

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses **tenx** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **tenx** and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that **tenx** was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
V0.90	Apr, 2016	New release.
V0.91	Jun, 2016	 P.96 Add to Ordering Information P.98 Add to LQFP-64 (7×7mm) Package Dimension
V0.92	Mar, 2017	 Add LED DC mode description (p8, p61, p59, p83, p91) modify Flash endurance (p18) VCON limitation in ICE mode (p24) other details
V0.93	Jun, 2018	Modify min. VDD voltage
V0.94	Jun, 2020	 Modify min. VDD voltage Modify temperature range Other details
V0.95	Jul, 2021	 Modify VCON & VSET description Modify VDD description Other details

CONTENTS

AM	ENDMENT HISTORY	2
TM	2 F22xx FAMILY	5
GEI	ERAL DESCRIPTION	6
BLO	CK DIAGRAM	6
FEA	TURES	7
PIN	ASSIGNMENT	
PIN	DESCRIPTION	
PIN	SUMMERY	
FUN	CTIONAL DESCRIPTION	
	CPU Core	
	1.1 Accumulator (ACC)	
	1.2 B Register (B)	
	1.3 Stack Pointer (SP)	
	1.4 Dual Data Pointer (DPTRs)	
	1.5 Program Status Word (PSW)	
2.	Memory	
	2.1 Program Memory	
	2.2 Data Memory	
3.	Power Management	23
4.	Reset	
	4.1 Power on Reset	
	4.2 External Pin Reset	
	4.3 Software Reset	
	4.4 Watch Dog Timer Reset	
	4.5 Low Voltage Reset #1 (LVR1)	
	4.6 Low Voltage Reset #2 (LVR2)	
5.	Clock Circuitry & Operation Mode	
	5.1 System Clock	
	5.2 Operation Modes	
6.	Interrupt & Wake-up	
	6.1 Interrupt Enable and Priority Control	
	6.2 Pin Interrupt	
	6.3 Idle mode Wake up and Interrupt	
	6.4 Stop mode Wake up and Interrupt	
7.	I/O Ports	
	7.1 Port1 & Port3	

7.2 P2.7	
7.3 P2.6~P2.0 & Port0	
8. Timers	47
8.1 Timer0 / Timer1 / Timer2	
8.2 Timer3	51
9. UART	
10. Resistance to Frequency Converter (RFC)	
11. LCD / LED Driver	
12. PWM	64
13. Touch Key	65
14. Serial Peripheral Interface (SPI)	70
15. 6-bit SAR ADC	74
16. In Circuit Emulation (ICE) Mode	
SFR & CFGW MAP	76
SFR & CFGW DESCRIPTION	
INSTRUCTION SET	
ELECTRICAL CHARACTERISTICS	91
Absolute Maximum Ratings	91
DC Characteristics ($T_A=25$ °C)	91
BandGap Reference Voltage	
Clock Timing (T _A =25°C)	
V _{DD} Voltage Level	94
LVR1/LVR2/POR Level	95
PACKAGE INFORMATION	

TM52 F22xx FAMILY

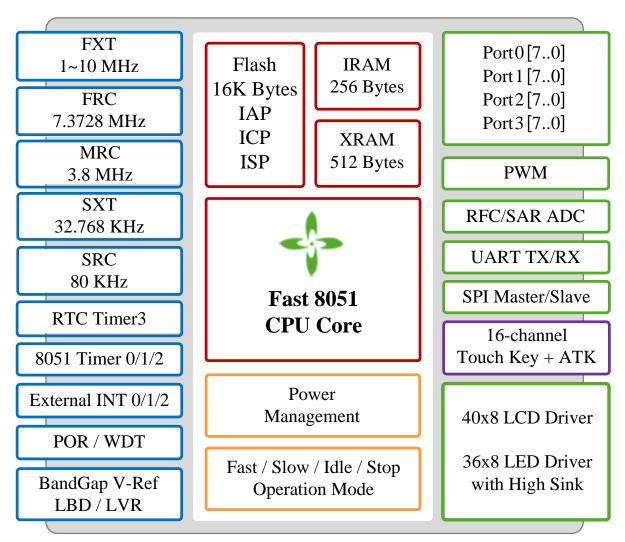
Common Feature

CPU	Flash Program memory	RAM bytes	Dual Clock	Operation Mode	Timer0 Timer1 Timer2	UART	Real-time Timer3	LBD	LVR
Fast 8051 (2T)	8K~32K with IAP, ISP, ICP	512 ~ 2304	SXT SRC FXT FRC	Fast Slow Idle Stop	8051 St	andard	0.5~61ppm Adjustable	2.4V ~ 4.2V	1.6V

Family Members Features

P/N	Flash	RAM bytes	IO Pin	RFC ADC	SAR ADC	Touch Key	LCD	LED	SPI	others
TM52-F2261	1617	768	20	2 1		14-ch	43 x 10 1.0~1.5V	30x6	Yes	
TM52-F2264	16K	/08	32	3-ch	_	_	adjBias	40mA hi-Sink	res	_
TM52-F2260	16K	1280	25	3-ch	_	_	36 x 4 1.0V bias	_	_	_
TM52-F2280B	8K	512	32	2 1	6bit	15-ch	23 x 8	10x4	Yes	
TM52-F2284B	лŏ	512	32	3-ch	7-ch	_	1.0~1.5V adjBias	40mA hi-Sink	res	_
TM52-F2268	16K	768	32	3-ch	6bit 3-ch	16-ch	40 x 8 1.0~1.5V adjBias	36 x 8 40mA hi-Sink	Yes	PWM

P/N	Operation			tt (V _{BAT} =3V) up & LVR (Ma	x. Systen	n Clock (Hz)	
P/IN	Voltage	TK Off LCD Off	TK Off LCD On	TK On LCD Off	TK On LCD On	SXT	SRC	FXT	FRC	
TM52-F2261	2.0~4.2V	0.8uA	1 4 4	1.3uA	1.9uA	32K			4M	
TM52-F2264	2.0~4.2 V	0.8UA	1.4uA	_	_	JZK	_	_	411/1	
TM52-F2260	2.0~4.2V	0.7uA	1.0uA	—	_	32K	_	_	4M	
TM52-F2280B	2.0~5.5V	1.2.4	2.4	1.7uA	2.8uA	2017	80K	8M	7 271	
TM52-F2284B	2.0~3.3 V	1.3uA	2.4uA	_	_	32K	AUG	01/1	7.37M	
TM52-F2268	2.0~5.5V	1.5uA	3uA	2.2uA	4uA	32K	80K	10M	7.37M	



GENERAL DESCRIPTION

TM52-F2268 is a version of a new, fast 8051 architecture for an 8-bit microcontroller single chip with an instruction set fully compatible with industry standard 8051, C language development platform, and retains most 8051 peripheral's functional block. Typically, the **TM52-F2268** executes instructions six times faster than the standard 8051 architecture.

The **TM52-F2268** provides improved performance, lower cost and fast time-to-market by integrating features on the chip, including 16K Bytes Flash program memory, 768 Bytes SRAM, Low Voltage Reset (LVR1/2), Low Battery Detector (LBD), dual clock power saving operation mode, SPI Interface, 8051 standard UART and Timer0/1/2, adjustable real time clock Timer3, LCD/LED driver, 16 channels Touch Key with ATK, 6-bit SAR ADC, 8-bit PWM, Resistance to Frequency Converter (RFC) and Watchdog Timer. Its high reliability and low power consumption feature can be widely applied in consumer, industry and home appliance products.

BLOCK DIAGRAM

TM52F2268

FEATURES

1. Standard 8051 Instruction set, fast machine cycle

• Executes instructions six times faster than the standard 8051.

2. 16K Bytes Flash Program Memory

- Support "In Circuit Programming" (ICP) or "In System Programming" (ISP) for the Flash code
- Byte Write "In Application Programming" (IAP) mode is convenient as Data EEPROM access
- Code Protection Capability

3. Total 768 Bytes SRAM (IRAM + XRAM)

- 256 Bytes IRAM in the 8051 internal data memory area
- 512 Bytes XRAM in the 8051 external data memory area (accessed by MOVX Instruction)

4. Six System Clock type Selections

- Fast clock from Fast Crystal (FXT, 1~10 MHz)
- Fast clock from Internal Fast RC (FRC, 7.3728 MHz $@V_{BAT} = 2.2V \sim 5.5V)$
- Fast clock from Internal Medium RC (MRC, 3.8MHz @V_{DD} = 3V, 1.4MHz @V_{DD} = 1.65V)
- Fast clock from External RC (RFC)
- Slow clock from Slow Crystal (SXT, 32768Hz)
- Slow clock from Internal Slow RC (SRC, 80KHz $@V_{DD} = 3V$, 45KHz $@V_{DD} = 1.65V$)
- System Clock can be divided by 1/2/4/8/16 option
- System Clock output pin (TCO) for EL / IR / Buzzer application

5. 8051 Standard Timer – Timer0 / 1 / 2

- 16-bit Timer0, also supports RFC or SXT/16 clock input counting
- 16-bit Timer1, also supports SXT/16 clock input counting
- 16-bit Timer2, also supports SXT/16 clock input counting and T2O clock output

6. 23-bit Timer3 used for Real Time 32768Hz Crystal counting

- ± 0.5 ppm ~ 61 ppm interrupt rate adjustable
- MSB 8-bit overflow auto-reload
- 0.25 sec, 0.5 sec, 1.0 sec or overflow Interrupt

7. 16-Channel Touch Key

- 1~4 Key H/W Auto Scan Mode (ATK), Sensitivity Adjustable for each Key
- Interrupt / Wake-up CPU while Key event detected

8. 6-bit SAR ADC for low pin count key scan

- 9. Resistance to Frequency Converter (RFC)
 - RFC can be used for Temperature or Humidity sensor
 - RFC clock can be used as System clock source

10. 8051 Standard UART

• One Wire UART option can be used for ISP or other application

11. SPI Interface

- Master or Slave mode selectable
- Programmable transmit bit rate
- Serial clock phase and polarity options
- MSB-first or LSB-first selectable

12. 11-Sources, 4-level priority Interrupt

- Timer0 / Timer1 / Timer2 / Timer3 Interrupt
- INT0 / INT1 Falling-Edge / Low-Level Interrupt
- Port1 Pin Change Interrupt
- UART TX/RX Interrupt
- P2.7 (INT2) Interrupt
- Touch Key Interrupt
- SPI Interrupt

13. Pin Interrupt can Wake up CPU from Power-Down (Stop) mode

- P3.2 / P3.3 (INT0 / INT1) Interrupt & Wake-up
- P2.7 (INT2) Interrupt & Wake-up
- Each Port1 pin can be defined as Interrupt & Wake-up pin (by pin change)

14. Max. 32 Programmable I/O pins

- CMOS Output
- Pseudo-Open-Drain, or Open-Drain Output
- Schmitt Trigger Input
- Pin Pull-up can be Enabled or Disabled

15. LCD Controller / Driver

- 1/3 ~ 1/8 Duty
- 4 COM x 44 SEG ~ 8 COM x 40 SEG selectable
- 1/3 LCD Bias voltage, VL1 = VLCD/3, VL2 = VLCD*2/3, VL3 = VLCD
- Mode0: VLCD (VL3) = V_{BAT} *3/5 ~ V_{BAT} *5/5 (16 steps Brightness level)
- Mode3: VLCD (VL3) = V_{BAT} *1.06 ~ V_{BAT} *2 (16 steps Brightness level)
- Frame Rate: 40~90Hz

16. LED Controller / Driver

- 1/1 ~ 1/8 Duty (all SEG pins support DC level output at 1/1 duty)
- Max. 8 COM x 36 SEG
- 40 mA High Sink COM, Active Low

17. BandGap Voltage Reference for Low Battery Detection (LBD)

• Detect V_{BAT} voltage level from 2.4V to 4.1V

18. Built-in tiny current LDO Regulator for chip internal power supply (V_{DD})

- V_{DD} voltage level can be set to $0.55*V_{BAT} \sim 0.6*V_{BAT}$ for power saving
- Must set $V_{DD} > 1.65V$

19. Watch Dog Timer based on System Clock

- Running in Fast / Slow Mode, Stop counting in Idle / Stop Mode
- 32K or 64K counts overflow Reset

20. 8-bit PWM for IR / Buzzer application

- Adjustable Period & Clock Pre-scale
- Independent Clock source

21. Six types Reset

- Power on Reset
- Selectable External Pin Reset
- Selectable Watch Dog Reset
- Software Command Reset
- Battery Low Voltage Reset #1 (LVR1, when $V_{BAT} < 1.6V$)
- Selectable Battery Low Voltage Reset #2 (LVR2, when $V_{BAT} < 2.4V \sim 4.1V$)

22. Four types Operation Mode

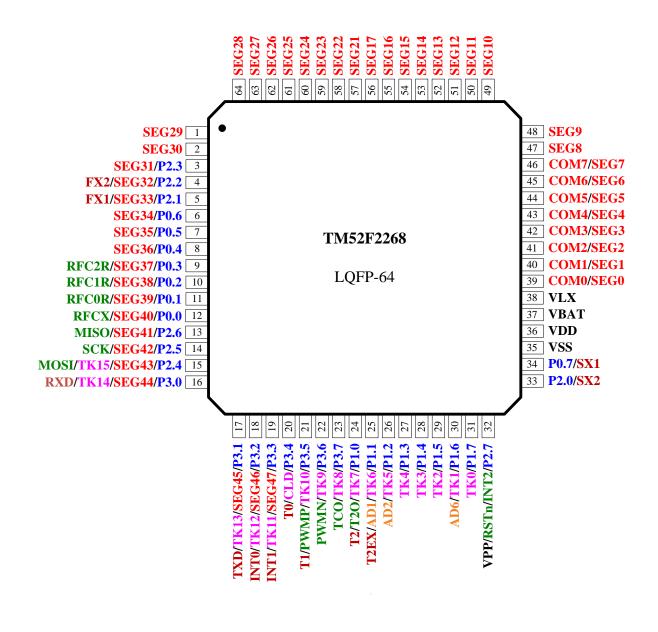
• Fast / Slow / Idle / Stop Mode

23. On-chip Debug / ICE interface

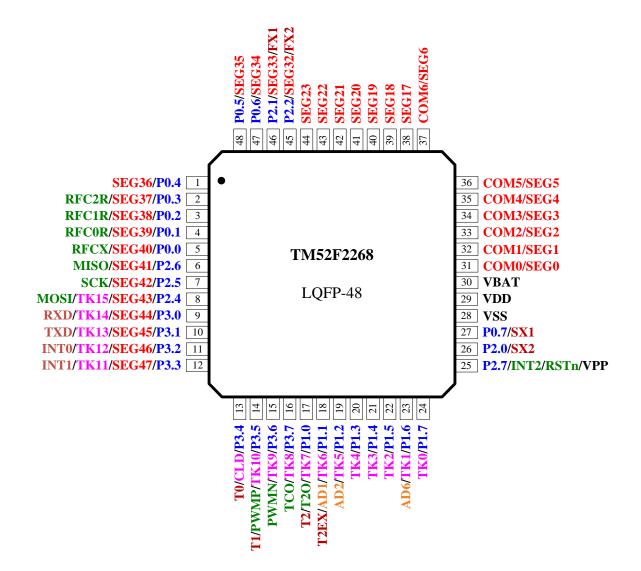
• Use P1.2 / P1.3 pin, share with ICP programming pin

24. Operating Voltage and Current

- $V_{BAT} = 2.0V \sim 5.5V$
- 1.6uA SXT/SRC and System Clock Current $@V_{DD} = 1.65V$
- Total 3uA Idle mode Current with LCD on $@V_{BAT} = 3V, V_{DD} = 1.65V$
- Total 4uA Idle mode Current with LCD on and ATK scan $@V_{BAT} = 3V, V_{DD} = 1.65V$


25. Operating Temperature Range

• $-25^{\circ}C \sim +85^{\circ}C$


26. 48/64 pin LQFP Package

PIN ASSIGNMENT

PIN DESCRIPTION

Name	In/Out	Pin Description
P1.0~P1.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software. These pin's level change can interrupt/wake up CPU from Idle/Stop mode.
P3.0~P3.2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or " pseudo open drain " output. Pull-up resistors are assignable by software.
P3.3~P3.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
P0.0~P0.7 P2.0~P2.6	I/O	Bit-programmable I/O port for Schmitt-trigger input or CMOS push-pull output. Pull- up resistors are assignable by software.
P2.7	I/O	Bit-programmable I/O port for Schmitt-trigger input or "open-drain" output. Pull-up resistor is fix enable.
INT0, INT1	Ι	External low level or falling edge Interrupt input, Idle/Stop mode wake up input
INT2	Ι	External falling edge Interrupt input, Idle / Stop mode wake up input
RXD	I/O	UART Mode0 transmit & receive data, Mode1/2/3 receive data
TXD	I/O	UART Mode0 transmit clock, Mode1/2/3 transmit data. In One Wire UART mode, this pin transmits and receives serial data.
MISO	I/O	SPI data input for Master mode, data output for Slave mode
MOSI	I/O	SPI data output for Master mode, data input for Slave mode
SCK	I/O	SPI clock output for Master or clock input for Slave mode
T0, T1, T2	Ι	Timer0, Timer1, Timer2 event count pin input
T2EX	Ι	Timer2 external trigger input
PWMP, PWMN	0	Positive and Negative PWM output
T2O	0	Timer2 overflow divided by 2/3/4 output
TCO	0	System Clock divided by 1/2/3/4 output
RFC0R~RFC2R	0	RFC resistor connection pin
RFCX	Ι	RFC clock input pin
SEG0~SEG2	0	LED segment output (for DC high/low voltage output)
SEG3~SEG43	0	LCD / LED segment output
SEG44~SEG47	0	LCD segment output
COM0~COM7	0	LCD / LED common output
VLX	_	External Voltage input for LCD Mode2; Add 0.1uF~1uF capacitor to VSS for LCD Mode3 pump circuitry; Otherwise, connect this pin to VBAT.
AD1~AD2, AD6	Ι	6 bit ADC channel input
TK0~TK15	Ι	Touch Key Input
CLD	I/O	Touch Key charge collection capacitor connection pin
RSTn	Ι	External active low reset input, Pull-up resistor is fixed enable
SX1, SX2	_	32768 Crystal / Resonator oscillator connection for System Clock (SXT)
FX1, FX2	_	1~10 MHz Crystal / Resonator oscillator connection for System clock (FXT)
VPP	Ι	Flash memory programming high voltage input
VDD	_	LDO Regulator output and internal power supply, add 1uF capacitor to VSS
VBAT, VSS	Р	Power input pin and ground, VBAT is the I/O pin power supply

Note: Digital I/O pins voltage swing from V_{SS} to $V_{BAT}\!.$

PIN SUMMERY

				After Re	set	Inp	out	(Dutpu	ıt		Alte	ernati	ve F	unction
LQFP-64	LQFP-48	Pin Name	Type	Function	State	Wake up	Ext. Interrupt	CMOS P.P.	P.O.D.	0.D.	LCD	LED	Touch Key	Timer Input	Others
3	_	SEG31/P2.3	I/O	LCD	DL			•			•	•			
4	45	FX2/SEG32/P2.2	I/O	LCD	DL			٠			٠	٠			FXT
5	46	FX1/SEG33/P2.1	I/O	LCD	DL			٠			٠	•			FXT
6	47	SEG34/P0.6	I/O	LCD	DL			٠			٠	٠			
7	48	SEG35/P0.5	I/O	LCD	DL			•			•	•			
8	1	SEG36/P0.4	I/O	LCD	DL			٠			•	•			
9	2	RFC2R/SEG37/P0.3	I/O	LCD	DL			•			•	•			RFC
10	3	RFC1R/SEG38/P0.2	I/O	LCD	DL			٠			٠	•			RFC
11	4	RFC0R/SEG39/P0.1	I/O	LCD	DL			•			•	•			RFC
12	5	RFCX/SEG40/P0.0	I/O	LCD	DL			٠			٠	•		•	RFC
13	6	MISO/SEG41/P2.6	I/O	LCD	DL			•			•	•			SPI
14	7	SCK/SEG42/P2.5	I/O	LCD	DL			٠			•	•			SPI
15	8	MOSI/TK15/SEG43/P2.4	I/O	LCD	DL			•			•	•	•		SPI
16	9	RXD/TK14/SEG44/P3.0	I/O	LCD	DL			٠	•		٠		٠		UART
17	10	TXD/TK13/SEG45/P3.1	I/O	LCD	DL			•	•		•		•		UART
18	11	INT0/TK12/SEG46/P3.2	I/O	LCD	DL	٠	٠	•	٠		•		٠		
19	12	INT1/TK11/SEG47/P3.3	I/O	LCD	DL	•	•	•		•	•		•		
20	13	T0/CLD/P3.4	I/O	I/O Input	PU			٠		•			•	•	
21	14	T1/PWMP/TK10/P3.5	I/O	I/O Input	PU			•		•			•	•	PWM
22	15	PWMN/TK9/P3.6	I/O	I/O Input	PU			•		•			٠		PWM
23	16	TCO/TK8/P3.7	I/O	I/O Input	PU			•		•			•		Clock out
24	17	T2/T2O/TK7/P1.0	I/O	I/O Input	PU	٠	٠	•		•			٠	•	Clock out
25	18	T2EX/AD1/TK6/P1.1	I/O	I/O Input	PU	•	•	•		•			•	•	ADC
26	19	AD2/TK5/P1.2	I/O	I/O Input	PU	•	•	•		٠			•		ADC
27	20	TK4/P1.3	I/O	I/O Input	PU	٠	•	•		٠			٠		
28	21	TK3/P1.4	I/O	I/O Input	PU	٠	٠	•		•			٠		
29	22	TK2/P1.5	I/O	I/O Input	PU	٠	•	•		•			٠		
30	23	AD6/TK1/P1.6	I/O	I/O Input	PU	٠	٠	•		•			٠		
31	24	TK0/P1.7	I/O	I/O Input	PU	٠	٠	•		•			٠		
32	25	VPP/RSTn/INT2/P2.7	I/O	I/O Input	PU	•	•			•					Reset/VPP
33	26	SX2/P2.0	I/O	I/O Input	PU			•							SXT
34	27	SX1/P0.7	I/O	I/O Input	PU			•							SXT

				After Re	eset	Inp	out	0	Jutpu	ıt		Alte	rnati	ve F	unction
LQFP-64	LQFP-48	Pin Name	Type	Function	State	Wake up	Ext. Interrupt	CMOS P.P.	P.O.D.	0.D.	LCD	LED	Touch Key	Timer Input	Others
35	28	VSS	Р	V _{ss}	_										
36	29	VDD	-	V _{DD}	_										
37	30	VBAT	Р	V_{BAT}	—										
38	30	VLX	-	_	_										
39	31	SEG0/COM0	0	LCD	DL						•	•			
40	32	SEG1/COM1	0	LCD	DL						•	•			
41	33	SEG2/COM2	0	LCD	DL						•	•			
42	34	SEG3/COM3	0	LCD	DL						٠	•			
43	35	SEG4/COM4	0	LCD	DL						•	•			
44	36	SEG5/COM5	0	LCD	DL						٠	•			
45	37	SEG6/COM6	0	LCD	DL						•	•			
46	-	SEG7/COM7	0	LCD	DL						٠	•			
47 ~ 55	_	SEG8~SEG16	0	LCD	DL						٠	•			
56	38	SEG17	0	LCD	DL						۲	•			
-	39 ~ 41	SEG18~SEG20	0	LCD	DL						•	•			
57 ~ 59	42 ~ 44	SEG21~SEG23	0	LCD	DL						•	•			
60 ~ 64	_	SEG24~SEG28	0	LCD	DL						•	•			
1	-	SEG29	0	LCD	DL						•	•			
2	—	SEG30	0	LCD	DL						•	•			

Symbol:

P.P. = CMOS Push-Pull Output

O.D. = Open Drain

P.O.D. = Pseudo Open Drain

PU = Pull up

DL = Drive Low

FUNCTIONAL DESCRIPTION

1. CPU Core

In the 8051 architecture, the C programming language is used as a development platform. The TM52 device features a fast 8051 core in a highly integrated microcontroller, allowing designers to be able to achieve improved performance compared to a classic 8051 device. TM52 series microcontrollers provide a complete binary code with standard 8051 instruction set compatibility, ensuring an easy migration path to accelerate the development speed of system products. The CPU core includes an ALU, a program status word (PSW), an accumulator (ACC), a B register, a stack point (SP), DPTRs, a program counter, an instruction decoder, and core special function registers (SFRs).

1.1 Accumulator (ACC)

This register provides one of the operands for most ALU operations. Accumulators are generally referred to as A or Acc and sometimes referred to as Register A. In this document, the accumulator is represented as "A" or "ACC," including the instruction table. The accumulator, as its name suggests, is used as a general register to accumulate the intermediate results of a large number of instructions. The accumulator is the most important and frequently used register to complete arithmetic and logical operations. It holds the intermediate results of most arithmetic and logic operations and assists in data transportation.

SFR E0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E0h.7~0 ACC: Accumulator

1.2 B Register (B)

The "B" register is very similar to the ACC and may hold a 1 Byte value. This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. The B register is only used by two 8051 instructions, MUL and DIV. When A is to be multiplied or divided by another number, the other number is stored in B. For MUL and DIV instructions, it is necessary that the two operands be in A and B.

SFR F0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0h.7~0 **B:** B register

1.3 Stack Pointer (SP)

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into memory during LCALL and ACALL instructions and is used to retrieve the program counter from memory in RET and RETI instructions. The stack may also be saved or loaded using PUSH and POP instructions, which also increment and decrement the Stack Pointer. The Stack Pointer points to the top location of the stack.

SP SP R/W R/W	SFR 81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	SP				S	Р			
	R/W				R/	W			
Reset 0 0 0 0 0 1 1	Reset	0	0	0	0	0	1	1	1

81h.7~0 SP: Stack Point

1.4 Dual Data Pointer (DPTRs)

TM52 device has two DPTRs, which share the same SFR address. Each DPTR is 16 bits in size and consists of two registers: the DPTR high byte (DPH) and the DPTR low byte (DPL). The DPTR is used for 16-bit-address external memory accesses, for offset code byte fetches, and for offset program jumps. Setting the DPSEL control bit allows the program code to switch between the two physical DPTRs.

SFR 82h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPL		DPL						
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

82h.7~0 **DPL:** Data Point low byte

SFR 83h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPH		DPH						
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

83h.7~0 **DPH:** Data Point high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	_			TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W	_			R/W	R/W	R/W	R/W	R/W
Reset	_			0	0	0	0	0

F8h.0 **DPSEL:** Active DPTR Select

1.5 Program Status Word (PSW)

This register contains status information resulting from CPU and ALU operations. The instructions that affect the PSW are listed below.

Instruction		Flag	
Instruction	С	OV	AC
ADD	Х	Х	Х
ADDC	Х	Х	Х
SUBB	Х	Х	Х
MUL	0	Х	
DIV	0	Х	
DA	Х		
RRC	Х		
RLC	Х		
SETB C	1		

Instruction		Flag	
Instruction	С	OV	AC
CLR C	0		
CPL C	Х		
ANL C, bit	Х		
ANL C, /bit	Х		
ORL C, bit	Х		
ORL C, /bit	Х		
MOV C, bit	Х		
CJNE	Х		

A "0" means the flag is always cleared, a "1" means the flag is always set and an "X" means that the state of the flag depends on the result of the operation.

SFR D0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

D0h.7 **CY:** ALU carry flag

D0h.6 AC: ALU auxiliary carry flag

D0h.5 **F0:** General purpose user-definable flag

- D0h.4~3 **RS1, RS0:** The contents of (RS1, RS0) enable the working register banks as:
 - 00: Bank 0 (00h~07h)
 - 01: Bank 1 (08h~0Fh)
 - 10: Bank 2 (10h~17h)
 - 11: Bank 3 (18h~1Fh)
- D0h.2 **OV:** ALU overflow flag
- D0h.1 **F1:** General purpose user-definable flag
- D0h.0 **P:** Parity flag. Set/cleared by hardware each instruction cycle to indicate odd/even number of "one" bits in the accumulator.

	PSW						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R/W							
CY	AC	FO	RS1	RS0	OV	F1	Р

/	\backslash					Reg	gister	r Bar	ık 3			11
DC1		Doul	1 18h	R0	R1	R2	R3	R4	R5	R6	R7	
RS1	RS0	Bank	\mathbf{Y}			Reg	gister	r Baı	ık 2			1.
1	1	3	10h	R0	R1	R2	R3	R4	R5	R6	R7	1'
1	0	2				Reg	gister	r Bar	ık 1			1
0	1	1	08h	R0	R1	R2	R3	R4	R5	R6	R7	0]
0	0	0		10	KI		gister		_	110	10,	
							1					0
				R0	R1	R2	R3	R4	R5	R6	R7	
			00h									-

2. Memory

2.1 Program Memory

The **F2268** has a 16K Bytes Flash program memory, which can support In Circuit Programming (ICP), In Application Programming (IAP) and In System Programming (ISP) function modes. The Flash write endurance is at least 50K cycles. The program memory address continuous space (0000h~3FFFh) is partitioned to several sectors for device operation.

2.1.1 Program Memory Functional Partition

The last 4 bytes (3FFCh~3FFFh) of program memory is defined as chip Configuration Word (CFGW). Two of them are loaded into the device control registers upon power on reset (POR). The address space 3F00h~3FFBh is the IAP free area, while the 0000h~005Fh is occupied by Reset/Interrupt vectors as standard 8051 definition. In the in-circuit emulation (ICE) mode, user also needs to reserve the address space 1D00h~1FFFh for ICE System communication.

	16K Bytes program memory
0000h	
	Reset/Interrupt Vector
005Fh	
0060h	
	User Code area
1CFFh	
1D00h	
	ICE mode reserve area
1FFFh	
2000h	
	User Code area
3EFFh	
3F00h	
	IAP-Free area
3FFBh	
3FFCh	CFGW
3FFFh	Crow

2.1.2 Flash ICP Mode

The Flash memory can be programmed by the tenx proprietary writer (**TWR98/TWR99**), which needs at least four wires (VBAT, VSS, P1.2, and P1.3 pins) to connect to this chip. To shorten the programming time, it is recommended to connect Writer with an additional fifth wire, which is the VPP (P2.7) pin. If the user wants to program the Flash memory on the target circuit board (In Circuit Program, ICP), these pins must be reserved sufficient freedom to be connected to the Writer. More pins connected to Writer ensure more writing efficiency and speed.

Writer wire number	Pin connection
4-Wire	VBAT, VSS, P1.2, P1.3
5-Wire	VBAT, VSS, P1.2, P1.3, VPP
6-Wire	VBAT, VSS, P1.2, P1.3, VPP, P1.0

2.1.3 Flash IAP Mode

The **F2268** has "In Application Program" (IAP) capability, which allows software to read/write data from/to the Flash memory during CPU run time as conveniently as data EEPROM access. The IAP function is byte writable, meaning that the **F2268** does not need to erase one Flash page before write. The available IAP data space is 252 Bytes after chip reset, and can be re-defined by the "MVCLOCK" and "IAPALL" control register as shown below.

_	16K Bytes Flash Program memory	Flash memory	MVCLOCK	IAPALL	MOVC Accessible	MOVX (IAP) Accessible
0000h			1	Х	No	No
	MOVC-Lock area	0000h~01FFh	0	0	Yes	No
01FFh			0	1	Yes	Yes
0200h	IAP-All area	0200h 2EEEh	Х	0	Yes	No
3EFFh		0200h~3EFFh	Х	1	Yes	Yes
3F00h 3FFBh	IAP-Free area	3F00h~3FFBh	Х	Х	Yes	Yes
3FFCh		2EECh 2EEEh	Х	0	Yes	No
	CFGW area	3FFCh~3FFEh	Х	1	Yes	Yes
3FFFh		3FFFh	Х	Х	Yes	No

In IAP mode, the program Flash memory is separated into four sectors: MOVC-Lock area, IAP-All area, IAP-Free area, and CFGW area. These four sectors are regulated differently.

In the **MOVC-Lock area**, IAP read/write is limited by MVCLOCK bit, which can be set to control the accessibility of the MOVC and MOVX instructions to this area. The size of this area is 512 Bytes. The lock function is made to protect the main program code against unconsciously writing Flash memory in IAP mode. Locking or unlocking the function should be performed by the tenx TWR98/99 writing to the CFGW in Flash memory.

The **IAP-All area** is protected by the IAPALL register to prevent IAP mode from writing application data to the program area, resulting in a program code error that cannot be repaired. The size of this area is 15616 Bytes. Enabling IAPALL requires writing 65h to SFR SWCMD 97h to set the IAPALL control flag. Then, software can use MOVX instructions to write application data to flash memory from 0200h to 3EFFh. If user wants to disable IAPALL function, user can write other values to SFR SWCMD 97h to clear the IAPALL control flag. User must be careful not to overwrite program code which is already resided on the same Flash memory area.

The **IAP-Free area** has no control bit to protect. It can be used to reliably store system application data that needs to be programmed once or periodically during system operation. Other areas of Flash memory can be used to store data, but this area is usually the best. The size of this area is 252 Bytes, equivalent to an EEPROM, and Flash memory can provide byte access to read and write commands. In the past, storage of configuration data required an additional EEPROM or the other storage device. However, this functionality can now be provided by on-chip Flash, reducing the chip count of embedded applications. An external EEPROM or SRAM may not be needed.

The **CFGW area** has 4 data bytes (CFGWH, CFGWL and CFGWRx), which is located at the last 4 addresses of Flash memory. The CFGWH is not accessible to IAP, while the CFGWL and CFGWR can be read or written by IAP in case the IAPALL flag is set. CFGWL is copied to the SFR F7h after power on reset, software then take over CFGWL's control capability by modifying the SFR F7h. The CFGWL is defined as FRC adjustment register for **F2268**.

2.1.4 IAP Mode Access Routines

Flash IAP Write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address (0~3FFEh), and the ACC contains the data being written. The **F2268** accepts IAP write command only when IAPWE=1. Flash IAP writing requires approximately 200~500uS. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers, LCD, and others) continue running during the writing time. The software must handle the pending interrupts after an IAP write. Flash IAP writing needs slower SYSCLK frequency as well as higher V_{DD} voltage. User must make a condition of $2.8V < V_{DD} < 3.6V$ for IAP write.

Because the Program memory and the IAP data space share the same entity, a **Flash IAP Read** can be performed by the "MOVX A, @DPTR" or "MOVC" instruction as long as the target address points to the 0~3FFEh area. A Flash IAP read does not require extra CPU wait time.

	ample code	
; need 2	$2.8V < V_{DD} < 3.6V$	
MOV	DPTR, #3F00h	; DPTR = 3F00h = target IAP address
MOV	A, #5Ah	; $A = 5Ah = target IAP$ write data
MOV	C9h, #47h	; IAPWE=1
MOVX	@DPTR, A	; Flash[3F00h] = 5Ah, after IAP write
		; 200µs~500µs H/W writing time, CPU wait
MOV	C9h, #00h	; IAPWE=0 immediately after IAP write
CLR	А	; A = 0
MOVX	A, @DPTR	; $A = 5Ah$
CLR	A	; $A = 0$
MOVC	A, @A+DPTR	; $A = 5Ah$

Flash 3FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE	MVCLOCK	WDTE	_	_	_	—

3FFFh.5 MVCLOCK: If 1, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SWCMD		IAPALL / SWRST									
R/W		W									
Reset		_									
								•			

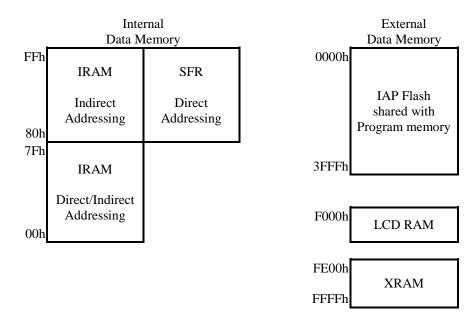
97h.7~0 **IAPALL (W):** Write 65h to set IAPALL control flag; Write other value to clear IAPALL flag. It is recommended to clear it immediately after IAP access.

97h.0 **IAPALL (R):** Flag indicates Flash memory sectors can be accessed by IAP or not. This bit combines with MVCLOCK to define the accessible IAP area.


SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IAPWE		IAPWE									
R/W	R/W		W								
Reset	0		_								

C9h.7~0 **IAPWE (W):** Write 47h to set IAPWE control flag; Write other value to clear IAPWE flag. It is recommended to clear it immediately after IAP write.

C9h.7 **IAPWE (R):** Flag indicates Flash memory can be written by IAP or not, 1 = IAP Write enable.


2.1.5 Flash ISP Mode

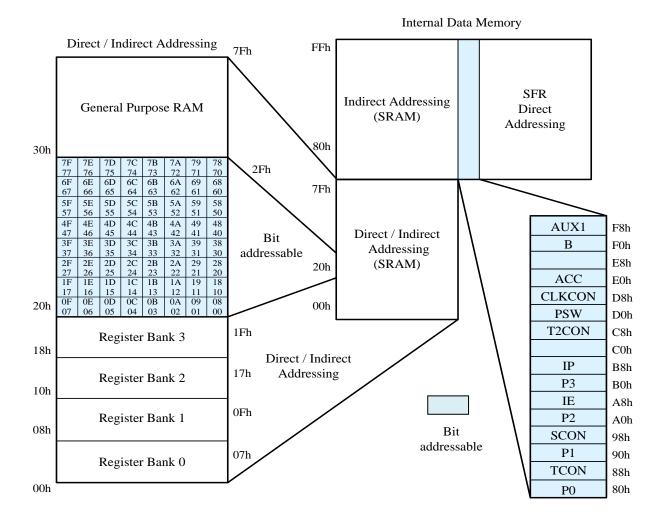
The "In System Programming" (ISP) usage is similar to IAP, except the purpose is to refresh the Program code. User can use UART/SPI or other method to get new Program code from external host, then writes code as the same way as IAP. ISP operation is complicated; basically it needs to assign a Boot code area to the Flash which does not change during the ISP process.

2.2 Data Memory

As the standard 8051, the **F2268** has both Internal and External Data Memory space. The Internal Data Memory space consists of 256 Bytes IRAM and 76 SFRs, which are accessible through a rich instruction set. The External Data Memory space consists of 512 Bytes XRAM, LCDRAM and IAP Flash, which can be only accessed by MOVX instruction.

2.2.1 IRAM

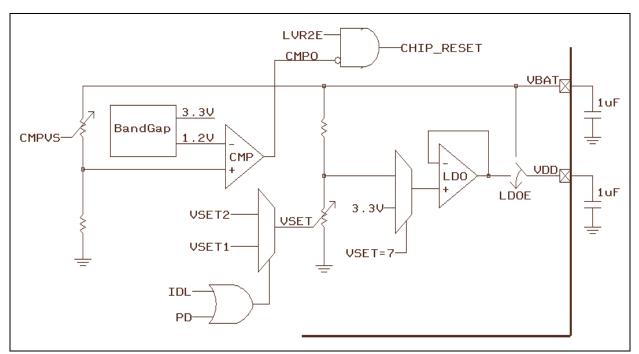
IRAM is located in the 8051 internal data memory space. The whole 256 Bytes IRAM are accessible using indirect addressing but only the lower 128 Bytes are accessible using direct addressing. There are four directly addressable register banks (switching by PSW), which occupy IRAM space from 00h to 1Fh. The address 20h to 2Fh 16 Bytes IRAM space is bit-addressable. IRAM can be used as scratch pad registers or program stack.


2.2.2 XRAM

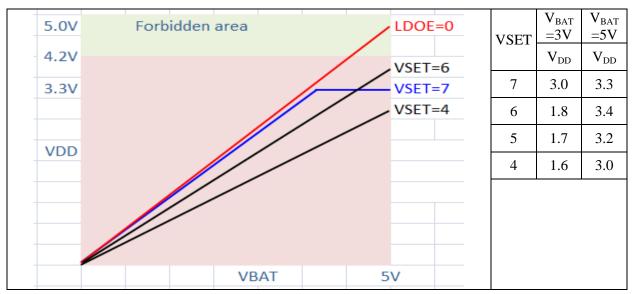
XRAM is located in the 8051 external data memory space (address from FE00h to FFFFh). The 512 Bytes XRAM can be only accessed by "MOVX" instruction.

2.2.3 SFRs

All peripheral functional modules such as I/O ports, Timers and UART operations for the chip are accessed via Special Function Registers (SFRs). These registers occupy upper 128 Bytes of direct Data Memory space locations in the range 80h to FFh. There are 14 bit-addressable SFRs (which means that eight individual bits inside a single byte are addressable), such as ACC, B register, PSW, TCON, SCON, and others. The remaining SFRs are only byte addressable. SFRs provide control and data exchange with the resources and peripherals of the **F2268**. The TM52 series of microcontrollers provides complete binary code with standard 8051 instruction set compatibility. Beside the standard 8051 SFRs, the **F2268** implements additional SFRs used to configure and access subsystems such as the SPI/LCD, which are unique to the **F2268**.



_	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
F8h	AUX1							
F0h	В							FRCF
E8h								
E0h	ACC							
D8h	CLKCON							
D0h	PSW		ATKLBH	ATKUBH	ATK0UBL	ATK1UBL	ATK2UBL	ATK3UBL
C8h	T2CON	IAPWE	RCP2L	RCP2H	TL2	TH2		
C0h			BGADCS	BGADCD	ATK0LBL	ATK1LBL	ATK2LBL	ATK3LBL
B8h	IP	IPH	IP1	IP1H	SPCON	SPSTA	SPDAT	
B0h	P3	LCON	LCON2	TM3SEC	TM3DL	TM3DH	TM3RLD	TM3ADJ
A8h	IE	INTE1		ATKDT	TKDL	TKCON	TKCON2	RFCON
A0h	P2		P1MODL	P1MODH	P3MODL	P3MODH	TOCON	VCON
98h	SCON	SBUF	PWMPRD	PWMDTY				
90h	P1	POOE	PINMODE	P2OE	OPTION	INTFLG	P1WKUP	SWCMD
88h	TCON	TMOD	TL0	TL1	TH0	TH1		
80h	P0	SP	DPL	DPH				PCON



3. Power Management

VBAT pin is the power supply for this chip. It provides voltage source to the built-in tiny current LDO Regulator for chip internal operation. The VDD pin is the LDO output, which needs an external 1uF capacitor connection to VSS for voltage level stability. If LDOE=0, the LDO is disable and the VDD is shorted to VBAT. If LDOE=1, the LDO is enable and the V_{DD} voltage level is defined by VSET1/2 SFR. When VSET1/2=4~6, $V_{DD}=V_{BAT}*16/30~V_{BAT}*18/30$ and the LDO module only consume 0.5uA. When VSET1/2=7, $V_{DD}=V_{BG}*2.75=1.2V*2.75=3.3V$ and the Bandgap module consumes 15uA. The lower V_{DD} voltage level causes lower chip current consumption, but user must also consider the System clock rate. Higher clock rate requires higher V_{DD} voltage level. User must keep $1.65V < V_{DD} < 4.0V$ for the device's proper operation. In IAP write mode, user also needs to set $V_{DD} > 2.8V$

LDO Regulator & Comparator

V_{BAT} to V_{DD} selection table

The 1.2V BandGap Voltage Reference module also support for Low Battery Detection (LBD) and LVR2. The Battery voltage is divided by resistor to a certain level then compare to the BandGap voltage. User can refer to the V_{BAT} voltage level for setting the V_{DD} level by VSET1 or VSET2 SFR. The BandGap and Comparator consume un-neglect current, so user should not use them too often. Since V_{BAT} voltage level changes very slowly, user can detect it once an hour or once a day to reduce current consumption.

The CMPO is the LBD/LVR2 basis. If CMPO=1, means the V_{BAT} is higher than a particular voltage. In order to compensate the Bandgap voltage (V_{BG}) error, tenx can write the CFGWR1 with pre-defined data for S/W look-up table. If CFGWR1=A1h~ADh as table below, Bandgap is measured and the LBD/LVR2 is more accurate.

CFGWR1		CMPVS														
(3FFCh)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Alh	-							2.88								
A4h	-	2.27	2.38	2.48	2.59	2.70	2.81	2.92	3.02	3.23	3.44	3.65	3.87			
A7h	-	2.30	2.41	2.52	2.63	2.74	2.85	2.96	3.07	3.28	3.49	3.71	3.94	4.16	_	_
AAh	-							3.00								
ADh	-							3.05								
Others		Chip's Bandgap not measured, LBD/LVR2 approximates CFGWR1=A7h														

Min. V_{BAT} for CMPO=1 (LBD/LVR2 basis)

Flash 3FFCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWR1				LBD	ADJ			

3FFCh.7~0 LBDADJ: LBD/LVR2 measured result in chip manufacturing. Definition as table above.

SFR A7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
VCON	_	LDOE		VSET2		VSET1			
R/W	_	R/W		R/W			R/W		
Reset	-	1	1	1	1	1	1	1	

A7h.6 **LDOE:** Chip internal LDO Regulator enable control 0: LDO disable, $V_{DD} = V_{BAT}$ 1: LDO enable, $V_{DD} = LDO$ Regulator output A7h.5~3 **VSET2:** V_{DD} voltage setting in Fast/Slow mode while LDOE=1.

Oxx: Invalid

- 100: $V_{DD} = V_{BAT} * 16/30$ in Fast/Slow mode
- 101: $V_{DD} = V_{BAT} * 17/30$ in Fast/Slow mode
- 110: $V_{DD} = V_{BAT}$ *18/30 in Fast/Slow mode
- 111: $V_{DD} = V_{BG}^* 2.75 = 1.2V^* 2.75 = 3.3V$ in Fast/Slow mode
- A7h.2~0 **VSET1:** V_{DD} voltage setting in Idle/Stop mode while LDOE=1. 0xx: Invalid
 - 100: $V_{DD} = V_{BAT}*16/30$ in Idle/Stop mode
 - 101: $V_{DD} = V_{BAT} * 17/30$ in Idle/Stop mode
 - 110: $V_{DD} = V_{BAT}*18/30$ in Idle/Stop mode
 - 111: $V_{DD} = V_{BG}^*2.75 = 1.2V^*2.75 = 3.3V$ in Idle/Stop mode

Note: User must set $V_{DD} > 1.65V @25^{\circ}C$; set $V_{DD} > 1.6V @-20^{\circ}C$ *Note:* the VCON is stuck at 0x7F(reset default state) in ICE mode.

SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
BGADCS	LVR2E		ADCHS		CMPVS				
R/W	R/W		R/W			R/	W		
Reset	0	0	0	0	0	0	0	0	

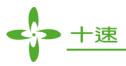
C2h.3~0 **CMPVS:** Select V_{BAT} resistor divider for Comparator input to compare with the 1.2V Bandgap reference voltage. If LVR2E=1, the Low Voltage Reset #2 is triggered when V_{BAT} resistor divider is lower than 1.2V (CMPO=0).

0000: Comparator Disable

0001: the Comparator input is V_{BAT} *12/24, LBD/LVR2=2.30V 0010: the Comparator input is V_{BAT} *12/25, LBD/LVR2=2.41V 0011: the Comparator input is V_{BAT} *12/26, LBD/LVR2=2.52V 0100: the Comparator input is V_{BAT} *12/27, LBD/LVR2=2.63V 0101: the Comparator input is V_{BAT} *12/28, LBD/LVR2=2.74V 0110: the Comparator input is V_{BAT} *12/29, LBD/LVR2=2.85V 0111: the Comparator input is V_{BAT} *12/30, LBD/LVR2=2.96V 1000: the Comparator input is V_{BAT} *12/31, LBD/LVR2=3.07V 1001: the Comparator input is V_{BAT} *12/33, LBD/LVR2=3.28V 1010: the Comparator input is V_{BAT} *12/35, LBD/LVR2=3.28V 1010: the Comparator input is V_{BAT} *12/37, LBD/LVR2=3.49V 1011: the Comparator input is V_{BAT} *12/37, LBD/LVR2=3.94V 1100: the Comparator input is V_{BAT} *12/39, LBD/LVR2=3.94V 1101: the Comparator input is V_{BAT} *12/31, LBD/LVR2=3.94V 1101: the Comparator input is V_{BAT} *12/31, LBD/LVR2=3.94V

SFR C3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
BGADCD	CMPO	_		ADCDT							
R/W	R	_		R							
Reset	-	_	_	_	_	_	_	—			

C3h.7 **CMPO:** Compare result of BandGap voltage and V_{BAT} voltage divider. CMPO=1 means the V_{BAT} divider voltage is higher. If LVR2E=1, the CMPO=0 can trigger LVR2.


SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXTGAIN		STPPCK	PWRFLT	UART1W	WDTPSC	TM3	SPSC
R/W	R/W		R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	0	0	0	0	1

94h.4 **PWRFLT:** Set 1 to enhance the chip's power noise immunity

Note: If System Clock is FRC/FXT, the VCON setting should follow the rule below:

3V Mode: LDOE=0, VSET=4~6. ($V_{DD}=V_{BAT}$).

5V Mode: LDOE=1, VSET=7. ($V_{DD}=V_{BAT}$ when $V_{BAT}<3.3V$, $V_{DD}=3.3V$ when $V_{BAT}>3.3V$)

4. Reset

The **F2268** has six types of reset methods. The CFGW controls the Reset functionality. The SFRs are returned to their default value after Reset.

4.1 Power on Reset

After Power on Reset, the device stays on Reset state for 20 ms as chip warm up time, then downloads the CFGW register from Flash's last two bytes (Other Reset will not reload the CFGW). The Power on Reset needs both V_{BAT} and V_{DD} voltage first discharge to near V_{SS} level, then rise beyond 1.8V.

4.2 External Pin Reset

External Pin Reset is active low. The RSTn pin needs to keep at least 2 SRC clock cycle long to be sampled by the chip. Pin Reset can be disabled or enabled by CFGW.

4.3 Software Reset

Software Reset is activated by writing the SFR 97h with data 56h.

4.4 Watch Dog Timer Reset

WDT overflow Reset is disabled or enable by CFGW. The WDT uses SYSCLK as its counting time base. It runs in Fast / Slow mode and stops in Idle / Stop mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit.

4.5 Low Voltage Reset #1 (LVR1)

LVR1 is always enabled. LVR1 resets the chip when $V_{BAT} < 1.6V$. LVR1 consumes very small current, typically 0.1uA @V_{BAT}=3V. It is designed to prevent the chip's abnormal function during power on-off.

4.6 Low Voltage Reset #2 (LVR2)

LVR2 is disabled or enable by LVR2E SFR bit. LVR2 is generated by the Bandgap Comparator module. When the V_{BAT} resister divider voltage is lower than the 1.2V Bandgap reference voltage (CMPO=0), the LVR2 occurs. F/W must setup the CMPVS SFR before set LVR2E=1 to prevent the LVR2 triggered during Bandgap unstable. LVR2's trigger level can be selected as V_{BAT} =2.4V~4.1V by the CMPVS SFR. Enable the LVR2 function consumes 15uA @V_{BAT}=3V.

Note: also refer to AP-TM52XXXX_02S for LVR2 setting information

System Clock frequency	10MHz	8MHz	6MHz	4MHz
Recommended LVR2 level	LVR2=3.3V	LVR2=2.9V	LVR2=2.6V	LVR2=2.4V

LVR2 setting table

Flash 3FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE	MVCLOCK	WDTE	-	_	_	—

3FFFh.6 **XRSTE:** Pin Reset enable, 1=enable.

3FFFh.4 WDTE: WDT Reset enable, 1=enable.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SWCMD		IAPALL / SWRST								
R/W		W								
Reset				_				0		

97h.7~0 SWRST (W): Write 56h to generate S/W Reset.

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	_			TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W				R/W	R/W	R/W	R/W	R/W
Reset	_			0	0	0	0	0

F8h.3 **CLRWDT:** Set to 1 to clear Watch Dog Timer.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXTO	SXTGAIN		PWRFLT	UART1W	WDTPSC	TM3PSC	
R/W	R/W		R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	0	0	0	0	1

94h.2 **WDTPSC:** WDT prescaler.

0: WDT overflow at 65536 System clock count

1: WDT overflow at 32768 System clock count

SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BGADCS	LVR2E		ADCHS			CM	PVS	
R/W	R/W		R/W			R/	W	
Reset	0	0	0	0	0	0	0	0

C2h.7 LVR2E: Low Voltage Reset #2 enable, 1=enable. This bit must be set to 1 after CMPVS setting done and the Bandgap voltage stable.

C2h.3~0 **CMPVS:** Select V_{BAT} resistor divider for Comparator input to compare with the 1.2V Bandgap reference voltage. If LVR2E=1, the Low Voltage Reset #2 is triggered when V_{BAT} resistor divider is lower than 1.2V (CMPO=0).

0000: Comparator Disable

0001: the Comparator input is V_{BAT} *12/24, LBD/LVR2=2.30V

0010: the Comparator input is V_{BAT} *12/25, LBD/LVR2=2.41V 0011: the Comparator input is V_{BAT} *12/26, LBD/LVR2=2.52V 0100: the Comparator input is V_{BAT} *12/27, LBD/LVR2=2.63V 0101: the Comparator input is V_{BAT} *12/28, LBD/LVR2=2.74V 0110: the Comparator input is V_{BAT} *12/29, LBD/LVR2=2.85V 0111: the Comparator input is V_{BAT} *12/30, LBD/LVR2=2.96V 1000: the Comparator input is V_{BAT} *12/31, LBD/LVR2=3.07V 1001: the Comparator input is V_{BAT} *12/33, LBD/LVR2=3.28V 1010: the Comparator input is V_{BAT} *12/35, LBD/LVR2=3.28V 1011: the Comparator input is V_{BAT} *12/37, LBD/LVR2=3.49V 1011: the Comparator input is V_{BAT} *12/37, LBD/LVR2=3.71V 1100: the Comparator input is V_{BAT} *12/37, LBD/LVR2=3.94V 1101: the Comparator input is V_{BAT} *12/41, LBD/LVR2=3.94V 1101: the Comparator input is V_{BAT} *12/41, LBD/LVR2=4.16V 111x: not defined

DS-TM52F2268_E

5. Clock Circuitry & Operation Mode

5.1 System Clock

The **F2268** is designed with dual-clock system. During runtime, user can directly switch the System clock from fast to slow or from slow to fast. It also can directly select a clock divider of 1, 2, 4, 8 or 16. The Fast clock consists of FRC, FXT, MRC and RFC. The Slow clock can be selected as SXT or SRC. Fast mode and Slow mode are defined as the CPU running at Fast and Slow clock speeds. The six System Clock sources are list below.

FRC (Internal Fast RC, 7.3728 MHz @ $V_{BAT} = 2.2V \sim 5.5V$): FRC is the default Fast clock type. Its frequency is controlled by FRCF SFR, which is automatically loaded with CFGW data at power on reset. The FRC is trimmed to 7.3728 MHz in chip manufacturing. FRC can maintain stable frequency when Temperature and V_{BAT} voltage change, but it needs higher V_{DD} voltage and consumes higher current.

FXT (Fast Crystal, $1 \sim 10$ MHz): FXT frequency depends on external crystal. It also needs higher V_{DD} voltage and consumes higher current.

MRC (Internal Medium RC, 3.8MHz @ V_{DD} = 3V, 1.4MHz @ V_{DD} = 1.65V): MRC frequency depends on V_{DD} voltage and differs chip by chip. The advantage of MRC is being able to work in lower V_{DD} voltage and consume lower current.

RFC (Resistance to Frequency Convert, External RC): RFC is usually used for RFC ADC measuring mode. Its frequency depends on External RC and V_{BAT} .

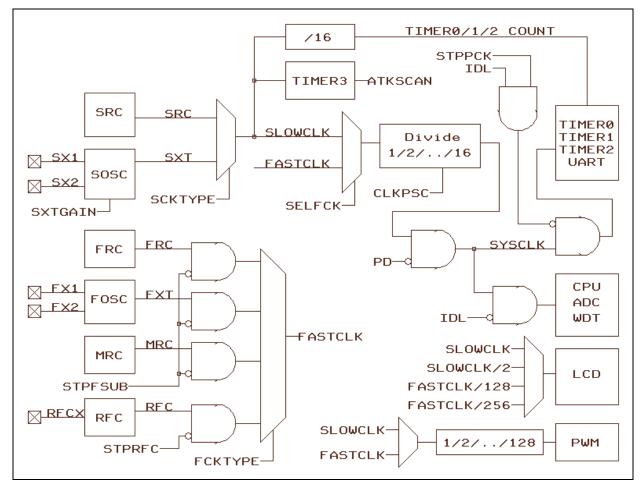
SRC (Internal Slow RC, 80KHz @ V_{DD} = 3V, 45KHz @ V_{DD} = 1.65V): After Reset, the chip is running at Slow mode with SRC clock. SRC can work in very low V_{DD} voltage and consumes very low current.

SXT (Slow Crystal, 32768Hz): SXT provides accurate real time base. It can work in very low V_{DD} voltage and consumes very low current.

Before entering the Fast mode, S/W must select the Fast clock type in advance. If RFC is used as the Fast clock source, S/W also has to setup the pin mode and RFC related SFRs in advance.

Since Fast clock is useless in Slow mode, S/W can set STPFSUB=1 or STPRFC=1 to stop Fast Clock to reduce device's current consumption. Before the device switches to FXT/FRC, S/W must also consider the V_{DD} voltage level for device operation safe range. The higher V_{DD} allows the device to run at higher System Clock frequency. In typical condition, 8 MHz System Clock rate requires V_{DD} >2.5V.

The CLKCON SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow clock type in Fast mode, and change the Fast clock type in Slow mode. Never to write both STPFSUB=1 & SELFCK=1 in FXT/FRC/MRC mode. It is recommended to write this register bit by bit.


This chip can also output the System clock to TCO pin (in CMOS format). TCO's frequency/duty is defined by TCOCON SFR. TCO pin's output enable is defined by P3MOD7 SFR (*see section 7*).

Note: If System Clock is FRC/FXT, the VCON setting should follow the rule below:

3V Mode: LDOE=0, VSET=4~6. ($V_{DD}=V_{BAT}$).

5V Mode: LDOE=1, VSET=7. ($V_{DD}=V_{BAT}$ when $V_{BAT}<3.3V$, $V_{DD}=3.3V$ when $V_{BAT}>3.3V$)

Clock Structure

Flash 3FFEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_	_	_			FRCF		

3FFEh.4~0 FRCF: FRC frequency adjustment.

FRC is trimmed to 7.3728 MHz in chip manufacturing. FRCF records the adjustment data.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_	—	—			FRCF		
R/W	_	—	—			R/W		
Reset	_	—	—	_	_	_	_	_

F7h.4~0 **FRCF:** FRC frequency adjustment. It is automatically loaded with Flash's 3FFEh data at power on reset and can be read/written as any other SFR register in normal mode. So the FRC clock speed can be changed on CPU run time by S/W.

00h=central frequency, 0Fh=highest frequency, 10h=lowest frequency.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXT	SXTGAIN		PWRFLT	UART1W	WDTPSC	TM3	PSC
R/W	R/W		R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	0	0	0	0	1

94h.7~6 **SXTGAIN:** 32768 SXT oscillator gain, 3=Highest gain, 0=Lowest gain. Higher gain can shorten the Crystal oscillation warm-up time. Lower gain can reduce oscillation current.

94h.5 **STPPCK:** Set 1 to stop UART/Timer0/Timer1/Timer2 clock in Idle mode for current reducing.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CLKCON	FCK	ГҮРЕ	SELFCK	SCKTYPE	STPFSUB		CLKPSC				
R/W	R/	W	R/W	R/W	R/W		R/W				
Reset	0	0	0	0	0	1	0	1			
D8h.7~6	FCKTYPE:	Fast clock ty	pe select, Th	nese bits can	be changed o	nly in Slow i	mode (SELF	CK=0)			
	00: Fast clo	ock is FRC									
	01: Fast clo	ock is FXT, F	2.1 and P2.2	are crystal o	scillator pins						
	10: Fast clock is MRC										
	11: Fast clock is RFC, S/W must setup RFC oscillating circuitry before this setting.										
D8h.5	SELFCK: S	CLFCK: System clock select. This bit can be changed only when STPFSUB=0 or FCKTYPE=3.									
	0: Slow clo	0: Slow clock (SRC / SXT)									
	1: Fast clock (FRC / FXT / MRC / RFC)										
D8h.4	SCKTYPE:	Slow clock	Гуре. This bi	t can be chan	ged only in I	Fast mode (S	ELFCK=1).				
	0: SRC										
	1: SXT, P0	.7 and P2.0 a	re crystal oso	cillator pins							
D8h.3	STPFSUB: 1	FXT / FRC /	MRC clock	stop control.	This bit can b	be changed o	nly when SE	LFCK=0 or			
	FCKTYPE=	3.									
	0: FXT / FI	RC / MRC cl	ock running								
	-			power saving							
D8h.2~0	CLKPSC: S	•	-		• •	cle, Refer Al	P-TM52XXX	XX_01S.			
	•			c divided by							
	•			c divided by							
	-			c divided by 8							
	•			c divided by							
	•			c divided by 2							
	101: Syster	n clock is Fa	st/Slow clock	divided by	1						

Note: In crystal mode, user should set the P2.1/P2.2 (FXT) or P0.7/P2.0 (SXT) pins as Input with Pull-up (section7).

		CLKCON (D8	3h)	
SYSCLK	bit7~6	bit5	bit4	bit3
	FCKTYPE	SELFCK	SCKTYPE	STPFSUB
Fast RFC (*1)	11	1	Х	Х
Fast MRC	10	1	Х	0
Fast FXT	01	1	Х	0
Fast FRC	00	1	Х	0
Slow SXT	XX	0	1	Х
Slow SRC	XX	0	0	Х
Fast type change	$AB \leftarrow \rightarrow CD$	0	Х	Х
Slow type change	00, 01, 10	1	$0 \leftarrow \rightarrow 1$	0
Slow type change	11 (RFC mode)	1	$0 \leftarrow \rightarrow 1$	Х
Stop FRC/FXT/MRC	00, 01, 10	0	Х	$0 \rightarrow 1$
Stop FRC/FXT/MRC	11 (RFC mode)	X	Х	$0 \rightarrow 1$
Start FRC/FXT/MRC	00, 01, 10	0	Х	$1 \rightarrow 0$
Start FRC/FXT/MRC	11 (RFC mode)	X	Х	$1 \rightarrow 0$
Switch to FRC/FXT/MRC	00, 01, 10	$0 \rightarrow 1$	Х	0
Switch to RFC (*1)	11 (RFC mode)	$0 \rightarrow 1$	Х	Х
Switch to SRC/SXT	00, 01, 10	$1 \rightarrow 0$	Х	0
Switch to SRC/SXT	11 (RFC mode)	$1 \rightarrow 0$	Х	Х

(*1) also need RFC related SFRs proper setting

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1			_	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset		_	_	0	0	0	0	0

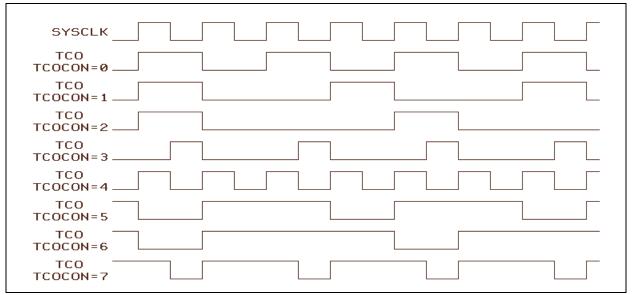
F8h.1 STPRFC: Set 1 to stop RFC clock oscillating

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOCON	T2SEL	T1SEL	T2OCON			TCOCON		
R/W	R/W	R/W		R/W			R/W	
Reset	0	0	0	0	0	0	0	0

A6h.2~0 **TCOCON:** TCO pin duty and frequency control

000: 1/2 duty, 1/2 SYSCLK frequency

001: 1/3 duty, 1/3 SYSCLK frequency


010: 1/4 duty, 1/4 SYSCLK frequency

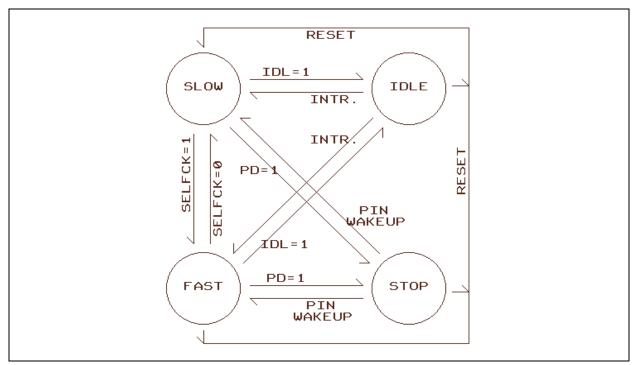
011: 1/4 duty, 1/2 SYSCLK frequency

100: 1/2 duty, 1/1 SYSCLK frequency

101: 2/3 duty, 1/3 SYSCLK frequency

110: 3/4 duty, 1/4 SYSCLK frequency 111: 3/4 duty, 1/2 SYSCLK frequency

TCO waveform with TCOCON



5.2 Operation Modes

There are four operation modes for this device. **Fast Mode** is defined as the CPU running at Fast clock speed. **Slow Mode** is defined as the CPU running at Slow clock speed. When the System clock speed is lower, the power consumption is lower.

Idle Mode is entered by setting the IDL bit in PCON SFR. Both Fast and Slow clock can be set as the System clock source in Idle Mode, but Slow clock is better for power saving. In Idle mode, the CPU puts itself to sleep while the on-chip peripherals stay active. The STPPCK bit can be set to furthermore reduce Idle mode current. If STPPCK=1, Timer0/1/2 and UART are stopped in Idle mode. The slower System clock rate also helps current saving. It can be achieved by setup the CLKPSC SFR to divide System clock frequency. Idle mode is terminated by Reset or enabled Interrupts wake up.

Stop Mode is entered by setting the PD bit in PCON SFR. This mode is the so-called "Power Down" mode in standard 8051. In Stop mode, all clocks stop. Stop Mode can be terminated by Reset or pin wake up.

Note: Chip cannot enter Stop Mode if INTn pin is low and wakeup is enable. (INTn=0 and EXn=1, n=0,1,2)

Operation Mode Transition

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	—	_	GF1	GF0	PD	IDL
R/W	R/W	_	—	—	R/W	R/W	R/W	R/W
Reset	0		—	—	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter STOP mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter IDLE mode.

6. Interrupt & Wake-up

The **F2268** has an 11-source four-level priority interrupt structure. All enabled Interrupts can wake up CPU from Idle mode, but only the Pin Interrupts can wake up CPU from Stop mode. Each interrupt source has its own enable control bit. An interrupt event will set its individual Interrupt Flag, no matter whether its interrupt enable control bit is 0 or 1. The Interrupt vectors and flags are list below.

Vector	Flag	Description
0003	IE0	INT0 external pin Interrupt (can wake up Stop mode)
000B	TF0	Timer0 Interrupt
0013	IE1	INT1 external pin Interrupt (can wake up Stop mode)
001B	TF1	Timer1 Interrupt
0023	RI+TI	Serial Port (UART) Interrupt
002B	TF2+EXF2	Timer2 Interrupt
0033		Reserved for ICE mode use
003B	TF3	Timer3 Interrupt
0043	P1IF	Port1 external pin change Interrupt (can wake up Stop mode)
004B	IE2	INT2 external pin Interrupt (can wake up Stop mode)
0053	TKIF	Touch Key Interrupt (SWTK or ATK)
005B	SPIF+WCOL	SPI Interrupt

Interrupt Vector & Flag

6.1 Interrupt Enable and Priority Control

The IE and INTE1 SFRs decide whether the pending interrupt is serviced by CPU. The P1WKUP SFR controls the individual Port1 pin's wake-up and interrupt capability. The IP, IPH, IP1 and IP1H SFRs decide the interrupt priority. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
P1WKUP		P1WKUP							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

96h.7~0 **P1WKUP:** P1.7~P1.0 pin individual Wake-up / Interrupt enable control

0: Disable

1: Enable

ET0 R/W 0	EX0 R/W 0								
0									
-	0								
t									
t									
t									
0: Disable INT1 pin Interrupt and Stop mode wake up									
1: Enable INT1 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no matter EA is 0 or 1.									
0: Disable INT0 pin Interrupt and Stop mode wake up 1: Enable INT0 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no									
matter EA is 0 or 1.									
Bit 1	Bit 0								
P1IE	TM3IE								
R/W	R/W								
0	0								
	rom Stop m Bit 1 P1IE R/W								

1: Enable Touch Key interrupt

A9h.2 **EX2:** External INT2 pin Interrupt enable and Stop mode wake up enable

0: Disable INT2 pin Interrupt and Stop mode wake up

1: Enable INT2 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no matter EA is 0 or 1.

- A9h.1 **P1IE:** Port1 pin change interrupt enable. This bit does not affect the Port1 pin's Stop mode wake up capability.
 - 0: Disable Port1 pin change interrupt
 - 1: Enable Port1 pin change interrupt
- A9h.0 **TM3IE:** Timer3 interrupt enable
 - 0: Disable Timer3 interrupt
 - 1: Enable Timer3 interrupt

SFR B9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPH	_	—	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

SFR B8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP	_		PT2	PS	PT1	PX1	PT0	PX0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset		_	0	0	0	0	0	0

B9h.5, B8h.5 **PT2H, PT2 :** Timer2 Interrupt Priority control. (PT2H, PT2)=

- 11: Level 3 (highest priority)
- 10: Level 2
- 01: Level 1

00: Level 0 (lowest priority)

B9h.4, B8h.4 **PSH, PS :** Serial Port (UART) Interrupt Priority control. Definition as above.

B9h.3, B8h.3 **PT1H, PT1 :** Timer1 Interrupt Priority control. Definition as above.

B9h.2, B8h.2 **PX1H, PX1 :** External INT1 pin Interrupt Priority control. Definition as above.

B9h.1, B8h.1 **PT0H, PT0 :** Timer0 Interrupt Priority control. Definition as above.

B9h.0, B8h.0 **PX0H, PX0 :** External INT0 pin Interrupt Priority control. Definition as above.

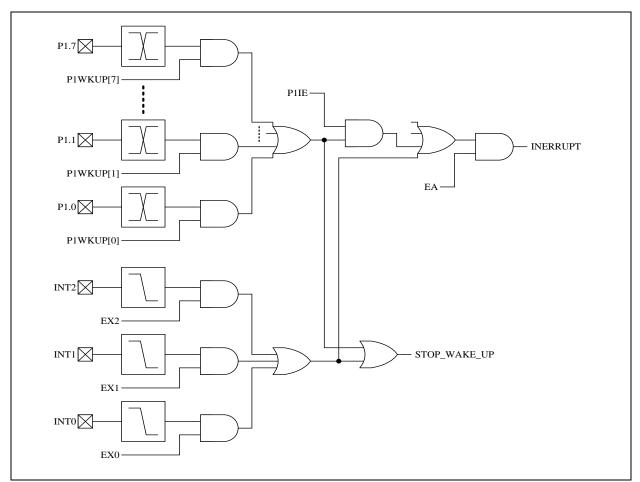
SFR BBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1H				PSPIH	PTKIH	PX2H	PP1H	РТ3Н
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

SFR BAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1	_	_	_	PSPI	PTKI	PX2	PP1	PT3
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

BBh.4, BAh.4 **PSPIH, PSPI :** SPI Interrupt Priority control. Definition as above.

BBh.3, BAh.3 **PTKIH, PTKI :** Touch Key Interrupt Priority control. Definition as above.

BBh.2, BAh.2 **PX2H, PX2 :** External INT2 pin Interrupt Priority control. Definition as above.


BBh.1, BAh.1 **PP1H, PP1 :** Port1 Pin Change Interrupt Priority control. Definition as above.

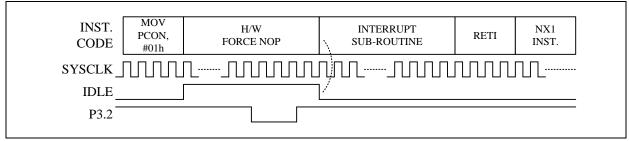
BBh.0, BAh.0 **PT3H, PT3 :** Timer3 Interrupt Priority control. Definition as above.

6.2 Pin Interrupt

Pin Interrupts include INT0 (P3.2), INT1 (P3.3), INT2 (P2.7) and Port1 Change Interrupt. These pins also have the Stop mode wake up capability. INT0 and INT1 are falling edge or low level triggered as the 8051 standard. INT2 is falling edge triggered and Port1 Change Interrupt is triggered by any Port1 pin state change.

Pin Interrupt & Wake up

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
88h.3	IE1: External Interrupt 1 (INT1 pin) edge flag.									
	Set by H/W when an INT1 pin falling edge is detected, no matter the EX1 is 0 or 1.									
	It is cleared automatically when the program performs the interrupt service routine.									
88h.2	IT1: External Interrupt 1 control bit									
	0: Low level active (level triggered) for INT1 pin									
	1: Falling edge active (edge triggered) for INT1 pin									
88h.1	IE0: External Interrupt 0 (INT0 pin) edge flag									
	Set by H/W when an INTO pin falling edge is detected, no matter the EX0 is 0 or 1.									
	It is cleared	automatical	ly when the p	orogram perf	orms the inte	rrupt service	routine.			
88h.0	IT0: Externa	l Interrupt 0	control bit	_						
		-	el triggered)	for INT0 pin						
			dge triggered	-						



SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
INTFLG	—	—	—	_	TKIF	IE2	P1IF	TF3				
R/W	—	_	—	—	R/W	R/W	R/W	R/W				
Reset	—	_	_	_	0	0	0	0				
95h.2	IE2: Externa	l Interrupt 2	(INT2 pin) e	dge flag								
	Set by H/W	when a falli	ng edge is de	etected on the	e INT2 pin, n	o matter the	EX2 is 0 or 1					
	It is cleared automatically when the program performs the interrupt service routine.											
			NTFLG to cle									
95h.1	P1IF: Port1	pin change ii	nterrupt flag									
	Set by H/W	when a Port	t1 pin state cl	hange is dete	cted and its in	nterrupt enab	le bit is set (H	P1WKUP).				
	P1IE does 1	not affect this	s flag's settin	g.		-						
	It is cleared	P1IE does not affect this flag's setting. It is cleared automatically when the program performs the interrupt service routine.										
	S/W can wi	rite FDh to II	NTFLG to cle	ear this bit.		-						

Note2: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

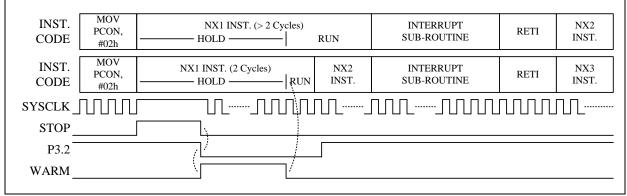
6.3 Idle mode Wake up and Interrupt

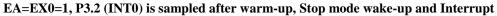
Idle mode is waked up by enabled Interrupts, which means individual interrupt enable bit (ex: EX0) and EA bit must be both set to 1 to establish Idle mode wake up capability. All enabled Interrupts (Pins, Timers, TK, SPI and UART) can wake up CPU from Idle mode. Upon Idle wake-up, Interrupt service routine is entered immediately. "The first instruction behind IDL (PCON.0) setting" is executed after interrupt service routine return.

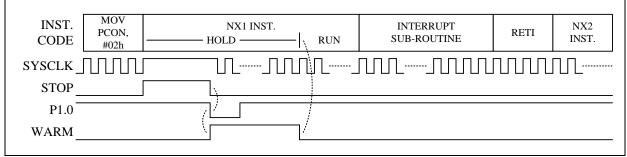
EA=EX0=1, Idle mode wake-up and Interrupt by P3.2 (INT0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	—	—	—	GF1	GF0	PD	IDL
R/W	R/W	—	—	—	R/W	R/W	R/W	R/W
Reset	0	—	—	—	0	0	0	0

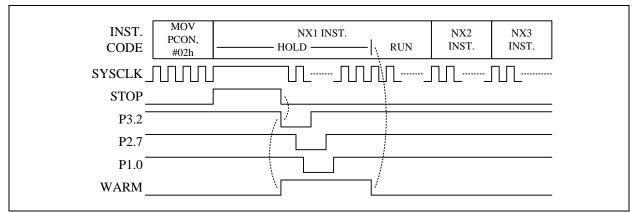
87h.1 **PD:** Power down control bit, set 1 to enter STOP mode.

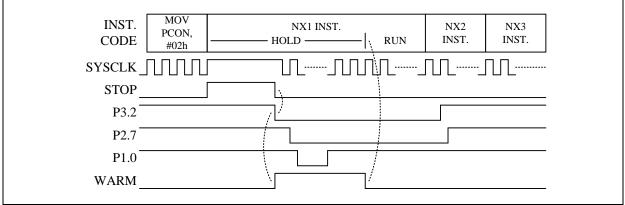

87h.0 **IDL:** Idle mode control bit, set 1 to enter IDLE mode.


6.4 Stop mode Wake up and Interrupt


Stop mode wake up is simple, as long as the individual pin interrupt enable bit (ex: EX0) is set, the pin wake up capability is asserted. Set EX0/EX1/EX2 can enable INT0/INT1/INT2 pins' Stop mode wake up capability. Set P1WKUP bit 7~0 can enable P1.7~P1.0's Stop mode wake up capability. Upon Stop wake up, "the first instruction behind PD setting (PCON.1)" is executed immediately before Interrupt service. Interrupt entry requires EA=1 (P1WKUP also needs P1IE=1) and trigger state of the pin staying sufficiently long to be observed by the System clock. This feature allows CPU to enter or not enter Interrupt sub-routine after Stop mode wake up.

Note: Chip cannot enter Stop Mode if INTn pin is low and wakeup is enable. (INTn=0 and EXn=1, n=0,1,2) *Note:* It is recommended to place the NX1/NX2 with NOP Instruction in figures below.





EA=P1IE=P1WKUP=1, P1.0 change (not need clock sample), Stop mode wake-up and Interrupt

EA=EX0=EX2=P1WKUP=1, P1IE=0, Stop mode wake-up but not Interrupt. P3.2/P2.7 pulse too narrow

EX0=EX2=P1WKUP=P1IE=1, EA=0, Stop mode wake-up but not Interrupt

7. I/O Ports

The **F2268** has total 32 multi-function I/O pins. All I/O pins follow the standard 8051 "Read-Modify-Write" feature. The instructions that read the SFR rather than the Pin State are the ones that read a port or port bit value, possibly change it, and then rewrite it to the SFR. (ex: ANL P1, A; INC P2; CPL P3.0)

7.1 Port1 & Port3

These pins can operate in four different modes as below.

Mode	Port1, Port3 P3.0~P3.2	pin function Others	P1.n / P3.n SFR data	Pin State	Resistor Pull-up	Digital Input
Mode 0	Pseudo	Open Drain	0	Drive Low	Ν	Ν
WIDUE U	Open Drain	Open Diam	1	Pull-up	Y	Y
Mode 1	Pseudo	Onen Duein	0	Drive Low	Ν	Ν
Mode 1	Open Drain	Open Drain	1	Hi-Z	Ν	Y
Mode 2	CMOS	Outmut	0	Drive Low	Ν	Ν
Mode 2	CMOS	Output	1	Drive High	Ν	Ν
Mode 3	Alternative Functi ADC, PWM an		X (don't care)	_	Ν	Ν

Port1, Port3 I/O Pin Function Table

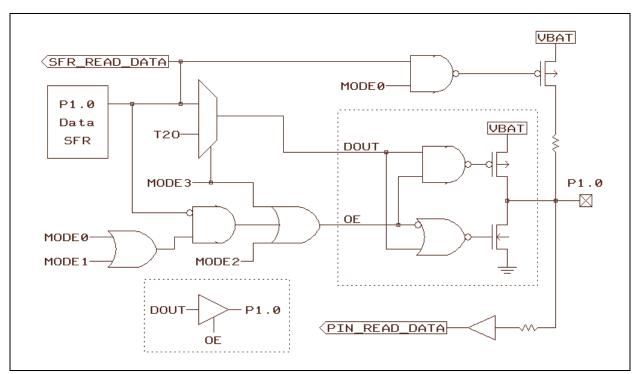
If a Port1 or Port3 pin is used for Schmitt-trigger input, S/W must set the I/O pin to Mode0 or Mode1 and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry.

Beside I/O port function, each Port1 and Port3 pin has one or more alternative functions, such as Touch Key, ADC, LCD, PWM and Clock output. Most of the functions are activated by setting the individual pin mode control SFR to Mode3. Port1/Port3 pins also have standard 8051 auxiliary definition such as INT0/1, T0/1/2, or RXD/TXD. These pin functions need to set the pin mode SFR to Mode0 or Mode1 and keep the P1.n / P3.n SFR at 1.

Pin Name	8051	Wake-up	СКО	ADC	TK	LCD	Mode3
P1.0	T2	Y	T2O		TK7		T2O
P1.1	T2EX	Y		AD1	TK6		AD1
P1.2		Y		AD2	TK5		AD2
P1.3		Y			TK4		
P1.4		Y			TK3		
P1.5		Y			TK2		
P1.6		Y		AD6	TK1		AD6
P1.7		Y			TK0		
P3.0	RXD				TK14	SEG44	SEG44
P3.1	TXD				TK13	SEG45	SEG45
P3.2	INT0	Y			TK12	SEG46	SEG46
P3.3	INT1	Y			TK11	SEG47	SEG47
P3.4	T0				CLD		CLD
P3.5	T1		PWMP		TK10		PWMP
P3.6			PWMN		TK9		PWMN
P3.7			TCO		TK8		TCO

Port1, Port3 multi-function Table

Alternative Function	Mode	P1.n / P3.n SFR data	Pin State
T0, T1, T2, T2EX,	2, T2EX, 0 1 Input with Pull-up		Input with Pull-up
INTO, INT1	1	1	Input
RXD, TXD	0	1	Input with Pull-up / Pseudo Open Drain Output
KAD, TAD	1	1	Input / Pseudo Open Drain Output
TCO, T2O	3	Х	Clock Output (CMOS Push-Pull)
PWMP, PWMN	3	Х	PWM Output (CMOS Push-Pull)
SEG44~SEG47	3	Х	LCD Waveform Output
TK0~TK14	TK0~TK14 0 1 Touch Key I		Touch Key Idling or Scanning
CLD	3	Х	Touch Key charge collection
AD1~AD2, AD6	3	Х	ADC analog Input


The necessary SFR setting for Port1/Port3 pin's alternative functions is list below.

Mode Setting for Port1, Port3 Alternative Function

For tables above, a "CMOS Output" pin means it can sink and drive at least 4mA current. It is not recommended to use such pin as input function.

An "**Open Drain**" pin means it can sink at least 4mA current but only drive a small current (< 20uA). It can be used as input or output function and typically needs an external pull up resistor.

An 8051 standard pin is a "**Pseudo Open Drain**" pin. It can sink at least 4mA current when output is at low level, and drives at least 4mA current for $1\sim2$ clock cycle when output transits from low to high, then keeps driving a small current (< 20uA) to maintain the pin at high level. It can be used as input or output function.

P1.0 Pin Structure

P1.2 Pin Structure

P3.0 Pin Structure

SFR 90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

90h.7~0 **P1:** Port1 data

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

B0h.7~0 **P3:** Port3 data

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODL	P1M	OD3	P1M	OD2	P1M	OD1	P1M	OD0
R/W	R/	W	R/	R/W		W	R/	W
Reset	0	0	0	0	0	0	0	0

- A2h.7~6 P1MOD3: P1.3 pin control.
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Not defined
- A2h.5~4 P1MOD2: P1.2 pin control.
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Mode3, P1.2 is ADC input.
- A2h.3~2 P1MOD1: P1.1 pin control.
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Mode3, P1.1 is ADC input.
- A2h.1~0 **P1MOD0:** P1.0 pin control.
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Mode3, P1.0 is "Timer2 overflow divided by 2/3/4" (T2O) CMOS push pull output.

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODH	P1M	OD7	P1M	OD6	P1M	OD5	P1M	OD4
R/W	R/	W	R/W		R/	W	R/	W
Reset	0	0	0	0	0	0	0	0

- A3h.7~6 P1MOD7: P1.7 pin control. 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Not defined
- A3h.5~4 P1MOD6: P1.6 pin control.
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
- 11: Mode3, P1.6 is ADC input. A3h.3~2 P1MOD5: P1.5 pin control.
 - - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Not defined
- A3h.1~0 **P1MOD4:** P1.4 pin control.
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Not defined

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODL	P3M	OD3	P3N	IOD2	P3N	IOD1	P3M	OD0
R/W	R/	W	R/W		R/W		R/	W
Reset	1	1	1	1	1	1	1	1
A4h.7~6	P3MOD3: P	3.3 pin contr	rol.					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3	, P3.3 is LCI	O Segment ou	utput.				
A4h.5~4	P3MOD2: P	3.2 pin contr	rol.					
	00: Mode0							
	01: Mode1							
	10: Mode2							
			D Segment out	utput.				
A4h.3~2	P3MOD1: P	3.1 pin contr	rol.					
	00: Mode0							
	01: Mode1							
	10: Mode2							
			D Segment out	utput.				
A4h.1~0	P3MOD0: P	3.0 pin cont	rol.					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3	, P3.0 is LCI	D Segment ou	utput.				
SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	P3M	OD7	P3M	IOD6	P3M	IOD5	P3M	OD4
D/W	ם ו	W/	ם	/W/	р	/11/	D /	W/

SFR A5h	B1t 7	Bit 6	Bit 5	B1t 4	B1t 3	B1t 2	Bit I	B1t 0
P3MODH	P3M	OD7	P3M	OD6	P3M	OD5	P3M	OD4
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	0	0	0	0	0	0	0

A5h.7~6 **P3MOD7:** P3.7 pin control.

00: Mode0

01: Mode1

- 10: Mode2
- 11: Mode3, P3.7 is "SYSCLK divided by 1/2/3/4" (TCO) CMOS push pull output.
- A5h.5~4 **P3MOD6:** P3.6 pin control.
 - 00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.6 is PWMN CMOS push pull output.

- A5h.3~2 **P3MOD5:** P3.5 pin control.
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2

11: Mode3, P3.5 is PWMP CMOS push pull output.

- A5h.1~0 P3MOD4: P3.4 pin control.
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Mode3, P3.4 is Touch Key charge collection (CLD).

7.2 P2.7

P2.7 can be only used as Schmitt-trigger input or open-drain output, with pull-up resistor always enable. P2.7 pin is shared with RSTn, INT2 and Flash VPP function.

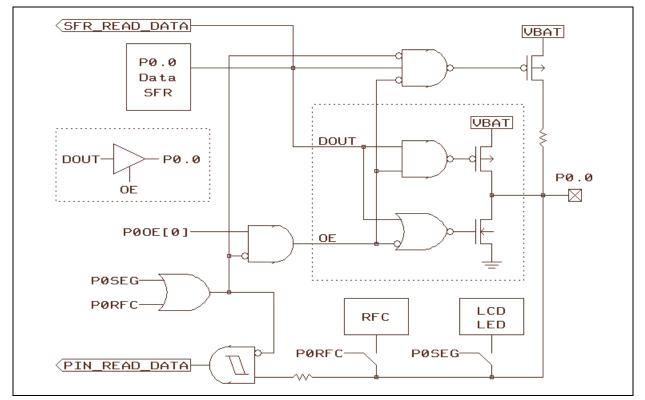
7.3 P2.6~P2.0 & Port0

These pins are shared with LCD, LED, RFC, SPI and crystal oscillator. If a Port0/2 pin is defined as I/O pin, it can be used as CMOS push-pull output or Schmitt-trigger input. The pin's pull up function is enable while SFR bit PxOE.n=0 and Px.n=1.

P2.6~P2.0 / Port0 pin function	P2OE.n / P0OE.n	P2.n / P0.n SFR data	Pin State	Resistor Pull-up	Digital Input
Innut	0	0	Hi-Z	Ν	Y
Input	0	1	Pull-up	Y	Y
CMOS Output	1	0	Drive Low	Ν	Ν
CMOS Output	1	1	Drive High	Ν	Ν

Pin Name	Wake-up	RFC	SPI	SXT/FXT	LCD/LED	Others
P0.0		RFCX			SEG40	
P0.1		RFC0R			SEG39	
P0.2		RFC1R			SEG38	
P0.3		RFC2R			SEG37	
P0.4					SEG36	
P0.5					SEG35	
P0.6					SEG34	
P0.7				SX1		
P2.0				SX2		
P2.1				FX1	SEG33	
P2.2				FX2	SEG32	
P2.3					SEG31	
P2.4			MOSI		SEG43	TK15
P2.5			SCK		SEG42	
P2.6			MISO		SEG41	
P2.7	Y					INT2, RSTn, VPP

P2.6~P2.0 & Port0 I/O Pin Function Table


Port0, Port2 multi-function Table

The necessary SFR setting for Port0/Port2 pin's alternative functions is list below.

Alternative Function	P2OE.n / P0OE.n	P2.n / P0.n SFR data	Pin State	other necessary SFR setting
RFCX, RFC0R~RFC2R	0	Х	RFC clock oscillation	PINMODE, RFCON
MOSI, SCK, MISO	0	0	SPI communication	PINMODE, SPCON
SX1, SX2, FX1, FX2	0	1	Crystal oscillation	PINMODE, CLKCON
TK15	0	1	Pull-up or TK scan	PINMODE, TKCON
SEG31~SEG43	0	Х	LCD/LED Output	PINMODE

Mode Setting for Port0, Port2 Alternative Function

P0.0 Pin Structure

SFR 80h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PO	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

80h.7~0 **P0:** Port0 data, also controls the P0.n pin's pull-up function. If the P0.n SFR data is "1" and the corresponding P0OE.n=0 (input mode), the pull-up is enabled.

SFR A0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

A0h.7 **P2.7:** P2.7 data, 0=Open Drain output low; 1=Schmitt-trigger input with pull up

A0h.6~0 **P2.6~P2.0:** P2.6~P2.0 data, also controls the P2.n pin's pull-up function. If the P2.n SFR data is "1" and the corresponding P2OE.n=0 (input mode), the pull-up is enabled.

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
POOE		POOE										
R/W		R/W										
Reset	0	0 0 0 0 0 0 0 0										
011 7 0	DOOT D											

91h.7~0 **POOE:** Port0 CMOS Push-Pull output enable control, 1=Enable.

SFR 93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
P2OE	_				P2OE					
R/W	_		R/W							
Reset		0	0 0 0 0 0 0 0							

93h.6~0 **P2OE:** P2.6~P2.0 pin CMOS Push-Pull output enable control, 1=Enable.

SFR 92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PINMODE	_	P2H	SEG	P2L	SEG		POSEG				
R/W		R/	W R/W		W	R/W					
Reset	_	1	1	1	1	1	1	1			
92h.6~5	P2HSEG: P2	2.4~P2.6 pin	LCD/LED n	node control.							
	00: P2.4~P2	2.6 are I/O p	ins								
	01: P2.4 an	d P2.5 are I/	O pins, P2.6 i	is LCD/LED	Segment pin						
		1 ·	and P2.6 are		Segment pins						
	11: P2.4~P2	2.6 are LCD/	LED Segmer	nt pins							
92h.4~3	P2LSEG: P2	2.1~P2.3 pin	LCD/LED m	node control.							
	00: P2.1~P2	2.3 are I/O p	ins								
	01: P2.1 an	d P2.2 are I/	O pins, P2.3 i	is LCD/LED	Segment pin						
	10: P2.1 is	I/O pin, P2.2	and P2.3 are	LCD/LED S	Segment pins						
	11: P2.1~P2	2.3 are LCD/	LED Segmer	nt pins							
92h.2~0	P0SEG: Por	t0 LCD/LED	mode contro	ol.							
	000: P0.0~]	P0.6 are I/O	pins								
	001: P0.0~]	P0.5 are I/O	pins, P0.6 is l	LCD/LED Se	gment pin						
	010: P0.0~]	P0.4 are I/O	pins, P0.5~P0	0.6 are LCD/	LED Segmer	nt pins					
	011: P0.0~l	P0.3 are I/O	pins, P0.4~P0	0.6 are LCD/	LED Segmer	nt pins					
	100: P0.0~l	P0.2 are I/O	pins, P0.3~P0	0.6 are LCD/	LED Segmer	nt pins					
			pins, P0.2~P0		-	ıt pins					
		1 ·	1~P0.6 are L		gment pins						
	111: P0.0~]	P0.6 are LCI	D/LED Segme	ent pins							

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	CPHA	_	LSBF	SP	CR
R/W	R/W	R/W	R/W	R/W	_	R/W	R/	W
Reset	0	0	0	0		0	0	0

BCh.7 SPEN: SPI Enable.

0: SPI Disable

1: SPI Enable, P2.4~P2.6 are SPI functional pins.

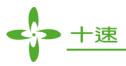
SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFCON	PORFC		TOSEL		RFCPSC		RFCS	
R/W	R/	R/W		R/W		R/W		W
Reset	0 0		0	0	1	1	0	0

AFh.7~6 **PORFC:** P0.0~P0.3 pin RFC mode control.

00: P0.0~P0.3 are not RFC pins

01: P0.0 and P0.1 are RFC pins, P0.2 and P0.3 are not RFC pins

10: P0.0~P0.2 are RFC pins, P0.3 is not RFC pin

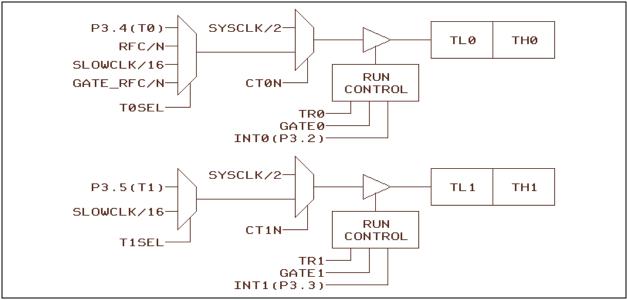

11: P0.0~P0.3 are RFC pins

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CLKCON	FCK	FCKTYPE		SCKTYPE	STPFSUB		CLKPSC		
R/W	R/	W	R/W	R/W	R/W		R/W		
Reset	0	0	0	0	0	1	0	1	

D8h.7~6 **FCKTYPE:** Set to "01" to enable P2.1 and P2.2 pin's FXT oscillation mode

D8h.4 SCKTYPE: Set 1 to enable P0.7 and P2.0 pin's SXT oscillation mode

Note: In crystal mode, user should set the P2.1/P2.2 (FXT) or P0.7/P2.0 (SXT) pins as Input with Pull-up. *Note:* To use TK15, user should set the P2.4 pin as Input with Pull-up.


8. Timers

Timer0, Timer1 and Timer2 are provided as standard 8051 compatible timer/counter. Timer3 is provided for a real-time clock count.

8.1 Timer0 / Timer1 / Timer2

Compare to the traditional 12T 8051, the chip's Timer0/1/2 use 2 System clock cycle as the time base unit. That is, in timer mode, these timers increase at every "2 System clock" rate; in counter mode, T0, T1 and T2 pins' input pulse must be wider than 2 System clock to be seen by this device.

In addition to standard 8051 timers function, SLOWCLK/16 can replace P3.4(T0), P3.5(T1) and P1.0(T2) pins as the Timer0, Timer1 and Timer2 counter mode input. Timer0 also supports RFC counting. The RFC clock divided/gated signal can also replace T0 pin as the Timer0's event count input.

Timer0 and Timer1 structure

TCON and TMOD set the operation mode and control the running and interrupt generation of Timer0/1, with the timer/counter values stored in two pairs of 8-bit registers (TL0, TH0, and TL1, TH1).

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
88h.7	TF1: Timer1	overflow fla	ıg					
	Set by H/W	when Time	r/Counter 1 c	overflows				
	Cleared by	H/W when C	CPU vectors i	into the inter	upt service r	outine.		
88h.6	TR1: Timer	l run control						
	0: Timer1 s	stops						
	1: Timer1 r	uns						
88h.5	TF0: Timer() overflow fla	ng					
	Set by H/W	when Time	r/Counter 0 c	overflows				
	Cleared by	H/W when C	CPU vectors i	into the intern	upt service r	outine.		
88h.4	TR0: Timer() run control						
	0: Timer0 s	stops						
	1: Timer0 r	uns						

CT1N R/W		0D1									
R/W	TMOD1 GATE0 CT0N TMOD0 R/W R/W R/W R/W										
	R/	W	R/W	R/W	R/V	N					
0	0	0	0	0	0	0					
mer1 gating c	ontrol bit										
			and TR1 bit	is set							
CT1N: Timer1 Counter/Timer select bit 0: Timer mode. Timer1 data increases at 2 System clock cycle rate.											
0: Timer mode, Timer1 data increases at 2 System clock cycle rate 1: Counter mode, Timer1 data increases at T1 pin or SLOWCL K/16 falling edge											
1: Counter mode, Timer1 data increases at T1 pin or SLOWCLK/16 falling edge											
MOD1: Timer1 mode select											
00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)											
01: 16-bit timer/counter											
	ner/counter (ILI). Reload	ed from TH1	at overflow.							
1	. 11.										
			and TDO 1:43								
			and TRU bit	is set							
			a clock ovela	rata							
					N falling ada	0					
		ises at 10 pm	, SLOWCLI	1001 KPC	iv failing eug	C					
		hit prescaler	(TI 0)								
	1110) and J-	on presealer	(110)								
	ner/counter ("	FLO) Reload	ed from THO	at overflow							
						TF1 bits					
	enable when ' enable only w er1 Counter/T node, Timer1 r mode, Timer1 r mode, Timer1 r mode, Timer1 imer1 mode s imer/counter (timer/counter (enable when ' enable only w her0 Counter/T node, Timer0 r mode, Timer0 r	enable only while the INT her1 Counter/Timer select I node, Timer1 data increase r mode, Timer1 data increase imer1 mode select imer/counter (TH1) and 5-1 timer/counter uto-reload timer/counter (7 1 stops imer0 gating control bit enable when TR0 bit is set enable only while the INT her0 Counter/Timer select I node, Timer0 data increase r mode, Timer0 data increase r mode, Timer0 data increase imer/counter (TH0) and 5-1 timer/counter uto-reload timer/counter (7	enable when TR1 bit is set enable only while the INT1 pin is high her1 Counter/Timer select bit mode, Timer1 data increases at 2 System r mode, Timer1 data increases at T1 pin Timer1 mode select imer/counter (TH1) and 5-bit prescaler timer/counter (TH1) and 5-bit prescaler timer/counter uto-reload timer/counter (TL1). Reload 1 stops imer0 gating control bit enable when TR0 bit is set enable only while the INT0 pin is high her0 Counter/Timer select bit mode, Timer0 data increases at 2 System r mode, Timer0 data increases at T0 pin Timer0 mode select imer/counter (TH0) and 5-bit prescaler timer/counter uto-reload timer/counter (TL0). Reload	enable when TR1 bit is set enable only while the INT1 pin is high and TR1 bit is ner1 Counter/Timer select bit mode, Timer1 data increases at 2 System clock cycle r mode, Timer1 data increases at T1 pin or SLOWCL Timer1 mode select imer/counter (TH1) and 5-bit prescaler (TL1) timer/counter uto-reload timer/counter (TL1). Reloaded from TH1 1 stops imer0 gating control bit enable when TR0 bit is set enable only while the INT0 pin is high and TR0 bit is ner0 Counter/Timer select bit node, Timer0 data increases at 2 System clock cycle r mode, Timer0 data increases at T0 pin, SLOWCLF Timer0 mode select imer/counter (TH0) and 5-bit prescaler (TL0) timer/counter uto-reload timer/counter (TL0). Reloaded from TH0	enable when TR1 bit is set enable only while the INT1 pin is high and TR1 bit is set ner1 Counter/Timer select bit mode, Timer1 data increases at 2 System clock cycle rate r mode, Timer1 data increases at T1 pin or SLOWCLK/16 falling Timer1 mode select imer/counter (TH1) and 5-bit prescaler (TL1) timer/counter uto-reload timer/counter (TL1). Reloaded from TH1 at overflow. 1 stops imer0 gating control bit enable when TR0 bit is set enable only while the INT0 pin is high and TR0 bit is set ner0 Counter/Timer select bit node, Timer0 data increases at 2 System clock cycle rate r mode, Timer0 data increases at T0 pin, SLOWCLK/16 or RFC/ Timer0 mode select imer/counter (TH0) and 5-bit prescaler (TL0) timer/counter uto-reload timer/counter (TL0). Reloaded from TH0 at overflow.	enable when TR1 bit is set enable only while the INT1 pin is high and TR1 bit is set node, Timer1 data increases at 2 System clock cycle rate r mode, Timer1 data increases at T1 pin or SLOWCLK/16 falling edge imer1 mode select imer/counter (TH1) and 5-bit prescaler (TL1) timer/counter uto-reload timer/counter (TL1). Reloaded from TH1 at overflow. 1 stops imer0 gating control bit enable when TR0 bit is set enable only while the INT0 pin is high and TR0 bit is set ner0 Counter/Timer select bit node, Timer0 data increases at 2 System clock cycle rate r mode, Timer0 data increases at T0 pin, SLOWCLK/16 or RFC/N falling edge imer0 mode select imer/counter (TH0) and 5-bit prescaler (TL0)					

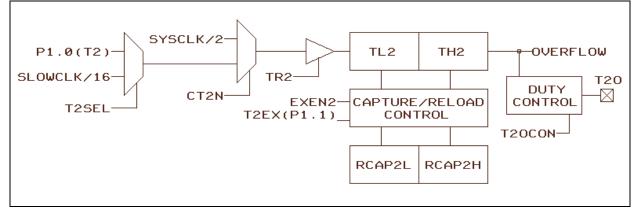
TL0 TL0									
	TL0								
R/W R/W	R/W								
Reset 0 <th colspan="7">0 0 0 0 0 0 0 0</th>	0 0 0 0 0 0 0 0								

8Ah.7~0 **TL0:** Timer0 data low byte

SFR 8Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL1		TL1								
R/W	R/W									
Reset	0	0 0 0 0 0 0 0 0								

8Bh.7~0 **TL1:** Timer1 data low byte

SFR 8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH0		THO								
R/W	R/W									
Reset	0									


8Ch.7~0 **TH0:** Timer0 data high byte

SFR 8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TH1	TH1								
R/W	R/W								
Reset	0	0	0	0	0	0	0	0	

8Dh.7~0 TH1: Timer1 data high byte

Timer2 is controlled through the TCON2 register with the low and high bytes of Timer/Counter2 stored in TL2 and TH2 and the low and high bytes of the Timer2 reload/capture registers stored in RCAP2L and RCAP2H. Timer2 also supports SLOWCLK/16 event count mode.

Timer2 structure

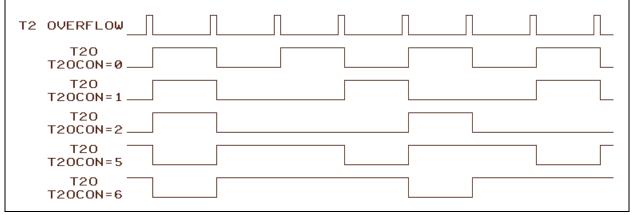
SFR C8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
C8h.7	TF2: Timer2 overflow flag											
	Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.											
C8h.6	EXF2: T2EX interrupt pin falling edge flag											
	Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit											
	must be cleared by S/W.											
C8h.5	RCLK: UART receive clock control bit											
		0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3										
				ock for seria	l port in mod	e 1 or 3						
C8h.4	TCLK: UAI											
				clock for serie	-							
				clock for serie	al port in mo	de 1 or 3						
C8h.3	EXEN2: T2	-	e									
	0: T2EX pi			1 1	1	, ., .		• • • • •				
	if RCLK=T		ause a captur	e or reload w	hen a negati	ve transition	on 12EX pi	1 is detected				
C8h.2	TR2: Timer2	2 run control										
	0: Timer2 s	stops										
	1: Timer2 r	runs										
C8h.1	CT2N: Time	er2 Counter/7	Timer select b	oit								
				es at 2 System	•							
				ses at T2 pin	or SLOWCI	LK/16 falling	edge					
C8h.0	CPRL2N: T	-										
					0			if EXEN2=1.				
	-	-	-	e transitions of	-							
	If RCLK=1	or TCLK=1	, CPRL2N is	ignored and	timer is force	ed to auto-rel	load on Time	er2 overflow.				

RCP2L RCP2L R/W R/W	SFR CAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	RCP2L		RCP2L								
	R/W		R/W								
Reset 0 0 0 0 0 0 0 0	Reset	0	0 0 0 0 0 0 0 0								

CAh.7~0 RCP2L: Timer2 reload/capture data low byte

SFR CBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2H		RCP2H								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

CBh.7~0 RCP2H: Timer2 reload/capture data high byte


SFR CCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TL2		TL2									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

CCh.7~0 **TL2:** Timer2 data low byte

SFR CDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TH2	TH2								
R/W	R/W								
Reset	0	0 0 0 0 0 0 0 0							
	0		0	0	0	0	0	0	

CDh.7~0 **TH2:** Timer2 data high byte

The T2O is a CMOS push pull waveform output derived by Timer2 overflow signal, which can be used for Buzzer or Remote IR control application. S/W can control its frequency by Timer2 auto reload value, as well as set its duty cycle by T2OCON SFR. The pin output function is enabled by setting Mode3 to P1.0 pin (P1MOD0 SFR, *see Section 7*).

T2O waveform with T2OCON

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOCON	T2SEL	T1SET	T2OCON			TCOCON		
R/W	R/W	R/W	R/W				R/W	
Reset	0	0	0	0	0	0	0	0

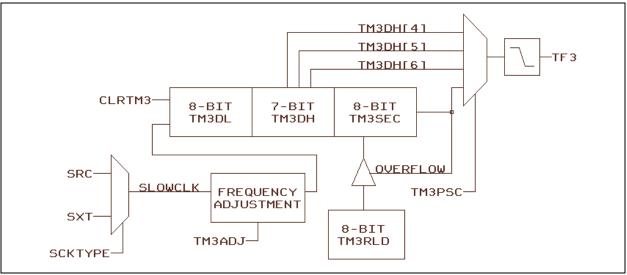
A6h.7 **T2SEL:** Timer2 Counter mode (CT2N=1) input select

0: P1.0 pin (8051 standard)

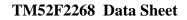
1: Slow clock divided by 16 (SLOWCLK/16)

A6h.6	T1SEL: Timer1 Counter mode (CT1N=1) input select
	0: P3.5 pin (8051 standard)
	1: Slow clock divided by 16 (SLOWCLK/16)
A6h.5~3	T2OCON: T2O pin duty and frequency control
	000: 1/2 duty, 1/2 Timer2 overflow frequency
	001: 1/3 duty, 1/3 Timer2 overflow frequency
	010: 1/4 duty, 1/4 Timer2 overflow frequency
	101: 2/3 duty, 1/3 Timer2 overflow frequency
	110: 3/4 duty, 1/4 Timer2 overflow frequency

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 5Bit 4Bit 3Bit 2				Bit 0	
RFCON	POF	RFC	TOS	SEL	RFC	CPSC	RFCS		
R/W	R/	W	R/W		R/W		R/W		
Reset	t 0 0 0 0 1 1 0 0							0	
AFh.5~4 T0SEL: Timer0 Counter mode (CT0N=1) input select									


00: P3.4 pin (8051 standard) 01: RFC clock divided by 1/4/16/64 10: Slow clock divided by 16 (SLOWCLK/16) 11: RFC clock divided by 1/4/16/64 gated by Timer2 overflow AFh.3~2 **RFCPSC:** RFC clock divider to Timer0 00: divided by 64 01: divided by 16

- 10: divided by 4
 - 11: divided by 1


Note: for SLOWCLK/16 sampling, System clock must not be slower than SLOWCLK/4.

8.2 Timer3

The 23-bit wide Timer3 is reloadable for its 8-bit MSB when overflow. Its time base is Slow clock (SRC or SXT). Timer3 can generate interrupt periodically at different rate, and its counting data can be read out by CPU. It is recommended to read Timer3 data in Slow mode. While CPU clock is switched to Fast clock, the clock source of CPU and Timer3 are different, CPU may read a "under changing Timer3 data". User F/W must have some filter mechanism to avoid such kind un-stability. On the contrast, Timer3 interrupt has no ambiguous behavior no matter what the CPU clock source is.

Timer3 Structure

Timer3 can control its counting rate by the TM3ADJ SFR. This feature compensates the 32768 SXT crystal's in-accuracy. While TM3ADJ=0, Timer3 increase its data count normally at each Slow clock cycle. If TM3ADJ is set to positive adjustment, Timer3 increase its data count by 2 in particular Slow clock cycles, resulting a faster counting rate. If TM3ADJ is set to negative adjustment, Timer3 stop increase in particular Slow clock cycles, resulting a slower counting rate. The adjustment is 0.477ppm per step, and the total adjustable range is \pm 61ppm.

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	_	—	—	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W	_	_	—	R/W	R/W	R/W	R/W	R/W
Reset			_	0	0	0	0	0

F8h.2	CLRTM3: Set 1 to Clear Timer3 and force TM3SEC reload
-------	---

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXT	SXTGAIN		PWRFLT	UART1W	WDTPSC	TM3PSC	
R/W	R/W		R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	0	0	0	0	1

94h.1~0 TM3PSC: Timer3 Interrupt rate

00: Timer3 interrupt occurs when 23 bit count data overflow

01: Timer3 interrupt rate is 32768 Slow clock cycles (1.0 second for SXT)

10: Timer3 interrupt rate is 16384 Slow clock cycles (0.5 second for SXT)

11: Timer3 interrupt rate is 8192 Slow clock cycles (0.25 second for SXT)

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	_	—	—	—	TKIF	IE2	P1IF	TF3
R/W		—	—	—	R/W	R/W	R/W	R/W
Reset			_	_	0	0	0	0

95h.0 **TF3:** Timer3 Interrupt Flag

Set by H/W when Timer3 reaches TM3PSC setting cycles. Cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit. (*Note2*)

SFR B3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TM3SEC		TM3SEC									
R/W	R										
Reset	_	—		—		—	—	—			
D 21 7 0											

B3h.7~0 **TM3SEC:** Timer3 count data bit 22~15

TM3DL TM3DL										
	TM3DL									
R/W R	R									
Reset – – – – – – –	—									

B4h.7~0 **TM3DL:** Timer3 count data bit 7~0

SFR B5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM3DH	_				TM3DH					
R/W	—		R							
Reset	_	—	—	-	—	-	—	-		
D 51 6 0	TADIL T	0 1	. 1. 14 0							

B5h.6~0 TM3DH: Timer3 count data bit 14~8

SFR B6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM3RLD		TM3RLD								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		
	TI CODI D									

B6h.7~0 **TM3RLD:** Timer3 overflow reload data for Timer3 bit 22~15 (TM3SEC)

SFR B7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM3ADJ	TM3ADJS		TM3ADJ							
R/W	R/W		R/W							
Reset	0	0	0	0	0	0	0	0		

B7h.7 TM3ADJS: Timer3 adjustment sign

0: Timer3 positive adjust, to increase Timer3 counting rate

1: Timer3 negative adjust, to decrease Timer3 counting rate

B7h.6~0 **TM3ADJ:** Timer3 adjust magnitude, 0.477 ppm per LSB. The adjustment is calculated as ±TM3ADJ*0.477ppm. The total adjustable range is ± 61ppm.

Note6: also refer to Section 6 for more information about Timer0/1/2/3 Interrupt enable and priority.

9. UART

The UART uses SCON and SBUF SFRs. SCON is the control register, SBUF is the data register. Data is written to SBUF for transmission and SBUF is read to obtain received data. The received data and transmitted data registers are completely independent. In addition to standard 8051's full duplex mode, this chip also provides one wire mode. If the UART1W bit is set, both transmit and receive data use P3.1 pin.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

87h.7 **SMOD:** UART double baud rate control bit

0: Disable UART double baud rate

1: Enable UART double baud rate

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	SXTGAIN		STPPCK	PWRFLT	UART1W	WDTPSC	TM3PSC	
R/W	R/W		R/W	R/W	R/W	R/W	R/W	
Reset	1	1	0	0	0	0	0	1

94h.3 **UART1W:** One wire UART mode enable, both TXD/RXD use P3.1 pin 0: Disable one wire UART mode

1: Enable one wire UART mode

SFR 98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

98h.7~6	SM0,SM1: Serial port mode select bit 0,1
	00: Mode0: 8 bit shift register, Baud Rate = F_{SYSCLK} / 2
	01: Mode1: 8 bit UART, Baud Rate is variable

- 10: Mode2: 9 bit UART, Baud Rate = F_{SYSCLK} / 32 or / 64
- 11: Mode3: 9 bit UART, Baud Rate is variable

98h.5 SM2: Serial port mode select bit 2

SM2 enables multiprocessor communication over a single serial line and modifies the above as follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop bit is received. In Mode 0, SM2 should be 0.

- 98h.4 **REN:** UART reception enable 0: Disable reception 1: Enable reception
- 98h.3 **TB8:** Transmit Bit 8, the ninth bit to be transmitted in Mode 2 and 3
- 98h.2 **RB8:** Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit in Mode 1 if SM2=0

98h.1 TI: Transmit interrupt flagSet by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes.Must be cleared by S/W.

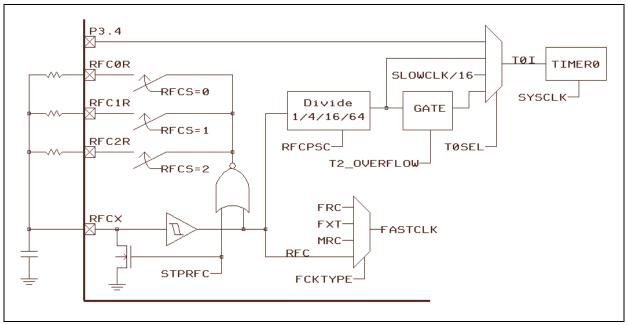
98h.0 **RI:** Receive interrupt flag Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.

SFR 99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SBUF				SB	UF			
R/W				R/	W			
Reset	-	_	_	_	_	_	_	—


⁹⁹h.7~0 **SBUF:** UART transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

F_{SYSCLK} denotes System clock frequency, the UART baud rate is calculated as below.

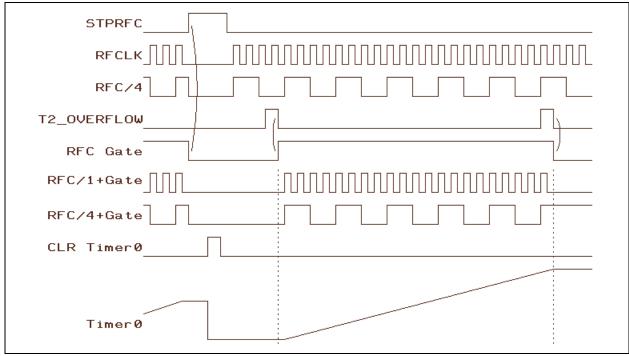
- Mode 0: Baud Rate = $F_{SYSCLK} / 2$
- Mode 1, 3: if using Timer1 auto reload mode Baud Rate = (SMOD + 1) x F_{SYSCLK} / (32 x 2 x (256 – TH1))
- Mode 1, 3: if using Timer2 Baud Rate = Timer2 overflow rate / 16 = F_{SYSCLK} / (32 x (65536 – RCP2H, RCP2L))
- Mode 2: Baud Rate = $(SMOD + 1) \times F_{SYSCLK} / 64$


Note6: also refer to Section 6 for more information about UART Interrupt enable and priority.

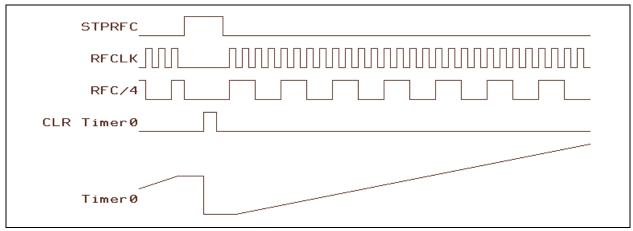
Note8: also refer to Section 8 for more information about how Timer2 controls UART clock.

10. Resistance to Frequency Converter (RFC)

The RFC module can build the RC oscillation circuitry with RFCX pin and RFC0R, RFC1R or RFC2R pins. Only one RC oscillation circuitry is active at a time. There are 2 methods to measure the RFC clock frequency. One is to set the RFC as the Timer0 Counter mode input, the other one is to set RFC as the System clock. Since SXT/FXT is a precise timing source, user can derive the RFC frequency by comparing the Timer's count data which running by RFC and SXT/FXT.



RFC Structure



The Timer0's event count input can be selected by TOSEL SFR. When TOSEL=3, the RFC clock is gated by Timer2's overflow period then go into the Timer0 for event counting. This function helps Timer0 to count the RFC clock with more accuracy by H/W automatically start and stop gating the RFC clock. The steps of this usage are described below.

- 1. Proper setting the PINMODE/RFCON SFR to setup the RFC oscillation circuitry.
- 2. CT0N=1 (Timer0 counter mode), CT2N=0 (Timer2 timer mode), T0SEL=3.
- 3. STPRFC=1, RFC gating is cleared and waiting for next Timer2 overflow to start
- 4. Clear Timer0, write TH2/TL2 with a data to accelerate Timer2 overflow (ex: FF00)
- 5. STPRFC=0, RFC starts, wait for next two Timer2 overflows.
- 6. The Timer0 counting the RFC clock only in between the two Timer2 overflows time slot.

RFC clock to Timer0, T0SEL=3

RFC clock to Timer0, T0SEL=1

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
RFCON	POR	RFC	TO	SEL	RFC	CPSC	RF	FCS				
R/W	R/	W	R/	/W	R	/W	R/	/W				
Reset	0	0	0	0	1	1	0	0				
AFh.7~6	PORFC: PO.	0~P0.3 pin R	FC mode co	ntrol.								
	00: P0.0~P0	00: P0.0~P0.3 are not RFC pins										
	01: P0.0 an	d P0.1 are R	FC pins, P0.2	2 and P0.3 are	e not RFC pi	ns						
			-	not RFC pin								
	11: P0.0~P0	0.3 are RFC	pins									
AFh.5~4	TOSEL: Tim	ner0 Counter	mode (CT0)	N=1) input se	lect							
	00: P3.4 pi	n (8051 stand	lard)									
	01: RFC cl	ock divided l	by 1/4/16/64									
	10: Slow cl	ock divided	by 16 (SLOV	VCLK/16)								
	11: RFC cl	ock divided l	by 1/4/16/64	gated by Tin	her2 overflow	V						
AFh.3~2	RFCPSC: R	FC clock div	vider to Time	er0								
	00: divided	by 64										
	01: divided	by 16										
	10: divided	by 4										
	11: divided	by 1										
AFh.1~0	RFCS: Selec	et RFC conve	ert channel.									
	00: RFC0R	(P0.1)										
	01: RFC1R	(P0.2)										
	10: RFC2R	(P0.3)										

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	_	_	_	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W	_	_	—	R/W	R/W	R/W	R/W	R/W
Reset		_	_	0	0	0	0	0

F8h.1 **STPRFC:** Set 1 to stop RFC clock oscillating

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	FCK	ГҮРЕ	SELFCK	SCKTYPE	STPFSUB		CLKPSC	
R/W	R/	W	R/W	R/W	R/W		R/W	
Reset	0	0	0	0	0	1	0	1

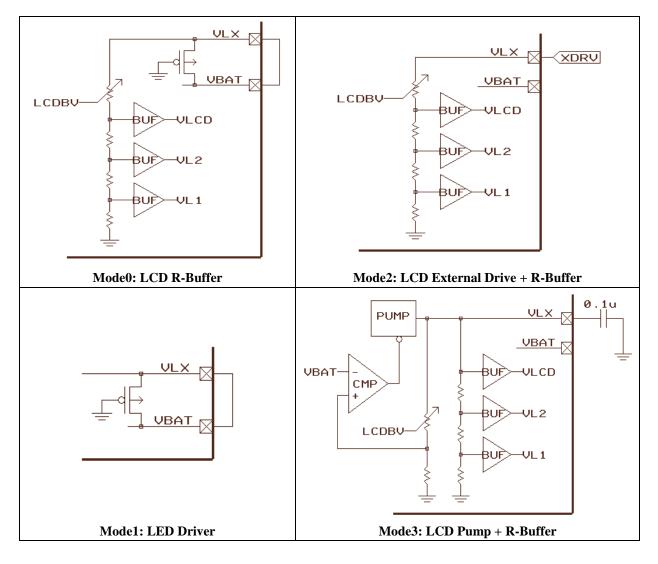
D8h.7~6 **FCKTYPE:** Fast clock type select, These bits can be changed only in Slow mode (SELFCK=0) 00: Fast clock is FRC

01: Fast clock is FXT, P2.1 and P2.2 are crystal oscillator pins

10: Fast clock is MRC

11: Fast clock is RFC, S/W must setup RFC oscillating circuitry before this setting.

Note: POSEG has higher priority than PORFC, S/W must disable the pin's LCD mode for RFC function.



11. LCD / LED Driver

The 1/3 Bias LCD Driver is capable of driving the LCD panel with 3~8 Commons and maximum 45 Segments. The VCLD voltage has 16 brightness levels, which is controlled by LCDBV SFR. The VL1 and VL2 voltage level are divided from VLCD. So VL1=VLCD/3, VL2=VLCD*2/3 and VL3=VLCD. The LCD clock can be driven by Slow clock or Fast clock. If SXT is the clock source, the LCD frame rate ranges from 43 Hz to 98 Hz according to LCD Duty and LCDFRM. If the LCD clock comes from other clock source, the Frame rate varies proportionally to the clock frequency. The frame rate of LED mode is double of LCD mode in the same setting. The LED and LCD module share the same LCD RAM and several common SFR. The 4 types LCD/LED driver Mode are described below.

The VL1, VL2 and VLCD (VL3) LCD 1/3 bias voltage are generated by tenx's unique tiny current LCD Buffer technology, which can drive very big LCD panel without waveform distortion, but the Driver itself only consumes small current (1.6uA @ V_{BAT} =3V, Mode0). This technique also reduce external component and pin connection for package/PCB cost reduction.

In LED mode, the device provides maximum 8COM x 36SEG driver. For LED application, the COM pin is active low with dead time control and the Segment pin is active high. Each COM pin can sink 40mA current when V_{BAT} =3V. The device support All LED Segment mode for DC output. In such application, user set LCDUTY=7 and fill the LCDRAM SEG bit with same data. For example, write 0xF001 with 0x00 for SEG1's low level output; write 0xF009 with 0xFF for SEG9's high level output.

Mode0 (LCD R-Buffer): VLX is short to VBAT by chip internal circuit. User can detect the V_{BAT} voltage level by LBD, then set the LCDBV SFR for VLCD divide voltage (brightness level).

Mode1 (LED Mode): VLX is short to VBAT by chip internal circuit or external pin connection.

Mode2 (LCD External Drive + R-Buffer): VLX is driven by the external voltage source. User can set the LCDBV SFR for VLCD divide voltage (brightness level). The device needs $VLX > V_{BAT}$ for proper operation in this mode.

Mode3 (LCD Pump + R-Buffer): VLX is pump to a certain voltage level by chip internal circuit and the VLCD is the buffer output of VLX. The VLX needs a $0.1\text{uF} \sim 1\text{uF}$ external capacitor for pumping operation. User can detect the V_{BAT} voltage level by LBD, then set the LCDBV SFR for VLX pump voltage (brightness level). The Mode3 pump efficiency is degraded and consumes more current while VLCD is higher.

Note: Mode2 and Mode3 are not valid for 48 pin package, because VLX is short to VBAT.

Table below illustrates VLCD and VL1 voltage for Mode0, Mode2 and Mode3. It is possible to switch Mode0 and Mode3 in a single application. In such case, the VLX is connected with a $0.1uF\sim1uF$ capacitor to VSS. User can select Mode0 when V_{BAT} >VLCD and select Mode3 when V_{BAT} <VLCD.

LCD Mode	Мо	de0 & Mode2	}		Mode3	
LCDBV	VLCD	VL1	(V)	VLCD	VL1	(V)
LCDBV	VLCD	VLX=3V	VLX=5V	VLCD	$V_{BAT}=2.4V$	V _{BAT} =3V
0	VLX * 24/40	0.600	1.000	$V_{BAT} * 1.062$	0.850	1.062
1	VLX * 25/40	0.625	1.042	V _{BAT} * 1.124	0.899	1.124
2	VLX * 26/40	0.650	1.083	$V_{BAT} * 1.188$	0.950	1.188
3	VLX * 27/40	0.675	1.125	V _{BAT} * 1.250	1.000	1.250
4	VLX * 28/40	0.700	1.167	V _{BAT} * 1.311	1.049	1.311
5	VLX * 29/40	0.725	1.208	V _{BAT} * 1.375	1.100	1.375
6	VLX * 30/40	0.750	1.250	$V_{BAT} * 1.437$	1.150	1.437
7	VLX * 31/40	0.775	1.292	$V_{BAT} * 1.500$	1.200	1.500
8	VLX * 33/40	0.825	1.375	V _{BAT} * 1.564	1.251	1.564
9	VLX * 34/40	0.850	1.417	$V_{BAT} * 1.627$	1.302	
10	VLX * 35/40	0.875	1.458	V _{BAT} * 1.690	1.352	
11	VLX * 36/40	0.900	1.500	$V_{BAT} * 1.752$	1.401	
12	VLX * 37/40	0.925	1.542	$V_{BAT} * 1.811$	1.449	
13	VLX * 38/40	0.950	1.583	V _{BAT} * 1.875	1.500	
14	VLX * 39/40	0.975	1.625	V _{BAT} * 1.935	1.548	
15	VLX * 40/40	1.000	1.667	$V_{BAT} * 2.000$		

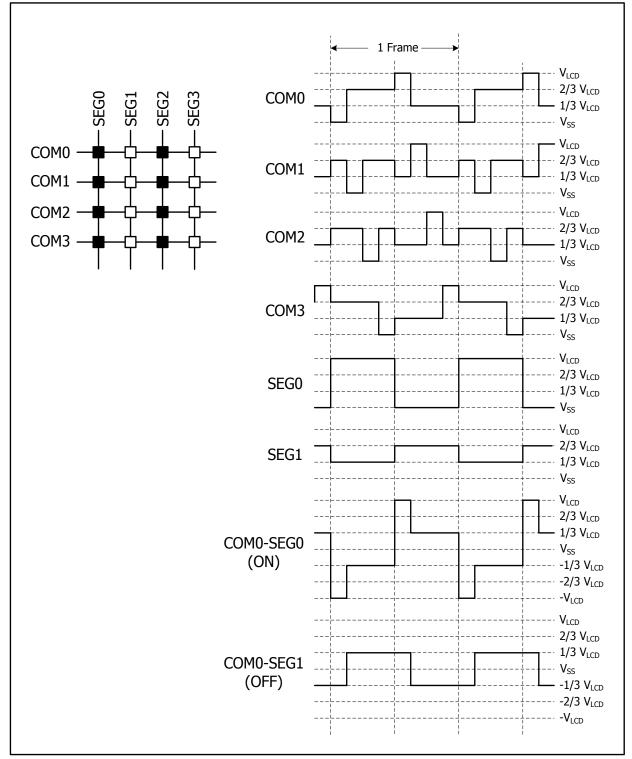
LCD Brightness level setting by LCDBV

LCD Frame	LCDFMR (SFR B1h.1~0)							
Rate (Hz)	00	01	10	11				
1/3 Duty	57	68	85	98				
1/4 Duty	43	51	64	73				
1/5 Duty	46	59	68	82				
1/6 Duty	57	68	85	98				
1/7 Duty	49	59	73	84				
1/8 Duty	43	51	64	73				

LCD Frame Rate when LCDCLK=SXT

SFR B1h								
DIL DIL	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LCON	DSPON		LCDUTY		LCD	CLK	LCD	FMR
R/W	R/W		R/W		R/	W	R/	W
Reset	0	0	0	1	0	0	1	0
B1h.7			splay enable c	control				
	0: LCD / L	ED disable						
	1: LCD / L	ED enable						
B1h.6~4	LCDUTY: I		duty control					
	000: 1/3 du	•						
	001: 1/4 du	•						
	010: 1/5 du	•						
	011: 1/6 du	•						
	100: 1/7 du 101: 1/8 du	•						
		•	DC output m	ode, SEG0~2	replace the	COM0~2 ou	tnut	
B1h.3~2	LCDCLK:	-	-	iode, BEGO 2	replace the	COMO 2 00	iput.	
D111.3~2	00: SLOW		clock source					
	00: SLOW							
	10: FASTC							
	11: FASTC							
B1h.1~0	LCDFMR:	LCD / LED	Frame rate co	ontrol If SXT	the LCD	1. 1		
				muon n om	is the LCD of	clock source	, the accurate	LCD frame
	rate is listed	in the table		ers clock is the			·	
				ers clock is the			·	
	by the clock	frequency p	above. If othe roportional to	ers clock is the 32KHz.	LCD clock	source, the I	Frame rate ca	n be derived
SFR B2h	by the clock Bit 7	frequency p Bit 6	above. If othe roportional to Bit 5	ers clock is the 0 32KHz. Bit 4		source, the B Bit 2	Frame rate car Bit 1	
LCON2	by the clock	frequency p Bit 6 LCD	above. If othe roportional to Bit 5 DMOD	ers clock is the 32KHz. Bit 4 LEDBLC	LCD clock	source, the H Bit 2 LCI	Frame rate car Bit 1 DBV	n be derived
LCON2 R/W	by the clock Bit 7	frequency p Bit 6 LCD R	above. If othe roportional to Bit 5 DMOD /W	ers clock is the 32KHz. Bit 4 LEDBLC R/W	ELCD clock Bit 3	source, the I Bit 2 LCI R/	Frame rate ca Bit 1 DBV W	n be derived Bit 0
LCON2 R/W Reset	by the clock Bit 7	frequency p Bit 6 LCD R 0	above. If othe roportional to Bit 5 MOD /W 0	Bit 4 Bit 4 LEDBLC R/W 0	Bit 3	source, the H Bit 2 LCI	Frame rate car Bit 1 DBV	n be derived
LCON2 R/W	by the clock Bit 7 LCDMOD:	frequency p Bit 6 LCD R 0 LCD / LED	above. If othe roportional to Bit 5 MOD /W 0 mode select f	ers clock is the 32KHz. Bit 4 LEDBLC R/W	Bit 3	source, the I Bit 2 LCI R/	Frame rate ca Bit 1 DBV W	n be derived Bit 0
LCON2 R/W Reset	Bit 7 LCDMOD: 00: Mode0,	frequency p Bit 6 LCD R 0 LCD / LED , LCD R-Bu	above. If othe roportional to Bit 5 MOD /W 0 mode select f ffer	Bit 4 Bit 4 LEDBLC R/W 0	Bit 3	source, the I Bit 2 LCI R/	Frame rate ca Bit 1 DBV W	n be derived Bit 0
LCON2 R/W Reset	by the clock Bit 7 - - - LCDMOD: 00: Mode0, 01: Mode1,	frequency p Bit 6 LCD R 0 LCD / LED , LCD R-Bu , LED mode	above. If othe roportional to Bit 5 MOD /W 0 mode select f ffer	Bit 4 Bit 4 LEDBLC R/W 0 for COM and	Bit 3	source, the I Bit 2 LCI R/	Frame rate ca Bit 1 DBV W	n be derived Bit 0
LCON2 R/W Reset	by the clock Bit 7 - - LCDMOD: 00: Mode0, 01: Mode1, 10: Mode2,	frequency p Bit 6 LCD R 0 LCD / LED , LCD R-Bu , LED mode , LCD Exter	above. If othe roportional to Bit 5 MOD /W 0 mode select 1 ffer nal Drive + R	Bit 4 Bit 4 LEDBLC R/W 0 for COM and	Bit 3	source, the I Bit 2 LCI R/	Frame rate ca Bit 1 DBV W	n be derived Bit 0
LCON2 R/W Reset B2h.6~5	by the clock Bit 7 - - LCDMOD: 00: Mode0, 01: Mode1, 10: Mode2, 11: Mode3,	frequency p Bit 6 LCD R 0 LCD / LED , LCD R-Bu , LCD R-Bu , LCD Exter , LCD Pump	above. If othe roportional to Bit 5 MOD /W 0 mode select f ffer nal Drive + R 0 + R-Buffer	Bit 4 Bit 4 LEDBLC R/W 0 for COM and	Bit 3	source, the I Bit 2 LCI R/	Frame rate ca Bit 1 DBV W	n be derived Bit 0
LCON2 R/W Reset	by the clock Bit 7 - - UCDMOD: 00: Mode0, 01: Mode1, 10: Mode2, 11: Mode3, LEDBLC: L	frequency p Bit 6 LCD R 0 LCD / LED , LCD R-Bu , LCD R-Bu , LCD Exter , LCD Pump , LCD Pump	above. If othe roportional to Bit 5 MOD /W 0 mode select f ffer nal Drive + R o + R-Buffer ess balance	Bit 4 Bit 4 LEDBLC R/W 0 for COM and	Bit 3	source, the I Bit 2 LCI R/	Frame rate ca Bit 1 DBV W	n be derived Bit 0
LCON2 R/W Reset B2h.6~5	by the clock Bit 7 - - LCDMOD: 00: Mode0, 01: Mode1, 10: Mode2, 11: Mode3, LEDBLC: L 0: LED No:	frequency p Bit 6 LCD R 0 LCD / LED , LCD R-Bu , LCD R-Bu , LCD Exter , LCD Pump , LCD Pump , LCD brightno	above. If othe roportional to Bit 5 MOD /W 0 mode select f ffer nal Drive + R 0 + R-Buffer ess balance ness	Bit 4 Bit 4 LEDBLC R/W 0 for COM and	Bit 3	source, the I Bit 2 LCI R/	Frame rate ca Bit 1 DBV W	n be derived Bit 0
LCON2 R/W Reset B2h.6~5 B2h.4	by the clock Bit 7 - - LCDMOD: 00: Mode0, 01: Mode1, 10: Mode2, 11: Mode3, LEDBLC: L 0: LED Not 1: LED Bal	frequency p Bit 6 LCD R 0 LCD / LED , LCD R-Bu , LCD R-Bu , LCD Exter , LCD Exter , LCD Pump ED brightne rmal Brightne	above. If othe roportional to Bit 5 MOD /W 0 mode select f ffer nal Drive + R 0 + R-Buffer ess balance ness atness	Bit 4 Bit 4 LEDBLC R/W 0 for COM and	Bit 3 0 SEG pins	source, the I Bit 2 LCI R/	Frame rate ca Bit 1 DBV W	n be derived Bit 0
LCON2 R/W Reset B2h.6~5	by the clock Bit 7 - - LCDMOD: 00: Mode0, 01: Mode1, 10: Mode2, 11: Mode3, LEDBLC: L 0: LED No: 1: LED Bal LCDBV: LC	frequency p Bit 6 LCD R 0 LCD / LED , LCD R-Bu , LCD R-Bu , LCD Exter , LCD Exter , LCD Pump ED brightne rmal Bright lanced Bright	above. If othe roportional to Bit 5 MOD /W 0 mode select f ffer nal Drive + R 0 + R-Buffer ess balance ness stiness ss, VLCD Vo	Bit 4 Bit 4 LEDBLC R/W 0 for COM and	Bit 3 0 SEG pins	source, the H Bit 2 LCI R/ 0	Frame rate ca Bit 1 DBV W	n be derived Bit 0

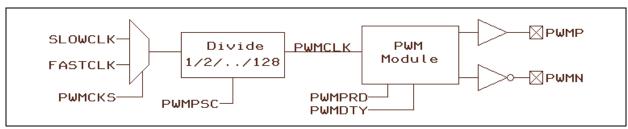
 $\begin{array}{l} 0000: \mbox{VLCD} = \mbox{VLX} * 24/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.062 \ (\mbox{Mode3}) \\ 0001: \mbox{VLCD} = \mbox{VLX} * 25/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.124 \ (\mbox{Mode3}) \\ 0010: \mbox{VLCD} = \mbox{VLX} * 26/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.188 \ (\mbox{Mode3}) \\ 0011: \mbox{VLCD} = \mbox{VLX} * 27/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.250 \ (\mbox{Mode3}) \\ 0100: \mbox{VLCD} = \mbox{VLX} * 28/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.311 \ (\mbox{Mode3}) \\ 0101: \mbox{VLCD} = \mbox{VLX} * 29/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.375 \ (\mbox{Mode3}) \\ 0110: \mbox{VLCD} = \mbox{VLX} * 30/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.437 \ (\mbox{Mode3}) \\ 0111: \mbox{VLCD} = \mbox{VLX} * 31/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.500 \ (\mbox{Mode3}) \\ 1000: \mbox{VLCD} = \mbox{VLX} * 31/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.564 \ (\mbox{Mode3}) \\ 1001: \mbox{VLCD} = \mbox{VLX} * 34/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.627 \ (\mbox{Mode3}) \\ 1010: \mbox{VLCD} = \mbox{VLX} * 35/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.690 \ (\mbox{Mode3}) \\ 1000: \mbox{VLCD} = \mbox{VLX} * 36/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.811 \ (\mbox{Mode3}) \\ 1100: \mbox{VLCD} = \mbox{VLX} * 38/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.875 \ (\mbox{Mode3}) \\ 1101: \mbox{VLCD} = \mbox{VLX} * 38/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.875 \ (\mbox{Mode3}) \\ 1101: \mbox{VLCD} = \mbox{VLX} * 39/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 1.935 \ (\mbox{Mode3}) \\ 1111: \mbox{VLCD} = \mbox{VLX} * 40/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 2.000 \ (\mbox{Mode3}) \\ 1111: \mbox{VLCD} = \mbox{VLX} * 40/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{BAT} * 2.000 \ (\mbox{Mode3}) \\ 1111: \mbox{VLCD} = \mbox{VLX} * 40/40 \ (\mbox{Mode0},2); \mbox{VLCD} = \mbox{V}_{B$



SFR 92h	Bit 7	Bit 6	Bit 5	E	Bit 4	Bit 3	В	it 2	Bit 1	Bit 0
PINMODE	—	P2HS	SEG		P2LS	EG			POSEG	
R/W	—	R/'	W		R/V	V			R/W	
Reset	—	1	1		1	1		1	1	1
92h.6~5	P2HSEG: P2	2.4~P2.6 pin	LCD/LEI) mode	control.					
		2.6 are I/O pi								
		d P2.5 are I/C	1			<u> </u>	L			
		I/O pin, P2.5				egment p	ins			
		2.6 are LCD/I	U	-						
92h.4~3	P2LSEG: P2	-) mode o	control.					
		2.3 are I/O pi								
		d P2.2 are I/C								
		I/O pin, P2.2				egment p	ins			
		2.3 are LCD/I	U	-	S					
92h.2~0	POSEG: Port			ntrol.						
		P0.6 are I/O p								
		P0.5 are I/O p								
		P0.4 are I/O p								
		20.3 are I/O p 20.2 are I/O p				0	-			
		20.2 are I/O p 20.1 are I/O p				-	-			
		I/O pin, P0.								
		20.6 are LCD			0	ment pin	5			
	111.10.01	0.0 ule LeD		Sineite pi	115					
		COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0	
	Adr	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	F000						SEG0	SEG0	SEG0	
	F001						SEG1	SEG1	SEG1	
	F001						SEG2	SEG2	SEG2	
	F003						SEG2	SEG3	SEG2 SEG3	
	F004					SEG4	SEG4	SEG4	SEG3	
	F004 F005				SEG5	SEG4	SEG4	SEG4	SEG4	
	F005			SEG6	SEG5 SEG6	SEG5 SEG6	SEG5 SEG6	SEG5 SEG6	SEG5 SEG6	
	F008 F007		SEG7	SEG0 SEG7	SEG0 SEG7	SEG0 SEG7	SEG0 SEG7	SEG0 SEG7	SEG0 SEG7	
		SEC.9								
	F008	SEG8	SEG8	SEG8	SEG8	SEG8	SEG8	SEG8	SEG8	
	F009	SEG9	SEG9	SEG9	SEG9	SEG9	SEG9	SEG9	SEG9	

F 009	SEG9	SEG9	SEG9	SEG9	SEG9	SEG9	SEG9	SEG9		
F00A~F02D		SEG10~SEG45								
F02E	SEG46	SEG46	SEG46	SEG46	SEG46	SEG46	SEG46	SEG46		
F02F	SEG47	SEG47	SEG47	SEG47	SEG47	SEG47	SEG47	SEG47		

LCD/LED RAM Mapping (8051's External Data Memory space)



LCD Waveform, 1/3 Bias, 1/4 Duty, (VLCD=3*VL1)

12. PWM

The PWM can select Fast clock or Slow clock as its clock source, with divided by 1~128 prescaler. The PWM period is adjustable by PWMPRD SFR and its 256 duty cycle controlled by PWMDTY SFR. The PWMP and PWMN are positive and negative CMOS output pairs, enabled by P3MODH SFR.

SFR AEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON2	PWMCKS		PWMPSC		TKAUTO	ATKRATE	ATK	NUM
R/W	R/W		R/W		R/W	R/W	R/	W
Reset	0	0	0	0	0	0	1	1

AEh.7 **PWMCKS:** PWM clock source select

0: Slow clock

1: Fast clock

AEh.6~4 **PWMPSC:** PWM clock prescaler

000: PWM clock is Slow/Fast clock divided by 128

001: PWM clock is Slow/Fast clock divided by 64

010: PWM clock is Slow/Fast clock divided by 32

011: PWM clock is Slow/Fast clock divided by 16

100: PWM clock is Slow/Fast clock divided by 8

101: PWM clock is Slow/Fast clock divided by 4

110: PWM clock is Slow/Fast clock divided by 2

111: PWM clock is Slow/Fast clock divided by 1

SFR 9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWMPRD		PWMPRD									
R/W				R/	W						
Reset	1	1 1 1 1 1 1 1 1									
0.41.7.0	DUVMDDD.										

9Ah.7~0 **PWMPRD:** PWM Period, FFh=256 PWMCLK, 7Fh=128 PWMCLK

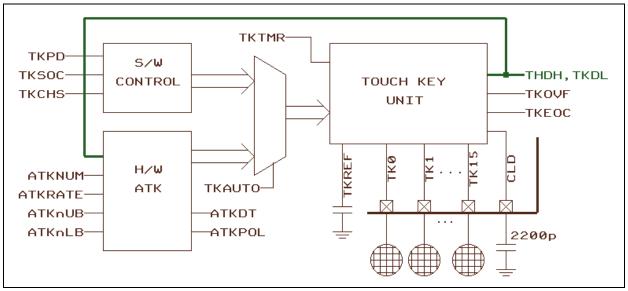
SFR 9Bh	Bit 7	it 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
PWMDTY		PWMDTY								
R/W		R/W								
Reset	1	0	0	0	0	0	0	0		
0D1 - 0										

9Bh.7~0 **PWMDTY:** PWM Duty, 0=0 PWMCLK, 80h=128 PWMCLK, FFh=255 PWMCLK

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	P3M	OD7	P3MOD6		P3MOD5		P3MOD4	
R/W	R/	W	R/	R/W		R/W		W
Reset	0	0	0	0	0	0	0	0

A5h.5~4 **P3MOD6:** P3.6 pin control.

11: Mode3, P3.6 is PWMN CMOS push pull output.


A5h.3~2 **P3MOD5:** P3.5 pin control.

11: Mode3, P3.5 is PWMP CMOS push pull output.

13. Touch Key

The Touch Key offers an easy, simple and reliable method to implement finger touch detection. During the key scan operation, it only requires an external capacitor component on CLD pin. The device support 16 channels touch key detection with S/W manual mode (SWTK) and H/W Auto Mode (ATK). Only one mode can be active at a time.

Touch Key Structure

To use the Touch Key, user must setup the Pin Mode (*Section 7*) correctly as below table. Setting Mode0 for a Touch Key pin can pull up the pin during idling and reduce the mutual interference between the adjacent keys. While a TK pin is under scanning, either being in S/W manual mode or H/W ATK mode, the Touch Key module automatically disable the pin's pull-up resistor.

Pin Mode setting for Touch Key	TK0~TK3	TK4~TK14	TK15	CLD
Pin is Touch Key, Idling		P1/P3.n=Mode0	P2OE.4=0,	
Pin is Touch Key, S/W Scanning	P1.n=Mode0	r 1/r 3.11-widde0	P2.4=1	P3.4=Mode3
Pin is Touch Key, H/W Auto Scan (ATK)		—	_	

S/W Manual Mode Touch Key Detection (SWTK)

All Touch Key (TK0~TK15) can be used for S/W manual mode. To start a S/W scan, user assigns TKAUTO=0 and TKPD=0, then set the TKSOC bit to start touch key conversion. After the end of conversion, H/W clears the TKSOC bit and set the TKIF interrupt flag. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate. TKEOC=0 means conversion is in process. TKEOC=1 means the conversion is finish, and the touch key counting result is stored into the 10 bits TK Data Counter TKDH and TKDL. The larger TK pin capacitance is, the smaller TK Data counter is. After TKEOC=1, S/W must wait at least 10 us for next conversion. If TKOVF=1, means the conversion transaction exceeds period time. Reduce/Increase TKTMR can reduce/increase TK Data Count to adapt the system board circumstances.

The Touch Key unit has an internal built-in reference capacitor to simulate the KEY behavior. Set TKREF to 1 and start the S/W scan mode can get the TK Data Count of this capacitor. Since the internal capacitor would not be affected by water or mobile phone, it is useful for comparing the environment background noise.

H/W Auto Touch Key Detection (ATK)

Only TK0~TK3 are eligible for ATK mode. This function can work in Slow/Idle mode and save the S/W effort as well as minimize the chip current consumption. To use this function, user set TKAUTO=1 to enable H/W fully control the TK unit. H/W then automatically detects the TK0~TK3's TK Data Count at every 31ms or 62ms rate (when Slow clock is SXT). If a Key's 10-bits TK Data Count is more or less than the pre-set compare threshold (ATKnUBx or ATKnLBx SFR), H/W generates TKIF interrupt and wake up CPU. User can switch the TK module back to S/W Manual Mode after the TK interrupt and identify/confirm the Key touch event.

Note: After ATK interrupt, S/W must stop ATK to prevent next ATK scan overwriting the ATK trigger status.

SFR ADh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON	TKPD	TK	ГMR	TKREF		TKO	CHS	
R/W	R/W	R	/W	R/W		R/	W	
Reset	1	1	0	1	1	1	1	1
ADh.7	TKPD: Tou	ch Key Powe	er Down (for	SWTK)				
	0: Touch K	•						
	1: Touch K	ey disable						
ADh.6~5	TKTMR: T	ouch Key Co	onversion Tir	ne (for both S	WTK and A	TK)		
	00: Conver	sion time sho	ortest					
	11: Conver	sion time lor	ngest					
ADh.4		•	-	itor select (for	SWTK)			
		K0~TK15 cł						
		•	ference capac					
ADh.3~0	TKCHS: To	•	annel Select	(for SWTK)				
	0000: TK0	. ,						
	0001: TK1	. ,						
	0010: TK2	. ,						
	0011: TK3	. ,						
				unication pin)				
		. , .	Mode comm	unication pin)				
	0110: TK6 0111: TK7	. ,						
	1000: TK8	. ,						
	1000: TK8 1001: TK9	. ,						
	1001: TK)	. ,						
	1010: TK1							
	1100: TK12	. ,						
	1101: TK1	. ,						
	1110: TK14	· ,						
	1111: TK1	. ,						

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1		—	—	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL
R/W	_	—	—	R/W	R/W	R/W	R/W	R/W
Reset	_	—	—	0	0	0	0	0

F8h.4 **TKSOC:** Rising edge of this bit will trigger a Touch Key conversion (for SWTK). Basically, this bit is automatically cleared by H/W after end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate issue.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKEOC	TKOVF	TK	DH	_	ATKPOL	AT	KDT
R	R	Ι	{	_	R	F	2
_	_	_	_	_	—	_	_
TKEOC: To TKSOC=1.	ouch Key End	l of Conversi	on, 1=EOC	(for SWTK).	TKEOC may	have 3uS de	elay after
TKOVF: To	uch Key Cou	inter Overflo	w, 1=Overf	low (for both	SWTK and A	ΓK)	
TKDH: Tou	ch Key Coun	ter Data 9~8	(for both S	WTK and AT	K)		
ATKPOL: 7	ouch Key A	uto Scan trig	ger polarity	(for ATK)			
	•	-			nLB)		
		•	•				
ATKDT: To	uch Key Aut	o Scan Resu	lt (for ATK)			
	•		,	,			
01: TK1 ha	s a trigger ev	ent					
11: TK3 ha	s a trigger ev	ent					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Tł	KDL			
				R			
_	-	—	—	_	—	_	_
TKDL: Tou	ch Key Coun	ter Data 7~0	(for both S	WTK and AT	K)		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCKS	Bit 6	PWMPSC	Bit 4	TKAUTO	ATKRATE	ATK	NUM
PWMCKS R/W		PWMPSC R/W		TKAUTO R/W	ATKRATE R/W	ATK R/	NUM W
PWMCKS R/W 0	0	PWMPSC R/W 0	0	TKAUTO R/W 0	ATKRATE R/W 0	ATK R/	NUM W 1
PWMCKS R/W 0 TKAUTO: 7	0 Fouch Key A	PWMPSC R/W 0 Auto Scan Mo	0 ode Enable.	TKAUTOR/W0Note: After A	ATKRATE R/W 0 ATK interrupt,	ATK R/	NUM W 1
PWMCKS R/W 0 TKAUTO: 7 prevent next	0 Fouch Key A ATK scan ov	PWMPSC R/W 0 Auto Scan Me verwriting the	0 ode Enable. e ATKPOL	TKAUTO R/W 0	ATKRATE R/W 0 ATK interrupt,	ATK R/	NUM W 1
PWMCKS R/W 0 TKAUTO: 7 prevent next 0: Touch K	0 Fouch Key A ATK scan ov ey is S/W Mo	PWMPSC R/W 0 Auto Scan Me verwriting the ode (SWTK)	0 ode Enable. e ATKPOL	TKAUTOR/W0Note: After Aand ATKDT S	ATKRATE R/W 0 ATK interrupt, status.	ATK R/ 1 S/W must	NUM W 1
PWMCKS R/W 0 TKAUTO: 7 prevent next 0: Touch K 1: Touch K	0 Fouch Key A ATK scan ov ey is S/W M ey is H/W A	PWMPSC R/W 0 Auto Scan Mo verwriting tha ode (SWTK) uto Mode (A	0 ode Enable. e ATKPOL TK). <i>Note:</i>	TKAUTOR/W0Note: After Aand ATKDT S	ATKRATE R/W 0 ATK interrupt,	ATK R/ 1 S/W must	NUM W 1
PWMCKS R/W 0 TKAUTO: 7 prevent next 0: Touch K 1: Touch K ATKRATE:	0 Fouch Key A ATK scan ov ey is S/W Mo ey is H/W Au Touch Key	PWMPSC R/W 0 Auto Scan Me verwriting the ode (SWTK) uto Mode (A Scan Rate (fe	0 ode Enable. e ATKPOL TK). <i>Note:</i> or ATK)	TKAUTOR/W0Note: After Aand ATKDT S	ATKRATE R/W 0 ATK interrupt, status.	ATK R/ 1 S/W must	NUM W 1
	TKEOC R - TKEOC: To TKSOC=1. TKOVF: To TKDH: Tou ATKPOL: T 0: ATK eve 1: ATK eve ATKDT: To 00: TK0 ha 01: TK1 ha 10: TK2 ha 11: TK3 ha Bit 7 -	TKEOCTKOVFRRTKEOC: Touch Key EndTKSOC=1.TKOVF: Touch Key CourtATKPOL: Touch Key CourtATKPOL: Touch Key Au0: ATK event is triggere1: ATK event is triggere1: ATK event is triggere ev00: TK0 has a trigger ev01: TK1 has a trigger ev10: TK2 has a trigger ev11: TK3 has a trigger evBit 7Bit 6	TKEOCTKOVFTKRRFTKEOC: Touch Key End of ConversiTKSOC=1.TKOVF: Touch Key Counter OverfloTKDH: Touch Key Counter Data 9~8ATKPOL: Touch Key Counter Data 9~8ATKPOL: Touch Key Auto Scan trig0: ATK event is triggered by Low Bo1: ATK event is triggered by Up BouATKDT: Touch Key Auto Scan Result00: TK0 has a trigger event11: TK1 has a trigger event10: TK2 has a trigger event11: TK3 has a trigger eventBit 7Bit 6Bit 5TKDL: Touch Key Counter Data 7~0	TKEOCTKOVFTKDHRRRTKEOC: Touch Key End of Conversion, 1=EOCTKSOC=1.TKOVF: Touch Key Counter Overflow, 1=Overflow, 1=O	TKEOCTKOVFTKDH-RRRTKEOC:Touch Key End of Conversion, 1=EOC (for SWTK).TKSOC=1.TKOVF:Touch Key Counter Overflow, 1=Overflow (for bothTKDH:Touch Key Counter Data 9~8 (for both SWTK and ATATKPOL:Touch Key Counter Data 9~8 (for both SWTK and ATATKPOL:Touch Key Auto Scan trigger polarity (for ATK)0:ATK event is triggered by Low Boundary (TK Data < ATK	TKEOC TKOVF TKDH – ATKPOL R R R – R – – – R – TKEOC: Touch Key End of Conversion, 1=EOC (for SWTK). TKEOC may TKSOC=1. TKOVF: Touch Key Counter Overflow, 1=Overflow (for both SWTK and AT TKDH: Touch Key Counter Data 9~8 (for both SWTK and ATK) ATKPOL: Touch Key Auto Scan trigger polarity (for ATK) 0: ATK event is triggered by Low Boundary (TK Data < ATKnLB)	TKEOCTKOVFTKDH-ATKPOLATHRRR-RI $ -$ RI $ -$ TKEOC: Touch Key End of Conversion, 1=EOC (for SWTK). TKEOC may have 3uS deTKSOC=1. TKOVF: Touch Key Counter Overflow, 1=Overflow (for both SWTK and ATK) TKDH: Touch Key Counter Data 9~8 (for both SWTK and ATK) ATKPOL: Touch Key Auto Scan trigger polarity (for ATK)0: ATK event is triggered by Low Boundary (TK Data < ATKnLB)

1: ATK scan rate is 1024 Slow clock cycles (31ms, if Slow clock is SXT)

AEh.1~0 ATKNUM: Touch Key Auto Scan channel Number (for ATK)

00: ATK only detect TK0

01: ATK detect TK0 and TK1

10: ATK detect TK0~TK2

11: ATK detect TK0~TK3

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	_		—	_	TKIF	IE2	P1IF	TF3
R/W	_		—	—	R/W	R/W	R/W	R/W
Reset			_	_	0	0	0	0

95h.3 **TKIF:** Touch Key Interrupt Flag (for both SWTK and ATK) Set by H/W when SWTK end of conversion (TKEOC=1) or ATK event is detected. It is cleared automatically when the program performs the interrupt service routine. S/W can write F7h to INTFLG to clear this bit. (*Note2*)

Note6: also refer to Section 6 for more information about Touch Key Interrupt enable and priority.

SFR C4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK0LBL		ATK0LBL							
R/W		R/W							
Reset	0	1	0	0	0	0	0	0	

C4h.7~0 **ATK0LBL:** Low Boundary bit 7~0 Compared with TK0 scan (for ATK)

ATK1LBL ATK1LBL								
	ATK1LBL							
R/W R/W	R/W							
Reset 0 1 0 0 0 0 0	0							

C5h.7~0 ATK1LBL: Low Boundary bit 7~0 Compared with TK1 scan (for ATK)

SFR C6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK2LBL		ATK2LBL							
R/W		R/W							
Reset	0	1	0	0	0	0	0	0	

C6h.7~0 **ATK2LBL:** Low Boundary bit 7~0 Compared with TK2 scan (for ATK)

SFR C7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK3LBL		ATK3LBL								
R/W		R/W								
Reset	0	1	0	0	0	0	0	0		
071 7 0	C_{71} 7 0 ATEVIDI I. D. 1. 1. 7 0 C. 1. 1. 4 TEV2 (C. ATEV)									

C7h.7~0 ATK3LBL: Low Boundary bit 7~0 Compared with TK3 scan (for ATK)

SFR D2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATKLBH	ATK.	3LBH	ATK2	ATK2LBH		ATK1LBH		ATK0LBH	
R/W	R/	R/W		R/W		W	R/	W	
Reset	0	0	0	0	0	0	0	0	

D2h.7~6 **ATK3LBH:** Low Boundary bit 9~8 Compared with TK3 scan (for ATK)

D2h.5~4 ATK2LBH: Low Boundary bit 9~8 Compared with TK2 scan (for ATK)

D2h.3~2 ATK1LBH: Low Boundary bit 9~8 Compared with TK1 scan (for ATK)

D2h.1~0 ATK0LBH: Low Boundary bit 9~8 Compared with TK0 scan (for ATK)

SFR D3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKUBH	ATK:	BUBH	ATK2UBH		ATK1UBH		ATK0UBH	
R/W	R/	R/W		R/W		W	R/W	
Reset	1	1	1	1	1	1	1	1

D3h.7~6 ATK3UBH: Up Boundary bit 9~8 Compared with TK3 scan (for ATK)

D3h.5~4 ATK2UBH: Up Boundary bit 9~8 Compared with TK2 scan (for ATK)

D3h.3~2 **ATK1UBH:** Up Boundary bit 9~8 Compared with TK1 scan (for ATK)

D3h.1~0 **ATK0UBH:** Up Boundary bit 9~8 Compared with TK0 scan (for ATK)

SFR D4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK0UBL	ATK0UBL								
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	
D 41 7 0									

D4h.7~0 ATK0UBL: Up Boundary bit 7~0 Compared with TK0 scan (for ATK)

SFR D5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK1UBL	ATK1UBL									
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

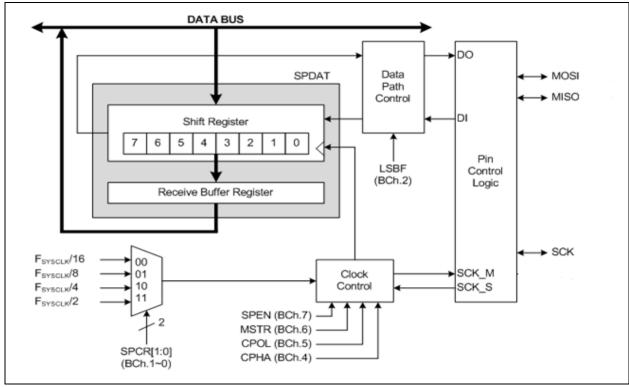
D5h.7~0 ATK1UBL: Up Boundary bit 7~0 Compared with TK1 scan (for ATK)

SFR D6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK2UBL	ATK2UBL								
R/W	R/W								
Reset	1	1	1	1	1	1	1	1	

D6h.7~0 ATK2UBL: Up Boundary bit 7~0 Compared with TK2 scan (for ATK)

SFR D7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ATK3UBL	ATK3UBL									
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

D7h.7~0 **ATK3UBL:** Up Boundary bit 7~0 Compared with TK3 scan (for ATK)



14. Serial Peripheral Interface (SPI)

The SPI module is capable of full-duplex, synchronous, serial communication between the **F2268** and peripheral devices. The peripheral devices can be other MCUs, A/D converter, sensors, or Flash memory, etc. The SPI runs at a baud rate up to the system clock divided by two. Firmware can read the status flags, or the operation can be interrupt driven.

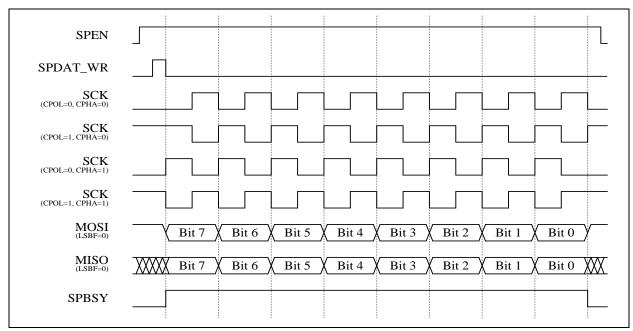
The features of the SPI module include:

- Master or Slave mode operation
- 3-wire mode operation
- Full-duplex operation
- Programmable transmit bit rate
- Single Buffer receive
- Serial clock phase and polarity options
- MSB-first or LSB-first shifting selectable

SPI System Block Diagram

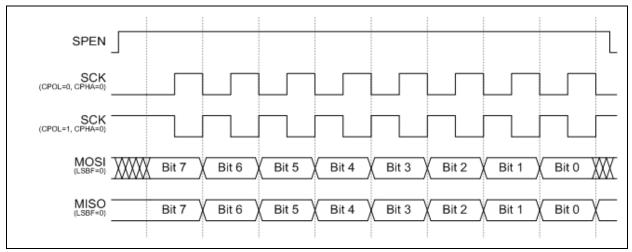
The MOSI (P2.4) signal is an output when SPI is operating in Master mode and an input when SPI is operating in Slave mode. The MISO (P2.6) signal is an input when SPI is operating in Master mode and an output when SPI is operating in Slave mode. Data is transferred MSB or LSB first by setting the LSBF bit. The SCK (P2.5) signal is an output from a Master device and an input to Slave devices. It is used to synchronize the data on the MOSI and MISO lines of Master and Slave. SPI generates the signal with eight programmable clock rates in Master mode.

Master Mode

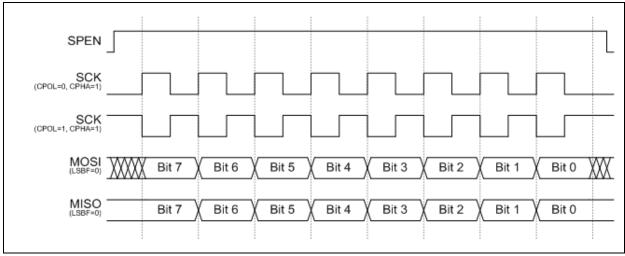

The SPI operates in Master mode by setting the MSTR bit in the SPCON. To start transmit, writing a data to the SPDAT. If SPBSY=0, the data will be transferred to the shift register and starts shift out on the MOSI line. The data of the Slave shift in from the MISO line at the same time. When the SPIF bit becomes set at the end of transfer, the receive data is written to receiver buffer and the RCVBF bit in the SPSTA is set. To prevent an overrun condition, software must read the SPDAT before next byte enters the shift register. The SPBSY bit will be set when writing a data to SPDAT to start transmit, and be cleared at the end of the eighth SCK period in Master mode.

Slave Mode

The SPI operates in Slave mode by clearing the MSTR bit in the SPCON. The transmission will start when the SPEN bit in the SPCON is set. The data from a Master will shift into the shift register through the MOSI line, and shift out from the shift register on the MISO line. When a byte enters the shift register, the data will be transferred to receiver buffer if RCVBF=0. If RCVBF=1, the newer received data will not be transferred to receiver buffer and the RCVOVF bit is set. After a byte enters the shift register, the SPIF and RCVBF bits are set. To prevent an overrun condition, software must read the SPDAT or write 0 to RCVBF before next byte enters the shift register. The maximum SCK frequency allowed in Slave mode is $F_{SYSCLK}/4$.


Serial Clock

The SPI has four clock types by setting the CPOL and CPHA bits in the SPCON register. The CPOL bit defines the level of the SCK in SPI idle state. The level of the SCK in idle state is low when CPOL=0, and is high when CPOL=1. The CPHA bit defines the edges used to sample and shift data. The SPI sample data on the first edge of SCK period and shift data on the second edge of SCK period when CPHA=0. The SPI sample data on the second edge of SCK period and shift data on first edge of SCK period when CPHA=1. Figures below show the detail timing in Master and Slave modes. Both Master and Slave devices must be configured to use the same clock type before the SPEN bit is set. The SPCR controls the Master mode serial clock frequency. This register is ignored when operating in Slave mode. The SPI clock can select System clock divided by 2, 4, 8, or 16 in Master mode.



Master Mode Timing

Slave Mode Timing (CPHA=0)

Slave Mode Timing (CPHA=1)

In both Master and Slave modes, the SPIF interrupt flag is set by H/W at the end of a data transfer. If write data to SPDAT when SPBSY=1, the WCOL interrupt flag will be set by H/W. When this occurs, the data write to SPDAT will be ignored, and shift register will not be written.

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SPCON	SPEN	MSTR	CPOL	CPHA	_	LSBF	SPCR			
R/W	R/W	R/W	R/W	R/W		R/W	R/	W		
Reset	0	0	0	0	_	0	0	0		
BCh.7	SPEN: SPI Enable.0: SPI Disable1: SPI Enable, P2.4~P2.6 are SPI functional pins.									
BCh.6	MSTR: Master Mode Enable. 0: Slave Mode 1: Master Mode									
BCh.5	CPOL: SPI Clock Polarity 0: SCK is low in idle state 1: SCK is high in idle state									

BCh.4	CPHA: SPI Clock Phase
	0: Data sampled on first edge of SCK period
	1: Data sampled on second edge of SCK period
BCh.2	LSBF: LSB First.
	0: MSB first
	1: LSB first
BCh.1~0	SPCR: SPI Clock Rate.
	00: $F_{SYSCLK}/2$
	01: F _{SYSCLK} /4
	10: F _{SYSCLK} /8
	11: F _{SYSCLK} /16

SFR BDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SPSTA	SPIF	WCOL		RCVOVF	RCVBF	SPBSY	_	_		
R/W	R/W	R/W	_	R/W	R/W	R	—	—		
Reset	0	0		0	0	—	—	—		
BDh.7 SPIF: SPI Interrupt Flag										

BDh.7	SPIF: SPI Interrupt Flag
	Set by H/W at the end of a data transfer. Cleared by H/W when interrupt is vectored into. Write 0 to this bit will clear this flag.
BDh.6	WCOL: Write Collision Interrupt Flag
	Set by H/W if write data to SPDAT when SPBSY=1. Write 0 to this bit or rewrite data to SPDAT when SPBSY=0 will clear this flag.
BDh.4	RCVOVF: Receive Buffer Overrun Flag
	Set by H/W at the end of a data transfer and RCVBF=1. Write 0 to this bit or read SPDAT register will clear this flag.
BDh.3	RCVBF: Receive Buffer Full Flag
	Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag.
BDh.2	SPBSY: SPI Busy Flag (Read Only)

BDh.2 SPBSY: SPI Busy Flag (Read Only) Set by H/W when a SPI transfer is in progress.

SFR BEh	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3		Bit 2	Bit 1	Bit 0					
SPDAT		SPDAT											
R/W		R/W											
Reset	0	0	0	0 0		0	0	0					

BEh.7~0 SPDAT: SPI Transmit and Receive Data

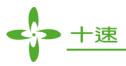
The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in Master mode. Reading SPDAT returns the contents of the receive buffer.

Note6: also refer to Section 6 for more information about SPI Interrupt enable and priority.

Note7: also refer to Section 7 for more information about SPI pins share with I/O pins

15. 6-bit SAR ADC

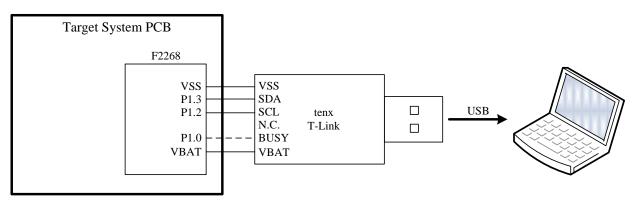
The 6-bit SAR ADC supports 3 channel analog inputs. To use the ADC, user only needs to select the ADC channel by setting ADCHS SFR. If ADCHS=0, The ADC stop converting and enters the power down mode. The ADC module uses 10 System clock cycles to make a conversion and launches next conversion immediately after the ADC convert result data latched. Lower System clock frequency may get more stable ADC performance. The ADC channel requires Mode3 pin setting to disable the pin's digital input path for power saving. User should not configure ADC and Touch Key channel on the same pin because of the channel input sensitivity issue.


SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
BGADCS	LVR2E		ADCHS		CMPVS				
R/W	R/W		R/W		R/W				
Reset	0	0	0	0	0	0	0	0	

C2h.6~4 ADCHS: ADC channel select

000: ADC disable 001: AD1 (P1.1) 010: AD2 (P1.2), (ICE Mode communication pin) 110: AD6 (P1.6)

SFR C3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
BGADCD	CMPO	—	ADCDT						
R/W	R	_			F	۲.			
Reset	_	_	-	-	-	_	-	-	


C3h.5~0 **ADCDT:** ADC convert data result

16. In Circuit Emulation (ICE) Mode

The **F2268** can support the In Circuit Emulation mode. To use the ICE Mode, user just needs to connect P1.2 and P1.3 pin to the tenx proprietary EV module. The benefit is that user can emulate the whole system without changing the on board target device. But there are some limits for the ICE mode as below.

- 1. The device must be un-protect.
- 2. The device's P1.2 and P1.3 pins must work in input Mode (P1MOD2=0/1 and P1MOD3=0/1).
- 3. During Program Code download, P1.0 sent acknowledge signal to T-Link unit. After download stage, P1.0 can be emulated as any other pins.
- 4. The Program ROM's addressing space 1D00h~1FFFh and 0033h~003Ah are occupied by tenx EV Module. So user Program cannot access these spaces.
- 5. The P1.2 and P1.3 pin's function cannot be emulated.
- 6. The V_{DD} level and VCON SFR are controlled by T-Link module.

SFR & CFGW MAP

_											
Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
80h	1111-1111	P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	
81h	0000-0111	SP				S	Р				
82h	0000-0000	DPL				DPL					
83h	0000-0000	DPH				DPH					
87h	0xxx-0000	PCON	SMOD		-	-	GF1	GF0	PD	IDL	
88h	0000-0000	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
89h	0000-0000	TMOD	GATE1	CT1N	TM	OD1	GATE0	CT0N TMOD0			
8Ah	0000-0000	TL0				TI	L0				
	0000-0000	TL1				T					
	0000-0000	TH0				TI	HO				
8Dh	0000-0000	TH1				TI					
90h	1111-1111	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	
91h	0000-0000	POOE				PO					
92h		PINMODE	-	P2H	SEG	P2L			POSEG		
93h	x000-0000	P2OE	-				P2OE				
94h	1100-0001	OPTION	SXTO	GAIN	STPPCK	PWRFLT	UART1W	WDTPSC	TM3		
	xxxx-0000	INTFLG	-	-	-	-	TKIF	IE2	P1IF	TF3	
-	0000-0000	P1WKUP				P1W					
	xxxx-xxx0	SWCMD				IAPALL					
98h	0000-0000	SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	XXXX-XXXX	SBUF				SB					
	1111-1111	PWMPRD				PWN					
		PWMDTY	D0 7	D0 (D2 5	PWM		D0.0	D0 1	D2 0	
A0h	1111-1111	P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	
A2h	0000-0000	P1MODL P1MODH	P1M P1M		P1M	OD2 OD6	P1M P1M		P1MOD0 P1MOD4		
	1111-1111	P3MODL	P1M P3M			OD0	P3M		P3MOD0		
	0000-0000	P3MODL P3MODH	P3M P3M			OD2 OD6	P3M P3M		P3MOD0 P3MOD4		
	0000-0000	TOCON	T2SEL	T1SEL	r Jivi	T2OCON	r Jivi	005	TCOCON		
	x111-1111	VCON	-	LDOE		VSET2			VSET1		
	0x00-0000	IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0	
	0000-0000	INTE1		_		SPIE	TKIE	EX1 EX2	P1IE	TM3IE	
	xxxx-xxxx	ATKDT	TKEOC	TKOVF	TK	DH	_	ATKPOL	ATH		
	xxxx-xxxx	TKDL				TK	DL				
ADh	1101-1111	TKCON	TKPD	TKT	MR	TKREF		TKC	CHS		
	0000-0011	TKCON2	PWMCKS		PWMPSC	1	TKAUTO	ATKRATE	ATK	NUM	
AFh	0000-1100	RFCON	POF	RFC	T05	SEL	RFC	PSC	RF	CS	
B0h	1111-1111	P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	
B1h	0001-0010	LCON	DSPON		LCDUTY		LCD	CLK	LCD	FMR	
B2h	x000-0001	LCON2	-	LCD	MOD	LEDBLC		LCE	DBV		
B3h	xxxx-xxxx	TM3SEC				TM3	SEC				
B4h	xxxx-xxxx	TM3DL				TM	3DL				
B5h	xxxx-xxxx	TM3DH	_				TM3DH				
B6h	0000-0000	TM3RLD				TM3	RLD				
B7h	0000-0000	TM3ADJ	TM3ADJS				TM3ADJ				
	•		•								

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	xx00-0000	IP			PT2	PS	PT1	PX1	PT0	PX0				
	xx00-0000	IP IPH	-	_										
			_	_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H				
	xxx0-0000	IP1	_	—	-	PSPI	PTKI	PX2	PP1	PT3				
	xxx0-0000	IP1H	-	-	-	PSPIH	PTKIH	PX2H	PP1H	PT3H				
	0000-x000	SPCON	SPEN	MSTR	CPOL	CPHA	-	LSBF	SP	-				
	00x0-0xxx	SPSTA	SPIF	WCOL	_	RCVOVF	RCVBF	SPBSY	-	_				
	0000-0000	SPDAT		SPDAT										
	0000-0000		LVR2E		ADCHS			CM	PVS					
		BGADCD	CMPO	-			ADO	CDT						
C4h	0100-0000	ATK0LBL		ATK0LBL										
C5h	0100-0000	ATK1LBL		ATK1LBL										
C6h	0100-0000	ATK2LBL		ATK2LBL										
C7h	0100-0000	ATK3LBL		ATK3LBL										
C8h	0000-0000	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N				
C9h	0xxx-xxxx	IAPWE		IAPWE										
CAh	0000-0000	RCP2L				RC	P2L							
CBh	0000-0000	RCP2H				RC	P2H							
CCh	0000-0000	TL2				TI	L2							
CDh	0000-0000	TH2				TI	H2							
D0h	0000-0000	PSW	CY	AC	F0	RS1	RS0	OV	F1	Р				
D2h	0000-0000	ATKLBH	ATK	3LBH	ATK	2LBH	ATK	ILBH	ATK()LBH				
D3h	1111-1111	ATKUBH	ATK:	SUBH	ATK	2UBH	ATK	IUBH	ATK(UBH				
D4h	1111-1111	ATK0UBL				ATK	OUBL		•					
D5h	1111-1111	ATK1UBL				ATK	IUBL							
D6h	1111-1111	ATK2UBL				ATK	2UBL							
D7h	1111-1111	ATK3UBL				ATK	3UBL							
D8h	0000-0101	CLKCON	FCKTYPE SELFCK SCKTYPE STPFSUB CLKPSC											
E0h	0000-0000	ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0				
F0h	0000-0000	В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0				
F7h	xxxx-xxxx	CFGWL	_	_	_	FRCF								
	xxx0-0000	AUX1	_	_	_	TKSOC	CLRWDT	CLRTM3	STPRFC	DPSEL				
								2	-					

Flash Address	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
3FFCh	CFGWR1		LBDADJ									
3FFDh	CFGWR2		_									
3FFEh	CFGWL	-	-	-			FRCF					
3FFFh	CFGWH	PROT	XRSTE	MVCLOCK	WDTE	-	-	—	-			

SFR & CFGW DESCRIPTION

	SFR	Bit#	Bit Name	R/W	Rst	Description
80h	P0	7~0	P0	R/W	FFh	Port0 data, also controls the P0.n pin's pull-up function. If the P0.n SFR data is "1" and the corresponding P0OE.n=0 (input mode), the pull-up is mashed
81h	SP	7~0	SP	R/W	07h	enabled. Stack Point
82h	DPL	7~0	DPL	R/W	00h	Data Point low byte
83h	DPH	7~0	DPH	R/W	00h	Data Point high byte
0.011	DIII	7	SMOD	R/W	0	Set 1 to enable UART double baud rate
		3	GF1	R/W	0	General purpose flag bit
87h	PCON	2	GF0	R/W	0	General purpose flag bit
0,11	1001	1	PD	R/W	0	Power down control bit, set 1 to enter STOP mode
		0	IDL	R/W	0	Idle control bit, set 1 to enter IDLE mode
		7	TF1	R/W	0	Timer1 overflow flag Set by H/W when Timer/Counter 1 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		6	TR1	R/W	0	Timer1 run control. 1: timer runs; 0: timer stops
		5	TF0	R/W	0	Timer0 overflow flag Set by H/W when Timer/Counter 0 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		4	TR0	R/W	0	Timer0 run control. 1:timer runs; 0:timer stops
88h	TCON	3	IE1	R/W	0	External Interrupt 1 (INT1 pin) edge flag Set by H/W when an INT1 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.
		2	IT1	R/W	0	External Interrupt 1 control bit 0: Low level active (level triggered) for INT1 pin 1: Falling edge active (edge triggered) for INT1 pin
		1	IE0	R/W	0	External Interrupt 0 (INT0 pin) edge flag Set by H/W when an INT0 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.
		0	IT0	R/W	0	External Interrupt 0 control bit 0: Low level active (level triggered) for INT0 pin 1: Falling edge active (edge triggered) for INT0 pin
		7	GATE1	R/W	0	Timer1 gating control bit 0: Timer1 enable when TR1 bit is set 1: Timer1 enable only while the INT1 pin is high and TR1 bit is set
		6	CT1N	R/W	0	Timer1 Counter/Timer select bit 0: Timer mode, Timer1 data increases at 2 System clock cycle rate 1: Counter mode, Timer1 increases by T1 pin or Slow clock event
		5~4	TMOD1	R/W	00	Timer1 mode select 00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow. 11: Timer1 stops
89h	TMOD	3	GATE0	R/W	0	Timer0 gating control bit 0: Timer0 enable when TR0 bit is set 1: Timer0 enable only while the INT0 pin is high and TR0 bit is set
		2	CT0N	R/W	0	Timer0 Counter/Timer select bit 0: Timer mode, Timer0 data increases at 2 System clock cycle rate 1: Counter mode, Timer0 increases by T0 pin, Slow clock or RFC event
		1~0	TMOD0	R/W	00	Timer0 mode select 00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow. 11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.
8Ah	TL0	7~0	TL0	R/W	00h	Timer0 data low byte
8Bh	TL1	7~0	TL1	R/W	00h	Timer1 data low byte
8Ch	TH0	7~0	TH0	R/W	00h	Timer0 data high byte
8Dh	TH1	7~0	TH1	R/W	00h	Timer1 data high byte

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
90h	P1	7~0	P1	R/W	FFh	Port1 data
91h	POOE	7~0	POOE	R/W	00h	Port0 CMOS Push-Pull output enable control, 1=Enable.
		6~5	P2HSEG	R/W	11	 P2.4~P2.6 pin LCD/LED mode control. 00: P2.4~P2.6 are I/O pins 01: P2.4 and P2.5 are I/O pins, P2.6 is LCD/LED Segment pin 10: P2.4 is I/O pin, P2.5 and P2.6 are LCD/LED Segment pins 11: P2.4~P2.6 are LCD/LED Segment pins
92h	PINMODE	4~3	P2LSEG	R/W	11	 P2.1~P2.3 pin LCD/LED mode control. 00: P2.1~P2.3 are I/O pins 01: P2.1 and P2.2 are I/O pins, P2.3 is LCD/LED Segment pin 10: P2.1 is I/O pin, P2.2 and P2.3 are LCD/LED Segment pins 11: P2.1~P2.3 are LCD/LED Segment pins
		2~0	P0SEG	R/W	111	Port0 LCD/LED mode control. 000: P0.0~P0.6 are I/O pins 001: P0.0~P0.5 are I/O pins, P0.6 is LCD/LED Segment pin 010: P0.0~P0.4 are I/O pins, P0.5~P0.6 are LCD/LED Segment pins 011: P0.0~P0.3 are I/O pins, P0.4~P0.6 are LCD/LED Segment pins 100: P0.0~P0.2 are I/O pins, P0.3~P0.6 are LCD/LED Segment pins 101: P0.0~P0.1 are I/O pins, P0.2~P0.6 are LCD/LED Segment pins 110: P0.0 is I/O pin, P0.1~P0.6 are LCD/LED Segment pins 111: P0.0~P0.6 are LCD/LED Segment pins
93h	P2OE	6~0	P2OE	R/W	00h	P2.6~P2.0 pin CMOS Push-Pull output enable control, 1=Enable.
		7~6	SXTGAIN	R/W	11	SXT oscillator gain 0=Lowest gain, 3=Highest Gain
		5	STPPCK	R/W	0	Set 1 to stop UART/Timer0/1/2 clock in Idle mode for current reducing.
				0	Set 1 to enhance the chip's power noise immunity	
		3	UART1W	R/W	0	Set 1 to enable one wire UART mode, both TXD/RXD use P3.1 pin.
94h	OPTION	2	WDTPSC	R/W	0	WDT Prescaler 0: WDT overflow at 65536 System clock count 1: WDT overflow at 32768 System clock count
		1~0	TM3PSC	R/W	01	Timer3 Interrupt rate 00: Timer3 interrupt occurs when 23 bit count data overflow 01: Timer3 interrupt rate is 32768 Slow clock cycles (1.0 second for SXT) 10: Timer3 interrupt rate is 16384 Slow clock cycles (0.5 second for SXT) 11: Timer3 interrupt rate is 8192 Slow clock cycles (0.25 second for SXT)
		3	TKIF	R/W	0	Touch Key Interrupt Flag (for both SWTK and ATK) Set by H/W when SWTK end of conversion (TKEOC=1) or ATK event is detected. It is cleared automatically when the program performs the interrupt service routine. S/W can write F7h to INTFLG to clear this bit.
		2	IE2	R/W	0	External Interrupt 2 (INT2 pin) edge flag Set by H/W when a falling edge is detected on the INT2 pin, no matter the EX2 is 0 or 1. It is cleared automatically when the program performs the interrupt service routine. S/W can write FBh to INTFLG to clear this bit.
95h	INTFLG	1	P1IF	R/W	0	Port1 pin change Interrupt flag Set by H/W when a Port1 pin state change is detected and its interrupt enable bit is set (P1WKUP). P1IE does not affect this flag's setting. It is cleared automatically when the program performs the interrupt service routine. S/W can write FDh to INTFLG to clear this bit.
		0	TF3	R/W	0	Timer3 Interrupt Flag Set by H/W when Timer3 reaches TM3PSC setting cycles. It is cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit.
96h	P1WKUP	7~0	P1WKUP	R/W	00h	P1.7~P1.0 pin individual Wake-up / Interrupt enable control 0: Disable; 1: Enable.
		7~0	SWRST	W	_	Write 56h to generate S/W Reset
97h	SWCMD	7~0	IAPALL	W	-	Write 65h to set IAPALL flag; Write other value to clear IAPALL flag. It is recommended to clear it immediately after IAP access.
		0	IAPALL	R	0	Flag indicates whole Flash can be access by IAP or not

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	SM0	R/W	0	Serial port mode select bit 0, 1 (SM0, SM1)=
		/	SMU	K/ W	0	00: Mode0: 8 bit shift register, Baud Rate = $F_{SYSCLK} / 2$ 01: Mode1: 8 bit UART, Baud Rate is variable
		6	CM1	DAV	0	10: Model: 8 bit UART, Baud Rate is variable 10: Model: 9 bit UART, Baud Rate = F_{SYSCLK} / 32 or / 64
		6	SM1	R/W	0	11: Mode3: 9 bit UART, Baud Rate is variable
						Serial port mode select bit 2
						SM2 enables multiprocessor communication over a single serial line and
		5	SM2	R/W	0	modifies the above as follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the received ninth data bit is 0.
						In Mode 1, the received interrupt will not be generated unless a valid stop
98h	SCON					bit is received. In Mode 0, SM2 should be 0.
		4	REN	R/W	0	Set 1 to enable UART Reception
		3	TB8	R/W	0	Transmitter bit 8, ninth bit to transmit in Modes 2 and 3
		2	RB8	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the step bit in Mode 1 if $SM2=0$
						the stop bit in Mode 1 if SM2=0 Transmit Interrupt flag
		1	TI	R/W	0	Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of
						the stop bit in other modes. Must be cleared by S/W
		0	DI	DAV	0	Receive Interrupt flag
		0	RI	R/W	0	Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.
0.01	CDUE	7.0	ODUE	DAV		UART transmit and receive data. Transmit data is written to this location
99h	SBUF	7~0	SBUF	R/W	-	and receive data is read from this location, but the paths are independent.
9Ah	PWMPRD	7~0	PWMPRD	R/W	FFh	PWM Period, FFh=256 PWMCLK, 7Fh=128 PWMCLK
9Bh	PWMDTY	7~0	PWMDTY	R/W	80h	PWM Duty, 0=0 PWMCLK, 80h=128 PWMCLK, FFh=255 PWMCLK
		7	P2.7	R/W	1	P2.7 data 0: Open Drain output low
		/	P2.7	K/ W	1	1: Schmitt-trigger input with pull up
A0h	P2					P2.6~P2.0 data, also controls the P2.n pin's pull-up function. If the P2.n
		6~0	6~0 P2.6~P2.0		7Fh	SFR data is "1" and the corresponding P2OE.n=0 (input mode), the pull-up
						is enabled. P1.3 Pin Control
		7~6	P1MOD3	R/W	00	00: Mode0; 01: Mode1; 10: Mode2; 11: not defined
		5~4	P1MOD2	R/W	00	P1.2 Pin Control
A2h	P1MODL	3~4	PIMOD2	K/W	00	00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3, P1.2 is ADC input
	IMIODE	3~2	P1MOD1	R/W	00	P1.1 Pin Control
						00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3, P1.1 is ADC input P1.0 Pin Control
		1~0	P1MOD0	R/W	00	00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3, P1.0 is T2O output
		7~6	P1MOD7	R/W	00	P1.7 Pin Control
						00: Mode0; 01: Mode1; 10: Mode2; 11: not defined
		5~4	P1MOD6	R/W	00	P1.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3, P1.6 is ADC input
A3h	P1MODH	2.0	P1MOD5	R/W	00	P1.5 Pin Control
		3~2	PIMOD5	K/W	00	00: Mode0; 01: Mode1; 10: Mode2; 11: not defined
		1~0	P1MOD4	R/W	00	P1.4 Pin Control
						00: Mode0; 01: Mode1; 10: Mode2; 11: not defined P3.3 Pin Control
		7~6	P3MOD3	R/W	11	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P3.3 is LCD Segment output
		5 4	DAMODA	DAV	11	P3.2 Pin Control
		5~4	P3MOD2	R/W	11	00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.2 is LCD Segment output
A4h	P3MODL					P3.1 Pin Control
		3~2	P3MOD1	R/W	11	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P3.1 is LCD Segment output
		1~0	P3MOD0	R/W	11	P3.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2
		1.0	1 511000	17, 11	11	11: Mode3, P3.0 is LCD Segment output
						11. modes, 15.0 is LeD Segment output

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7~6	P3MOD7	R/W	00	P3.7 Pin Control
		, 0	1311007	10	00	00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3, P3.7 is TCO output
		5~4	P3MOD6	R/W	00	P3.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3, P3.6 is PWMN output
A5h	P3MODH					P3.5 Pin Control
11011	TUNIODI	3~2	P3MOD5	R/W	00	00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3, P3.5 is PWMP output
						P3.4 Pin Control
		1~0	P3MOD4	R/W	00	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P3.4 is Touch Key charge collection (CLD) Timer2 Counter mode (CT2N=1) input select
		7	T2SEL	R/W	0	0: P1.0 pin (8051 standard)
			12022	10	Ũ	1: Slow clock divided by 16 (SLOWCLK/16)
						Timer1 Counter mode (CT1N=1) input select
		6	T1SEL	R/W	0	0: P3.5 pin (8051 standard)
						1: Slow clock divided by 16 (SLOWCLK/16)
						T2O pin duty and frequency control 000: 1/2 duty, 1/2 Timer2 overflow frequency
		5 2	TOCON	DAV	000	001: 1/3 duty, 1/3 Timer2 overflow frequency
		5~3	T2OCON	R/W	000	010: 1/4 duty, 1/4 Timer2 overflow frequency
A6h	TOCON					101: 2/3 duty, 1/3 Timer2 overflow frequency
						110: 3/4 duty, 1/4 Timer2 overflow frequency TCO pin duty and frequency control
						000: 1/2 duty, 1/2 SYSCLK frequency
						001: 1/3 duty, 1/3 SYSCLK frequency
			0 TCOCON	R/W	000	010: 1/4 duty, 1/4 SYSCLK frequency
		2~0				011: 1/4 duty, 1/2 SYSCLK frequency
						100: 1/2 duty, 1/1 SYSCLK frequency 101: 2/3 duty, 1/3 SYSCLK frequency
						110: 3/4 duty, 1/4 SYSCLK frequency
						111: 3/4 duty, 1/2 SYSCLK frequency
				R/W		Chip internal LDO Regulator enable control
		6	6 LDOE		1	0: LDO disable, $V_{DD} = V_{BAT}$
						1: LDO enable, V_{DD} = LDO Regulator output V_{DD} voltage setting in Fast/Slow mode while LDOE=1.
			3 VSET2			0xx: Invalid
A7h	VCON	5~3		R/W	111	100: $V_{DD} = V_{BAT} * 16/30$ in Fast/Slow mode
		5.05	VSL12	10/ 11		101: $V_{DD} = V_{BAT} * 17/30$ in Fast/Slow mode
						110: $V_{DD} = V_{BAT} * 18/30$ in Fast/Slow mode 111: $V_{DD} = V_{BAT} * 18/30$ in Fast/Slow mode
				┨───┤		111: $V_{DD} = V_{BG}*2.75 = 1.2V*2.75 = 3.3V$ in Fast/Slow mode V_{DD} voltage setting in Idle/Stop mode while LDOE=1. Definition is the
		2~0	VSET1	R/W	111	same as VSET2.
						Global interrupt enable control.
		7	EA	R/W	0	0: Disable all Interrupts.
		5	ETO.	D /337	0	1: Each interrupt is enabled or disabled by its own interrupt control bit.
4.01		5 4	ET2 ES	R/W R/W	0	Set 1 to enable Timer2 interrupt Set 1 to enable Serial Port (UART) Interrupt
A8h	IE	4	ES ET1	R/W	0	Set 1 to enable Timer1 Interrupt
		2	ET1 EX1	R/W	0	Set 1 to enable external INT1 pin Interrupt & Stop mode wake up capability
			ETO	R/W	0	Set 1 to enable External herriph milling te stop mode wate up explainly Set 1 to enable Timer0 Interrupt
			EX0	R/W	0	Set 1 to enable external INTO pin Interrupt & Stop mode wake up capability
		4	SPIE	R/W	0	Set 1 to enable SPI Interrupt
		3	TKIE	R/W	0	Set 1 to enable Touch Key Interrupt
A9h	INTE1	2	EX2	R/W	0	Set 1 to enable external INT2 pin Interrupt & Stop mode wake up capability
				R/W	0	Set 1 to enable Port1 Pin Change Interrupt
		0	TM3IE	R/W	0	Set 1 to enable Timer3 Interrupt

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description			
		7	TKEOC	R	-	Touch Key End of Conversion (for SWTK)			
		6	TKOVF	R		Touch Key Counter Overflow (for both SWTK and ATK)			
		5~4	TKDH	R	-	Touch Key Counter Data 9~8 (for both SWTK and ATK)			
ABh	ATKDT	2	ATKPOL	R	_	1: ATK event is triggered by Up Boundary (TK Data > ATKnUB)			
		1~0 ATKDT		R	Ι	Touch Key Auto Scan Result (for ATK) 00: TK0 has a trigger event 01: TK1 has a trigger event 10: TK2 has a trigger event 11: TK3 has a trigger event			
ACh	TKDL	7~0	TKDL	R		Couch Key Counter Data 7~0 (for both SWTK and ATK)			
		7 TKPD R/W 1 Touch Key Power Down (for SWTK) 0: Touch Key enable 1: Touch Key disable		0: Touch Key enable 1: Touch Key disable					
	6~		TKTMR	R/W	10	Touch Key Conversion Time (for both SWTK and ATK) 00: Conversion time shortest … 11: Conversion time longest			
		4	TKREF	R/W	1	Touch Key reference capacitor select (for SWTK) 0: Select TK0~TK15 channel 1: Select Touch Key reference capacitor channel			
ADh	TKCON 3~0 TKCHS R/W 1111 Tuth TK7 (P1.0) 0001: TK3 (P1.4) 0100: TK2 (P1.5) 0011: TK3 (P1.4) 0100: TK4 (P1.3), (ICE Mode communication pin) 0101: TK5 (P1.2), (ICE Mode communication pin) 0110: TK6 (P1.1) 0110: TK6 (P1.1) 0110: TK6 (P3.7) 1001: TK9 (P3.6) 1010: TK10 (P3.5) 1011: TK11 (P3.3) 1100: TK12 (P3.2) 1101: TK13 (P3.1)		0000: TK0 (P1.7) 0001: TK1 (P1.6) 0010: TK2 (P1.5) 0011: TK3 (P1.4) 0100: TK4 (P1.3) , (ICE Mode communication pin) 0101: TK5 (P1.2), (ICE Mode communication pin) 0110: TK6 (P1.1) 0111: TK6 (P1.1) 0111: TK7 (P1.0) 1000: TK8 (P3.7) 1001: TK9 (P3.6) 1010: TK10 (P3.5) 1011: TK11 (P3.3) 1100: TK12 (P3.2)						
		7	PWMCKS	R/W	0	PWM clock source select 0: Slow clock 1: Fast clock			
AEh	TKCON2	6~4	PWMPSC	R/W	000	PWM clock prescaler 000: PWM clock is Slow/Fast clock divided by 128 001: PWM clock is Slow/Fast clock divided by 64 010: PWM clock is Slow/Fast clock divided by 32 011: PWM clock is Slow/Fast clock divided by 16 100: PWM clock is Slow/Fast clock divided by 8 101: PWM clock is Slow/Fast clock divided by 4 110: PWM clock is Slow/Fast clock divided by 2 111: PWM clock is Slow/Fast clock divided by 1			
		3	TKAUTO	R/W	0	Touch Key Auto Scan Mode Enable 0: Touch Key is S/W Mode (SWTK) 1: Touch Key is H/W Auto Mode (ATK). <i>Note:</i> MRC must stop for ATK			
		2	ATKRATE	R/W	0	Touch Key Scan Rate (for ATK) 0: ATK scan rate is 2048 Slow clock cycles (62ms if Slow clock is SXT) 1: ATK scan rate is 1024 Slow clock cycles (31ms if Slow clock is SXT)			
			ATKNUM	R/W	11	Touch Key Auto Scan channel Number (for ATK) 00: ATK only detect TK0 01: ATK detect TK0 and TK1 10: ATK detect TK0~TK2 11: ATK detect TK0~TK3			

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description			
		7~6	PORFC	R/W	00	 P0.0~P0.3 pin RFC mode control. 00: P0.0~P0.3 are not RFC pins 01: P0.0 and P0.1 are RFC pins, P0.2 and P0.3 are not RFC pins 10: P0.0~P0.2 are RFC pins, P0.3 is not RFC pin 11: P0.0~P0.3 are RFC pins 			
AFh	RFCON	5~4	TOSEL	R/W	00	Timer0 Counter mode (CT0N=1) T0 input select 00: P3.4 pin (8051 standard) 01: RFC clock divided by 1/4/16/64 10: Slow clock divided by 16 (SLOWCLK/16) 11: RFC clock divided by 1/4/16/64 gated by Timer2 overflow			
		3~2	RFCPSC	R/W	11	RFC clock divider to Timer0 00: divided by 64 01: divided by 16 10: divided by 4 11: divided by 1			
		1~0	RFCS	R/W	00	Select RFC convert channel. 00: RFC0R (P0.1) 01: RFC1R (P0.2) 10: RFC2R (P0.3)			
B0h	P3	7~0	P3	R/W	FFh				
		7	DSPON	R/W	0	LCD / LED display enable control 0: LCD / LED disable 1: LCD / LED enable			
B1h	LCON	6~4 LCDUTY	R/W	001	LCD / LED duty control. 000: 1/3 duty 001: 1/4 duty 010: 1/5 duty 010: 1/6 duty 100: 1/7 duty 101: 1/8 duty 111: All LED Segment DC output, SEG0~2 replace the COM0~2				
		3~2	LCDCLK	R/W	00	LCD / LED clock source 00: SLOWCLK 01: SLOWCLK/2 10: FASTCLK/128 11: FASTCLK/256			
		1~0	LCDFMR	R/W	10	LCD /LED Frame Rate, 3=Highest; 0=Lowest			
		6~5	LCDMOD	R/W	0	LCD / LED mode select for COM and SEG pins 00: Mode0, LCD R-Buffer 01: Mode1, LED mode 10: Mode2, LCD External Drive + R-Buffer 11: Mode3, LCD Pump + R-Buffer			
		4	LEDBLC	R/W	0	LED brightness balance 0: LED Normal Brightness 1: LED Balanced Brightness			
B2h	B2h LCON2		LCDBV	R/W	0001	LCD Brightness, VLCD Voltage level control 0000: VLCD = VLX * 24/40 (Mode0,2); VLCD = VBAT * 1.062 (Mode3) 0001: VLCD = VLX * 25/40 (Mode0,2); VLCD = VBAT * 1.124 (Mode3) 0010: VLCD = VLX * 26/40 (Mode0,2); VLCD = VBAT * 1.124 (Mode3) 0011: VLCD = VLX * 27/40 (Mode0,2); VLCD = VBAT * 1.250 (Mode3) 0100: VLCD = VLX * 28/40 (Mode0,2); VLCD = VBAT * 1.311 (Mode3) 0101: VLCD = VLX * 29/40 (Mode0,2); VLCD = VBAT * 1.375 (Mode3) 0110: VLCD = VLX * 30/40 (Mode0,2); VLCD = VBAT * 1.437 (Mode3) 0111: VLCD = VLX * 31/40 (Mode0,2); VLCD = VBAT * 1.500 (Mode3) 1000: VLCD = VLX * 33/40 (Mode0,2); VLCD = VBAT * 1.564 (Mode3) 1001: VLCD = VLX * 34/40 (Mode0,2); VLCD = VBAT * 1.627 (Mode3) 1011: VLCD = VLX * 35/40 (Mode0,2); VLCD = VBAT * 1.690 (Mode3) 1011: VLCD = VLX * 36/40 (Mode0,2); VLCD = VBAT * 1.752 (Mode3) 1011: VLCD = VLX * 37/40 (Mode0,2); VLCD = VBAT * 1.811 (Mode3) 1101: VLCD = VLX * 38/40 (Mode0,2); VLCD = VBAT * 1.855 (Mode3) 1101: VLCD = VLX * 39/40 (Mode0,2); VLCD = VBAT * 1.811 (Mode3) 1101: VLCD = VLX * 39/40 (Mode0,2); VLCD = VBAT * 1.875 (Mode3) 1111: VLCD = VLX * 39/40 (Mode0,2); VLCD = VBAT * 1.935 (Mode3) 1111: VLCD = VLX * 40/40 (Mode0,2); VLCD = VBAT * 2.000 (Mode3)			

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description			
B3h	TM3SEC	7~0	TM3SEC	R	-	Timer3 count data bit 22~15			
B4h	TM3DL	7~0	TM3DL	R	-	Timer3 count data bit 7~0			
B5h	TM3DH	6~0	TM3DH	R	-	Timer3 count data bit 14~8			
B6h	TM3RLD	7~0	TM3RLD	R/W	00h	Timer3 overflow reload data for Timer3 bit 22~15 (TM3SEC)			
B7h	TM3AD.I	7	TM3ADJS	R/W	0	Timer3 adjustment sign 0: Timer3 positive adjust, to increase Timer3 counting rate 1: Timer3 negative adjust, to decrease Timer3 counting rate			
D/II	1113/103	6~0	TM3ADJ	R/W	00h	Timer3 adjust magnitude, 0.477 ppm per LSB. The adjustment is calculated as \pm TM3ADJ*0.477ppm. The total adjustable range is \pm 61ppm.			
		5	PT2	R/W	0	Timer2 Interrupt Priority Low bit			
		4	PS	R/W	0	Serial Port (UART) Interrupt Priority Low bit			
B8h	IP	3	PT1	R/W	0	Timer1 Interrupt Priority Low bit			
Don		2	PX1	R/W	0	External INT1 Pin Interrupt Priority Low bit			
		1	PT0	R/W	0	Timer0 Interrupt Priority Low bit			
		0	PX0	R/W	0	External INTO Pin Interrupt Priority Low bit			
		5	PT2H	R/W	0	Timer2 Interrupt Priority High bit			
		4	PSH	R/W	0	Serial Port (UART) Interrupt Priority High bit			
B9h	IPH	3	PT1H	R/W	0	Timer1 Interrupt Priority High bit			
D)II		2	PX1H	R/W	0	External INT1 Pin Interrupt Priority High bit			
		1	PT0H	R/W	0	Timer0 Interrupt Priority High bit			
		0	PX0H	R/W	0	External INTO Pin Interrupt Priority High bit			
		4	PSPI	R/W	0	SPI Interrupt Priority Low bit			
		3	PTKI	R/W	0	Touch Key Interrupt Priority Low bit			
BAh	IP1	2	PX2	R/W	0	External INT2 Pin Interrupt Priority Low bit			
		1	PP1	R/W	0	Port1 pin change Interrupt Priority Low bit			
		0	PT3	R/W	0	Timer3 Interrupt Priority Low bit			
		4	PSPIH	R/W	0	SPI Interrupt Priority High bit			
		3	PTKIH	R/W	0	Touch Key Interrupt Priority High bit			
BBh	IP1H	2	PX2H	R/W	0	External INT2 Pin Interrupt Priority High bit			
		1	PP1H	R/W	0	Port1 Interrupt Priority High bit			
		0	PT3H	R/W	0	Timer3 Interrupt Priority High bit			
		7	SPEN	R/W	0	Set 1 to enable SPI & P2.4~P2.6 SPI pin function			
		6	MSTR	R/W	0	SPI Master Mode Enable. 0: Slave Mode; 1: Master Mode			
		5	CPOL	R/W	0	SPI Clock Polarity 0: SCK is low in idle state; 1: SCK is high in idle state			
BCh	SPCON	4	СРНА	R/W	0	SPI Clock Phase 0: Data sampled on first edge of SCK period 1: Data sampled on second edge of SCK period			
		2	LSBF	R/W	0	SPI LSB First. 0: MSB first; 1: LSB first			
		1~0	SPCR	R/W	00	SPI Clock Rate. 00: F _{SYSCLK} /2; 01: F _{SYSCLK} /4; 10: F _{SYSCLK} /8; 11: F _{SYSCLK} /16 SPI Interrupt Flag			
		7	SPIF	R/W	0	Set by H/W at the end of a data transfer. Cleared by H/W when interrupt is vectored into. Write 0 to this bit will clear this flag.			
		6	WCOL	R/W	0	Write Collision Interrupt Flag Set by H/W if write data to SPDAT when SPBSY=1. Write 0 to this bit or rewrite data to SPDAT when SPBSY=0 will clear this flag.			
BDh	3Dh SPSTA		RCVOVF	R/W	0	Receive Buffer Overrun Flag Set by H/W at the end of a data transfer and RCVBF=1. Write 0 to this bit or read SPDAT register will clear this flag.			
		3	RCVBF	R/W	0	Receive Buffer Full Flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag.			
		2	SPBSY	R	_	SPI Busy Flag (Read Only) Set by H/W when a SPI transfer is in progress.			

Adr	SFR	Bit#	Bit Name	R/W	Rst	t Description			
BEh	SPDAT	7~0	SPDAT	R/W	00h	SPI Transmit and Receive Data The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in Master mode. Reading SPDAT returns the contents of the receive buffer.			
		7	LVR2E	R/W	0	CMPVS setting done and the Bandgap voltage stable.			
		6~4	ADCHS	R/W	ADC channel select				
C2hBGADCSSelect V _{BAT} resistor divider for Comparator input to compare with Bandgap reference voltage. If LVR2E=1, the Low Voltage Reset triggered when V _{BAT} resistor divider is lower than 1.2V (CMPO= 0000: Comparator Disable 0001: the Comparator input is VBAT*12/24, LBD/LVR2=2.30V 0010: the Comparator input is VBAT*12/25, LBD/LVR2=2.30V 0010: the Comparator input is VBAT*12/26, LBD/LVR2=2.30V 0010: the Comparator input is VBAT*12/26, LBD/LVR2=2.30V 0010: the Comparator input is VBAT*12/26, LBD/LVR2=2.32V 0100: the Comparator input is VBAT*12/28, LBD/LVR2=2.34V 		Bandgap reference voltage. If LVR2E=1, the Low Voltage Reset #2 is triggered when V_{BAT} resistor divider is lower than 1.2V (CMPO=0). 0000: Comparator Disable 0001: the Comparator input is VBAT*12/24, LBD/LVR2=2.30V 0010: the Comparator input is VBAT*12/25, LBD/LVR2=2.41V 0011: the Comparator input is VBAT*12/26, LBD/LVR2=2.52V 0100: the Comparator input is VBAT*12/27, LBD/LVR2=2.63V 0101: the Comparator input is VBAT*12/28, LBD/LVR2=2.63V 0101: the Comparator input is VBAT*12/29, LBD/LVR2=2.74V 0110: the Comparator input is VBAT*12/29, LBD/LVR2=2.85V 0111: the Comparator input is VBAT*12/30, LBD/LVR2=2.96V 1000: the Comparator input is VBAT*12/31, LBD/LVR2=3.07V 1001: the Comparator input is VBAT*12/33, LBD/LVR2=3.28V 1010: the Comparator input is VBAT*12/37, LBD/LVR2=3.49V 1011: the Comparator input is VBAT*12/37, LBD/LVR2=3.71V 1100: the Comparator input is VBAT*12/39, LBD/LVR2=3.94V 1101: the Comparator input is VBAT*12/39, LBD/LVR2=3.94V 1101: the Comparator input is VBAT*12/39, LBD/LVR2=3.94V							
C3h	C3h BGADCD 7 CMPO		СМРО		-	means the V_{BAT} divider voltage is higher. If LVR2E=1, the CMPO=0 can trigger LVR2.			
		5~0	ADCDT	R	-	ADC convert data result			
C4h	ATK0LBL	7~0	ATK0LBL	R/W	40h	Low Boundary bit 7~0 Compared with TK0 scan (for ATK)			
C5h	ATK1LBL	7~0	ATK1LBL	R/W	40h	Low Boundary bit 7~0 Compared with TK1 scan (for ATK)			
C6h	ATK2LBL	7~0	ATK2LBL	R/W	40h	Low Boundary bit 7~0 Compared with TK2 scan (for ATK)			
C7h	ATK3LBL	7~0	ATK3LBL	R/W	40h	Low Boundary bit 7~0 Compared with TK3 scan (for ATK)			
		7	TF2	R/W	0	Timer2 overflow flag Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.			
		6	6 EXF2 R/W 0 T2EX interrupt pin falling edge flag Set when a capture or a reload is caused by a negative transition on T pin if EXEN2=1. This bit must be cleared by S/W.						
		5	RCLK	R/W	0	UART receive clock control bit 0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3 1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3			
		4	TCLK	R/W	0	UART transmit clock control bit 0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3 1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3			
C8h	T2CON	3	EXEN2	R/W	0	 T2EX pin enable 0: T2EX pin disable 1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0 			
		2	TR2	R/W	0	Timer2 run control. 1:timer runs; 0:timer stops			
		1	CT2N	R/W	0	Timer2 Counter/Timer select bit 0: Timer mode, Timer2 data increases at 2 System clock cycle rate 1: Counter mode, Timer2 increases by T2 pin or Slow clock event			
			CPRL2N	R/W	0	 Timer2 Capture/Reload control bit O: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1. 1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1. If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow. 			

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description					
						Write 47h to set IAPWE control flag. Write other value to clear IAPWE					
		7~0	IAPWE	W	_	Write 47h to set IAPWE control flag; Write other value to clear IAPWE					
C9h	IAPWE	7~0		vv		flag. It is recommended to clear it immediately after IAP write					
		7	IAPWE	R	0	Flag indicates Flash can be written by IAP or not, 1 = IAP Write enable.					
CAh	RCP2L	7~0	RCP2L	R/W	00h	Timer2 reload/capture data low byte					
CBh	RCP2H	7~0	RCP2H	R/W	00h	Timer2 reload/capture data high byte					
CCh	TL2	7~0	TL2	R/W	00h	Timer2 data low byte					
CDh	TH2	7~0	TH2	R/W	00h	Timer2 data high byte					
		7	CY	R/W	0	ALU carry flag					
		6	AC	R/W	0	ALU auxiliary carry flag General purpose user-definable flag Pagister Bank Salagt bit 1					
		5	F0	R/W	0						
D0h	D0h PSW		RS1	R/W	0	Register Bank Select bit 1					
	1011	3	RS0	R/W	0	Register Bank Select bit 0					
		2	OV	R/W	0	ALU overflow flag					
		1	F1	R/W	0	General purpose user-definable flag					
		0	Р	R/W	0	Parity flag					
			ATK3LBH		00	Low Boundary bit 9~8 Compared with TK3 scan (for ATK)					
D2h	ATKLBH		ATK2LBH		00	Low Boundary bit 9~8 Compared with TK2 scan (for ATK)					
			ATK1LBH		00	Low Boundary bit 9~8 Compared with TK1 scan (for ATK)					
			ATK0LBH		00	Low Boundary bit 9~8 Compared with TK0 scan (for ATK)					
			ATK3UBH		11	Up Boundary bit 9~8 Compared with TK3 scan (for ATK)					
D3h	D3h ATKUBH		ATK2UBH		11	Up Boundary bit 9~8 Compared with TK2 scan (for ATK)					
			ATK1UBH		11	Up Boundary bit 9~8 Compared with TK1 scan (for ATK)					
D.41			ATKOUBH		11	Up Boundary bit 9~8 Compared with TK0 scan (for ATK)					
	ATKOUBL		ATK0UBL		FFh	Up Boundary bit 7~0 Compared with TK0 scan (for ATK)					
	ATK1UBL ATK2UBL		ATK1UBL ATK2UBL	R/W R/W	FFh FFh	Up Boundary bit 7~0 Compared with TK1 scan (for ATK) Up Boundary bit 7~0 Compared with TK2 scan (for ATK)					
Don D7h	ATK2UBL ATK3UBL	7~0 7~0	ATK2UBL	R/W	FFh	Up Boundary bit 7~0 Compared with TK2 scan (for ATK)					
D/II	AIKJUDL	7~0	AIKJUDL	K/ W	ггп	Fast clock type select, can be changed only in Slow mode (SELFCK=0)					
						00: Fast clock is FRC					
		7~6 FC	FCKTYPE	R/W	00	01: Fast clock is FXT, P2.1 and P2.2 are crystal oscillator pins					
						11: Fast clock is RFC, S/W must setup RFC circuitry before this setting.					
						System clock select. This bit can be changed only when STPFSUB=0 or FCKTYPE=3.					
		5	SELFCK	R/W	0	0: Slow clock (SRC/SXT)					
						1: Fast clock (FRC/FXT/MRC/RFC)					
						Slow clock Type. This bit can be changed only in Fast mode (SELFCK=1).					
		4	SCKTYPE	R/W	0	0: SRC					
D8h	CLKCON					1: SXT, P0.7 and P2.0 are crystal oscillator pins					
						FXT/FRC/MRC clock stop control. This bit can be changed only when					
		3	STPFSUB	R/W	0	SELFCK=0 or FCKTYPE=3. 0: FXT/FRC/MRC clock running					
						1: Stop FXT/FRC/MRC clock for power saving in Slow/Idle mode					
						System clock prescaler, max effective delay is 16 cycle.					
						000: System clock is Fast/Slow clock divided by 16					
		•	a 1 1 1 1 1 1			001: System clock is Fast/Slow clock divided by 16					
		2~0	CLKPSC	R/W	101	010: System clock is Fast/Slow clock divided by 8					
						011: System clock is Fast/Slow clock divided by 4 100: System clock is Fast/Slow clock divided by 2					
						101: System clock is Fast/Slow clock divided by 2					
E0h	ACC	7~0	ACC	R/W	00h						
F0h	B	7~0	В	R/W	00h	B register					
						FRC frequency adjustment. It is automatically loaded with Flash's 3FFEh					
F7h	CFGWL	4~0	FRCF	R/W	_	data at power on reset and can be read/written as any other SFR register in					
1 / 11			11101	10 11		normal mode. So the FRC clock speed can be changed on CPU run time by					
						S/W. 00h=central frequency, 0Fh=highest frequency, 10h=lowest frequency					

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description		
	4 TKSOC		TKSOC	R/W	0	Rising edge of this bit will trigger a Touch Key conversion (for SWTK). Basically, this bit is automatically cleared by H/W after end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate issue.		
F8h	AUX1	3	CLRWDT	R/W	0	Set to 1 to clear Watch Dog Timer		
			CLRTM3	R/W	0	Set 1 to Clear Timer3 and force TM3SEC reload		
			STPRFC	R/W	0	Set 1 to stop RFC clock oscillating		
		0	DPSEL	R/W	0	Active DPTR Select		

Adr	Flash	Bit#	Bit Name	Description		
3FFCh	CFGWR1	7~0	LBDADJ	LBD/LVR2 measured result in chip manufacturing. Definition as Section 3.		
3FFDh	CFGWR2	7~0	-	-		
3FFEh	CFGWL	4~0 FRCF		FRC frequency adjustment. FRC is trimmed to 7.3728 MHz in chip manufacturing. FRCF records the adjustment data.		
		7	PROT	Flash Code Protect, 1=Protect		
3FFFh	CFGWH	6	XRSTE	Pin Reset enable, 1=enable.		
3666	сгомп	5	MVCLOCK	If 1, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.		
		4	WDTE	WDT Reset enable, 1=enable.		

INSTRUCTION SET

Instructions are 1, 2 or 3 bytes long as listed in the 'byte' column below. Each instruction takes 1~8 System clock cycles to execute as listed in the 'cycle' column below.

	ARITHMETIC			
Mnemonic	Description	byte	cycle	opcode
ADD A,Rn	Add register to A	1	2	28-2F
ADD A,dir	Add direct byte to A	2	2	25
ADD A,@Ri	Add indirect memory to A	1	2	26-27
ADD A,#data	Add immediate to A	2	2	24
ADDC A,Rn	Add register to A with carry	1	2	38-3F
ADDC A,dir	Add direct byte to A with carry	2	2	35
ADDC A,@Ri	Add indirect memory to A with carry	1	2	36-37
ADDC A,#data	Add immediate to A with carry	2	2	34
SUBB A,Rn	Subtract register from A with borrow	1	2	98-9F
SUBB A,dir	Subtract direct byte from A with borrow	2	2	95
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2	96-97
SUBB A,#data	Subtract immediate from A with borrow	2	2	94
INC A	Increment A	1	2	04
INC Rn	Increment register	1	2	08-0F
INC dir	Increment direct byte	2	2	05
INC @Ri	Increment indirect memory	1	2	06-07
DEC A	Decrement A	1	2	14
DEC Rn	Decrement register	1	2	18-1F
DEC dir	Decrement direct byte	2	2	15
DEC @Ri	Decrement indirect memory	1	2	16-17
INC DPTR	Increment data pointer	1	4	A3
MUL AB	Multiply A by B	1	8	A4
DIV AB	Divide A by B	1	8	84
DA A	Decimal Adjust A	1	2	D4

	LOGICAL									
Mnemonic	Description	byte	cycle	opcode						
ANL A,Rn	AND register to A	1	2	58-5F						
ANL A,dir	AND direct byte to A	2	2	55						
ANL A,@Ri	AND indirect memory to A	1	2	56-57						
ANL A,#data	AND immediate to A	2	2	54						
ANL dir,A	AND A to direct byte	2	2	52						
ANL dir,#data	AND immediate to direct byte	3	4	53						
ORL A,Rn	OR register to A	1	2	48-4F						
ORL A,dir	OR direct byte to A	2	2	45						
ORL A,@Ri	OR indirect memory to A	1	2	46-47						
ORL A,#data	OR immediate to A	2	2	44						
ORL dir,A	OR A to direct byte	2	2	42						
ORL dir,#data	OR immediate to direct byte	3	4	43						
XRL A,Rn	Exclusive-OR register to A	1	2	68-6F						
XRL A,dir	Exclusive-OR direct byte to A	2	2	65						
XRL A, @Ri	Exclusive-OR indirect memory to A	1	2	66-67						
XRL A,#data	Exclusive-OR immediate to A	2	2	64						
XRL dir,A	Exclusive-OR A to direct byte	2	2	62						
XRL dir,#data	Exclusive-OR immediate to direct byte	3	4	63						
CLR A	Clear A	1	2	E4						
CPL A	Complement A	1	2	F4						
SWAP A	Swap Nibbles of A	1	2	C4						

	LOGICAL			
Mnemonic	Description	byte	cycle	opcode
RL A	Rotate A left	1	2	23
RLC A	Rotate A left through carry	1	2	33
RR A	Rotate A right	1	2	03
RRC A	Rotate A right through carry	1	2	13

	DATA TRANSFER									
Mnemonic	Description	byte	cycle	opcode						
MOV A,Rn	Move register to A	1	2	E8-EF						
MOV A,dir	Move direct byte to A	2	2	E5						
MOV A,@Ri	Move indirect memory to A	1	2	E6-E7						
MOV A,#data	Move immediate to A	2	2	74						
MOV Rn,A	Move A to register	1	2	F8-FF						
MOV Rn,dir	Move direct byte to register	2	4	A8-AF						
MOV Rn,#data	Move immediate to register	2	2	78-7F						
MOV dir,A	Move A to direct byte	2	2	F5						
MOV dir,Rn	Move register to direct byte	2	4	88-8F						
MOV dir,dir	Move direct byte to direct byte	3	4	85						
MOV dir,@Ri	Move indirect memory to direct byte	2	4	86-87						
MOV dir,#data	Move immediate to direct byte	3	4	75						
MOV @Ri,A	Move A to indirect memory	1	2	F6-F7						
MOV @Ri,dir	Move direct byte to indirect memory	2	4	A6-A7						
MOV @Ri,#data	Move immediate to indirect memory	2 3	2	76-77						
MOV DPTR,#data	Move immediate to data pointer	3	4	90						
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	4	93						
MOVC A,@A+PC	Move code byte relative PC to A	1	4	83						
MOVX A,@Ri	Move external data(A8) to A	1	4	E2-E3						
MOVX A,@DPTR	Move external data(A16) to A	1	4	E0						
MOVX @Ri,A	Move A to external data(A8)	1	4	F2-F3						
MOVX @DPTR,A	Move A to external data(A16)	1	4	F0						
PUSH dir	Push direct byte onto stack	2	4	C0						
POP dir	Pop direct byte from stack	2	4	D0						
XCH A,Rn	Exchange A and register	1	2	C8-CF						
XCH A,dir	Exchange A and direct byte	2	2	C5						
XCH A,@Ri	Exchange A and indirect memory	1	2	C6-C7						
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2	D6-D7						

BOOLEAN									
Mnemonic	Description byte cycle								
CLR C	Clear carry	1	2	C3					
CLR bit	Clear direct bit	2	2	C2					
SETB C	Set carry	1	2	D3					
SETB bit	Set direct bit	2	2	D2					
CPL C	Complement carry	1	2	B3					
CPL bit	Complement direct bit	2	2	B2					
ANL C,bit	AND direct bit to carry	2	4	82					
ANL C,/bit	AND direct bit inverse to carry	2	4	B0					
ORL C,bit	OR direct bit to carry	2	4	72					
ORL C,/bit	OR direct bit inverse to carry	2	4	A0					
MOV C,bit	Move direct bit to carry	2	2	A2					
MOV bit,C	Move carry to direct bit	2	4	92					

	BRANCHING									
Mnemonic	Description	byte	cycle	opcode						
ACALL addr 11	Absolute jump to subroutine	2	4	11-F1						
LCALL addr 16	Long jump to subroutine	3	4	12						
RET	Return from subroutine	1	4	22						
RETI	Return from interrupt	1	4	32						
AJMP addr 11	Absolute jump unconditional	2	4	01-E1						
LJMP addr 16	Long jump unconditional	3	4	02						
SJMP rel	Short jump (relative address)	2	4	80						
JC rel	Jump on carry=1	2	4	40						
JNC rel	Jump on carry=0	2	4	50						
JB bit,rel	Jump on direct bit=1	3	4	20						
JNB bit,rel	Jump on direct bit=0	3	4	30						
JBC bit,rel	Jump on direct bit=1 and clear	3	4	10						
JMP @A+DPTR	Jump indirect relative DPTR	1	4	73						
JZ rel	Jump on accumulator=0	2	4	60						
JNZ rel	Jump on accumulator≠0	2	4	70						
CJNE A,dir,rel	Compare A, direct, jump not equal relative	3	4	B5						
CJNE A,#data,rel	Compare A, immediate, jump not equal relative	3	4	B4						
CJNE Rn,#data,rel	Compare register, immediate, jump not equal relative	3	4	B8-BF						
CJNE @Ri,#data,rel	Compare indirect, immediate, jump not equal relative	3	4	B6-B7						
DJNZ Rn,rel	Decrement register, jump not zero relative	2	4	D8-DF						
DJNZ dir,rel	Decrement direct byte, jump not zero relative	3	4	D5						

MISCELLANEOUS								
Mnemonic	Description	byte	cycle	opcode				
NOP	No operation	1	2	00				

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11-F1 (for example), are used for absolute jumps and calls with the top 3 bits of the code being used to store the top three bits of the destination address.

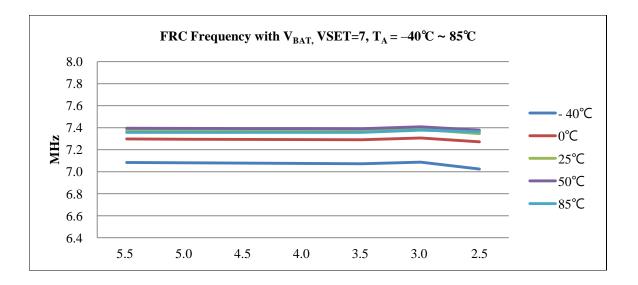
ELECTRICAL CHARACTERISTICS

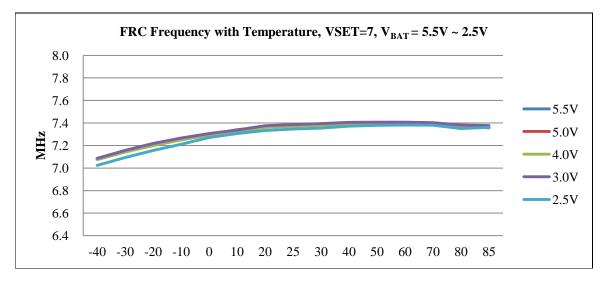
Absolute Maximum Ratings

Parameter	Rating	Unit
Supply voltage	$V_{SS} - 0.3 \sim V_{SS} + 5.5$	
Input voltage	$V_{SS}-0.3 \thicksim V_{BAT}+0.3$	V
Output voltage	$V_{SS}-0.3 \sim V_{BAT}+0.3$	v
Maximum Operating Voltage	5.5	
Output current high per 1 pin / all pins	-20 / -50	mA
Output current low per 1 pin / all pins	+30 / +100	- mA
Operating temperature	-25 ~ +85	_ °C
Storage temperature	-65 ~ +150	

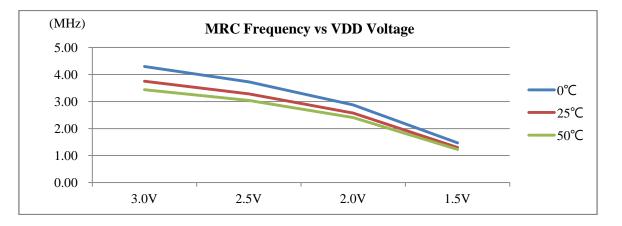
DC Characteristics (T_A=25°C)

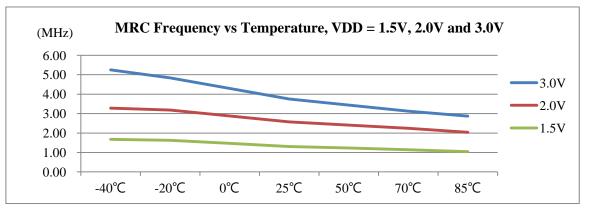
Parameter	Sym	Condit	ions	Min	Тур	Max	Unit
	17	all except P2.7	V _{BAT} =3V	$0.6V_{BAT}$	_	_	
Input High Voltage	V_{IH}	P2.7	V _{BAT} =3V	$0.8V_{BAT}$	_	_	V
Input Low Voltage	V _{IL}	all Input	V _{BAT} =3V	_	_	$0.2V_{BAT}$	
I/O Port, all LED pins	I _{OH}	all except P2.7	V _{BAT} =3V V _{OH} =2.7V	2	4	_	
Source Current	TOH		V _{BAT} =5V V _{OH} =4.5V	5	10	_	
		all except P2.7	V _{BAT} =3V	6	11	-	
I/O Port, LED SEG8~43		P2.7	V _{OL} =0.3V	5	9	-	mA
LED SEG8~43 Sink Current	т	all except P2.7	V _{BAT} =5V	8	16	_	
	I _{OL}	P2.7	$V_{OL}=0.4V$	6	12	_	
LED SEG0~7 / COM0~7	SEG0~7	V _{BAT} =3V	_	40	_		
Sink Current		COM0~7	V _{BAT} =5V	_	65	_	
Input leakage current (pin high)	I _{ILH}	all Input	$V_{IN} = V_{BAT}$	_	_	1	uA
Input leakage current (pin low)	I _{ILL}	an mput	Vin=0V	—	_	-1	uA
		FRC, 7.37MHz	V _{BAT} =5V V _{DD} =3 3V	_	3.0	_	
		FXT, 8MHz		$V_{BAT} = 3V$ $V_{DD} = 3.3V$	_	3.0	_
		MRC, 4MHz	, DD 919 (1.4		
		MRC, 1.4MHz		_	200	_	
Power Supply Current	т	SXT, 32KHz	V _{BAT} =3V V _{DD} =1.65V	_	8	_	
rower suppry current	I _{BAT}	SRC, 45KHz	LCD On	_	7	_	
		Idle, 32KHz		_	3	_	uA
		Idle, 32KHz	V _{BAT} =3V	_	1.5	_	
		Idle, 8KHz	V _{DD} =1.65V	_	1.2	_	
		Stop	LCD Off	—	0.5	—	
System Clock Frequency	F _{SYSCLK}	$2.7V < V_{D}$	_D < 4.0V	_	_	8	MHz
System Clock I requelley	* SYSCLK	$2.1 V < V_{DI}$	_D < 4.0V	_	_	4	WILL
Pull-Up Resistor	R _{PU}	all except P2.7	V _{BAT} =3V	_	420	_	KΩ
i un op Kosistoi	TYPU	P2.7	$V_{IN}=0V$	_	270	_	1727

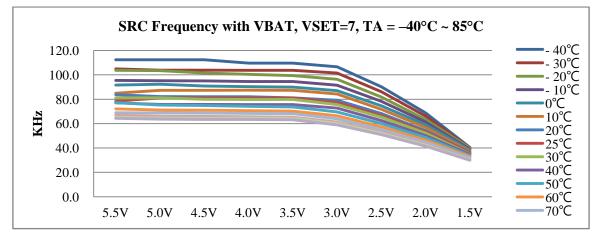


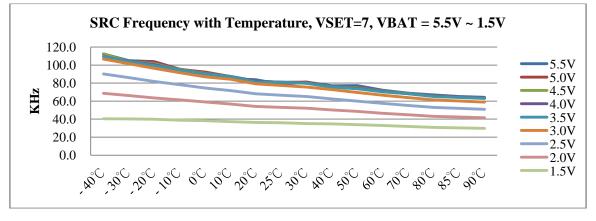

BandGap Reference Voltage

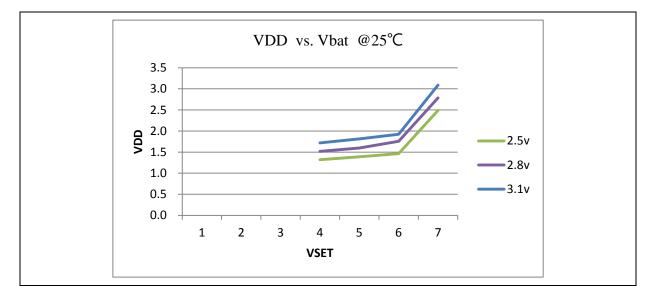
Parameter	Sym	Conditions	Min	Тур	Max	Unit
DandCan Valtaga	V	V _{BAT} =3V, 25°C	1.14	1.2	1.26	V
BandGap Voltage	V _{BG}	V _{BAT} =3V, -40°C~85°C	1.12	1.2	1.28	v

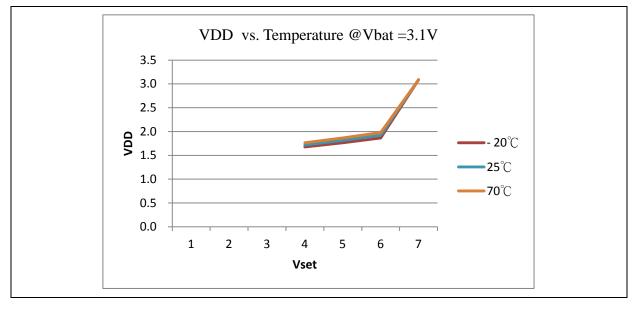

Clock Timing (T_A=25°C)


Parameter	Sym	Conditions		Min	Тур	Max	Unit
			$V_{BAT} = 5V, V_{DD} = 3.3V$	-	7.38	-	
FRC Clock Frequency	F _{FRC}	VSET=7	$V_{BAT}=3V, V_{DD}=3V$		7.37		MHz
			$V_{BAT} = 2.5V, V_{DD} = 2.5V$		7.33		
MDC Cleak Engineman	Б		V _{DD} =3V		3.8	-	MHz
MRC Clock Frequency	F _{MRC}		$V_{DD}=1.65V$		1.4	-	МПZ
SRC Clock Frequency	Б		V _{DD} =3V		80	_	KHz
SKC Clock Flequency	F _{SRC}	$V_{DD}=1.65V$		-	45	-	КПХ



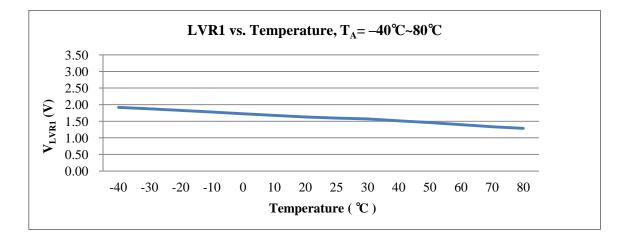


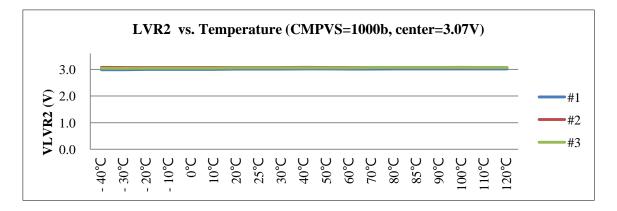


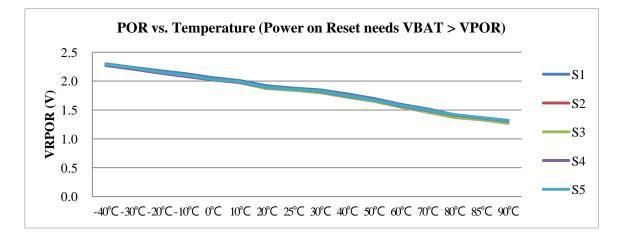


V_{DD} Voltage Level

Parameter	Sym	Conditions		Min	Тур	Max
	V _{DD}	V _{BAT} =3.1V, VSET=5	25°C	_	1.78	_
		V _{BAT} =2.8V, VSET=6	25°C	-	1.67	_
V Voltaga Laval		V _{BAT} =3.1V, VSET=5	70°C		1.79	_
V _{DD} Voltage Level		$V_{BAT}=2.8V, VSET=6$	70°C		1.68	_
		V _{BAT} =3.1V, VSET=5	-20°C		1.76	_
		$V_{BAT}=2.8V, VSET=6$	-20°C	_	1.66	_




Note: User must set $V_{DD} > 1.65V$ @25°C; set $V_{DD} > 1.6V$ @-20°C

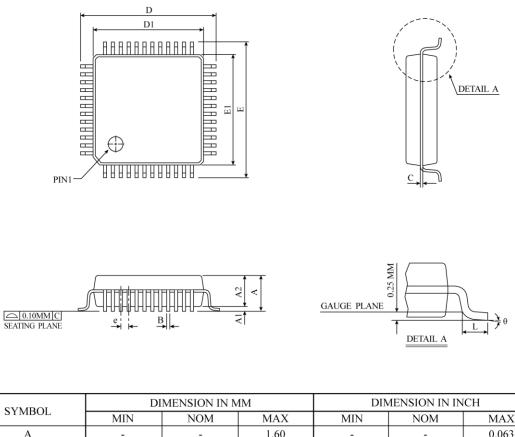


LVR1/LVR2/POR Level

Parameter	Sym	Conditions	Min	Тур	Max	Unit
LVR1 Voltage Level	V _{LVR1}	25°C	1.3	1.6	1.9	V
LVR2 Voltage Level	V _{LVR2}	25°C, CMPVS=1000b	2.92	3.07	3.20	V
Power On Reset Voltage	V _{POR}	25°C	1.5	1.8	2.1	V

PACKAGE INFORMATION

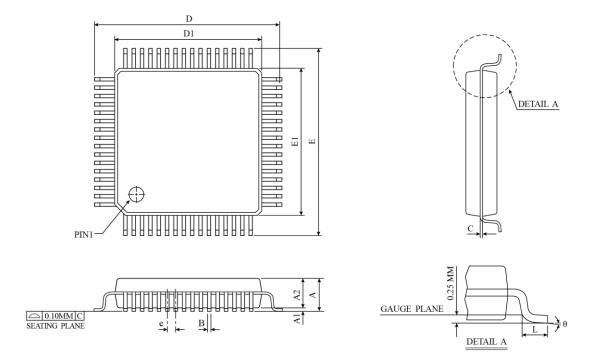
Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.


Ordering Information

Ordering number	Package
TM52F2268-MTP	Wafer / Dice blank chip
TM52F2268-COD	Wafer / Dice with code
TM52F2268-MTP-72	LQFP 48-pin (7x7mm)
TM52F2268-MTP-73	LQFP 64-pin (7x7 mm)

Package Information

LQFP-48 (7×7mm) Package Dimension


	IVIIIN	NOM	MAA	IVIIIN	NOM	MAA	
А	-	-	1.60	-	-	0.063	
A1	0.05	0.10	0.15	0.001	0.004	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
В	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.09	0.15	0.20	0.004	0.006	0.008	
D		9.00 BSC		0.354 BSC			
D1		7.00 BSC		0.276 BSC			
Е		9.00 BSC		0.354 BSC			
E1		7.00 BSC		0.276 BSC			
e		0.50 BSC			0.020 BSC		
L	0.45	0.60	0.75	0.018	0.024	0.030	
θ	0°	3.5°	7°	0°	3.5°	7°	
JEDEC		MS-026 (BBC)					

* NOTES : DIMENSION "D1" AND "E1" DO NOT INCLUDE MOLD

PROTRUSIONS. ALLOWABLE PROTRUSIONS IS 0.25 mm PER SIDE. "D1 " AND "E1 " ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMACH.

LQFP-64 (7×7mm) Package Dimension

SYMDOL	DI	MENSION IN M	[M	DIN	MENSION IN IN	СH	
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	-	-	1.60	-	-	0.063	
A1	0.05	-	0.15	0.002	-	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
В	0.13	0.18	0.23	0.005	0.007	0.009	
С	0.09	-	0.20	0.004	-	0.008	
D		9.00 BASIC		0.354 BASIC			
D1		7.00 BASIC		0.276 BASIC			
Е		9.00 BASIC		0.354 BASIC			
E1		7.00 BASIC			0.276 BASIC		
e		0.40 BASIC			0.016 BASIC		
L	0.45	0.60	0.75	0.018	0.024	0.030	
θ	0°	3.5°	7°	0°	3.5°	7°	
JEDEC		MS-026 (BBD)					

 $\underline{\mathbb{A}}$ *notes : dimension "d1 " and "e1 " do not include mold

PROTRUSIONS. ALLOWABLE PROTRUSIONS IS 0.25mm PER SIDE. "D1" AND "E1" ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMACH.