	0	0	0	0	0	0	0	0

C2h.6~4 ADCHS: ADC channel select

000: ADC disable

001: AD1 (P1.1)

010: AD2 (P1.2)

011: AD3 (P1.3)

100: AD4 (P1.4)

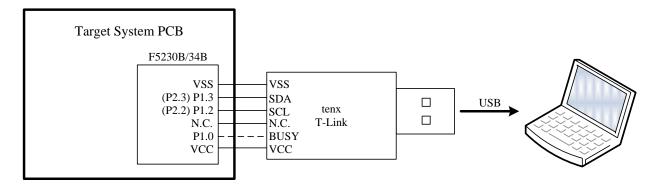
101: AD5 (P1.5)

110: AD6 (P1.6)

111: AD7 (P1.7)

SFR C3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
BGADCD	CMPO	_	ADCDT							
R/W	R	_	R							
Reset	_	_	_	_	_	_	_	_		

C3h.5~0 ADCDT: ADC convert data result


DS- TM52F2230B_34B_E 70 Rev 0.95, 2018/05/10

16. In Circuit Emulation (ICE) Mode

The **F2230B/34B** can support the In Circuit Emulation mode. To use the ICE Mode, user just needs to connect P1.2 and P1.3 pin to the tenx proprietary EV module. The benefit is that user can emulate the whole system without changing the on board target device. But there are some limits for the ICE mode as below.

- 1. The device must be un-protect.
- 2. The device's P1.2 and P1.3 pins must work in input Mode (P1MOD2=0/1 and P1MOD3=0/1).
- 3. During Program Code download, P1.0 sent acknowledge signal to T-Link unit. After download stage, P1.0 can be emulated as any other pins.
- 4. The Program ROM's addressing space 3D00h~3FFFh and 0033h~003Ah are occupied by tenx EV Module. So user Program cannot access these spaces.
- 5. The P1.2 and P1.3 pin's function cannot be emulated.
- 6. The P1.2 and P1.3 pin's can be replaced by P2.2 and P2.3.
- 7. The V_{DD} level and VCON SFR are controlled by T-Link module.

ICE Mode Connection

DS- TM52F2230B_34B_E 71 Rev 0.95, 2018/05/10

SFR & CFGW MAP

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
80h	1111-1111	P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0		
81h	0000-0111	SP	SP									
82h	0000-0000	DPL	DPL									
83h	0000-0000	DPH	DPH									
87h	0xxx-0000	PCON	SMOD	ı	=	ı	GF1	GF0	PD	IDL		
88h	0000-0000	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
89h	0000-0000	TMOD	GATE1	CT1N	TM	OD1	GATE0 CT0N			TMOD0		
8Ah	0000-0000	TLO	TL0									
8Bh	0000-0000	TL1	TL1									
8Ch	0000-0000	TH0	TH0									
8Dh	0000-0000	TH1	TH1									
90h	1111-1111	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0		
91h	0000-0000	P0OE		POOE								
93h	x000-0000	P2OE	- P2OE									
94h	1100-0001	OPTION	SXTO	GAIN	STPPCK	PWRFLT	UART1W	WDTPSC	TM3			
95h	xxxx-0000	INTFLG	=	=	=	=	TKIF	IE2	P1IF	TF3		
I	0000-0000	P1WKUP	P1WKUP									
97h	xxxx-xxx0	SWCMD		IAPALL / SWRST								
-	0000-0000	SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	xxxx-xxxx	SBUF	SBUF									
-	1111-1111	PWMPRD	PWMPRD									
	1000-0000	PWMDH	PWMDH									
-	1111-1111	P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0		
	1000-xxxx	PWMCON	PWM		PWMDL		-	=	=	=		
-	0000-0000	P1MODL		IOD3	P1MOD2		P1MOD1		P1MOD0			
-	0000-0000	P1MODH		OD7	P1MOD6		P1MOD5		P1MOD4			
	0000-0000	P3MODL		IOD3	P3MOD2		P3M		P3MOD0			
I	0000-0000	P3MODH		OD7	P3M		P3MOD5		P3MOD4			
	0000-0000	TOCON	T1OCON T2OCON			TCOCON						
-	x111-1111	VCON	-	LDOE	Ema	VSET2	Em1	EV.	VSET1	FILO		
	0x00-0000	IE	EA		ET2	ES	ET1	EX1	ET0	EX0		
	0000-0000	INTE1	TUECO	IAPWE	m.	SPIE	TKIE	EX2	PHE	TM3IE		
	XXXX-XXXX	ATKDT	TKEOC TKOVF TKDH ATKDT									
	1100-1111	TKDL	TKDL TKPD TKTMR TKCHS									
	xxxx-0011	TKCON TKCON2	TKPD		TKTMR		TKALITO			NI IM		
-	0000-1100			RFC	TOSEL		TKAUTO ATKRATE RFCPSC		ATKNUM RFCS			
	1111-1111	RFCON P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0		
	XXXX-XXXX	TM3SEC	1 3./	1 3.0	1 3.3	TM3		1 3.4	1 3.1	1 3.0		
	XXXX-XXXX	TM3DL										
	XXXX-XXXX	TM3DH	TM3DL TM2DH									
-	0000-0000	TM3RLD	- TM3DH TM3RLD									
	0000-0000	TM3ADJ	TM3ADJS TM3ADJ									
-	xx00-0000	IP	- INISADIS	_	PT2	PS	PT1	PX1	PT0	PX0		
	xx00-0000	IPH	_		PT2H	PSH	PT1H	PX1H	PT0H	PX0H		
	xxx0-0000	IP1		_	1 1 2 1 1	PSPI	PTKI	PX1H PX2	PP1	PT3		
DAII	AXXU-UUUU	11,1	_	_	_	rari	FINI	ΓΛΔ	rrı	F13		

TM52F2230B/34B Data Sheet

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
BBh	xxx0-0000	IP1H	-	-	-	PSPIH	PTKIH	PX2H	PP1H	РТ3Н			
BCh	0000-x000	SPCON	SPEN	MSTR	CPOL	СРНА	-	LSBF	SP	CR			
BDh	00x0-0xxx	SPSTA	SPIF	WCOL	-	RCVOVF	RCVBF	SPBSY	=	-			
BEh	0000-0000	SPDAT				SPDAT							
BFh	000x-xxxx	PINMODE	I80EN	I80POL	PWMOE	=	-	=	=	-			
C2h	0000-0000	BGADCS	LVR2E		ADCHS			CM	PVS				
C3h	xxxx-xxxx	BGADCD	CMPO	I			ADO	CDT					
C4h	0100-0000	ATKCMP0		ATKCMP0									
C5h	0100-0000	ATKCMP1		ATKCMP1									
C6h	0100-0000	ATKCMP2		ATKCMP2									
C7h	0100-0000	ATKCMP3	ATKCMP3										
C8h	0000-0000	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N			
CAh	0000-0000	RCP2L				RCI	P2L						
CBh	0000-0000	RCP2H				RCI	P2H						
CCh	0000-0000	TL2				TI	L2						
CDh	0000-0000	TH2				TI	12						
D0h	0000-0000	PSW	CY	AC	F0	RS1	RS0	OV	F1	P			
D8h	0000-0101	CLKCON	FCKTYPE	FSUBSEL	SELFCK	SCKTYPE	STPFSUB		CLKPSC				
E0h	0000-0000	ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0			
F0h	0000-0000	В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0			
F7h	xxxx-xxxx	CFGWL	-	-	-	- FRCF							
F8h	xxx0-0000	AUX1			-	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL			

Flash Address	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
7FFEh	CFGWL	-	-	_			FRCF		
7FFFh	CFGWH	PROT	XRSTE	MVCLOCK	WDTE	=	П	LVR1E	=

DS- TM52F2230B_34B_E 73 Rev 0.95, 2018/05/10

SFR & CFGW DESCRIPTION

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						Port0 data, also controls the P0.n pin's pull-up function. If the P0.n SFR
80h	P0	7~0	P0	R/W	FFh	data is "1" and the corresponding POOE.n=0 (input mode), the pull-up is
011	CD	7.0	CD	D /337	071	enabled.
81h	SP	7~0	SP	R/W	07h	Stack Point
82h	DPL	7~0	DPL	R/W	00h	Data Point low byte
83h	DPH	7~0	DPH	R/W	00h	Data Point high byte
		7	SMOD	R/W	0	Set 1 to enable UART double baud rate
0.51	BGON	3	GF1	R/W	0	General purpose flag bit
87h	PCON	2	GF0	R/W	0	General purpose flag bit
		1	PD	R/W	0	Power down control bit, set 1 to enter STOP mode
		0	IDL	R/W	0	Idle control bit, set 1 to enter IDLE mode
		7	TF1	R/W	0	Timer1 overflow flag Set by H/W when Timer/Counter 1 overflows. Cleared by H/W when
		/	111	K/W	U	CPU vectors into the interrupt service routine.
		6	TR1	R/W	0	Timer1 run control. 1: timer runs; 0: timer stops
		0	TICI	10/11	0	Timer0 overflow flag
		5	TF0	R/W	0	Set by H/W when Timer/Counter 0 overflows. Cleared by H/W when
						CPU vectors into the interrupt service routine.
		4	TR0	R/W	0	Timer0 run control. 1:timer runs; 0:timer stops
						External Interrupt 1 (INT1 pin) edge flag
88h	TCON	3	IE1	R/W	0	Set by H/W when an INT1 pin falling edge is detected. Cleared by H/W
						when CPU vectors into the interrupt service routine.
		2	IT1	R/W	0	External Interrupt 1 control bit 0: Low level active (level triggered) for INT1 pin
			111	IX/ VV	0	1: Falling edge active (ledge triggered) for INT1 pin
						External Interrupt 0 (INT0 pin) edge flag
		1	IE0	R/W	0	Set by H/W when an INT0 pin falling edge is detected. Cleared by H/W
						when CPU vectors into the interrupt service routine.
						External Interrupt 0 control bit
		0	IT0	R/W	0	0: Low level active (level triggered) for INT0 pin
						1: Falling edge active (edge triggered) for INT0 pin
		7	GATE1	R/W	0	Timer1 gating control bit 0: Timer1 enable when TR1 bit is set
		,	GATEI	IX/ VV	0	1: Timer1 enable when TR1 bit is set 1: Timer1 enable only while the INT1 pin is high and TR1 bit is set
						Timer1 Counter/Timer select bit
		6	CT1N	R/W	0	0: Timer mode, Timer1 data increases at 2 System clock cycle rate
						1: Counter mode, Timer1 data increases at T1 pin's negative edge
						Timer1 mode select
						00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)
		5~4	TMOD1	R/W	00	01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at
						overflow.
						11: Timer1 stops
89h	TMOD					Timer0 gating control bit
		3	GATE0	R/W	0	0: Timer0 enable when TR0 bit is set
						1: Timer0 enable only while the INT0 pin is high and TR0 bit is set
			OTTON I	D 733		Timer0 Counter/Timer select bit
	_	2	CT0N	R/W	0	0: Timer mode, Timer0 data increases at 2 System clock cycle rate
				-		1: Counter mode, Timer0 data increases at T0 pin's negative edge Timer0 mode select
						00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0)
						01: 16-bit timer/counter
		1~0	TMOD0	R/W	00	10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at
						overflow.
						11: TL0 is an 8-bit timer/counter.
0.41	TOT A	7.0	TTI O	D /337	001	TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.
8Ah	TL0	7~0	TL0	R/W	00h	Timer0 data low byte

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
8Bh	TL1	7~0	TL1	R/W	00h	Timer1 data low byte
8Ch	TH0	7~0	TH0	R/W	00h	Timer0 data high byte
8Dh	TH1	7~0	TH1	R/W	00h	Timer1 data high byte
90h	P1	7~0	P1	R/W	FFh	Port1 data
91h	POOE	7~0	P0OE	R/W	00h	Port0 CMOS Push-Pull output enable control, 1=Enable.
93h	P2OE	6~0	P2OE	R/W	00h	P2.6~P2.0 pin CMOS Push-Pull output enable control, 1=Enable.
		7~6	SXTGAIN	R/W	11	SXT oscillator gain 0=Lowest gain, 3=Highest Gain
		5	STPPCK	R/W	0	Set 1 to stop UART/Timer0/1/2 clock in Idle mode for current reducing.
		4	PWRFLT	R/W	0	Set 1 to enhance the chip's power noise immunity
		3	UART1W	R/W	0	Set 1 to enable one wire UART mode, both TXD/RXD use P3.1 pin.
94h	OPTION	2	WDTPSC	R/W	0	WDT Prescaler 0: WDT overflow at 65536 System clock count 1: WDT overflow at 32768 System clock count
		1~0	TM3PSC	R/W	01	Timer3 Interrupt rate 00: Timer3 interrupt occurs when 23 bit count data overflow 01: Timer3 interrupt rate is 32768 Slow clock cycles (1.0 second for SXT) 10: Timer3 interrupt rate is 16384 Slow clock cycles (0.5 second for SXT) 11: Timer3 interrupt rate is 8192 Slow clock cycles (0.25 second for SXT)
		3	TKIF	R/W	0	Touch Key Interrupt Flag (for H/W ATK Mode) Set by H/W when a TK channel's touch event is detected. It is cleared automatically when the program performs the interrupt service routine. S/W can write F7h to INTFLG to clear this bit.
0.51		2	IE2	R/W	0	External Interrupt 2 (INT2 pin) edge flag Set by H/W when a falling edge is detected on the INT2 pin, no matter the EX2 is 0 or 1. It is cleared automatically when the program performs the interrupt service routine. S/W can write FBh to INTFLG to clear this bit.
95h	INTFLG	1	P1IF	R/W	0	Port1 pin change Interrupt flag Set by H/W when a Port1 pin state change is detected and its interrupt enable bit is set (P1WKUP). P1IE does not affect this flag's setting. It is cleared automatically when the program performs the interrupt service routine. S/W can write FDh to INTFLG to clear this bit.
		0	TF3	R/W	0	Timer3 Interrupt Flag Set by H/W when Timer3 reaches TM3PSC setting cycles. It is cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit.
96h	P1WKUP	7~0	P1WKUP	R/W	00h	P1.7~P1.0 pin individual Wake-up / Interrupt enable control 0: Disable; 1: Enable.
		7~0	SWRST	W	_	Write 56h to generate S/W Reset
97h	SWCMD	7~0	IAPALL	W	_	Write 65h to set IAPALL flag; Write other value to clear IAPALL flag. It is recommended to clear it immediately after IAP access.
		0	IAPALL	R	0	Flag indicates whole Flash can be access by IAP or not

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	SM0	R/W	0	Serial port mode select bit 0, 1 (SM0, SM1) =
		/	SIMO	K/W	U	00: Mode0: 8 bit shift register, Baud Rate = F _{SYSCLK} /2
			G) (1	D/III	0	01: Mode1: 8 bit UART, Baud Rate is variable 10: Mode2: 9 bit UART, Baud Rate=F _{SYSCLK} /32 or/64
		6	SM1	R/W	0	11: Mode3: 9 bit UART, Baud Rate is variable
						Serial port mode select bit 2
						SM2 enables multiprocessor communication over a single serial line and
		5	SM2	R/W	0	modifies the above as follows. In Modes 2 & 3, if SM2 is set then the
						received interrupt will not be generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop
98h	SCON					bit is received. In Mode 0, SM2 should be 0.
7011	БСОП	4	REN	R/W	0	Set 1 to enable UART Reception
		3	TB8	R/W	0	Transmitter bit 8, ninth bit to transmit in Modes 2 and 3
		2	RB8	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or
			KD0	10/ 11	U	the stop bit in Mode 1 if SM2=0
		1	TI	R/W	0	Transmit Interrupt flag Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of
		1	11	K/ W	U	the stop bit in other modes. Must be cleared by S/W
						Receive Interrupt flag
		0	RI	R/W	0	Set by H/W at the end of the eighth bit in Mode 0, or at the sampling
						point of the stop bit in other modes. Must be cleared by S/W.
99h	SBUF	7~0	SBUF	R/W	_	UART transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.
9Ch	PWMPRD	7~0	PWMPRD	R/W	FFh	PWM 8-bit period register
9Dh	PWMDH	7~0	PWMDH	R/W	80h	bits 9~2 of the PWM 10-bit duty register
, , ,	1 ((1)11111	, ,	1 ((112211	10	0011	P2.7 data
		7	P2.7	R/W	1	0: Open Drain output low
A0h	P2					1: Schmitt-trigger input with pull up
		6~0	P2.6~P2.0	R/W	7Eb	P2.6~P2.0 data, also controls the P2.n pin's pull-up function. If the P2.n SFR data is "1" and the corresponding P2OE.n=0 (input mode), the pull-
		0~0	P2.0~P2.0	K/ W	/FII	up is enabled.
						PWM clock source
						00: F _{SYSCLK} /4
Alh	PWMCON	7~6	PWMCKS	R/W	10	01: F _{SYSCLK} /2
						10: F _{SYSCLK} 11: FRCx2
		5~4	PWMDL	R/W	00	bits 1~0 of the PWM 10-bit duty register
						P1.3 Pin Control
		7~6	P1MOD3	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P1.3 is ADC input
		5~4	P1MOD2	R/W	00	P1.2 Pin Control 00: Mode0; 01: Mode1; 10: Mode2
		5~4	I IMOD2	IX/ VV	00	11: Mode3, P1.2 is ADC input
A2h	P1MODL					P1.1 Pin Control
		3~2	P1MOD1	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P1.1 is ADC input
		1~0	P1MOD0	R/W	00	P1.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2
		10	TIMODO	10/ 11	00	11: Mode3, P1.0 is T2O output
						P1.7 Pin Control
		7~6	P1MOD7	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P1.7 is ADC input
		5~4	P1MOD6	R/W	00	P1.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2
A 21	DIMORIA		1111010	'''	33	11: Mode3, P1.6 is ADC input
A3h	P1MODH					P1.5 Pin Control
		3~2	P1MOD5	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P1.5 is ADC input P1.4 Pin Control
		1~0	P1MOD4	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
1		- 0	11.102	''		11: Mode3, P1.4 is ADC input

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						P3.3 Pin Control
		7~6	P3MOD3	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3
						P3.2 Pin Control
		5~4	P3MOD2	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
A4h	P3MODL					11: Mode3
A4II	FSMODL					P3.1 Pin Control
		3~2	P3MOD1	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3
						P3.0 Pin Control
		1~0	P3MOD0	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3
		7 6	D2MOD7	D/W	00	P3.7 Pin Control
		7~6	P3MOD7	R/W	00	00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.7 is TCO output
						P3.6 Pin Control
		5~4	P3MOD6	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
		5.44	1 SMOD0	10/ 11	00	11: Mode3, P3.6 is T1B output
A5h	P3MODH					P3.5 Pin Control
		3~2	P3MOD5	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
		_				11: Mode3, P3.5 is T1O output
			P3MOD4			P3.4 Pin Control
		1~0		R/W	00	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P3.4 is Touch Key charge collection (CLD)
				R/W		T1O pin duty and frequency control
		7~6	T10CON		00	00: 1/2 duty, 1/2 Timer1 overflow frequency
		70	110001	10/ 11		01: 1/3 duty, 1/3 Timer1 overflow frequency
						10: 1/4 duty, 1/4 Timer1 overflow frequency
			T2OCON	R/W	000	T2O pin duty and frequency control
						000: 1/2 duty, 1/2 Timer2 overflow frequency
		5~3				001: 1/3 duty, 1/3 Timer2 overflow frequency 010: 1/4 duty, 1/4 Timer2 overflow frequency
						101: 2/3 duty, 1/4 Timer2 overflow frequency
A6h	TOCON					110: 3/4 duty, 1/4 Timer2 overflow frequency
71011	100011					TCO pin duty and frequency control
						000: 1/2 duty, 1/2 SYSCLK frequency
				R/W		001: 1/3 duty, 1/3 SYSCLK frequency
						010: 1/4 duty, 1/4 SYSCLK frequency
		2~0	TCOCON		000	011: 1/4 duty, 1/2 SYSCLK frequency
						100: 1/2 duty, 1/1 SYSCLK frequency
						101: 2/3 duty, 1/3 SYSCLK frequency
						110: 3/4 duty, 1/4 SYSCLK frequency
						111: 3/4 duty, 1/2 SYSCLK frequency
		6	LDOE	D/337	1	Chip internal LDO Regulator enable control
		6	LDOE	R/W	1	0: LDO disable, V _{DD} =V _{BAT}
						1: LDO enable, V _{DD} =LDO Regulator output V _{DD} voltage setting in Fast/Slow mode while LDOE=1.
						Oxx: Don't select
						100: V _{DD} =V _{BAT} *165/300 in Fast/Slow mode
A7h	VCON	5~3	VSET2	R/W	111	100. V _{DD} =V _{BAT} *176/300 in Fast/Slow mode
		5~3	,5212	K/W	111	110: V _{DD} =V _{BAT} *188/300 in Fast/Slow mode
						111: V _{DD} =V _{BG} *2.75=1.2V*2.75=3.3V in Fast/Slow mode while
						$V_{BAT}>3.3V$.
			****			V _{DD} voltage setting in Idle/Stop mode while LDOE=1. Definition is the
		2~0	VSET1	R/W	111	same as VSET2.
				l		builto up 151112.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
	~					Global interrupt enable control.
		7	EA	R/W	0	0: Disable all Interrupts.
						1: Each interrupt is enabled or disabled by its own interrupt control bit.
		5	ET2	R/W	0	Set 1 to enable Timer2 interrupt
		4	ES	R/W	0	Set 1 to enable Serial Port (UART) Interrupt
A8h	IE	3	ET1	R/W	0	Set 1 to enable Timer1 Interrupt
		2	EX1	R/W	0	Set 1 to enable external INT1 pin Interrupt & Stop mode wake up capability
		1	ET0	R/W	0	Set 1 to enable Timer0 Interrupt
		0	EX0	R/W	0	Set 1 to enable external INTO pin Interrupt & Stop mode wake up capability
		7~5	IAPWE	R/W	000	Set to 101 to enable IAP write for F2230B/34B, don't care for F2230/34. It is recommended to clear it immediately after IAP write.
		4	SPIE	R/W	0	Set 1 to enable SPI Interrupt
4.01	INTERES	3	TKIE	R/W	0	Set 1 to enable Touch Key Interrupt
A9h	INTE1	2	EX2	R/W	0	Set 1 to enable external INT2 pin Interrupt & Stop mode wake up capability
		1	P1IE	R/W	0	Set 1 to enable Port1 Pin Change Interrupt
		0	TM3IE	R/W	0	Set 1 to enable Timer3 Interrupt
		7	TKEOC	R	-	Touch Key End of Conversion (for S/W Mode), TKEOC may have 3uS delay after TKSOC=1, so F/W must wait enough time before polling this Flag. 0: Indicates conversion is in progress 1: Indicates conversion is finished
		6	TKOVF	R	_	Touch Key Counter Overflow (for S/W Mode)
ABh	ATKDT	5~4	TKDH	R	_	Touch Key Counter Data 9~8 (for S/W Mode)
		3~0	ATKDT	R	-	Touch Key Auto Scan Result (for H/W ATK Mode) xxx1: TK0 has a Touch event xx1x: TK1 has a Touch event x1xx: TK2 has a Touch event 1xxx: TK3 has a Touch event
ACh	TKDL	7~0	TKDL	R	_	Touch Key Counter Data 7~0 (for S/W Mode)
		7	TKPD	R/W	1	Touch Key Power Down (for S/W mode)
		6~4	TKTMR	R/W	100	0: Touch Key enable; 1: Touch Key disable Touch Key Conversion Time (for both S/W and H/W ATK mode) 000: Conversion time shortest 111: Conversion time longest
ADh	TKCON	3~0	TKCHS	R/W	1111	Touch Key Channel Select (for S/W Mode) 0000: TK0 (P1.7) 0001: TK1 (P1.6) 0010: TK2 (P1.5) 0011: TK3 (P1.4) 0100: TK4 (P1.3) 0101: TK5 (P1.2) 0110: TK6 (P1.1)

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
Aui	SFK	DICH	Dit Manie	IX/ VV	Kst	Touch Key Auto Scan Mode Enable
		3	TKAUTO	R/W	0	0: S/W Mode
						1: H/W ATK Mode
						Touch Key Scan Rate (for H/W ATK Mode)
		2	ATKRATE	R/W	0	0: ATK scan rate is 4096 Slow clock cycles (125ms if Slow clock is
AEh	TKCON2	_				SXT)
						1: ATK scan rate is 2048 Slow clock cycles (62ms if Slow clock is SXT) Touch Key Auto Scan Channel Number (for H/W ATK Mode)
						00: ATK only detect TK0
		1~0	ATKNUM	R/W	11	01: ATK detect TK0 and TK1
						10: ATK detect TK0~TK2
						11: ATK detect TK0~TK3 P0.0~P0.3 pin RFC mode control.
						00: P0.0~P0.3 are not RFC pins
		7~6	P0RFC	R/W	00	01: P0.0 and P0.1 are RFC pins, P0.2 and P0.3 are not RFC pins
						10: P0.0~P0.2 are RFC pins, P0.3 is not RFC pin
						11: P0.0~P0.3 are RFC pins
						Timer0 Counter mode (CT0N=1) T0 input select 00: P3.4 pin (8051 standard)
		5~4	TOSEL	R/W	00	01: RFC clock divided by 1/4/16/64
			10022	10,,,	00	10: SXT clock
AFh	RFCON					11: RFC clock divided by 1/4/16/64 gated by Timer2 overflow
						RFC clock divider to Timer0
		3~2	RFCPSC	R/W	11	00: divided by 64 01: divided by 16
		3.42	KI CI SC	10/ 11	11	10: divided by 4
						11: divided by 1
						Select RFC convert channel.
		1~0	RFCS	R/W	00	00: RFC0R (P0.1)
						01: RFC1R (P0.2) 10: RFC2R (P0.3)
B0h	Р3	7~0	P3	R/W	FFh	Port 3 data
B3h	TM3SEC	7~0	TM3SEC	R	_	Timer3 count data bit 22~15
B4h	TM3DL	7~0	TM3DL	R	_	Timer3 count data bit 7~0
B5h	TM3DH	6~0	TM3DH	R	_	Timer3 count data bit 14~8
B6h	TM3RLD	7~0	TM3RLD	R/W	00h	Timer3 overflow reload data for Timer3 bit 22~15 (TM3SEC)
		7	TM3ADJS	R/W	0	Timer3 adjustment sign 0: Timer3 positive adjust, to increase Timer3 counting rate
D.71		,	11013/11030	10/ 11	U	1: Timer3 negative adjust, to decrease Timer3 counting rate
B7h	TM3ADJ					Timer3 adjust magnitude, 0.477 ppm per LSB.
		6~0	TM3ADJ	R/W	00h	The adjustment is calculated as ±TM3ADJ*0.477ppm. The total
		-	DTO	D/XX	0	adjustable range is ± 61ppm.
		5	PT2 PS	R/W R/W	0	Timer2 Interrupt Priority Low bit Serial Port (UART) Interrupt Priority Low bit
		3	PT1	R/W	0	Timer1 Interrupt Priority Low bit
B8h	IP	2	PX1	R/W	0	External INT1 Pin Interrupt Priority Low bit
		1	PT0	R/W	0	Timer0 Interrupt Priority Low bit
		0	PX0	R/W	0	External INTO Pin Interrupt Priority Low bit
		5	PT2H	R/W	0	Timer2 Interrupt Priority High bit
		4	PSH	R/W	0	Serial Port (UART) Interrupt Priority High bit
B9h	IPH	3	PT1H	R/W	0	Timer1 Interrupt Priority High bit
2711	11 11	2	PX1H	R/W	0	External INT1 Pin Interrupt Priority High bit
		1	PT0H	R/W	0	Timer0 Interrupt Priority High bit
		0	PX0H	R/W	0	External INTO Pin Interrupt Priority High bit
		4	PSPI PTKI	R/W R/W	0	SPI Interrupt Priority Low bit Touch Key Interrupt Priority Low bit
BAh	IP1	3	PX2	R/W	0	External INT2 Pin Interrupt Priority Low bit
ווטמ	11 1	1	PP1	R/W	0	Port1 pin change Interrupt Priority Low bit
		0	PT3	R/W	0	Timer3 Interrupt Priority Low bit
		Ŭ		'''	Ŭ	

ІР1Н	4 3 2 1	PSPIH PTKIH	R/W	0	SPI Interrupt Priority High bit
ІР1Н	2				
IP1H			R/W	0	Touch Key Interrupt Priority High bit
	1	PX2H	R/W	0	External INT2 Pin Interrupt Priority High bit
		PP1H	R/W	0	Port1 Interrupt Priority High bit
	0	РТ3Н	R/W	0	Timer3 Interrupt Priority High bit
-	7	SPEN	R/W	0	Set 1 to enable SPI & P2.4~P2.6 SPI pin function
	6	MSTR	R/W	0	SPI Master Mode Enable.
	O	MSTR	K/W	U	0: Slave Mode; 1: Master Mode
	5	CPOL	R/W	0	SPI Clock Polarity
-	3	CIOL	10/11	Ü	0: SCK is low in idle state; 1: SCK is high in idle state
SPCON		CDII.	D 777		SPI Clock Phase
	4	СРНА	R/W	0	0: Data sampled on first edge of SCK period 1: Data sampled on second edge of SCK period
-					SPI LSB First.
	2	LSBF	R/W	0	0: MSB first; 1: LSB first
-					SPI Clock Rate.
	1~0	SPCR	R/W	00	00: F _{SYSCLK} /2; 01: F _{SYSCLK} /4; 10: F _{SYSCLK} /8; 11: F _{SYSCLK} /16
					SPI Interrupt Flag
	7	SPIF	R/W	0	Set by H/W at the end of a data transfer. Cleared by H/W when interrupt
_					is vectored into. Write 0 to this bit will clear this flag.
					Write Collision Interrupt Flag
	6	WCOL	R/W	0	Set by H/W if write data to SPDAT when SPBSY=1. Write 0 to this bit
-					or rewrite data to SPDAT when SPBSY=0 will clear this flag.
SPSTA	4	DCMOME	D/W	0	Receive Buffer Overrun Flag Set by H/W at the end of a data transfer and RCVBF=1. Write 0 to this
	4	RCVOVF	K/W	U	bit or read SPDAT register will clear this flag.
-					Receive Buffer Full Flag
	3	RCVBF	R/W	0	Set by H/W at the end of a data transfer. Write 0 to this bit or read
					SPDAT register will clear this flag.
•	2	CDDCV	D		SPI Busy Flag (Read Only)
	2	SPDS I	K		Set by H/W when a SPI transfer is in progress.
					SPI Transmit and Receive Data
SPDAT	7~0	SPDAT	R/W	00h	The SPDAT register is used to transmit and receive data. Writing data to
					SPDAT place the data into shift register and start a transfer when in
					Master mode. Reading SPDAT returns the contents of the receive buffer. I80 interface enable.
	7	IOOENI	D/W	0	0: Disable
	/	180EN	K/W	U	** = ******
-					1: Enable; Port0, P3.6 and P3.7 are I80 functional pin The polarity of RD/WR signal
PINMODE	6	ISOPOI	R/W	0	0: RD/WR are low active
11,11,12,12		ISOPOL	10/11		1: RD/WR are high active
					PWM signal output enable
	5	5 PWMOE I	R/W	0	0: Disable PWM signal output to P1.3
	3				1: Enable PWM signal output to P1.3
		1~0 7 6 SPSTA 4 3 2 SPDAT 7~0 7 INMODE 6	1~0 SPCR	1~0 SPCR R/W 7 SPIF R/W 6 WCOL R/W 3 RCVOVF R/W 2 SPBSY R SPDAT 7~0 SPDAT R/W 7 I80EN R/W 1NMODE 6 I80POL R/W	1~0 SPCR R/W 00 7

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	LVD2E	D/W	0	Low Voltage Reset #2 enable, 1=enable. This bit must be set to 1 after the
		7	LVR2E	R/W	U	CMPVS setting done and the Bandgap voltage stable.
		6~4	ADCHS	R/W	000	ADC channel select 000: ADC disable; 001: AD1 (P1.1); 010: AD2 (P1.2); 011: AD3 (P1.3); 100: AD4 (P1.4); 101: AD5 (P1.5); 110: AD6 (P1.6); 111: AD7 (P1.7)
C2h	BGADCS	3~0	CMPVS	R/W	0000	Select V _{BAT} resistor divider for Comparator input to compare with the 1.2V Bandgap reference voltage. If LVR2E=1, the Low Voltage Reset #2 is triggered when V _{BAT} resistor divider is lower than 1.2V (CMPO=0). 0000: Comparator Disable 0001: the Comparator input is V _{BAT} *12/24, LVR2=2.4V 0010: the Comparator input is V _{BAT} *12/25, LVR2=2.5V 0011: the Comparator input is V _{BAT} *12/26, LVR2=2.6V 0100: the Comparator input is V _{BAT} *12/27, LVR2=2.7V 0101: the Comparator input is V _{BAT} *12/28, LVR2=2.8V 0110: the Comparator input is V _{BAT} *12/29, LVR2=2.9V 0111: the Comparator input is V _{BAT} *12/30, LVR2=3.0V 1000: the Comparator input is V _{BAT} *12/31, LVR2=3.1V 1001: the Comparator input is V _{BAT} *12/33, LVR2=3.3V 1010: the Comparator input is V _{BAT} *12/35, LVR2=3.5V 1011: the Comparator input is V _{BAT} *12/37, LVR2=3.7V 1100: the Comparator input is V _{BAT} *12/39, LVR2=3.9V 1101: the Comparator input is V _{BAT} *12/41, LVR2=4.1V 1110: the Comparator input is V _{BAT} *12/43, LVR2=4.3V 1111: the Comparator input is V _{BAT} *12/45, LVR2=4.5V
C3h	BGADCD	7 5~0	CMPO	R R	-	Compare result of BandGap voltage and V_{BAT} voltage divider. CMPO=1 means the V_{BAT} divider voltage is higher. If LVR2E=1, the CMPO=0 can trigger LVR2. ADC convert data result
C/11-	ATIZOMDO	_	ADCDT		401-	
	ATKCMP0	7~0	ATKCMP0	R/W	40h	Data Threshold Compared with TK0 scan (for H/W ATK Mode)
	ATKCMP1	7~0	ATKCMP1		40h	Data Threshold Compared with TK1 scan (for H/W ATK Mode)
	ATKCMP2	7~0	ATKCMP2		40h	Data Threshold Compared with TK2 scan (for H/W ATK Mode)
C/II	ATKCMP3	7~0	ATKCMP3	R/W	40h	Data Threshold Compared with TK3 scan (for H/W ATK Mode)
		7	TF2	R/W	0	Timer2 overflow flag Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.
		6	EXF2	R/W	0	T2EX interrupt pin falling edge flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.
		5	RCLK	R/W	0	UART receive clock control bit 0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3 1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3
		4	TCLK	R/W	0	UART transmit clock control bit 0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3 1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3
C8h	T2CON	3	EXEN2	R/W	0	T2EX pin enable 0: T2EX pin disable 1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0
		2	TR2	R/W	0	Timer2 run control. 1:timer runs; 0:timer stops
		1	CT2N	R/W	0	Timer2 Counter/Timer select bit 0: Timer mode, Timer2 data increases at 2 System clock cycle rate 1: Counter mode, Timer2 data increases at T2 pin's negative edge
CAb		0	CPRL2N	R/W	0	Timer2 Capture/Reload control bit 0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1. 1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1. If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow.
CAh	RCP2L	7~0	RCP2L	K/W	00h	Timer2 reload/capture data low byte

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
CBh	RCP2H	7~0	RCP2H	R/W	00h	Timer2 reload/capture data high byte
CCh	TL2	7~0	TL2	R/W	00h	Timer2 data low byte
CDh	TH2	7~0	TH2	R/W	00h	Timer2 data high byte
		7	CY	R/W	0	ALU carry flag
		6	AC	R/W	0	ALU auxiliary carry flag
		5	F0	R/W	0	General purpose user-definable flag
D 01		4	RS1	R/W	0	Register Bank Select bit 1
D0h	PSW	3	RS0	R/W	0	Register Bank Select bit 0
		2	OV	R/W	0	ALU overflow flag
		1	F1	R/W	0	General purpose user-definable flag
		0	P	R/W	0	Parity flag
	sh CLKCON	7	FCKTYPE	R/W	0	Fast clock select, This bit can be changed only in Slow mode (SELFCK=0) 0: Fast clock is FSUBCLK (FRC or FXT) 1: Fast clock is RFC, S/W must setup RFC circuitry before set this bit to 1
		6	FSUBSEL	R/W	0	FSUBCLK select, This bit can be changed only in Slow mode (SELFCK=0). 0: FSUBCLK is FRC 1: FSUBCLK is FXT, P2.2 and P2.3 are crystal oscillator pins
D8h		5	SELFCK	R/W	0	System clock select. This bit can be changed only when STPFSUB=0 or FCKTYPE=1. 0: Slow clock (SRC/SXT) 1: Fast clock (FRC/FXT/RFC)
		4	SCKTYPE	R/W	0	Slow clock Type. This bit can be changed only in Fast mode (SELFCK=1). 0: SRC 1: SXT, P2.0 and P2.1 are crystal oscillator pins
		3	STPFSUB	R/W	0	Set 1 to stop FXT/FRC for power saving in Slow/Idle mode. This bit can be changed only in Slow mode or RFC mode.
		2~0	CLKPSC	R/W	101	System clock prescaler. 000: System clock is Fast/Slow clock divided by 32 001: System clock is Fast/Slow clock divided by 16 010: System clock is Fast/Slow clock divided by 8 011: System clock is Fast/Slow clock divided by 4 100: System clock is Fast/Slow clock divided by 2 101: System clock is Fast/Slow clock divided by 1
E0h	ACC	7~0	ACC	R/W	00h	Accumulator
F0h	В	7~0	В	R/W	00h	B register
F7h	CFGWL	4~0	FRCF	R/W	_	FRC frequency adjustment 00h=central frequency; 0Fh=highest frequency; 10h=lowest frequency
		4	TKSOC	R/W	0	Rising edge of this bit will trigger a Touch Key conversion (for S/W Mode). Basically, this bit is automatically cleared by H/W after end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate issue.
	n AUX1			R/W	0	Set to 1 to clear Watch Dog Timer
F8h	AUX1	3	CLRWDT	K/W	U	Set to 1 to clear watch Dog Times
F8h	AUX1	2	CLRWDT CLRTM3	R/W	0	Set 1 to Clear Timer3 and force TM3SEC reload
F8h	AUX1					<u> </u>

Adr	Flash	Bit#	Bit Name	Description
7FFEh	CFGWL	4~0		FRC frequency adjustment. FRC is trimmed to 7.3728 MHz in chip manufacturing. FRCF records the adjustment data.
		7	PROT	Flash Code Protect, 1=Protect
		6	XRSTE	Pin Reset enable, 1=enable.
7FFFh	CFGWH	5	5 MVCLOCK	If 1, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.
		4	WDTE	WDT Reset enable, 1=enable.
		1	LVR1E	Low Voltage Reset #1 enable, 1=enable.

INSTRUCTION SET

Instructions are 1, 2 or 3 bytes long as listed in the 'byte' column below. Each instruction takes 1~8 System clock cycles to execute as listed in the 'cycle' column below.

	ARITHMETIC								
Mnemonic	Description	byte	cycle	opcode					
ADD A,Rn	Add register to A	1	2	28-2F					
ADD A,dir	Add direct byte to A	2	2	25					
ADD A,@Ri	Add indirect memory to A	1	2	26-27					
ADD A,#data	Add immediate to A	2	2	24					
ADDC A,Rn	Add register to A with carry	1	2	38-3F					
ADDC A,dir	Add direct byte to A with carry	2	2	35					
ADDC A,@Ri	Add indirect memory to A with carry	1	2	36-37					
ADDC A,#data	Add immediate to A with carry	2	2	34					
SUBB A,Rn	Subtract register from A with borrow	1	2	98-9F					
SUBB A,dir	Subtract direct byte from A with borrow	2	2	95					
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2	96-97					
SUBB A,#data	Subtract immediate from A with borrow	2	2	94					
INC A	Increment A	1	2	04					
INC Rn	Increment register	1	2	08-0F					
INC dir	Increment direct byte	2	2	05					
INC @Ri	Increment indirect memory	1	2	06-07					
DEC A	Decrement A	1	2	14					
DEC Rn	Decrement register	1	2	18-1F					
DEC dir	Decrement direct byte	2	2	15					
DEC @Ri	Decrement indirect memory	1	2	16-17					
INC DPTR	Increment data pointer	1	4	A3					
MUL AB	Multiply A by B	1	8	A4					
DIV AB	Divide A by B	1	8	84					
DA A	Decimal Adjust A	1	2	D4					

LOGICAL								
Mnemonic	Description	byte	cycle	opcode				
ANL A,Rn	AND register to A	1	2	58-5F				
ANL A,dir	AND direct byte to A	2	2	55				
ANL A,@Ri	AND indirect memory to A	1	2	56-57				
ANL A,#data	AND immediate to A	2	2	54				
ANL dir,A	AND A to direct byte	2	2	52				
ANL dir,#data	AND immediate to direct byte	3	4	53				
ORL A,Rn	OR register to A	1	2	48-4F				
ORL A,dir	OR direct byte to A	2	2	45				
ORL A,@Ri	OR indirect memory to A	1	2	46-47				
ORL A,#data	OR immediate to A	2	2	44				
ORL dir,A	OR A to direct byte	2	2	42				
ORL dir,#data	OR immediate to direct byte	3	4	43				
XRL A,Rn	Exclusive-OR register to A	1	2	68-6F				
XRL A,dir	Exclusive-OR direct byte to A	2	2	65				
XRL A, @Ri	Exclusive-OR indirect memory to A	1	2	66-67				
XRL A,#data	Exclusive-OR immediate to A	2	2	64				
XRL dir,A	Exclusive-OR A to direct byte	2	2	62				
XRL dir,#data	Exclusive-OR immediate to direct byte	3	4	63				
CLR A	Clear A	1	2	E4				
CPL A	Complement A	1	2	F4				

DS- TM52F2230B_34B_E 83 Rev 0.95, 2018/05/10

LOGICAL								
Mnemonic	Description	byte	cycle	opcode				
SWAP A	Swap Nibbles of A	1	2	C4				
RL A	Rotate A left	1	2	23				
RLC A	Rotate A left through carry	1	2	33				
RR A	Rotate A right	1	2	03				
RRC A	Rotate A right through carry	1	2	13				

	DATA TRANSFER							
Mnemonic	Description	byte	cycle	opcode				
MOV A,Rn	Move register to A	1	2	E8-EF				
MOV A,dir	Move direct byte to A	2	2	E5				
MOV A,@Ri	Move indirect memory to A	1	2	E6-E7				
MOV A,#data	Move immediate to A	2	2	74				
MOV Rn,A	Move A to register	1	2	F8-FF				
MOV Rn,dir	Move direct byte to register	2	4	A8-AF				
MOV Rn,#data	Move immediate to register	2	2	78-7F				
MOV dir,A	Move A to direct byte	2	2	F5				
MOV dir,Rn	Move register to direct byte	2	4	88-8F				
MOV dir,dir	Move direct byte to direct byte	3	4	85				
MOV dir,@Ri	Move indirect memory to direct byte	2	4	86-87				
MOV dir,#data	Move immediate to direct byte	3	4	75				
MOV @Ri,A	Move A to indirect memory	1	2	F6-F7				
MOV @Ri,dir	Move direct byte to indirect memory	2	4	A6-A7				
MOV @Ri,#data	Move immediate to indirect memory	2 3	2	76-77				
MOV DPTR,#data	Move immediate to data pointer	3	4	90				
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	4	93				
MOVC A,@A+PC	Move code byte relative PC to A	1	4	83				
MOVX A,@Ri	Move external data(A8) to A	1	4	E2-E3				
MOVX A,@DPTR	Move external data(A16) to A	1	4	E0				
MOVX @Ri,A	Move A to external data(A8)	1	4	F2-F3				
MOVX @DPTR,A	Move A to external data(A16)	1	4	F0				
PUSH dir	Push direct byte onto stack	2	4	C0				
POP dir	Pop direct byte from stack	2	4	D0				
XCH A,Rn	Exchange A and register	1	2	C8-CF				
XCH A,dir	Exchange A and direct byte	2	2	C5				
XCH A,@Ri	Exchange A and indirect memory	1	2	C6-C7				
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2	D6-D7				

BOOLEAN							
Mnemonic	Description	byte	cycle	opcode			
CLR C	Clear carry	1	2	C3			
CLR bit	Clear direct bit	2	2	C2			
SETB C	Set carry	1	2	D3			
SETB bit	Set direct bit	2	2	D2			
CPL C	Complement carry	1	2	В3			
CPL bit	Complement direct bit	2	2	B2			
ANL C,bit	AND direct bit to carry	2	4	82			
ANL C,/bit	AND direct bit inverse to carry	2	4	B0			
ORL C,bit	OR direct bit to carry	2	4	72			
ORL C,/bit	OR direct bit inverse to carry	2	4	A0			
MOV C,bit	Move direct bit to carry	2	2	A2			
MOV bit,C	Move carry to direct bit	2	4	92			

	BRANCHING							
Mnemonic	Description	byte	cycle	opcode				
ACALL addr 11	Absolute jump to subroutine	2	4	11-F1				
LCALL addr 16	Long jump to subroutine	3	4	12				
RET	Return from subroutine	1	4	22				
RETI	Return from interrupt	1	4	32				
AJMP addr 11	Absolute jump unconditional	2	4	01-E1				
LJMP addr 16	Long jump unconditional	3	4	02				
SJMP rel	Short jump (relative address)	2	4	80				
JC rel	Jump on carry=1	2	4	40				
JNC rel	Jump on carry=0	2	4	50				
JB bit,rel	Jump on direct bit=1	3	4	20				
JNB bit,rel	Jump on direct bit=0	3	4	30				
JBC bit,rel	Jump on direct bit=1 and clear	3	4	10				
JMP @A+DPTR	Jump indirect relative DPTR	1	4	73				
JZ rel	Jump on accumulator=0	2	4	60				
JNZ rel	Jump on accumulator≠0	2	4	70				
CJNE A,dir,rel	Compare A, direct, jump not equal relative	3	4	B5				
CJNE A,#data,rel	Compare A,immediate, jump not equal relative	3	4	B4				
CJNE Rn,#data,rel	Compare register, immediate, jump not equal relative	3	4	B8-BF				
CJNE @Ri,#data,rel	Compare indirect, immediate, jump not equal relative	3	4	B6-B7				
DJNZ Rn,rel	Decrement register, jump not zero relative	2	4	D8-DF				
DJNZ dir,rel	Decrement direct byte, jump not zero relative	3	4	D5				

MISCELLANEOUS						
Mnemonic	Description	byte	cycle	opcode		
NOP	No operation	1	2	00		

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11-F1 (for example), are used for absolute jumps and calls with the top 3 bits of the code being used to store the top three bits of the destination address.

DS- TM52F2230B_34B_E 85 Rev 0.95, 2018/05/10

ELECTRICAL CHARACTERISTICS

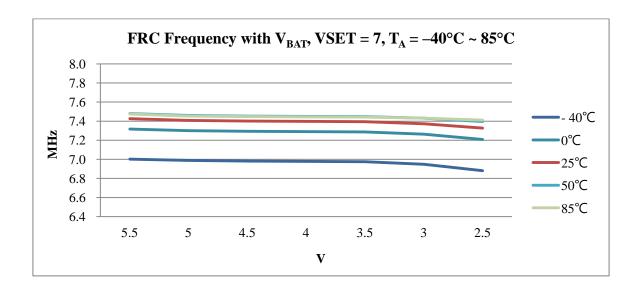
Absolute Maximum Ratings

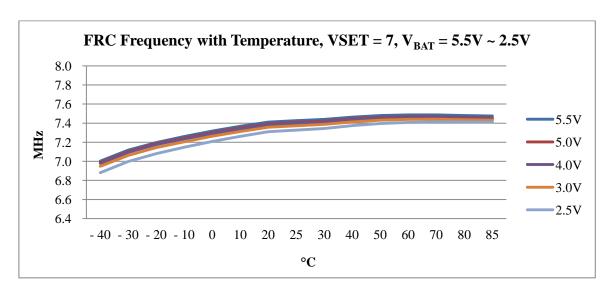
Parameter	Rating	Unit
Supply voltage	$V_{SS} - 0.3 \sim V_{SS} + 5.5$	
Input voltage	$V_{SS} - 0.3 \sim V_{BAT} + 0.3$	V
Output voltage	$V_{SS} - 0.3 \sim V_{BAT} + 0.3$	
Output current high per 1 pin	-20	
Output current high per all pins	-50	4
Output current low per 1 pin	+30	mA
Output current low per all pins	+100	
Maximum Operating Voltage	5.5	V
Operating temperature	-40 ~ +85	°C
Storage temperature	−65 ~ +150	

DC Characteristics (T_A=25°C)

Parameter	Sym	Condit	ions	Min	Тур	Max	Unit			
Lumut III ala Walta aa	17	all except P2.7	$V_{BAT}=3V$	$0.6V_{BAT}$	_	_				
Input High Voltage	V_{IH}	P2.7	V _{BAT} =3V	$0.8V_{BAT}$	_	_	V			
Input Low Voltage	$V_{\rm IL}$	all Input	$V_{BAT}=3V$	_	_	$0.2V_{BAT}$				
I/O Port Source Current	ī	all except P2.7	$V_{BAT}=3V$ $V_{OH}=2.7V$	2	4	_				
NO Foit Source Current	Іон	an except F2.7	V_{BAT} =5V V_{OH} =4.5V	5	10	-	mA			
I/O Port Sink Current	I_{OL}	all	$V_{BAT}=3V$ $V_{OL}=0.3V$	6	12	_				
1/O FOR SHIR CUITCH	IOL	all	$V_{BAT}=5V$ $V_{OL}=0.5V$	12	24	_				
Input Leakage Current (pin high)	I_{ILH}	all Input	$V_{IN} = V_{BAT}$	_	_	1	uA			
Input Leakage Current (pin low)	I_{ILL}	an input	Vin=0V	_	_	-1	uA			
		FRC, 7.37 MHz	$V_{BAT}=5V$	_	3.3	_	mA			
		FXT, 8 MHz	$V_{DD}=3.3V$	_	3.9	_	IIIA			
		SRC, 40 KHz	V _{BAT} =3V	_	4	_				
		SXT, 32 KHz	$V_{DD}=1.5V$	_	6.1	_				
Power Supply Current	I_{BAT}	Idle, 32 KHz	ATK On	_	1.8	_				
Tower Suppry Current	*BA1	Idle, 2 KHz	LVR1 On	_	1.3	_	uA			
		Idle, 32 KHz	$V_{BAT}=3V$	_	1.4	_	ur i			
		Idle, 2 KHz	V _{DD} =1.5V ATK Off	_	0.9	_				
		Stop LVR1 On		Stop LVR1 On _		Stop LVR1 On _ 0.4		0.4	_	
System Clock Frequency	F _{SYSCLK}	$2.8V < V_{DI}$		_	_	7.37	MHz			
	DISCLA	2.0V <v<sub>DI</v<sub>		_	420	3.7				
Pull-Up Resistor	R_{PU}	all except P2.7 P2.7	$V_{BAT}=3V$ $V_{IN}=0V$	_	420 270	_	ΚΩ			

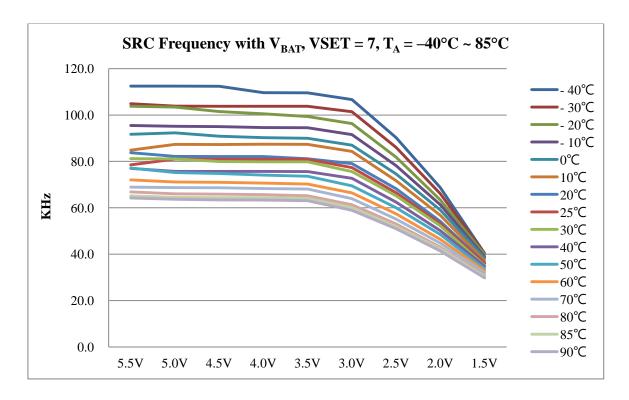
DS- TM52F2230B_34B_E 86 Rev 0.95, 2018/05/10

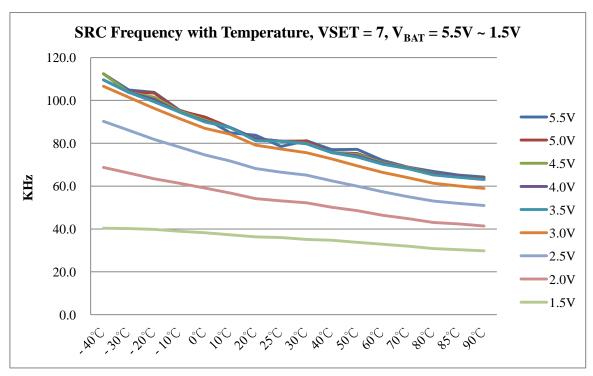



BandGap Reference Voltage

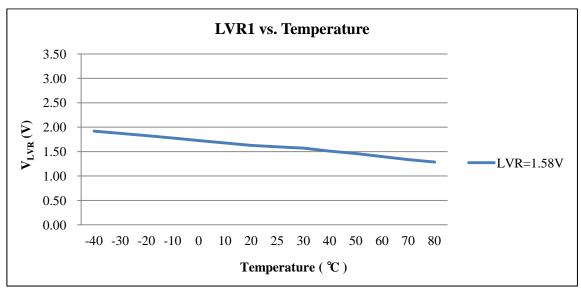
Parameter	Sym	Conditions	Min	Тур	Max	Unit	
	37	$V_{BAT}=3V, 25$ °C	1.14	1.2	1.26		
DandCan Valtage		$V_{BAT}=3V, -40^{\circ}C\sim85^{\circ}C$	1.12	1.2	1.28	17	
BandGap Voltage	V_{BG}	$V_{BAT}=5V, 25$ °C	1.18	1.25	1.33]	
		$V_{BAT}=5V, -40^{\circ}C\sim85^{\circ}C$	1.16	1.25	1.35		

Clock Timing $(T_A=25$ °C)

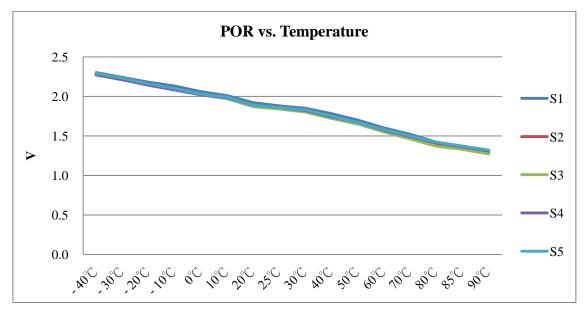

Parameter	Sym	Conditions		Min	Тур	Max	Unit
			$V_{BAT}=5V$, $V_{DD}=3.3V$	_	7.38	_	
FRC Clock Frequency	F_{FRC}	VSET=7	$V_{BAT}=3V, V_{DD}=3V$	_	7.37	_	MHz
			$V_{BAT} = 2.5V, V_{DD} = 2.5V$	_	7.33	_	
SDC Cleals Emaguamay	Б		$V_{DD}=3V$	_	80	_	KHz
SRC Clock Frequency	F_{SRC}		$V_{DD}=1.5V$	_	40	_	КПХ



DS- TM52F2230B_34B_E 87 Rev 0.95, 2018/05/10



DS- TM52F2230B_34B_E 88 Rev 0.95, 2018/05/10



LVR1/POR Level

Parameter	Sym	Conditions	Min	Тур	Max	Unit
LVR1 Voltage Level	V_{LVR}	25°C	1.43	1.58	1.75	V
Power On Reset Voltage	V_{POR}	25°C	1.6	1.8	2.0	V

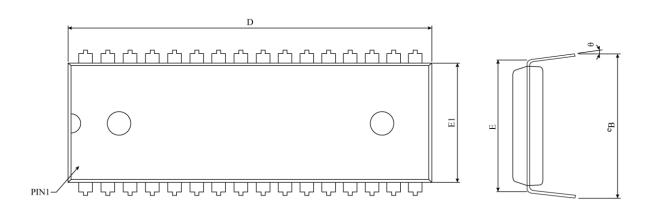
LVR1 with Temperature, $T_A \!\!=\! -40\,^{\circ} C \!\!\sim\!\! 80\,^{\circ} C$

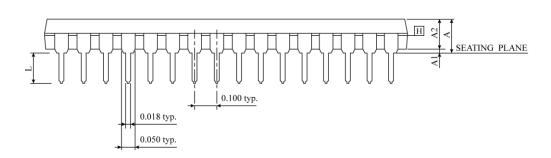
POR with Temperature (Power on Reset needs $V_{BAT} > V_{POR}$)

DS- TM52F2230B_34B_E 89 Rev 0.95, 2018/05/10

PACKAGE INFORMATION

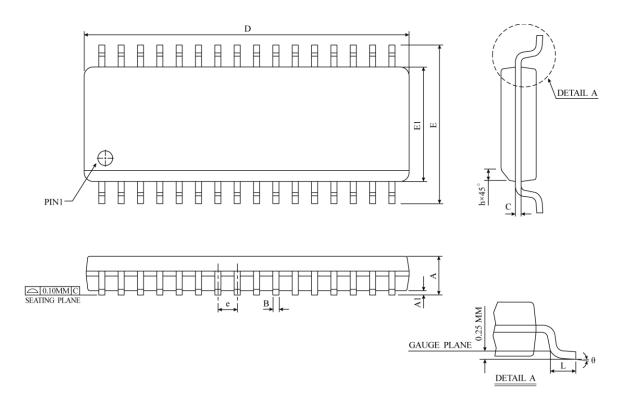
Ordering Information


Ordering Number	Package			
TM52F2230B-MTP	Wafer/Dice blank chip			
TM52F2230B-COD	Wafer/Dice with code			
TM52F2230B-MTP-09	DIP 32-pin (600 mil)			
TM52F2230B-MTP-24	SOP 32-pin (300 mil)			
TM52F2230B-MTP-98	QFN 32-pin (5x5x0.75-0.5mm)			
TM52F2234B-MTP	Wafer/Dice blank chip			
TM52F2234B-COD	Wafer/Dice with code			
TM52F2234B-MTP-09	DIP 32-pin (600 mil)			
TM52F2234B-MTP-24	SOP 32-pin (300 mil)			
TM52F2234B-MTP-98	QFN 32-pin (5x5x0.75-0.5mm)			


DS- TM52F2230B_34B_E 90 Rev 0.95, 2018/05/10

Package Information

DIP 32-pin (600 mil) Package Dimensions



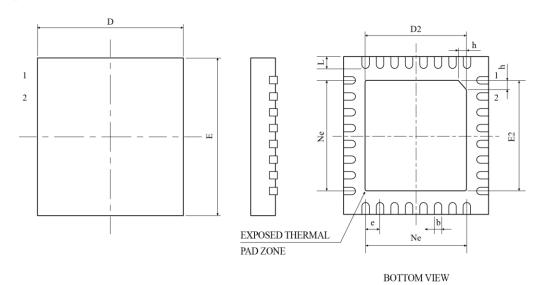
SYMBOL	DI	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX		
A	-	-	5.588	-	-	0.220		
A1	0.381	-	-	0.015	-	-		
A2	3.810	3.937	4.064	0.150	0.155	0.160		
D	41.783	41.974	42.164	1.645	1.653	1.660		
Е		15.240 BSC			0.600 BSC			
E1	13.716	13.843	13.970	0.540	0.545	0.550		
L	2.921	4.001	5.080	0.115	0.158	0.200		
e_{B}	16.002	16.51	17.018	0.630	0.650	0.670		
θ	0°	7.5°	15°	0°	7.5°	15°		
JEDEC	MO-015 (AP)							

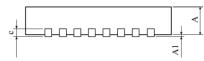
DS- TM52F2230B_34B_E 91 Rev 0.95, 2018/05/10

SOP 32-pin (300 mil) Package Dimensions

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	20.32	20.53	20.73	0.8000	0.8080	0.8160	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e	1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	-	8°	0°	-	8°	

* NOTES : DIMENSION " D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.


MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL


NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

DS- TM52F2230B_34B_E 92 Rev 0.95, 2018/05/10

QFN 32pin (5x5x0.75-0.5mm) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.70	0.75	0.80	0.028	0.030	0.031	
A1		0.02	0.05		0.001	0.002	
b	0.18	0.25	0.30	0.007	0.010	0.012	
С	0.18	0.20	0.25	0.007	0.008	0.010	
D	4.90	5.00	5.10	0.193	0.197	0.201	
D2	3.40	3.50	3.60	0.134	0.138	0.142	
e	0.50 BSC			0.020 BSC			
Ne	3.50 BSC			0.138 BSC			
Е	4.90	5.00	5.10	0.193	0.197	0.201	
E2	3.40	3.50	3.60	0.134	0.138	0.142	
L	0.35	0.40	0.45	0.014	0.016	0.018	
h	0.30	0.35	0.40	0.012	0.014	0.016	

DS- TM52F2230B_34B_E 93 Rev 0.95, 2018/05/10