

TM56M152A DATA SHEET Rev 0.96

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses **tenx** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **tenx** and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that **tenx** was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
0.80	Mar, 2023	1. New generation
0.81	Apr, 2023	1. Delete "Comparator Characteristics"
0.82	Jun, 2023	1. Modify Specification: RAM size, PWM clock source, ADC 1.2V Vref, POR 1.53V, Port Change Interrupt
0.83	July, 2023	 update the block diagram of ADC update the typical value of I/O port sink current update the high sink value in the table of "Family Overview" change the RAM size as 128B in the figure of block diagram delete "1.2V/2V ADC Vref" in the section of FEATURES. Modify the writing value of ADCTL2 in the example of ADC.
0.84	Sep, 2023	 Add all port pins into the column of ext. interrupt in the table of pin summary typo: modify POR of TM56M1522 as 1.81V in the table of "FAMILY OVEROVEW" Update LVRth and LVDth in the table of "FAMILY OVEROVEW" Add "PWMCKS=FIRC*1" as the condition of "Operating Voltage" in the chapter of FEATURES Add the POR Voltage Electrical Characteristics Add VPP into the table of "PIN DESCRIPTIONS" Rename PA7 as PA7(VPP) in "PIN DESCRIPTIONS" typo: correct the reset value of bit 5 as "x" in the table of PINMOD(105h) Change "Pin Change Wake Up" as "Pin Change Wake Up & Interrupt" Add description for the situation of ADCHS=VBG in the section of Analog-to-Digital Converter change "port pin change interrupt" as "port pin change wakeup interrupt" Add comment: When the ADC reference voltage is 2V or 1.2V Vbg, it can't not be emulated typo: change "19h.3~0" as "19h.4~0" Add FIRC/256 as one of PWM0 clock source in the description of FAST Mode.
0.85	Oct, 2023	 Modify the timing diagram of ADC Delete INT0SEL~INT2SEL in OPTION2 and relative description delete the description about 1/2 Bias and pull-down Modify Max. value of Total Accuracy and Integral Non-Linearity of ADC Electrical Characteristics Add SOP-14 and change PA2 as PB0 in MSOP-10 and DFN-10
0.86	Oct, 2023	1. Update Electrical Characteristic 2. Modified programming pin as 7-wire for normal mode
0.87	Oct, 2023	 Delete TBD of FIRC Frequency and "ADC reference voltage(V_{REF})(ADVREFS=01b)" Change "RAM Bank2 area (80 Bytes)" as "don't use" in the table of memory map Change "RAM Bank1 area (80 Bytes)" as "RAM Bank1 area (32 Bytes)" in the table of memory map. Change "A0~EF" as "A0~BF" in the table of memory map. Update Min Operating Voltage in Characteristics Graphs change device type as TM56M152A Add ordering number for sop14 Change maximum voltage as 5.2V for "ADC reference voltage(V_{REF})(ADVREFS=01b)"
0.90	Nov, 2023	1. Modify POR Voltage
0.91	Jan, 2024	 Add the table of OPTION into the chapter of Interrupt Modify the description about OPTION in the table of MEMORY MAP Add note for unbonded pads
0.92	Jan, 2024	 Fix typo of IORWX as "(W) OR (f)" Add note for suggested RDCTL below the graph of minimal operating voltage Add the table of RDCTL into the section of Program ROM (PROM) Change the suggested value of RDCTL to bold font. Delete the operating voltage of RDCTL=8ns in the table of DC characteristics Add the condition of PWMCKS=FIRC*1 into the table of operating voltage of Fsys=8MHz
0.93	Feb, 2024	 Add measured operating current for the condition of "ATD Off" in the table of "Power Supply Current" To propose the purpose of ATD in the chapter of "FEATURES"
0.94	Feb, 2024	 Add ADC reference voltage for ADVREFS=11b into the table of ADC Electrical Characteristics To inhibit LVR1.6V and LVR1.73V becomes default Delete the column of TM56M1522 in the table of "FAMILY OVERVIEW"
0.95	Mar, 2024	 Fix typo: default value of SYSCFG is 0000_0110_0000_0000 Replace "CMOS Output" with "CMOS Output (except PWMx)" in I/O Pin Function Table 1~4

0.96	May, 2024	 Delete items of wafer and dice in Ordering Information Add PSDA and PSCL into the chapters of PIN ASSIGNMENT DIAGRAM, PIN DESCRIPTION and PIN SUMMARY Replace "non-overlap" with "dead-zone(non-overlap)" Lowering standards of Vbg and 2.48V ADC Vref
------	-----------	---

CONTENTS

AM	END	MENT HISTORY	2
CON	NTEN	TS	4
FAN	AILY	OVERVIEW	6
FEA	TUR	ES	8
		BLOCK DIAGRAM	
		GNMENT DIAGRAM	
PIN	DES	CRIPTIONS	.14
PIN	SUM	MARY	.15
FUN	ICTI	ON DESCRIPTION	.16
1	CPU	J Core	. 16
	1.1	Program ROM (PROM)	.16
	1.2	System Configuration Register (SYSCFG)	.17
	1.3	RAM Addressing Mode	.18
	1.4	Programming Counter (PC) and Stack	.21
2	Rese	et	.26
	2.1	Power on Reset (POR)	. 26
	2.2	Low Voltage Reset (LVR)	.26
	2.3	External Pin Reset (XRST)	.27
	2.4	Watchdog Timer Reset (WDTR)	.27
3	Cloc	k Circuitry and Operation Mode	.28
	3.1	System Clock	.28
	3.2	Dual System Clock Modes Transition	. 30
	3.3	System Clock Oscillator	. 33
4	Inter	rupt	. 34
5	I/O I	Port	. 38
	5.1	PA0-PA7, PB0-PB2, PB4-PB6	. 38
	5.2	Pin Change Wake Up & Interrupt	.42
6	Perij	pheral Functional Block	
	6.1	Watchdog (WDT) /Wakeup (WKT) Timer	.43
	6.2	Timer0	.46
	6.3	Timer1	
	6.4	PWM: 16 bits PWM	
	6.5	Analog-to-Digital Converter	
	6.6	Cyclic Redundancy Check (CRC)	. 64
ME	MOR	Y MAP	.65
INS	TRUG	CTION SET	.72
ELE	ECTR	ICAL CHARACTERISTICS	.86
1.	Abso	olute Maximum Ratings	.86

2.	DC Characteristics	
3.	Clock Timing	
4.	Reset Timing Characteristics	
5.	LVR Circuit Characteristics	
6.	LVD Circuit Characteristics	
7.	ADC Electrical Characteristics	
8.	Characteristics Graphs	
PAC	CKAGING INFORMATION	

FAMILY OVERVIEW

chip debug	TM56F1552 (TK) TM56F1522 (IO)
5	128
3	x
	x
KHz@5V/25℃	92.8 KHz@5V/25°C
ns, 192ms, 768ms,1536ms @5V	91ms, 183ms, 732ms, 1463 ms @5V
ns,24ms,48ms,96ms @5V	11ms,23ms,46ms,91ms @5V
	x
	V (suggest RDCTL=4ns)
	x
OF=0 (POR, CMPP <= OPO) OF=1 (CMPP <= CIPx)	x
C / 2.48V	VCC /1.2V / 2V / 2.48V ADVREFS=1.2V/2V, could not be emulated
	Read BG2TRIM and Write into BGTRIM, obtain ADVREFS=2.0V
C / 1.2 / 2.48V	x
	x
	x
	х
mA@5V	63mA@5V for all pins except PA7 PA7 has no high sink
7~0 7~0 1~0	PA7~0 PB6~4, PB2~0
	x
5V PORSEL	1.63V Has PORSEL
V @16MHz	2.3V @16MHz
5V~4.15V	1.73V~3.5V
V~4.15V	1.73V~3.5V
	3 KHz@5V/25°C ns, 192ms, 768ms, 1536ms @5V ns, 24ms, 48ms, 96ms @5V OF=0 (POR, CMPP <= OPO)

PWM	Two outputs PWM0CLK: CPUCLK or FIRC (16MHz) or FIRC*2 (32MHz)	One output PWM0CLK: CPUCLK or FIRC/256 or FIRC (16MHz) or FIRC*2 (32MHz)
T2	V	х
XINT0~2	Two input	One input
ATD	x	V
EFTCON	x	х
All Pin Change	v	<u>)</u>
Wakeup Interrupt	^	V

FEATURES

- 1. ROM: 2K x 16 bits MTP(TM56M152A)
- 2. RAM: 128 x 8 bits
- 3. STACK: 8 Levels
- 4. System Clock type selections:
 - Fast clock from Internal RC (FIRC, 16 MHz)
 - Slow clock from Internal RC (SIRC, 93 KHz@V_{CC}=5V)
- 5. System Clock Prescaler:
 - System Clock can be divided by 1/2/4/8 option

6. Power Saving Operation Mode

- FAST Mode: Slow-clock is enabled, Fast-clock keeps CPU running
- SLOW Mode: Fast-clock can be disabled or enabled, Slow-clock keeps CPU running
- IDLE Mode: Fast-clock and CPU stop. Slow-clock or Wake-up Timer keep running
- STOP Mode: All clocks stop, Wake-up Timer stop

7. 2 Independent Timers

- Timer0
 - 8-bit timer divided by 1~256 pre-scale option / auto-reload / counter / interrupt / stop function
- Timer1
 - 8-bit timer divided by 1~256 pre-scale option / auto-reload / interrupt / stop function
 - Overflow and Toggle out

8. Interrupt

- Three External Interrupt pins
 - 1 pin is falling edge wake-up triggered & Interrupts
 - 2 pins are rising or falling edge wake-up triggered & Interrupt
- Timer0 / Timer1 / Wake-up Timer Interrupt
- ADC Interrupt
- PWM Interrupt
- LVD Interrupt
- All Port Pin Change Wakeup Interrupts
- 9. Wake-up Timer (WKT)
 - Clocked by built-in RC oscillator with 4 adjustable interrupt times
 - 11 ms / 23 ms / 46 ms / 91 ms @V_{CC}=5V

10. Watchdog Timer (WDT)

- Clocked by built-in RC oscillator with 4 adjustable reset times
 - 91 ms / 183 ms / 732 ms / 1463 ms @V_{CC}=5V

• Watchdog timer can be disabled / enabled in STOP mode

11. Six 16 bits PWMs

- Six individual duty-adjustable, shared period-adjustable
- PWM clock source: System clock (Fsys), FIRC/256, FIRC (16 MHz), FIRC*2 (32 MHz)
- PWM0 supports complementary output (PWM0P, PWM0N)
- PWM0 output with dead-zone(non-overlap) time durations adjustable: (0~15)*(PWMCLK)
- PWM0N/0P/1/2/3/5 has only one output

12. 12-bit ADC with 13 channels for External Pin Input and 2 channels for Internal Voltage

- Two internal voltage channels: VBG, 1/4VCC
- ADC reference voltage: V_{CC} , V_{BG} (1.2V), V_{BG} (2.48V) and V_{BG} (2V)

13. Reset Sources

- Power On Reset
- Watchdog Timer Reset
- Low Voltage Reset
- External Pin Reset

14. Low Voltage Reset (LVR) and Low Voltage Detection (LVD)

- 15-Level Low Voltage Reset: 1.73V ~ 3.5V, can be disabled
- 15-Level Low Voltage Detection: 1.73V ~ 3.5V, can be disabled

15. Operating Voltage

- Fsys= 16 MHz, LVR~5.5V. Suggest LVR \geq 2.30V
- Fsys= 8 MHz, PWMCKS=FIRC*1, LVR~5.5V. Suggest LVR ≥ 1.55V Note: Refer to the "Electrical Characteristics Graphs".
- 16. Operating Temperature Range : -40°C to + 105°C
- 17. Table Read Instruction: 16-bit ROM data lookup table
- 18. Integrated 16-bit Cyclic Redundancy Check (CRC) function

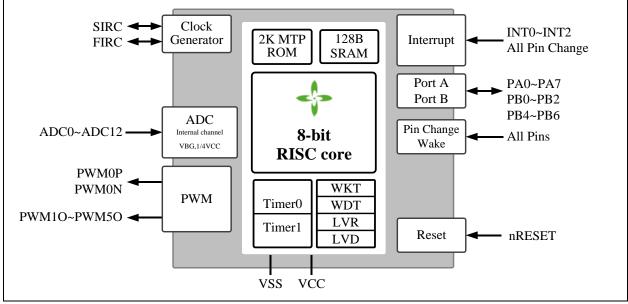
19. Instruction set: 39 Instructions

- 20. I/O ports:
 - Maximum 14 programmable I/O pins
 - Open-Drain Output
 - CMOS Push-Pull Output
 - Schmitt Trigger Input with pull-up resistor option
 - All I/O with High-Sink except PA7
 - All pin change wake up (falling edge and rising edge trigger) and interrupt
- 21. Programming connectivity support 5-wire (ICP) or 7-wire program
- 22. RDCTL: Read signal delay control for Program ROM

DS-TM56M152A_E

- The user must switch this register to "4ns" to enhance the performance of minimal operating voltage.
- 23. Trimmed VBG1.2V/2V
 - The users could move BG2TRIM to BGTRIM for exact 2V VBG.
- 24. ATD: Automatic transient detection to enhance the performance of power consumption at slow mode

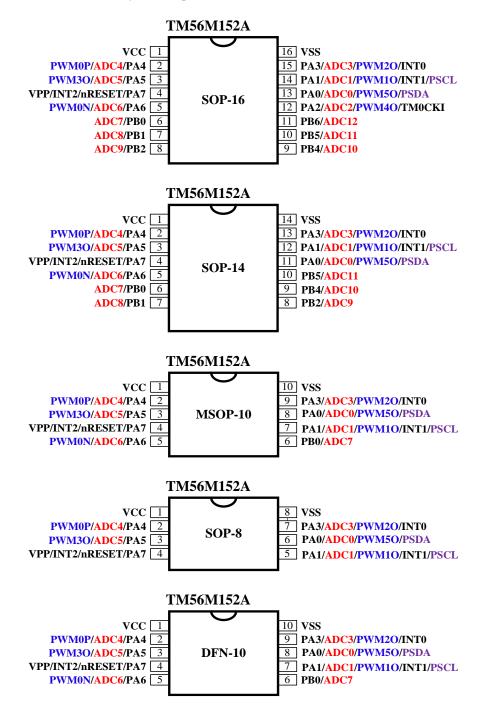
25. Package Types:

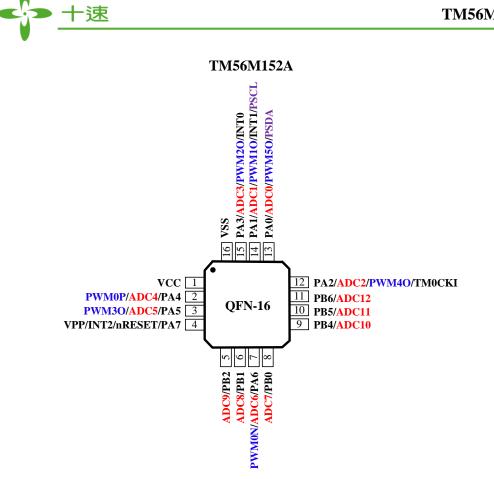

- 16-pin SOP (150 mil)
- 14-pin SOP (150 mil)
- 10-pin MSOP (118 mil)
- 8-pin SOP (150 mil)
- 16-pin QFN (3*3*0.75 0.5mm)
- 10-pin DFN (3*3*0.75 0.5mm)

26. Supported EV board

• TM56F1552/22

SYSTEM BLOCK DIAGRAM





PIN ASSIGNMENT DIAGRAM

Software initialization is necessary for the pads that are not bonded.

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA0~PA7 PB0~PB2 PB4~PB6	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistors are assignable by software.
nRESET	Ι	External active low reset
VCC, VSS	Р	Power Voltage input pin and ground
VPP	Ι	MTP programming high voltage(9.5V) input
INT0~INT2	Ι	External interrupt input
TM0CKI	Ι	Timer0's input in counter mode
PWM0P	0	16 bits PWM0 positive output
PWM0N	0	16 bits PWM0 negative output
PWM10~PWM50	0	16 bits PWM1~PWM5 output
ADC0~ADC12	Ι	ADC channel input
PSCL	Ι	I ² C SCL for program
PSDA	I/O	I ² C SDA for program

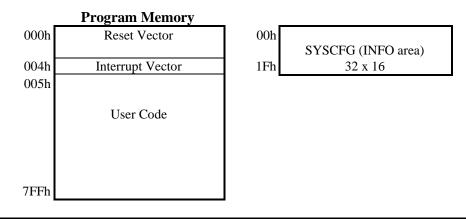
Programming pins:

Normal mode (7-wire): VCC / VSS / PA0(PSDA) / PA1(PSCL) / PA4 / PA5 / PA7(VPP)

ICP mode (5-wire): VCC / VSS / PA0(PSDA) / PA1(PSCL) / PA7(VPP) - When using ICP (In-Circuit Program) mode, the PCB needs to remove all components of PA0, PA1.

PIN SUMMARY

	Pin	Nun	ıber	1					G	GPI	0				Alte	erna	ate Function
(9]	(91	(4)	-10)	8)				Inj	put		0	utp	ut				
TM56M152A(SOP-16)	TM56M152A(QFN-16)	TM56M152A(SOP-14)	TM56M152A(MSOP-10) (DFN-10)	TM56M152A(SOP-8)	Pin Name	Type	Pull-up Control	Pull-down Control	Ext. Interrupt	Wake up	Open Drain	CMOS Push-Pull	1/2 V _{CC} (1/2 Bias)	MMA	ADC	Comparator	MISC
2	2	2	2	2	PA4/ADC4/PWM0P	I/O	•		•	•	•	•		•	•		
3	3	3	3	3	PA5/ADC5/PWM3O	I/O	•		•	•	•	•		٠	•		
4	4	4	4	4	PA7/nRESET/INT2/VPP	I/O	•		•	•	•	•					nRESET/VPP
5	7	5	5	-	PA6/ADC6/PWM0N	I/O	•		•	•	•	•		•	•		
6	8	6	6	-	PB0/ADC7	I/O	•		•	•	•	•			•		
7	6	7	-	_	PB1/ADC8	I/O	•		•	•	•	•			•		
8	5	8	-	_	PB2/ADC9	I/O	•		•	•	•	•			•		
9	9	9	-	_	PB4/ADC10	I/O	•		•	•	•	•			•		
10	10	10	_	_	PB5/ADC11	I/O	•		•	•	•	•			•		
11	11	_	_	_	PB6/ADC12	I/O	•		•	•	•	•			•		
12	12	_	-	_	PA2/ADC2/PWM4O/TM0CKI	I/O	•		•	•	•	•		•	•		TM0CKI
13	13	11	8	6	PA0/ADC0/PWM50/PSDA	I/O	•		•	•	•	•		•	•		Programming
14	14	12	7	5	PA1/ADC1/PWM10/INT1/PSCL	I/O	•		•	•	•	•		•	•		Programming
15	15	13	9	7	PA3/ADC3/PWM2O/INT0	I/O	•		•	•	•	•		•	•		
16	16	14	10	8	VSS	Р											
1	1	1	1	1	VCC	Р											



FUNCTION DESCRIPTION

1 CPU Core

1.1 Program ROM (PROM)

The MTP ROM of this device is 2K words, with an extra 32-Word INFO area to store the SYSCFG. The ROM can be written multi-times and can be read as long as the PROTECT (CFGWH.15) bit of SYSCFG is not set. The SYSCFG can be read no matter PROTECT is set or cleared, but PROTECT bit can be cleared only when User ROM Code area is erased. On the other hand, if PROTECT bit is set, the user ROM code area will not be read by writer, and the user ROM code can't be updated until the PROTECT bit is cleared. The endurance of ROM is 1000 times @Vcc=5V/25°C \circ

113h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RDCTL	_	_	-	-	_	_	RDO	CTL
R/W	—	-	_	_		_	R/	W
Reset	_	—	-	_	-	—	1	0

113h.1~0 **RDCTL:** Read signal delay control for Program ROM

00: 16ns delay for read signal of Program ROM

01: 12ns delay for read signal of Program ROM

10: 8ns delay for read signal of Program ROM

11: 4ns delay for read signal of Program ROM

Change this register at slow clock for safety.

The user must switch this register to "4ns" to enhance the performance of minimal operating voltage.

This feature can't be emulated.

1.1.1 Reset Vector (000h)

After reset, system will restart the program counter (PC) at the address 000h, all registers will revert to the default value.

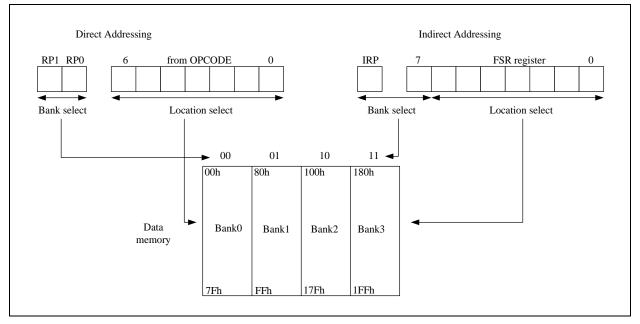
1.1.2 Interrupt Vector (004h)

When an interrupt occurs, the program counter (PC) will be pushed onto the stack and jumps to address 004h.

1.2 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at MTP INFO area; it contains a 16 bits register (CFGWH). The SYSCFG determines the option for initial condition of CPU. It is written by PROM Write only. User can select LVR operation mode and chip operation mode by SYSCFG register. The 15th bit of CFGWH is code-protected selection bit. If this bit is 1, the data in PROM will be protected when user reads PROM.

Bit		15~0						
Default	Value	0000_0110_0000_0000						
Bi	t	Description						
		PROTEC	T : Code protection selection					
	15	0	Disable					
		1	Enable					
		WDTE: WDT Reset Enable						
	12 12	0X	Disable					
	13-12	10	Enable in FAST/SLOW mode, Disable in IDLE/STOP mode					
		11	Always Enable					
		LVR: Low	Voltage Reset Mode					
		0001	LV Reset 1.73V					
		0010	LV Reset 1.85V					
		0011	LV Reset 1.98V					
		0100	LV Reset 2.11V					
	11-8	0101	LV Reset 2.23V					
		0110	LV Reset 2.36V					
		0111	LV Reset 2.49V					
		1000	LV Reset 2.61V					
		1001	LV Reset 2.74V					
CFGWH		1010	LV Reset 2.87V					
сгомп		1011	LV Reset 2.99V					
		1100	LV Reset 3.12V					
		1101	LV Reset 3.25V					
		1110	LV Reset 3.37V					
		1111	LV Reset 3.50V					
	7	XRSTE: H	External Pin (PA7) Reset Enable					
		0	Disable (PA7 as I/O pin)					
		1	Enable					
		FIRCPSC	: FIRC Prescaler					
	5	0	Divided by 1 (16 MHz)					
		1	Divided by 2 (8 MHz)					
		PORSEL:	POR duty cycle selection					
	4	0	POR enables at 100% duty cycle					
		1	POR enables at 1/16 duty cycle(This feature can't be emulated)					
			Automatic transient detection					
	3	0	ATD on					
		1	ATD off					
	2-0	tenx Reser	ved					


1.3 RAM Addressing Mode

There is one Data Memory Plane in CPU. The Plane is partitioned into four banks. Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for Special Function Register (SFR). Above the SFR are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Bit RP1 and RP0 (STATUS[6:5]) are the bank select bits.

[RP1, RP0]	BANK
00	0
01	1
10	2
11	3

The plane can be addressed directly or indirectly. The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly (FSR = '0') results in a no operation (although status bit may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS[7]). Refer to the figure below.

Direct / Indirect Addressing

Keeping RP0=RP1=0 in the beginning of the F/W code and using the new instruction set.

The advantage of using new instruction is user can ignore the bank location of registers and the code size can be saved. The new instruction is almost the same as the old instruction. By replacing the "F" to "X" in the instruction set can easily use the new instruction without switching the bank.

For example:

BCF	TM0IE	→	BCX	TM0IE
DECF	CNT, 1	→	DECX	CNT, 1
INC <mark>F</mark> SZ	RAM25, 0	→	INCXSZ	RAM25, 0
MOVWF	PAMOD10	→	MOVWX	PAMOD10
RLF	RAMA0, 0	→	RLX	RAMA0, 0
SWAP <mark>F</mark>	ADCTL, 0	→	SWAPX	ADCTL, 0

BANK0

[BANK1]
OSOP. OEEP

[BANK3] 180h~1FFh INDF OPTION PCL

STATUS

FSR

DPL

DPH

CRCDL

CRCDH

CRCIN

PCLATH

INTIE

TABR

	000~07Fh
000h	INDF
001h	TM0
002h	PCL
003h	STATUS
004h	FSR
005h	PAD
006h	PBD
007h	
008h	
009h	
00Ah	PCLATH
00Bh	INTIE
00Ch	INTIF
00Dh	INTIE1
00Eh	INTIF1
00Fh	CLKCTL
010h	TMORLD
011h	TM0CTL
012h	TM1
013h	TM1RLD
014h	TM1CTL
015h	
016h	LVCTL
017h	ADCDH
018h	
019h	ADCTL2
01Ah	
01Bh	
01Ch	
01Dh	
01Eh	
01Fh	
020h	
	RAM Bank0 area
	(80 Bytes)
06Fh	
070h	
07Fh	(16 Bytes)

	080h~0FFh
080h	INDF
081h	OPTION
082h	PCL
083h	STATUS
084h	FSR
085h	PAMOD10
086h	PAMOD32
087h	PAMOD54
088h	PAMOD76
089h	PWMCTL
08Ah	PCLATH
08Bh	INTIE
08Ch	PBMOD10
08Dh	PBMOD32
08Eh	PBMOD54
08Fh	PBMOD76
090h	
091h	OPTION2
092h	PWMPRDH
093h	PWMPRDL
094h	PWM0DH
095h	PWM0DL
096h	PWM1DH
097h	PWM1DL
098h	PWM2DH
099h	PWM2DL
09Ah	PWM3DH
09Bh	PWM3DL
09Ch	PWM4DH
09Dh	PWM4DL
09Eh	PWM5DH
09Fh	PWM5DL
0A0h	
	(32 Bytes)
0C0h	
	Don't Use
0EFh	
0F0h	accesses
0FFh	070h~07Fh
UFFN	

	(BANK2)		
	100h~17Fh		
100h	INDF	180h	
101h	TM0	181h	
102h	PCL	182h	
103h	STATUS	183h	
104h	FSR	184h	
105h	PINMOD	185h	
106h		186h	
107h		187h	
108h		188h	
109h	LVRPD	189h	
10Ah	PCLATH	18Ah	
10Bh	INTIE	18Bh	
10Ch	PCH	18Ch	
10Dh		18Dh	
10Eh	BGTRIM	18Eh	
10Fh	IRCF	18Fh	
110h		190h	
111h	BG2TRIM	191h	
112h		192h	
113h	RDCTL	193h	
114h		194h	
115h		195h	
116h		196h	
117h		197h	
118h		198h	
119h		199h	
11Ah		19Ah	
11Bh		19Bh	
11Ch		19Ch	
11Dh		19Dh	
11Eh		19Eh	
11Fh		19Fh	
120h		1A0h	
	Don't Use		
16Fh		1EFh	
170h	accesses	1F0h	
1.75	070h~07Fh	1 557	
17Fh		1FFh	

Rev 0.96, 2024/05/16

Don't Use

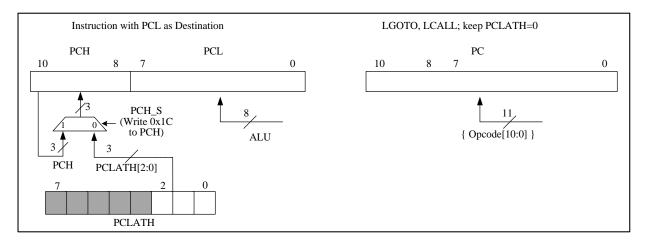
accesses 070h~07Fh

♦ Example: read / write register by using direct addressing (force RP0=RP1=0)

CLKCTL	equ	00Fh	; SFR in Bank0
TM1	equ	012h	; SFR in Bank0
OPTION2	equ	091h	; SFR in Bank1
LVRPD	equ	109h	; SFR in Bank2
IRCF	equ	10Fh	; SFR in Bank2
DPL	equ	185h	; SFR in Bank3
RAM020	equ	020h	; RAM in Bank0
RAM0A0	equ	0A0h	; RAM in Bank1
	oqu	011011	
MOVXW	TM1		; read TM1 (Bank0) to W
MOVXW	OPTION2		; read OPTION2 (Bank1) to W
MOVXW	IRCF		; read IRCF (Bank2) to W
MOVXW	DPL		; read DPL (Bank3) to W
MOVLW	16h		; W = 16h
MOVWX	RAM020		; RAM[0x020] = W = 16h
MOVWX	RAM0A0		; RAM[0x0A0] = W = 16h
MOVLW	37h		; W = 37h
MOVWX	LVRPD		; LVRPD = W = 37h, force LVR/POR disable
MOVXW	CLKCTL		; read SFR CLKCTL (00Fh) to W
MOVXW	IRCF		; read SFR IRCF (10Fh) to W
MOVLW	0Bh		; W = 0Bh
MOVWX	CLKCTL		; CLKCTL (00Fh) = W = 0Bh
MOVWX	IRCF		; IRCF (10Fh) = W = 0Bh

 \diamond Example: read / write register by using indirect addressing (force RP0=RP1=0)

BSX	IRP	; IRP = 1 => Bank2/3
MOVLW	0Fh	; W = 0Fh
MOVWX	FSR	; FSR = W = 0Fh
MOVXW	INDF	; read SFR IRCF (10Fh) to W
BSX MOVLW MOVWX MOVLW MOVWX	0Bh	; IRP = 1 => Bank2/3 ; W = 0Fh ; FSR = W = 0Fh ; W = 0Bh ; IRCF (10Fh) = W = 0Bh
BCX MOVLW MOVWX MOVXW		; IRP = 0 => Bank0/1 ; W = 0Fh ; FSR = W = 0Fh ; read SFR CLKCTL (00Fh) to W
BCX	IRP	; IRP = 0 => Bank0/1
MOVLW	0Fh	; W = 0Fh
MOVWX	FSR	; FSR = W = 0Fh
MOVLW	0Bh	; W = 0Bh
MOVWX	INDF	; CLKCTL (00Fh) = W = 0Bh


1.4 Programming Counter (PC) and Stack

The Programming Counter is 11-bit wide and capable of addressing a 2K x 16 MTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except for the following cases. The Reset Vector (000h) and the Interrupt Vector (004h) are provided for PC initialization and Interrupt. For CALL/GOTO instruction, PC loads lower 11 bits address from instruction word. For RET/RETI/RETLW instruction, PC retrieves its content from the top level STACK.

The low byte data of the Programming Counter (PC[7:0]) can be read and written by PCL register (002h/082h/102h/182h). The high byte data of Programming Counter (PC[10:8]) can only be read by PCH register (10Ch). The internal flag PCH_S is used to select the source of PCH, when executing any instruction with the PCL register as the destination. Write 0x1C to PCH register can set PCH_S, write others value to PCH register will clear PCH_S. After reset, the PCH_S is cleared.

When PCH_S is cleared to '0', executing any instruction with the PCL register as the destination simultaneously causes PCH to be replaced by the contents of the PCLATH (00Ah/08Ah/10Ah/18Ah) register. This allows the entire contents of the program counter to be changed by writing the desired high byte to the PCLATH register. When the low byte is written to the PCL register, all contents of program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

When PCH_S is set to '1', executing any instruction with the PCL register as the destination the low byte is written to the PCL register and will not change the PCH. It is recommended to setting PCH_S to '1' when using any instruction with the PCL register as the destination, but C language doesn't support this function.

002h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCL		PCL						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

002h.7~0 PCL: Programming Counter data bit 7~0

00Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCLATH		GPR					PCLATH	
R/W	R/W						R/W	
Reset	0	0 0 0 0 0				0	0	0

00Ah.2~0 **PCLATH:** Programming Counter high byte data when instruction with PCL as destination is executed, and PCH_S is cleared

10Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCH		РСН						
R/W	W						R/W	
Reset	0	0	0	0	0	0	0	0

10Ch.7~0 PCH (W): Programming Counter high byte source selection when instruction with PCL as destination is executed

write 0x1C to set PCH_S = 1: PCH keep the original value write others to clear PCH_S = 0: PCH is from PCLATH After reset, the PCH_S is cleared

10Ch.2~0 PCH (R): Programming Counter data bit 10~8

The STACK is 12-bit wide and 8-level in depth. The LCALL instruction and hardware interrupt will push STACK level in order, while the RET/RETI/RETLW instruction pops STACK level in order. For table lookup, the device offer the powerful table read instructions TABRL, TABRH to return the 16-bit ROM data into W and TABR register by setting DPTR={DPH, DPL} registers. It also offers another way to read the16-bit ROM data into W and TABR register by setting TABR (18Ch) for C language.

 \diamond Example: To look up the PROM data located "TABLE1" and "TABLE2".

ORG	000h LGOTO	START	; Reset Vector
START:			
	MOVLW	00h	
	MOVWX	RAM020	; Set lookup table's address
	MOVLW	1Ch	; Write 1Ch to PCH to set PCH_S flag
	MOVWX	РСН	
LOOP:	MOUVIN	DAM020	Mana in lan malan ta Wilan sistan
	MOVXW LCALL	RAM020 TABLE1	; Move index value to W register ; To lookup data
	LCALL	IADLLI	, 10 100kup data
	INCX	RAM020, 1	; Increment the index address for next address
	 LGOTO	LOOP	; Go to LOOP label
	MOVLW	(TABLE2 >>8) & 0xff	
	MOVWX	DPH	
	MOVLW	(TABLE2) & 0xff	
	MOVWX	DPL	; $DPTR = \{DPH, DPL\} = TABLE2$
; Table Rea	ad by instruction	ns TABRL / TABRH	
	TABRL		; Read PROM low byte data to W and TABR
			(W = TABR = 86h)
	TABRH		; Read PROM high byte data to W and TABR
			(W = TABR = 19h)
; Table Rea	ad by SFR TAB		
	MOVLW	01h	; TABR write 01h = instruction TABRL
	MOVWX	TABR	; Read PROM low byte data to W and TABR (W = TABR = 86h)
	MOVXW	TABR	; Read TABR to W (W = $86h$)
	MOVLW	02h	; TABR write 02h = instruction TABRH
	MOVWX	TABR	; read PROM high byte data to W and TABR
	, ,, , ,		(W = TABR = 19h)
	MOVXW	TABR	; read TABR to W (W = 19h)
			, 1000 11151 (0 11 (11 - 170))
ORG	 X00h		
TABLE1:	110011		
	ADDWX	PCL, 1	; Add the W with PCL, the result back in PCL.
	RETLW	55h	; W=55h when return
	RETLW		; W=55h when return $W=56h$ when return
		56h 58h	
	RETLW	58h	; W=58h when return
	•••		

TABLE2:

.DT	0x1986	; 16-bit ROM data
.DT	0x3719	

Note: The chip define 256 ROM address as one page, so that ROM has 8 pages, 000h~0FFh, 100h~1FFh, ..., 700h~7FFh. On the other words, PC[10:8] can be define as page. A lookup table must be located at the same page to avoid getting wrong data. Thus, the lookup table has maximum 255 data for above example with starting a lookup table at X00h (X = 1, 2, 3, ..., E, F). If a lookup table has fewer data, it needs not setting the starting address at X00h, but only confirms all lookup table data are located at the same page.

18Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TABR		TABR						
R/W	R/W							
Reset	0	0	0	0	0	0	0	0

18Ch.7~0 1. TABR write 01h = instruction TABRL (Read PROM low byte data to W and TABR)

2. TABR write 02h = instruction TABRH (Read PROM high byte data to W and TABR)

3. Don't write the value other than 01h or 02h into register TABR

4. After step.1 or step.2, read TABR to get main ROM table read value for C language

Table Read for ASM: Support instruction TABRL / TABRH or register TABR. Suggest not using the method of register TABR. SFR HWAUTO=1 is also suggested.

Table Read for C: using register TABR. Only be used outside or inside the interrupt service routine. Don't utilize it inside and outside interrupt service routine simultaneously. Otherwise, something will be wrong.

1.4.1 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.4.2 STATUS Register (003h/083h/103h/183h)

This register contains the arithmetic status of ALU and the Reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCX, BSX and MOVWX instructions are used to alter the STATUS Register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Bit		Description						
7	IRP: Register Bank Select bit (used for indirect addressing) 0 = Bank 0,1 (000h - 0FFh) 1 = Bank 2,3 (100h - 1FFh)							

	1					
	RP1:RP0 : Register Bank Select bits (used f	for direct addressing)				
	00 = Bank 0 (000h - 07Fh)					
6:5	01 = Bank 1 (080h - 0FFh)					
0.5	10 = Bank 2 (100h - 17Fh)					
	11 = Bank 3 (180h - 1FFh)					
	Each bank is 128 bytes					
	TO : Time Out Flag					
4	0: after Power On Reset or CLRWDT/SLE	EP instruction				
	1: WDT time out occurs					
	PD : Power Down Flag					
3	0: after Power On Reset or CLRWDT instr	ruction				
	1: after SLEEP instruction					
	Z: Zero Flag					
2	0: the result of a logic operation is not zero					
	1: the result of a logic operation is zero					
	DC: Decimal Carry Flag or Decimal / Borro	ow Flag				
	ADD instruction	SUB instruction				
1	0: no carry	0: a borrow from the low nibble bits of				
	1: a carry from the low nibble bits of the	the result occurs				
	result occurs 1: no borrow					
	C: Carry Flag or /Borrow Flag					
0	ADD instruction	SUB instruction				
U	0: no carry	0: a borrow occurs from the MSB				
	1: a carry occurs from the MSB	1: no borrow				

 \diamondsuit Example: Write immediate data into STATUS register.

MOVLW00hMOVWXSTATUS; Clear STATUS register

 \Diamond Example: Bit addressing set and clear STATUS register.

BSX	STATUS, 0	; Set C=1
BCX	STATUS, 0	; Clear C=0

 \diamondsuit Example: Determine the C flag by BTXSS instruction.

BTXSS	STATUS, 0	; Check the carry flag
LGOTO	LABEL_1	; If C=0, goto LABEL_1
LGOTO	LABEL_2	; If C=1, goto LABEL_2

2 Reset

This device can be RESET in four ways.

- Power-On-Reset (POR)
- Low Voltage Reset (LVR)
- External Pin Reset (XRST)
- Watchdog Timer Reset (WDTR)

Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The CFGWH controls the Reset functionality. After Reset, the SFRs are returned to their default value, the program counter (PC) is cleared, and the system starts running from the reset vector 000h place. The TO and PD flags at status register (STATUS) are indicate system reset status.

2.1 Power on Reset (POR)

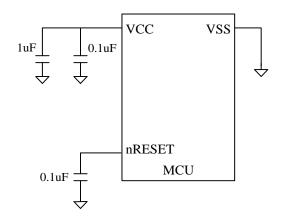
After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values.

2.2 Low Voltage Reset (LVR)

The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are 15 threshold levels can be selected. The LVR's operation mode is defined by the CFGWH register. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR level	Operating voltage
LVR1.73	$5.5V > V_{CC} > 1.73V$
LVR1.85	$5.5V > V_{CC} > 1.85V$
LVR1.98	$5.5V > V_{CC} > 1.98V$
LVR2.11	$5.5V > V_{CC} > 2.11V$
LVR2.23	$5.5V > V_{CC} > 2.23V$
LVR2.36	$5.5V > V_{CC} > 2.36V$
LVR2.49	$5.5V > V_{CC} > 2.49V$
LVR2.61	$5.5V > V_{CC} > 2.61V$
LVR2.74	$5.5V > V_{CC} > 2.74V$
LVR2.87	$5.5V > V_{CC} > 2.87V$
LVR2.99	$5.5V > V_{CC} > 2.99V$
LVR3.12	$5.5V > V_{CC} > 3.12V$
LVR3.25	$5.5V > V_{CC} > 3.25V$
LVR3.37	$5.5V > V_{CC} > 3.37V$
LVR3.50	$5.5V > V_{CC} > 3.50V$

LVR Selection Table:


Different F_{sys} have different system minimum operating voltage, reference to Operating Voltage of DC characteristics, if current system voltage is low than minimum operating voltage and lower LVR is selected, then the system maybe enters dead-band and error occurs.

2.3 External Pin Reset (XRST)

The External Pin Reset (XRST) can be disabled or enabled by XRSTE at CFGWH register. External pin reset should be kept low for at least 2 SIRC clock cycles to ensure reset can active. The External Pin Reset also sets all the control registers to their default value but the TO/PD flags will not affected by these resets.

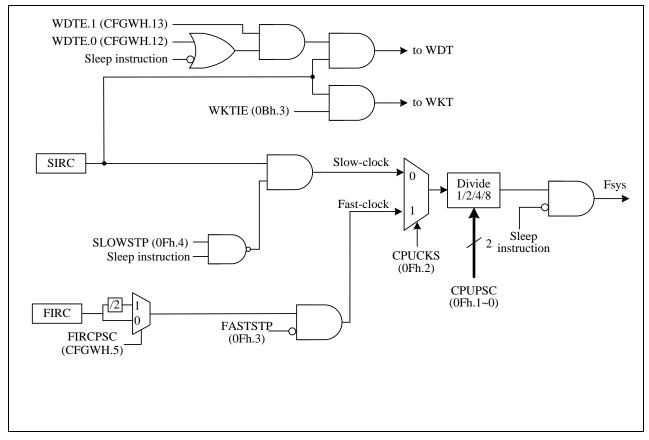
External reset pin (nRESET) is low level active. The system is running when reset pin is high level voltage input. The reset pin receives the low voltage and the system is reset. The external reset can reset the system during power on duration, and good external reset circuit can protect the system to avoid operating at inappropriate power condition.

2.4 Watchdog Timer Reset (WDTR)

The WDT reset can be disabled or enabled through the CFGWH register. Set WDTPSC to define the period during which WDT reset occurs. WDT reset counter can be cleared by device Reset or CLRWDT bit. WDT reset also set all the control registers to their default value. The TO/PD flags are not affected by WDT resets.

♦ Example: Defining Reset Vector

	ORG LGOTO	000h START	; Reset Vector ; Jump to user program address.
START:	ORG	010h	
STIRT.			; 010h, The head of user program
	LGOTO	START	


3 Clock Circuitry and Operation Mode

3.1 System Clock

The device is designed with dual-clock system. There are two kinds of clock source, SIRC (Slow Internal RC) Clock and FIRC (Fast Internal RC) Clock. Each clock source can be applied to CPU kernel as system clock. When in IDLE mode, the SIRC can be configured to keep oscillating to provide clock source to WKT/WDT block. Refer to the Figure as below.

After Reset, the device is running at SLOW mode with 93 KHz(@Vcc=5V) SIRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, a 16 MHz System clock rate requires $V_{CC} > 2V(@25^{\circ}C)$.

The CLKCTL (0Fh) SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. Never to write both FASTSTP=1 and CPUCKS=1. It is recommended to write this SFR bit by bit.

Clock Scheme Block Diagram

The frequency of FIRC can be adjusted by IRCF (10Fh). When IRCF=00h, frequency is the lowest. When IRCF=7Fh, frequency is the highest. With this function, we can adjust the frequency of FIRC after power on. Each IC may have different default value of IRCF, to make sure the frequency of FIRC=16 MHz after Power on Reset.

FAST Mode:

In this mode, the program is executed using FIRC as CPU clock (Fsys). The Timer0, Timer1 blocks are also driven by Fast-clock. The PWM0 block can be driven by Fsys, FIRC/256, FIRC (16 MHz), or FIRC*2 (32 MHz) by setting PWMCKS (91h.5~4).

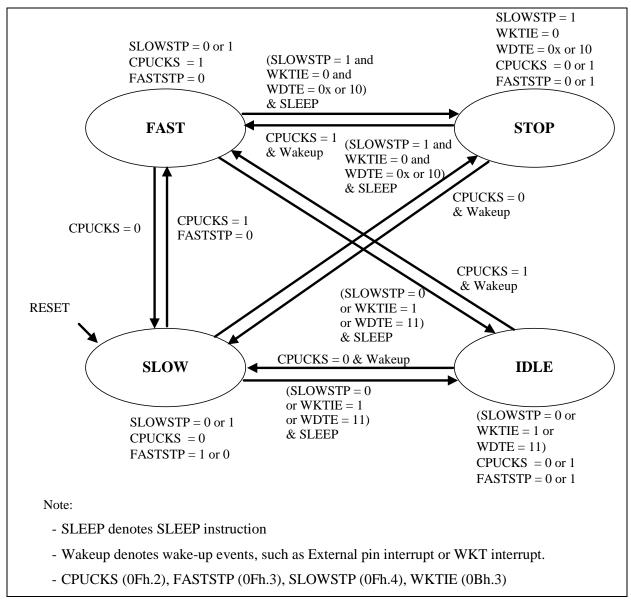
SLOW Mode:

After power-on or reset, device enters SLOW mode, the default Slow-clock is SIRC. In this mode, the Fast-clock can stopped (by FASTSTP=1, for power saving) or running (by FASTSTP=0), and Slow-clock is enabled. All peripheral blocks (Timer0, Timer1, etc...) clock source are Slow-clock in the SLOW mode, except PWM block, which can select other clock source. Only one kinds of SLOW clock can be selected, SIRC.

IDLE Mode:

After executing the SLEEP instruction, if SIRC is still oscillating, it means entering IDLE mode. IDLE mode is terminated by Reset or enabled Interrupts wake up. There are two ways to keep SIRC oscillating in IDLE mode.

- (1) Set SLOWSTP=0, before executing the SLEEP instruction, the SIRC can still oscillate.
- (2) Set WKTIE=1 or WDTE=11, before executing the SLEEP instruction, the SIRC can still oscillate to keep WKT/WDT operating in IDLE mode.


STOP Mode:

When SLOWSTP (0Fh.4) is set, WKTIE (0Bh.3) is cleared and WDTE=0x or 10, all blocks will be turned off and the chip will enter the "STOP Mode" after executing the SLEEP instruction. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock are stopped and no clocks are generated.

3.2 Dual System Clock Modes Transition

The device is operated in one of four modes: FAST mode, SLOW mode, IDLE mode, and STOP mode.

CPU Operation Block Diagram

Mode	Fsys	Fast-clock	Slow-clock	TM0/TM1	WKT	WDT	Wakeup event
FAST	Fast-clock	Run	Run	Run	Run	Run	Х
SLOW	Slow-clock	Set by FASTSTP	Run	Run	Run	Run	Х
IDLE	Stop	Stop	Run	Stop	Set by WKTIE	Set by WDTE	WKT/IO
STOP	Stop	Stop	Stop	Stop	Stop	Stop	IO

CPU Mode & Clock Functions Table:

• FAST mode switches to SLOW mode

The following steps are suggested to be executed by order when FAST mode switches to SLOW mode:

- (1) Switch to Slow-clock (CPUCKS=0)
- (2) Stop Fast-clock (FASTSTP=1)

 \diamond Example: Switch FAST mode to SLOW mode.

BCX	CPUCKS	; Fsys=Slow-clock
BSX	FASTSTP	; Disable Fast-clock

• SLOW mode switches to FAST mode

SLOW mode can be enabled by CPUCKS=0 in CLKCTL register. The following steps are suggested to be executed by order when SLOW mode switches to FAST mode:

- (1) Enable Fast-clock (FASTSTP=0)
- (2) Switch to Fast-clock (CPUCKS=1)

 \diamond Example: Switch SLOW mode to FAST mode (The Fast-clock stop).

BCX	FASTSTP	; Enable Fast-clock
NOP		
BSX	CPUCKS	; Fsys=Fast-clock

• IDLE mode Setting

The IDLE mode can be configured by following setting in order:

- (1) Enable Slow-clock (SLOWSTP=0) or WKT (WKTIE=1) or WDT (WDTE=11b)
- (2) Execute SLEEP instruction

IDLE mode can be wake up by External interrupt and WKT interrupt.

 \diamond Example: Switch FAST/SLOW mode to IDLE mode.

BCX	SLOWSTP	; Enable Slow-clock after execute SLEEP instruction
SLEEP		; Enter IDLE mode

• STOP Mode Setting

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (SLOWSTP=1)
- (2) Stop WKT (WKTIE=0)
- (3) Execute SLEEP instruction

STOP mode can be woken up only by external pin interrupt and pin-change. Note: CPU will not enter STOP mode if WDTE=11b

\diamond Example: Switch FAST/SLOW mode to STOP mode.

BSX	SLOWSTP	; Disable Slow-clock after execute SLEEP instruction
MOVLW	0000 <u>0</u> 000b	; Disable WKT counting
MOVWX	INTIE	
SLEEP		; Enter STOP mode.

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	—	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	—	0	0	0	0	0	0

0Bh.3 **WKTIE:** Wakeup Timer interrupt enable and Wakeup Timer enable 0: disable 1: enable

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	—	—	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	-	_	_	R/W	R/W	R/W	R/W	
Reset	-	_	_	0	1	0	1	1

0Fh.4 **SLOWSTP**: Stop Slow-clock after execute SLEEP instruction 0: Slow-clock keeps running after execute SLEEP instruction

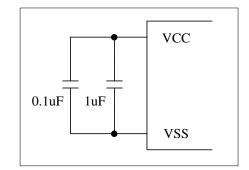
1: Slow-clock stops running after execute SLEEP instruction

- OFh.3 FASTSTP: Fast-clock stop

 0: Fast-clock is running
 1: Fast-clock stops running

 OFh.2 CPUCKS: System clock source select

 0: Slow-clock
 1: Fast-clock

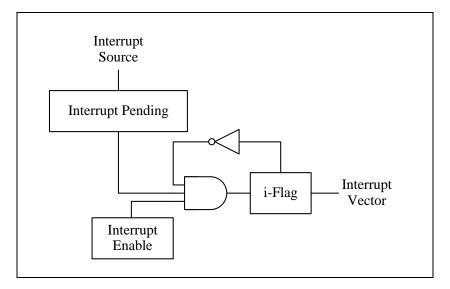

 OFh.1~0 CPUPSC: System clock source prescaler. System clock source o0: divided by 8

 01: divided by 4
 10. divided by 4
 - 10: divided by 2
 - 11: divided by 1

3.3 System Clock Oscillator

In the Fast Internal RC (FIRC) mode, the on-chip oscillator generates 16 MHz system clock. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VCC/VSS pins improves the stability of clock and the overall system.

Internal RC Mode



4 Interrupt

The Chip has 1 level, 1 vector and 9 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag, no matter its enable control bit is 0 or 1.

If the corresponding interrupt enable bit (INTIE[7], INTIE[5:0], INTIE1[6], INTIE1[1:0]) has been set, it would trigger CPU to service the interrupt. CPU accepts interrupt at the end of current executed instruction cycle. In the meanwhile, a "LCALL 004" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

 \diamond Example: Setup INT1 (PA1) interrupt request with rising edge trigger

	ORG	000h	; Reset Vector
	LGOTO	START	; Goto user program address
	ORG	004h	; All interrupt vector
	LGOTO	INT	; If INT1 (PA1) input occurred rising edge
	ORG	005h	
START:			
	MOVLW	<u>0000</u> xxxxb	
	MOVWX	PAMOD10	; Select INT1 Pin Mode as mode 0000b
			; Open drain output low or input with Pull-up
	MOVLW	xxxxxx 1 xb	
	MOVWX	PAD	; Release INT1, it becomes Schmitt-trigger
			; input with input pull-up resistor
	MOVLW	xx <u>1</u> xxxxxb	
	MOVWX	OPTION	; Set INT1 interrupt trigger as rising edge
	MOVLW	111111 <u>0</u> 1b	
	MOVWX	INTIF	; Clear INT1 interrupt request flag
	MOVLW	000000 <u>1</u> 0Ь	
	MOVWX	INTIE	; Enable INT1 interrupt
MAIN:			
	LGOTO	MAIN	
INT:			
	MOVWX	20h	; Store W data to SRAM 20h
	MOVXW	STATUS	; Get STATUS data
	MOVWX		
	110 1 111	21h	; Store STATUS data to SRAM 21h
		21h	; Store STATUS data to SRAM 21h
	BTXSC	21h INT1IF	; Store STATUS data to SRAM 21h ; Check INT1IF bit
	BTXSC	INT1IF	; Check INT1IF bit
EXIT_INT:	BTXSC	INT1IF INT1_SUB	; Check INT1IF bit
EXIT_INT:	BTXSC	INT1IF	; Check INT1IF bit
EXIT_INT:	BTXSC LCALL 	INT1IF INT1_SUB	; Check INT1IF bit ; INT1IF = 1, jump to INT1 interrupt service routine ;
EXIT_INT:	BTXSC LCALL MOVXW	INT1IF INT1_SUB 21h	; Check INT1IF bit ; INT1IF = 1, jump to INT1 interrupt service routine ; ; Get SRAM 21h data
EXIT_INT:	BTXSC LCALL MOVXW MOVWX	INT1IF INT1_SUB 21h STATUS	; Check INT1IF bit ; INT1IF = 1, jump to INT1 interrupt service routine ; ; Get SRAM 21h data ; Restore STATUS data
	BTXSC LCALL MOVXW MOVXW MOVXW RETI	INT1IF INT1_SUB 21h STATUS	; Check INT1IF bit ; INT1IF = 1, jump to INT1 interrupt service routine ; ; Get SRAM 21h data ; Restore STATUS data ; Restore W data ; Return from interrupt
EXIT_INT: INT1_SUB:	BTXSC LCALL MOVXW MOVXW MOVXW RETI	INT1IF INT1_SUB 21h STATUS	 ; Check INT1IF bit ; INT1IF = 1, jump to INT1 interrupt service routine ; ; Get SRAM 21h data ; Restore STATUS data ; Restore W data
	BTXSC LCALL MOVXW MOVXW MOVXW RETI	INT1IF INT1_SUB 21h STATUS 20h	; Check INT1IF bit ; INT1IF = 1, jump to INT1 interrupt service routine ; ; Get SRAM 21h data ; Restore STATUS data ; Restore W data ; Return from interrupt
	BTXSC LCALL MOVXW MOVXW MOVXW RETI MOVLW	INT1IF INT1_SUB 21h STATUS 20h 111111 <u>0</u> 1b	; Check INT1IF bit ; INT1IF = 1, jump to INT1 interrupt service routine ; ; Get SRAM 21h data ; Restore STATUS data ; Restore W data ; Return from interrupt ; INT1 interrupt service routine
	BTXSC LCALL MOVXW MOVXW MOVXW RETI MOVLW MOVLW	INT1IF INT1_SUB 21h STATUS 20h	; Check INT1IF bit ; INT1IF = 1, jump to INT1 interrupt service routine ; ; Get SRAM 21h data ; Restore STATUS data ; Restore W data ; Return from interrupt
	BTXSC LCALL MOVXW MOVXW MOVXW RETI MOVLW	INT1IF INT1_SUB 21h STATUS 20h 111111 <u>0</u> 1b	; Check INT1IF bit ; INT1IF = 1, jump to INT1 interrupt service routine ; ; Get SRAM 21h data ; Restore STATUS data ; Restore W data ; Return from interrupt ; INT1 interrupt service routine

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	—	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
0Bh.7 ADCIE: ADC interrupt enable 0: disable 1: enable								

	1: enable
0Bh.5	TM1IE: Timer1 interrupt enable
	0: disable
	1: enable
0Bh.4	TM0IE: Timer0 interrupt enable
	0: disable
	1: enable
0Bh.3	WKTIE: Wakeup Timer interrupt enable and Wakeup Timer enable
	0: disable
	1: enable
0Bh.2	INT2IE: INT2 interrupt enable
	0: disable
	1: enable
0Bh.1	INT1IE: INT1 interrupt enable
	0: disable
	1: enable
0Bh.0	INTOIE: INTO interrupt enable
	0: disable
	1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	—	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	—	0	0	0	0	0	0

0Ch.7	ADCIF: ADC interrupt event pending flag
	This bit is set by H/W after ADC end of conversion, write 0 to this bit will clear this flag
0Ch.5	TM1IF: Timer1 interrupt event pending flag
	This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag
0Ch.4	TM0IF: Timer0 interrupt event pending flag
	This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag
0Ch.3	WKTIF: Wakeup Timer interrupt event pending flag
	This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag
0Ch.2	INT2IF: INT2 pin falling interrupt pending flag
	This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag
0Ch.1	INT1IF: INT1 pin falling/rising interrupt pending flag
	This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag
0Ch.0	INTOIF: INTO pin falling/rising interrupt pending flag
	This bit is set by H/W at INT0 pin's falling/rising edge, write 0 to this bit will clear this flag

0Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	_	PCIE	—	—	_	_	PWMIE	LVDIE
R/W	_	R/W	—	—	_	_	R/W	R/W
Reset	_	0	—	—	_	_	0	0

0Dh.6 **PCIE:** All port pin change wakeup interrupt enable 0: disable 1: enable

 0Dh.1
 PWMIE: PWM interrupt enable

 0: disable
 1: enable

 0Dh.0
 LVDIE: LVD interrupt enable

 0: disable
 0: disable

1: enable

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	—	PCIF	—	—	—	—	PWMIF	LVDIF
R/W	-	R/W			_	_	R/W	R/W
Reset	-	0			_	_	0	0

 0Eh.6 PCIF: All port pin change wakeup interrupt event pending flag This bit is set by H/W at all pin's falling/rising edge, write 0 to this bit will clear this flag
 0Eh.1 PWMIF: PWM interrupt event pending flag This bit is set by H/W after PWM period counter roll over, write 0 to this bit will clear this flag

0Eh.0 **LVDIF:** LVD interrupt event pending flag This bit is set by H/W after VCC < VLVD, write 0 to this bit will clear this flag

81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	INT1EDG	—	WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W	_	R/W		R/W	
Reset	0	0	0	—	1	1	1	1

81h.6 INTOEDG: INTO pin interrupt edge selection
0: falling edge to trigger
1: rising edge to trigger
81h.5 INT1EDG: INTO pin interrupt edge selection
0: falling edge to trigger
1: rising edge to trigger
1: rising edge to trigger

5 I/O Port

5.1 PA0-PA7, PB0-PB2, PB4-PB6

Each IO has 4 bits as the mode setting. The mode setting can include the following functions: open drain output, CMOS output, pull-up resistor, pin changed wake-up, PWMO and so on. All IO except PA7 support two sink current options, which are defined by the HSINK (105h.2). **PA7 has no high-sink capability.** All IOs have no 1/2 bias and pull-down capability.

PAxMOD PBxMOD	PADx PBDx	PA0~PA7, PB0~PB2, PB4~PB6 pin function	Pin State	Resistor Pull-up	Digital Input	Pin Changed Wakeup
0000Ь	0	Open Drain	Drive Low	-	-	-
00000	1	Input	Pull-up	Y	Y	-
0001b	0	Open Drain	Drive Low	-	-	-
00010	1	Input	Hi-Z	-	Y	-
0010b	0	CMOS Output (except PWMx)	Drive Low	-	-	-
00100	1	CMOS Output (except F W MX)	Drive High	-	-	-
0011b	Х	Analog input/output for ADCx	Hi-Z	-	-	-

These pins can be operated in different modes as below table.

I/O Pin Function Table 1

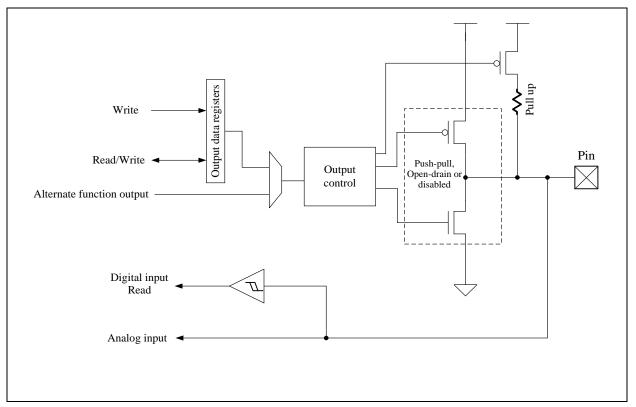
PAxMOD PBxMOD	PADx PBDx	PA0~PA7, PB0~PB2, PB4~PB6 pin function	Pin State	Resistor Pull-down	Digital Input	Pin Changed Wakeup
0100b	0	Open Drain	Drive Low	-	-	-
01000	1	Input	Hi-Z	-	Y	-
0101b	0	Open Drain	Drive Low	-	-	-
01010	1	Input	Hi-Z	-	Y	-
0110b	0	CMOS Output (ou cont DW/Mr)	Drive Low	-	-	-
01100	1	CMOS Output (except PWMx)	Drive High	-	-	-
0111b	Х	Function CMOS output for PWMx	-	-	-	-

I/O Pin Function Table 2

PAxMOD PBxMOD	PADx PBDx	PA0~PA7, PB0~PB2, PB4~PB6 pin function	Pin State	Resistor Pull-up	Digital Input	Pin Changed Wakeup
1000b	0	Open Drain	Drive Low	-	-	-
10000	1	Input	Pull-up	Y	Y	Y
1001b	0	Open Drain	Drive Low	-	-	-
10010	1	Input	Hi-Z	-	Y	Y
1010b	0	CMOS Output (avaant BWMy)	Drive Low	-	-	-
10100	1	CMOS Output (except PWMx)	Drive High	-	-	-
1011b		Reserved				

I/O Pin Function Table 3

PAxMOD PBxMOD	PADx PBDx	PA0~PA7, PB0~PB2, PB4~PB6 pin function	Pin State	Resistor Pull-down	Digital Input	Pin Changed Wakeup
1100b	0	Open Drain	Drive Low	-	-	-
11000	1	Input	Hi-Z	-	Y	Y
1101b	0	Open Drain	Drive Low	-	-	-
11010	1	Input	Hi-Z	-	Y	Y
1110b	0	CMOS Output (avaant DWMy)	Drive Low	-	-	-
11100	1	CMOS Output (except PWMx)	Drive High	-	-	-
1111b		Reserved		-	-	-



I/O Pin Function Table 4

D' M		/ PBxMOD ting
Pin Name	0011b (Analog in/out)	0111b (Digital output)
PA0	ADC0	PWM50
PA1	ADC1	PWM1O
PA2	ADC2	PWM4O
PA3	ADC3	PWM2O
PA4	ADC4	PWM0P
PA5	ADC5	PWM3O
PA6	ADC6	PWM0N
PA7	-	-
PB0	ADC7	-
PB1	ADC8	-
PB2	ADC9	-
PB4	ADC10	-
PB5	ADC11	-
PB6	ADC12	-

Special function for PxxMOD Table

General Pin Structure

0.51	D' 7	DI	D': 5	D'- 4	D': 0	D'- 0	D' 1	D '. 0
85h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMOD10		PA1	MOD		PA0MOD			
R/W		R	/W		R/W			
Reset	0	0	0	1	0	0	0	1
86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMOD32		PA3	MOD			PA2	MOD	4.
R/W	R/W					R	/W	
Reset	0	0	0	1	0	0	0	1
			1	1	-	1	1	
87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMOD54		PA5	MOD		PA4MOD			
R/W		R	/W			R	/W	
Reset	0	0	0	1	0	0	0	1
88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMOD76			MOD	1			MOD	1
R/W	R/W				R/W			
Reset	0	0	0	0	0	0	0	1

88h.7~4 PA7MOD ~ PA0MOD: PA7~PA0 Pin Mode Control

88h.3~0 0000: Open drain or digital input with pull-up

- 87h.7~4 0001: Open drain or digital input
- 87h.3~0 0010: CMOS Push-pull
- 86h.7~4 0011: Analog input/output
- 86h.3~0 0100: Open drain or digital input
- 85h.7~4 0101: Open drain or digital input
- 85h.3~0 0110: CMOS Push-pull
 - 0111: Alternate function output

- 1000: Open drain or digital input with pull-up and pin-changed wakeup
- 1001: Open drain or digital input and pin-changed wakeup
- 1010: CMOS Push-pull
- 1011: Reserved

1100: Open drain or digital input and pin-changed wakeup

1101: Open drain or digital input and pin-changed wakeup

1110: CMOS Push-pull

1111: Reserved

8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBMOD10			MOD		PB0MOD				
R/W			W		R/W				
Reset	0	0	0	1	0	0	0	1	
8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBMOD32	Dit 7		-	Dit i	DIUS		MOD	Ditto	
R/W			_			R	W/W		
Reset			-		0	0	0	1	
8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBMOD54		PB51	MOD		PB4MOD				
R/W		R/	W			R/	W/W		
Reset	0	0	0	1	0	0	0	1	
8Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Dit /			Dit 4	DIT 5			DIU	
PBMOD76			-				MOD		
R/W			-			R/	W		
Reset			-		0	0	0	1	

8Fh.3~0 **PB6MOD ~ PB4MOD, PB2MOD ~ PB0MOD**: PB6~PB4 and PB2~PB0 Pin Mode Control

- 8Eh.7~4 0000: Open drain or digital input with pull-up
- 8Eh.3~0 0001: Open drain or digital input
- 8Dh.3~0 0010: CMOS Push-pull
- 8Ch.7~4 0011: Analog input
- 8Ch.3~0 0100: Open drain or digital input
 - 0101: Open drain or digital input
 - 0110: CMOS Push-pull
 - 0111: Alternate function output
 - 1000: Open drain or digital input with pull-up and pin-changed wakeup
 - 1001: Open drain or digital input and pin-changed wakeup
 - 1010: CMOS Push-pull
 - 1011: Reserved
 - 1100: Open drain or digital input and pin-changed wakeup
 - 1101: Open drain or digital input and pin-changed wakeup
 - 1110: CMOS Push-pull
 - 1111: Reserved

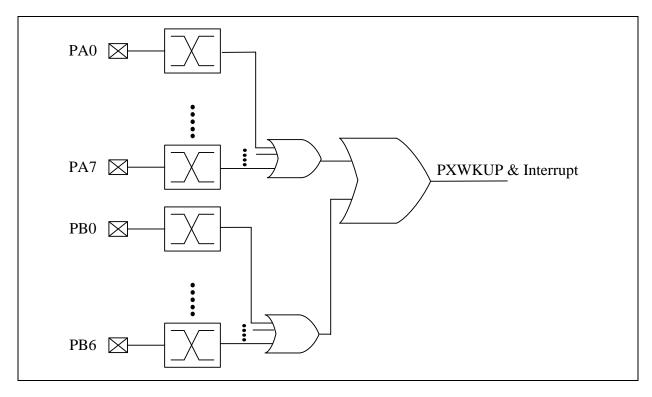
05h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAD		PAD							
R/W				R/	W				
Reset	1	1	1	1	1	1	1	1	

05h.7~0 PAD: PA7~PA0 data

06h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBD				PE	BD				
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

06h.7~0 PBD: PB7~PB0 data

105h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD		_	Reserved	—	_	HSINK	Reserved	Reserved
R/W			R	—	_	R/W	R/W	R/W
Reset	-	-	Х	_	_	1	0	0

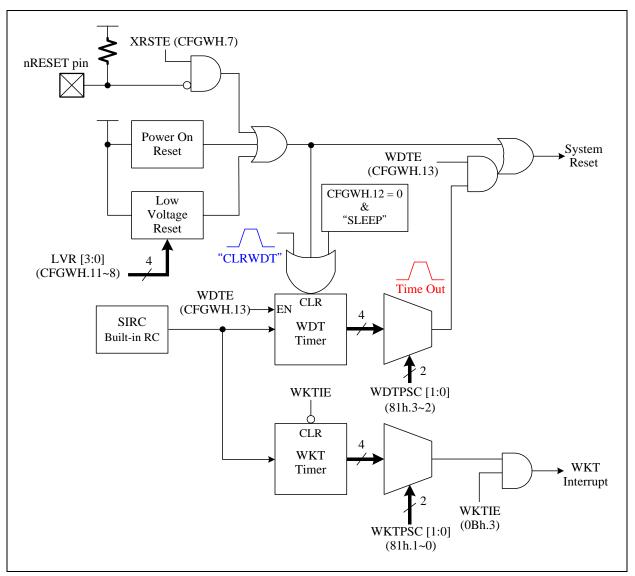

105h.5 Reserved: read as unknown after reset

105h.2 HSINK: All IO ports high sink current enable 0: low sink current 1: high sink current. PA7 has no high-sink capability. **Reserved**: must be kept at 0 105h.1

105h.0 Reserved: must be kept at 0

5.2 Pin Change Wake Up & Interrupt

All of the IO pins also have the pin-change wake up and interrupt capability.



6 Peripheral Functional Block

6.1 Watchdog (WDT) /Wakeup (WKT) Timer

The WDT and WKT share the same built-in internal RC Oscillator and have individual counters. The overflow period of WDT, WKT can be selected by individual prescaler (WDTPSC[1:0], WKTPSC[1:0]). The WDT timer is cleared by the CLRWDT instruction. If the Watchdog is enabled, the WDT generates the chip reset signal.

The WKT timer is an interval timer, WKT time out will generate WKT Interrupt Flag (WKTIF). The WKT timer is cleared/stopped by WKTIE=0. Set WKTIE=1, the WKT timer will always count regardless at any CPU operating mode.

WDT/WKT Block Diagram

The WDT's behavior in different Mode is shown as below table.

Mada	CFGWH	CFGWH[13:12]		
Mode	WDTE[1]	WDTE[0]	WDT	
	0	0	Stop	
Normal Mode	0	1	Stop	
Normai Mode	1	0	Run	
	1	1	Run	
Denne denne	0	0	Stop	
Power-down Mode	0	1	Stop	
(SLEEP)	1	0	Stop	
(SLEEF)	1	1	Run	

Watchdog clear is controlled by CLRWDT instruction.

 \Diamond Example: Clear watchdog timer by CLRWDT instruction.

MAIN:	 CLRWDT		; Execute program. ; Execute CLRWDT instruction.
	LGOTO	MAIN	, Execute CERWD1 Instruction.

 \diamondsuit Example: Setup WDT time.

MOVLW	0000 <u>01</u> 11b	
MOVWX	OPTION	; Select WDT Time out=168 ms @5V

 \bigcirc Example: Set WKT period and interrupt function.

MOVLW	000001 <u>10</u> b	
MOVWX	OPTION	; Select WKT period=42 ms @5V
MOVLW	1111 <u>0</u> 111b	; Clear WKT interrupt flag by using byte operation
MOVWX	INTIF	; Don't use bit operation "BCX WKTIF" to clear
BSX	WKTIE	; Enable WKT interrupt function
		-

03h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

03h.4 **TO:** WDT time out flag, read-only 0: after Power On Reset or CLRWDT / SLEEP instructions

1: WDT time out occurs

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	—	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

0Ch.3 **WKTIF:** Wakeup Timer interrupt event pending flag

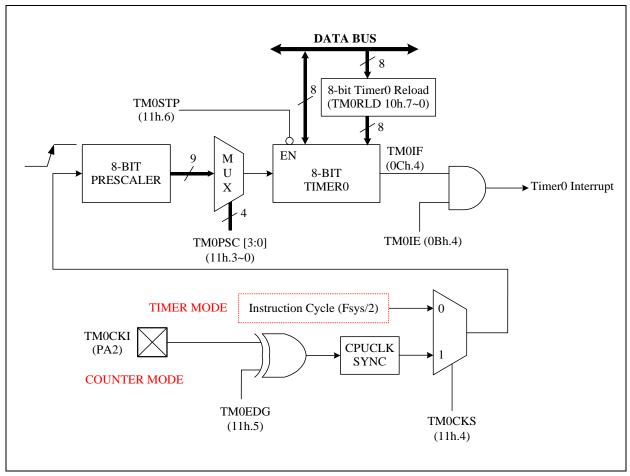
This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	—	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	—	0	0	0	0	0	0

0Bh.3 **WKTIE:** Wakeup Timer interrupt enable and Wakeup Timer enable 0: disable

1: enable

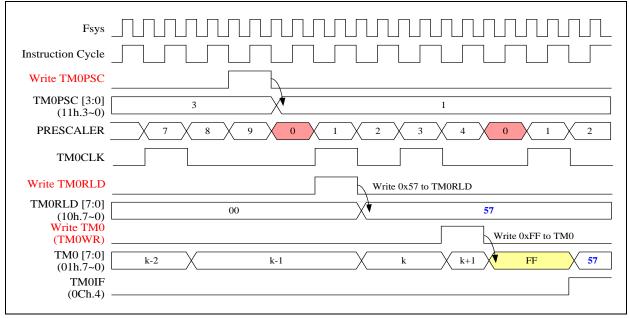
81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	INT1EDG	—	WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W	—	R/W		R/	W
Reset	0	0	0	_	1	1	1	1


81h.3~2 WDTPSC: WDT period (@V_{CC}=5V) 00: 91 ms 01: 183 ms 10: 732 ms 11: 1463 ms
81h.1~0 WKTPSC: WKT period (@V_{CC}=5V) 00: 11 ms 01: 23 ms 10: 46 ms

11: 91 ms

6.2 Timer0

Timer0(TM0) (01h.7~0) is an 8-bit wide register. It can be read or written as any other register. Besides, Timer0 increases itself periodically and automatically rolls over a new "offset value" (TM0RLD) while it rolls over based on the pre-scaled clock source, which can be Fsys/2 or TM0CKI (PA2) rising/falling input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register. The Timer0 always generates TM0IF (0Ch.4) when its count rolls over. It generates Timer0 Interrupt if TM0IE (0Bh.4) is set. Timer0 can be stopped counting if the TM0STP (11h.6) bit is set.



Timer0 Block Diagram

The following timing diagram describes the Timer0 works in pure Timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

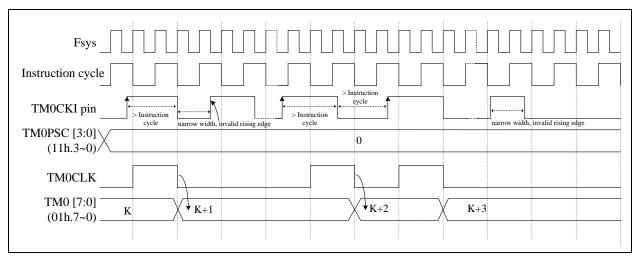
Timer0 works in Timer mode (TM0CKS=0)

The equation of Timer0 interrupt time value is as following:

Timer0 interrupt frequency = Fsys / 2 / TM0PSC / (256-TM0RLD)

 \diamond Example: Setup Timer0 work in Timer mode, if Fsys = 8 MHz

; Setup Tim	er0 clock sourc	e and divider	
	MOVLW	00x <u>00101</u> b	; TM0CKS = 0, Timer0 clock is instruction cycle
	MOVWX	TM0CTL	; TM0PSC = 0101b, divided by 32
· Setun Tim	er0 reload data		
, betup Thi	MOVLW	80h	
	MOVEW	TMORLD	; Set Timer0 reload data = 128
; Setup Tim	er0		
	BSX	TM0STP	; Timer0 stops counting
	CLRX	TM0	; Clear Timer0 content
: Enable Tir	ner0 and interru	pt function	
,	MOVLW	111 0 1111b	
	MOVWX	INTIF	; Clear Timer0 request interrupt flag
	BSX	TM0IE	; Enable Timer0 interrupt function
	BCX	TM0STP	; Enable Timer0 counting
Timer0 int	errupt frequen	cy = Fsys / 2 / TM0PSC	/ (256-TM0RLD),


Fsys = 8 MHz, TM0PSC = div 32, TM0RLD = 128

Timer0 interrupt frequency = 8 MHz / 2 / 32 / (256-128) = 0.976 KHz

The following timing diagram describes the Timer0 works in Counter mode.

If TM0CKS=1 then Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle (Fsys/2) that means the high/low time durations of TM0CKI must be longer than one instruction cycle time (Fsys/2) to guarantee each TM0CKI's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0CKI (TM0EDG=0), TM0CKS=1

♦ Example: Setup TM0 work in Counter mode and clock source from TM0CKI pin (PA2)

; TM0EDG = 1, counting edge is falling edge
; TM0CKS = 1, Timer0 clock is TM0CKI
; TM0PSC = $0000b$, divided by 1
; Timer0 stops counting
; Clear Timer0 content
; Enable Timer0 counting
; Timer0 stops counting
; Read Timer0 content

01h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0				TN	40			
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

01h.7~0 **TM0:** Timer0 content

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	—	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

0Bh.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	—	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

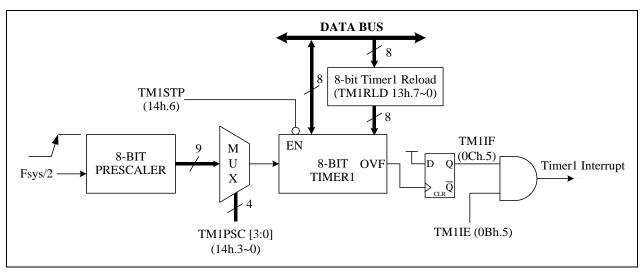
0Ch.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

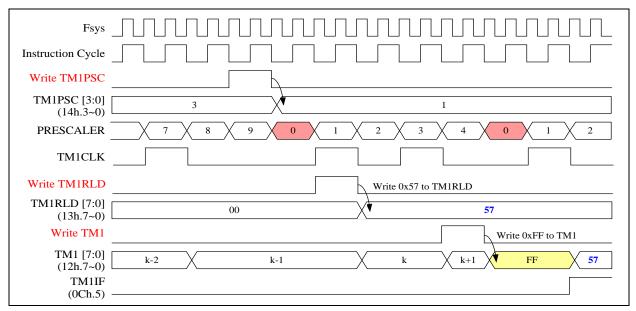
10h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TMORLD		TMORLD							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

10h.7~0 **TM0RLD:** Timer0 reload data

11h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL		TM0STP	TM0EDG	TM0CKS		TM0	PSC	
R/W		R/W	R/W	R/W	R/W			
Reset	-	0	0	0	0	0	0	0

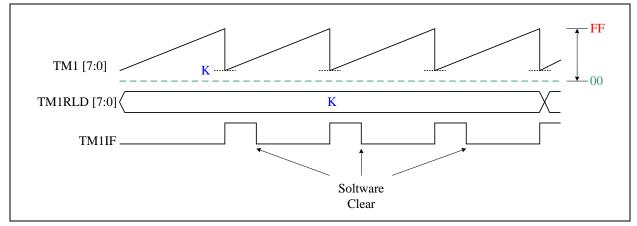

11h.6 **TM0STP:** Stop Timer0

	0: Timer0 runs			
	1: Timer0 stops			
11h.5	TM0EDG: Timer	r0 prescaler counting	edge for TM0CKI pin	
	0: rising edge			
	1: falling edge			
11h.4	TM0CKS: Timer	0 prescaler clock sou	irce	
	0: Fsys/2			
	1: TM0CKI pin	(PA2 pin)		
11h.3~0	TM0PSC: Timer	0 prescaler. Timer0 p	rescaler clock source d	livided by
	0000: 1	0001: 2	0010: 4	0011:8
	0100: 16	0101: 32	0110: 64	0111: 128
	1xxx: 256			



6.3 Timer1

Timer1(TM1) (12h.7~0) is an 8-bit wide register. It can be read or written as any other register. Besides, Timer1 increases itself periodically and automatically reloads a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled instruction clock (Fsys/2). The Timer1 increase rate is determined by TM1PSC register. It generates Timer1 interrupt if the TM1IE bit is set. Timer1 can be stopped counting if the TM1STP bit is set.



Timer1 Block Diagram

Timer1 Timing Diagram

Timer1 Reload Diagram

 \bigcirc Example: CPU is running in SLOW mode, Fsys = Slow-clock / CPUPSC = 93 KHz / 2 = 46.5 KHz

; Setup Tim	er1 clock source	e and divider	
-	MOVLW	0000 <u>0011</u> b	
	MOVWX	TM1CTL	; TM1PSC = $0011b$, divided by 8
; Setup Tim	er1 reload data		
	MOVLW	FFh	
	MOVWX	TM1RLD	; Set Timer1 reload data = 255
; Setup Tim	er1		
	BSX	TM1STP	; Timer1 stops counting
	CLRX	TM1	; Clear Timer1 content
; Enable Tir	mer1 and interru	pt function	
	MOVLW	11 <u>0</u> 11111b	
	MOVWX	INTIF	; Clear Timer1 request interrupt flag
	BSX	TM1IE	; Enable Timer1 interrupt function
	BCX	TM1STP	; Enable Timer1 counting
Timer1 int	errupt frequen	cy = Fsys / 2 / TM1PSC	/ (256-TM1RLD),

Fsys = 46.5 KHz, TM1PSC = div 8, TM1RLD = 255

Timer1 interrupt frequency = 46.5 KHz / 2 / 8 / (256-255) = 2.906 KHz

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	—	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INTOIE
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

0Bh.5 **TM1IE:** Timer1 interrupt enable

0: disable

1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	—	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	—	0	0	0	0	0	0

0Ch.5 TM1IF: Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

12h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM1		TM1							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

12h.7~0 TM1: Timer1 content

13h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM1RLD		TM1RLD							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

13h.7~0 TM1RLD: Timer1 reload data

14h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1CTL		TM1STP	_	_	TM1PSC			
R/W		R/W	_	_	R/W			
Reset		0	-	-	0	0	0	0

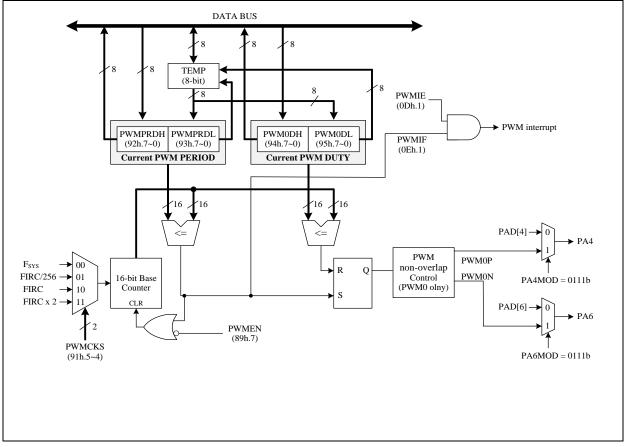
14h.6 **TM1STP:** Stop Timer1

0: Timer1 runs

1: Timer1 stops

14h.3~0 **TM1PSC:** Timer1 prescaler. Timer1 prescaler clock source divided by

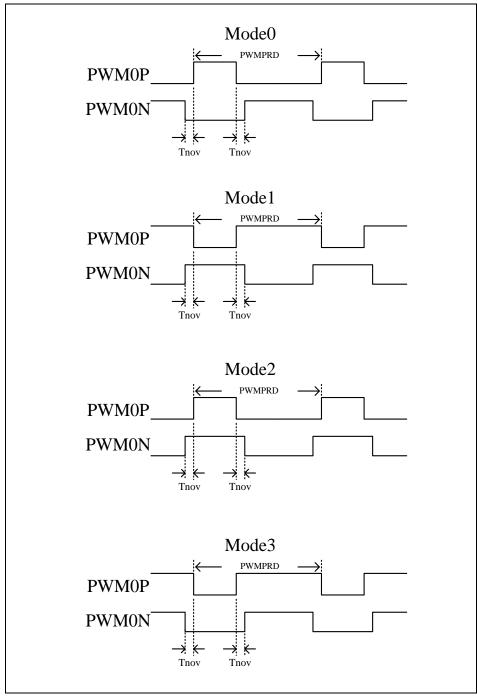
00	000: 1	0001: 2	0010: 4	0011:8
0	100: 16	0101: 32	0110: 64	0111: 128
12	xxx: 256			


6.4 PWM: 16 bits PWM

There are six PWMs in this chip. PWM0~PWM5 have independent 16-bit duty control register, and share a set of 16-bit period register. The PWM can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM clock. The PWM clock can select Fsys, FIRC/256, FIRC (16 MHz), or FIRC*2 (32 MHz) as its clock source. The following takes PWM0 as an example for description.

The 16-bit PWMPRD, PWM0D registers both have a low byte and high byte structure. The high bytes can be directly accessed, but the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to notes is that data transfer to and from the 8-bit buffer and its related low byte only takes place when write or read operation to its corresponding high bytes is executed. *Briefly speaking, write low byte first and then high byte; read high byte first and then low byte*.

If PWMEN is cleared, the PWM0~5 will be cleared and stopped, otherwise the PWM0~5 remain running. The PWM0 structure is shown as follow. The PWM0 duty cycle can be changed by writing to PWM0DH and PWM0DL. The PWM0 output signal resets to a low level whenever the 16-bit base counter matches the 16-bit PWM0 duty register {PWM0DH, PWM0DL}. The PWM0 period can be set by writing the period value to the PWMPRDH and PWMPRDL registers. After writing the PWM0DH or PWMPRDH register, H/W will update PWM period and duty immediately. PWM0~5 share an interrupt flag, and an interrupt flag is generated at the end of the period.


Only PWM0 has dead-zone(non-overlap) control, and is divided into PWM0P and PWM0N outputs, and the remaining PWM1~PWM5 have no dead-zone(non-overlap) control. The PWM1~5 outputs are PWM10~PWM5O. User can use pin mode setting to output PWMxO to the corresponding IO pin, refer to Chapter 5 for more information on pin settings.

PWM0 Block Diagram

Only PWM0 can be output via PWM0P and PWM0N with four different modes. The edges of the PWM pulse can be separated with 16 different dead-zone(non-overlap) clocks intervals (Tnov). The width of Tnov can be selected by PWM0DZ (89h.3~0) within 0~15 PWM clock. The default output form is Mode0. The waveforms of the four output modes are shown below.

PWM0 Waveform Modes

\diamondsuit Example:

; Setup Pin	mode		
	MOVLW	xxxx 0111 b	;
	MOVWX	PAMOD54	; PA4 Pin as PWM0P
	MOVLW	xxxx 0111 b	
			, DAC Dire of DWMON
	MOVWX	PAMOD76	; PA6 Pin as PWM0N
; Setup PW	M0 clock source	e select	
	MOVLW	xx <u>10</u> xxxxb	
	MOVWX	OPTION2	; FIRC 16 MHz as PWM clock source
; Setup PW	M0 period and o	duty setting	
	MOVLW	FFh	
	MOVWX	PWMPRDL	; write sequence: PWMPRDL then PWMPRDH
	MOVLW	7Fh	
	MOVWX	PWMPRDH	; Set PWM period = 7FFFh
	MOVLW	00h	
	MOVWX	PWM0DL	; write sequence: PWM0DL then PWM0DH
	MOVLW	40h	, whice sequences I white D men I white DI
	MOVWX	PWM0DH	; Set PWM0 duty = 4000h
			,
; Setup PW	M0 enable and	dead-zone(non-overlap) co	ontrol
-	MONTRY	10000001	0.01, 7, 1, DWM (0,, 1, 1)

MOVLW	<u>1</u> 0 <u>000000</u> b	; 89h.7 = 1, PWM0 enable
MOVWX	PWMCTL	; $89h.5 \sim 4 = 0$, PWM0 Mode0 output
		; 89h.3~0 = 0, PWM0 dead-zone(non-overlap) output
		disable

Example:

PWM0 clock source = FIRC 16 MHz, PWM period = 7FFFh, PWM duty = 4000h PWM0 output frequency = 16 MHz / (period+1) = 16 MHz / 32768 = 488 Hz. PWM0 output duty = duty / (period+1) = 50 %.

0Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	_	PCIE	—	_	—	—	PWMIE	LVDIE
R/W	_	R/W	—	—	—	—	R/W	R/W
Reset	_	0	—	—	—	—	0	0

0Dh.1 **PWMIE:** PWM interrupt enable

0: disable

1: enable

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	_	PCIF	_	_	—	—	PWMIF	LVDIF
R/W	-	R/W	_	_	—	—	R/W	R/W
Reset	_	0			_	_	0	0

0Eh.1 **PWMIF:** PWM interrupt event pending flag

This bit is set by H/W after PWM period counter roll over, write 0 to this bit will clear this flag

89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMCTL	PWMEN	_	PWM0OM		PWM0DZ				
R/W	R/W	—	R/W			R/	W		
Reset	0	—	0	0	0	0	0	0	

- 89h.7 **PWMEN:** PWM0~5 enable
 - 0: disable
 - 1: enable

89h.5~4 **PWM0OM:** PWM0 output mode select

- 00: Mode0
- 01: Mode1
- 10: Mode2
- 11: Mode3

89h.3~0 **PWM0DZ:** PWM0 dead-zone(non-overlap) control

0000: no dead-zone(non-overlap)

- 0001: dead-zone(non-overlap) width are 1 PWM clock cycle
- 0010: dead-zone(non-overlap) width are 2 PWM clock cycles
- ...

1111: dead-zone(non-overlap) width are 15 PWM clock cycles

91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION2	-	_	PWMCKS		—	—	_	_
R/W	-		R/	R/W		—	_	—
Reset	-		0	0	—	—	_	—

91h.5~4 **PWMCKS:** PWM clock source select

00: Fsys

01: FIRC/256

10: FIRC (16 MHz)

11: FIRC x 2 (32 MHz). Refer to the graph of minimal operating voltage for PWMCKS=FIRC x 2.

92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMPRDH		PWMPRDH							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

92h.7~0 **PWMPRDH:** PWM0~5 period high byte write sequence: PWMPRDL then PWMPRDH read sequence: PWMPRDH then PWMPRDL

93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMPRDL		PWMPRDL							
R/W		R/W							
Reset	1	1 1 1 1 1 1 1 1							

93h.7~0 **PWMPRDL:** PWM0~5 period low byte write sequence: PWMPRDL then PWMPRDH read sequence: PWMPRDH then PWMPRDL

94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DH		PWM0DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

94h.7~0 **PWM0DH:** PWM0 duty high byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DL		PWM0DL							
R/W		R/W							
Reset	0	0 0 0 0 0 0 0 0							

95h.7~0 **PWM0DL:** PWM0 duty low byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1DH		PWM1DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

96h.7~0 **PWM1DH:** PWM1 duty high byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1DL		PWM1DL							
R/W		R/W							
Reset	0	0 0 0 0 0 0 0 0							

97h.7~0 **PWM1DL:** PWM1 duty low byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2DH		PWM2DH									
R/W		R/W									
Reset	1	0	0	0	0	0	0	0			

98h.7~0 **PWM2DH:** PWM2 duty high byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM2DL		PWM2DL								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

99h.7~0 **PWM2DL:** PWM2 duty low byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM3DH		PWM3DH									
R/W		R/W									
Reset	1	0	0	0	0	0	0	0			

9Ah.7~0 **PWM3DH:** PWM3 duty high byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM3DL		PWM3DL									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

9Bh.7~0 **PWM3DL:** PWM3 duty low byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

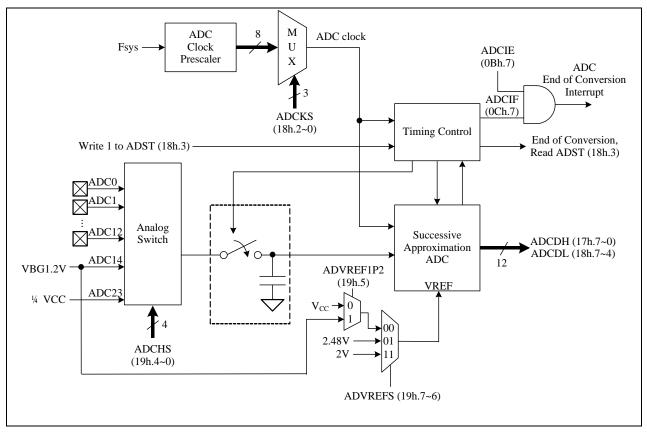
9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM4DH		PWM4DH									
R/W		R/W									
Reset	1	0	0	0	0	0	0	0			

9Ch.7~0 **PWM4DH:** PWM4 duty high byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

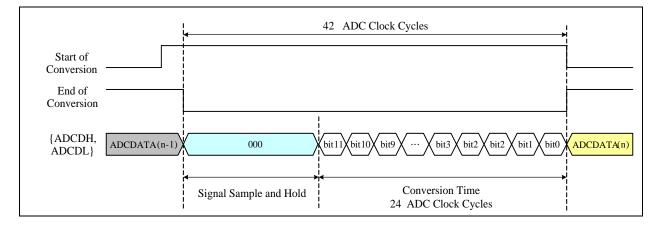
9Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM4DL		PWM4DL									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

9Dh.7~0 **PWM4DL:** PWM4 duty low byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM5DH		PWM5DH								
R/W		R/W								
Reset	1	0	0	0	0	0	0	0		


9Eh.7~0 **PWM5DH:** PWM5 duty high byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM5DL		PWM5DL								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		


9Fh.7~0 **PWM5DL:** PWM5 duty low byte write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

6.5 Analog-to-Digital Converter

The 12-bit ADC (Analog to Digital Converter) consists of a 15-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCKS (18h.2~0) to choose a proper ADC clock frequency, which must be less than 1 MHz. User then launches the ADC conversion by setting the ADST (18h.3) control bit. After end of conversion, H/W automatic clears the ADST (18h.3) bit. User can poll this bit to know the conversion status. When the IO pin is used as the ADC input pin, the corresponding pin mode should be set to 0011b. User needs to set ADCHS (19h.4~0) to choose the input channel of ADC. Besides, there are some reference input channel can be selected, ADC14 is VBG and ADC23 is 1/4VCC for ADC. ADC reference voltage can be configured as V_{CC} or V_{BG} by ADVREFS (19h.7~6), furthermore, if change to ADVREFS=01b or 11b, it will need 200uS warm-up stable time. When ADCHS is selected to VBG, ADCVREFS must be set to V_{CC} , otherwise ADC conversion will be invalid.

Example:

[CPU running at FAST mode , Fsys = FIRC 16 MHz] ADC clock frequency = 1 MHz, ADC channel = ADC2 (PA2).

\diamondsuit Example:

	MOVLW MOVWX	xxxx <u>0011</u> b PAMOD32	; ADC2 (PA2) as ADC input
	MOVLW MOVWX	00000 <u>100</u> ь ADCTL	; ADCKS = Fsys/16, ADC clock = 1 MHz
	MOVLW MOVWX	<u>00</u> 0 <u>00010</u> b ADCTL2	; ADC reference voltage select V_{CC} ; ADC input channel select ADC2
	BSX	ADST	; 18h.3 (ADST), ADC start conversion.
WAIT_ADC	C: BTXSC LGOTO	ADST WAIT_ADC	; Wait ADC conversion finish.
	MOVXW MOVXW	ADCDH ADCTL	; Read ADC output data bit 11~4 ; Read ADC output data bit 3~0

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	—	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	—	0	0	0	0	0	0

0Bh.7 **ADCIE:** ADC interrupt enable 0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	—	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

0Ch.7 **ADCIF:** ADC interrupt event pending flag This bit is set by H/W after ADC end of conversion, write 0 to this bit will clear this flag

17h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADCDH		ADCDH									
R/W		R									
Reset	-	—	-	-	-	-	—	—			

17h.7~0 **ADCDH:** ADC output data bit 11~4

18h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1 Bit 0			
ADCTL		ADO	CDL		ADST	ADCKS			
R/W		I	ર		R/W		R/W		
Reset	-	—	-	_	0	0	0	0	

18h.7~4 ADCDL: ADC output data bit 3~0

18h.3 ADST: ADC start bit.
0: H/W clear after end of conversion
1: ADC start conversion
18h.2~0 ADCKS: ADC clock frequency selection:

00110: ADC6 (PA6)

00111: ADC7 (PB0)

 000: Fsys/256
 100: Fsys/16

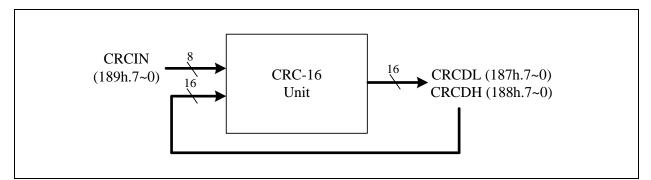
 001: Fsys/128
 101: Fsys/8

 010: Fsys/64
 110: Fsys/4

 011: Fsys/32
 111: Fsys/2

19h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4Bit 3Bit 2Bit 1Bit 0						
ADCTL2	ADV	REFS	ADVREF1P2		ADCHS						
R/W	R/	W	R/W		R/W						
Reset	0	0	0	1	1	1	1	1			

19h.7~6 ADVREFS: ADC reference voltage and V_{BG} output voltage select 00: ADC reference voltage is V_{CC} or 1.2V V_{BG} according to the value of ADVREF1P2. V_{BG} is 1.20V 01: ADC reference voltage is V_{BG} , V_{BG} is 2.48V 10: Reserved 11: ADC reference voltage is V_{BG} , V_{BG} is 2.00V(This feature can't not be emulated)(Don't use for the selection of DAC's VREF) 19h.5 ADVREF1P2: ADC 1.2V reference voltage select 0: ADC reference voltage is V_{CC} when ADVREFS=00. V_{BG} is 1.2V 1: ADC reference voltage is 1.2V V_{BG} when ADVREFS=00. V_{BG} is 1.2V(This feature can't not be emulated) 19h.4~0 ADCHS: ADC channel select 00000: ADC0 (PA0) 01000: ADC8 (PB1) 00001: ADC1 (PA1) 01001: ADC9 (PB2) 00010: ADC2 (PA2) 01010: ADC10 (PB4) 00011: ADC3 (PA3) 01011: ADC11 (PB5) 01100: ADC12 (PB6) 00100: ADC4 (PA4) 00101: ADC5 (PA5) 01110: VBG


10111: 1/4 VCC

others: Reserved

6.6 Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes an 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

CRC16 Block Diagram

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there is only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

CRC-16-IBM (Modbus) Polynomial representation: X¹⁶ + X¹⁵ + X² + 1

187h	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
CRCDL		CRCDL							
R/W				R/	W				
Reset	1	1	1	1	1	1	1	1	

187h.7~0 CRCDL: 16-bit CRC checksum data bit 7~0

188h	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
CRCDH		CRCDH							
R/W				R/	W				
Reset	1	1 1 1 1 1 1 1 1							

188h.7~0 CRCDH: 16-bit CRC checksum data bit 15~8

189h	Bit 7	it 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
CRCIN		CRCIN								
W				V	V					
Reset										

189h.7~0 CRCIN: CRC data input, write this register to start CRC calculation

MEMORY MAP

Name	Address	R/W	Rst	Description
INDF (00h/80)				Function related to: RAM W/R
``````````````````````````````````````				Not a physical register, addressing INDF actually point to the register
INDF	00.7~0	R/W	-	whose address is contained in the FSR register
TM0 (01h/101	<b>h</b> )			Function related to: Timer0
TM0	01.7~0	R/W	00	Timer0 content
PCL (02h/82h	/102h/182	h)		Function related to: PROGRAM COUNT
PCL	02.7~0	R/W	00	Programming Counter data bit 7~0
STATUS (03h	/83h/103h	/ <b>183h</b> )		Function related to: STATUS
IRP	03.7	R/W	0	Register Bank Select bit (used for indirect addressing)
RP1	03.6	R/W	0	Register Bank Select bit 1 for direct addressing
RP0	03.5	R/W	0	Register Bank Select bit 0 for direct addressing
ТО	03.4	R	0	WDT timeout flag, cleared by PWRST, 'SLEEP' or 'CLRWDT'
				instruction
PD	03.3	R	0	Power down flag, set by 'SLEEP', cleared by 'CLRWDT' instruction
Z	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag
С	03.0	R/W	0	Carry flag
FSR (04h/84h		· · · · · · · · · · · · · · · · · · ·	1	Function related to: RAM W/R
FSR	04.7~0	R/W	-	File Select Register, indirect address mode pointer
PAD (05h)	[			Function related to: Port A
PAD	05.7~0	R	-	Port A pin or "data register" state
		W	FF	Port A output data register
<b>PBD</b> (06h)		D		Function related to: Port B
	06.6~4	R	-	Port B pin or "data register" state
PBD		W	7	Port B output data register
	06.2~0	R W	-	Port B pin or "data register" state
DOLATIL (0.4)			7	Port B output data register
PCLATH (0A				Function related to: PROGRAM COUNT
GPR PCLATH	0A.7~3 0A.2~0	R/W R/W	0	General Purpose Register Write Buffer for the high byte of the Program Counter
INTIE (0Bh/8			0	Function related to: Interrupt Enable
		odii)		ADC interrupt enable
ADCIE	0B.7	R/W	0	0: disable
ALD CIL	01.7	10 11	0	1: enable
				Timer1 interrupt enable
TM1IE	0B.5	R/W	0	0: disable
				1: enable
				Timer0 interrupt enable
TM0IE	0B.4	R/W	0	0: disable
				1: enable
				Wakeup Timer interrupt enable and Wakeup Timer enable
WKTIE	0B.3	R/W	0	0: disable
				1: enable
		-		INT2 pin (PA7) interrupt enable
INT2IE	0B.2	R/W	0	0: disable
-				1: enable
INTE 1 IF	0D 1	DAV	0	INT1 pin (PA1) interrupt enable
INT1IE	0B.1	R/W	0	0: disable 1: enable
				INTO pin (PA3) interrupt enable
INT0IE	0B.0	R/W	0	0: disable
	0.0	11/ 11	0	1: enable



Name	Address	R/W	Rst	Description
INTIF (0Ch)				Function related to: Interrupt Flag
	007	R	-	ADC interrupt flag, set by H/W after ADC end of conversion
ADCIF	0C.7	W	0	write 0: clear this flag; write 1: no action
	005	R	-	Timer1 interrupt event pending flag, set by H/W while Timer1 overflows
TM1IF	0C.5	W	0	write 0: clear this flag; write 1: no action
TM0IF	0C.4	R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
TWOIF	00.4	W	0	write 0: clear this flag; write 1: no action
WKTIF	0C.3	R	I	WKT interrupt event pending flag, set by H/W while WKT time out
W K I II'	00.5	W	0	write 0: clear this flag; write 1: no action
INT2IF	0C.2	R	-	INT2 (PA7) interrupt event pending flag, set by H/W at INT2 pin's falling edge
		W	0	write 0: clear this flag; write 1: no action
		D		INT1 (PA1) interrupt event pending flag, set by H/W at INT1 pin's
INT1IF	0C.1	R	-	falling/rising edge
		W	0	write 0: clear this flag; write 1: no action
INT0IF	0C.0	R	-	INTO (PA3) interrupt event pending flag, set by H/W at INTO pin's falling/rising edge
nuion	00.0	W	0	write 0: clear this flag; write 1: no action
INTIE1 (0Dh)	)		0	Function related to: Interrupt Enable
				All port pin change wakeup interrupt enable
PCIE	0D.6	R/W	0	0: disable 1: enable
				PWM interrupt enable
PWMIE 0D.1	R/W	0	0: disable	
	10	0	1: enable	
			LVD interrupt enable	
LVDIE	0D.0	R/W	0	0: disable
				1: enable
INTIF1 (0Eh)	1			Function related to: Interrupt Flag
PCIF	0E.6	R	-	All port pin change wakeup interrupt event pending flag, set by H/W at all pin's falling/rising edge
		W	0	write 0: clear this flag; write 1: no action
				PWM interrupt event pending flag, set by H/W after PWM period counter
PWMIF	0E.1	R	-	roll over
		W	0	write 0: clear this flag; write 1: no action
LUDIE		R	-	LVD interrupt event pending flag, set by H/W while $V_{CC} < V_{LVD}$
LVDIF	0E.0	W	0	write 0: clear this flag; write 1: no action
CLKCTL (0F	<b>h</b> )			Function related to: Fsys
				Stop Slow-clock after execute SLEEP instruction
SLOWSTP	0F.4	R/W	0	0: Slow-clock keeps running after execute SLEEP instruction
				1: Slow-clock stop running after execute SLEEP instruction
				Stop Fast-clock
FASTSTP	0F.3	R/W	1	0: Fast-clock is running
				1: Fast-clock stops running
CDUCKS	0F.2	R/W	0	System clock source select 0: Slow-clock
CPUCKS	06.2	K/ W	U	0: Slow-clock 1: Fast-clock
				System clock source prescaler. System clock source
CPUPSC	0F.1~0	R/W	11	00: div 8 01: div 4 10: div 2 11: div 1
TMORLD (10	h)	l		Function related to: Timer0
TMORLD	10.7~0	R/W	00	Timer0 reload data
	10.7 0		00	



Name	Address	R/W	Rst	Description
TM0CTL (11)				Function related to: Timer0
				Stop Timer0
TM0STP	11.6	R/W	0	0: Timer0 runs
				1: Timer0 stops
				TM0CKI (PA2) edge
TM0EDG	11.5	R/W	0	0: rising edge
				1: falling edge
				Timer0 prescaler clock source
TM0CKS	11.4	R/W	0	0: Fsys/2
				1: TMOCKI (PA2)
-				Timer0 prescaler. Timer0 prescaler clock source divided by
	11.2.0	DAV	0	0000: 1 0011: 8 0110: 64
TM0PSC	11.3~0	R/W	0	0001: 2 0100: 16 0111: 128
				0010: 4 0101: 32 1xxx: 256
TM1 (12h)				Function related to: Timer1
TM1	12.7~0	R/W	00	Timer1 content
TM1RLD (13	h)			Function related to: Timer1
TM1RLD	13.7~0	R/W	00	Timer1 reload data
TM1CTL (14				Function related to: Timer1
	,			Stop Timer1
TM1STP	14.6	R/W	0	0: Timer1 runs
				1: Timer1 stops
				Timer1 prescaler. Timer1 clock source (Fsys/2) divided by
	112.0	5 111	0	0000: 1 0011: 8 0110: 64
TM1PSC	14.3~0	R/W	0	0001: 2 0100: 16 0111: 128
				0010: 4 0101: 32 1xxx: 256
LVCTL (16h)	1			Function related to: LVD/LVR
				Low voltage detection flag
LVDF	16.7	R	0	$0: V_{CC} > V_{LVD}$
				1: $V_{CC} < V_{LVD}$
				LVD Hysteresis
LVDHYS	16.6	R/W	1	0: disable
				1: enable
LVRSAV	16.5	R/W	1	POR/LVR auto power off in STOP/IDLE mode
LVDSAV	16.4	R/W	1	LVD auto power off in STOP/IDLE mode
				LVD voltage (V _{LVD} ) select
				0000: Disable 0100 : 2.11V 1000: 2.61V 1100: 3.12V
LVDS	16.3~0	R/W	0	0001: 1.73V 0101: 2.23V 1001: 2.74V 1101: 3.25V
				0010: 1.85V 0110: 2.36V 1010: 2.87V 1110: 3.37V
				0011: 1.98V 0111: 2.49V 1011: 2.99V 1111: 3.50V
ADCDH (17h)				Function related to: ADC
ADCDH	17.7~0	R	-	ADC output data bit 11~4
ADCTL (18h)				Function related to: ADC
ADCDL	18.7~4	R	-	ADC output data bit 3~0
				ADC start bit.
ADST	18.3	R/W	0	0: H/W clear after end of conversion
				1: ADC start conversion
				ADC clock frequency selection. 1MHz(Typ.)
ADCKS	18.2~0	R/W	0	000: Fsys/256 010: Fsys/64 100: Fsys/16 110: Fsys/4
				001: Fsys/128 011: Fsys/32 101: Fsys/8 111: Fsys/2
ADCTL2 (19h	)			Function related to: ADC
				ADC reference voltage and V _{BG} output voltage select
ADVDEEC	10.7.6	DAV	00	00: ADC reference voltage is $V_{CC}$ or 1.2V $V_{BG}$ according to the value of
ADVREFS	19.7~6	R/W	00	ADVREF1P2. V _{BG} is 1.20V
				01: ADC reference voltage is $V_{BG}$ , $V_{BG}$ is 2.48V
	1			

_____



Name	Address	R/W	Rst	Description
				10: Reserved
				11: ADC reference voltage is $V_{BG}$ , $V_{BG}$ is 2.00V(This feature can't not
				be emulated) (Don't use for the selection of DAC's VREF)
				ADC 1.2V reference voltage select
ADVREF1P2	19.5	R/W	0	0: ADC reference voltage is $V_{CC}$ when ADVREFS=00. $V_{BG}$ is 1.2V
AD VKEPTEZ	19.5	IX/ VV	0	1: ADC reference voltage is 1.2V $V_{BG}$ when ADVREFS=00. $V_{BG}$ is
				1.2V(This feature can't not be emulated)
				ADC channel select
				00000: ADC0 (PA0) 01000: ADC8 (PB1)
				00001: ADC1 (PA1) 01001: ADC9 (PB2)
				00010: ADC2 (PA2) 01010: ADC10 (PB4)
ADCHS	19.4~0	R/W	1F	00011: ADC3 (PA3) 01011: ADC11 (PB5)
				00100: ADC4 (PA4) 01100: ADC12 (PB6)
				00101: ADC5 (PA5) 01110: VBG
				00110: ADC6 (PA6) 10111: 1/4 VCC
				00111: ADC7 (PB0) others: Reserved
User Data Mer				
RAM	20~6F	R/W	-	RAM Bank0 area (80 Bytes)
RAM	70~7F	R/W	-	RAM common area (16 Bytes)
<b>OPTION</b> (81h	n/181h)			Function related to: STATUS/INT0/INT1/WDT/WKT
				Enter/Exit interrupt subroutine, HW auto Save/Restore WREG, FSR,
HWAUTO	81.7	R/W	0	TABR, PCLATH, DPL, DPH, and STATUS w/o TO, PD
11011010	01.7	10 11	Ũ	0:disable
				1: enable
		-		INTO pin interrupt edge selection
INT0EDG	81.6	R/W	0	0: falling edge trigger
				1: rising edge trigger
NT1EDC	01.5	DAV	0	INT1 pin interrupt edge selection
INT1EDG	81.5	R/W	0	0: falling edge trigger
				1: rising edge trigger WDT period selections:
WDTPSC	81.3~2	R/W	3	00: 91ms 01: 183ms 10: 732ms 11: 1463ms @5V
				WKT period selections:
WKTPSC	81.1~0	R/W	3	00: 11ms 01: 23ms 10: 46ms 11: 91ms @5V
PAMOD10 (8)	5h)			Function related to: Port A
PA1MOD	85.7~4	R/W	1	PA1 I/O mode control
PA0MOD	85.3~0	R/W	1	PA0 I/O mode control
PAMOD32 (8)		10 11	-	Function related to: Port A
PA3MOD	86.7~4	R/W	1	PA3 I/O mode control
PA2MOD	86.3~0	R/W	1	PA2 I/O mode control
PAMOD54 (8				Function related to: Port A
PA5MOD	87.7~4	R/W	1	PA5 I/O mode control
PA4MOD	87.3~0	R/W	1	PA4 I/O mode control
<b>PAMOD76 (8</b>				Function related to: Port A
PA7MOD	88.7~4	R/W	0	PA7 I/O mode control
PA6MOD	88.3~0	R/W	1	PA6 I/O mode control
<b>PWMCTL (89</b>				Function related to: PWM0
				PWM Clock Enable
PWMEN	89.7	R/W	0	0: Disable
				1: Enable
				PWM0 output mode
				00: Mode0
PWM0OM	89.5~4	R/W	0	01: Mode1
				10: Mode2
1	1			11: Mode3



		R/W	Rst	Description
				PWM0 dead-zone(non-overlap) control
¶ i				0000: no dead-zone(non-overlap)
PWM0DZ	89.3~0	R/W	0	0001: dead-zone(non-overlap) width are 1 PWM clock cycle
				0010: dead-zone(non-overlap) width are 2 PWM clock cycles
				1111: dead-zone(non-overlap) width are 15 PWM clock cycles
<b>PBMOD10</b> (8	Ch)	1		Function related to: Port B
PB1MOD	8C.7~4	R/W	1	PB1 I/O mode control
PB0MOD	8C.3~0	R/W	1	PB0 I/O mode control
<b>PBMOD32</b> (8)				Function related to: Port B
PB2MOD	8D.3~0	R/W	1	PB2 I/O mode control
PBMOD54 (8)	,	DAV	1	Function related to: Port B
PB5MOD PB4MOD	8E.7~4 8E.3~0	R/W R/W	1 1	PB5 I/O mode control PB4 I/O mode control
<b>PBMOD76 (8</b>		K/ W	1	Function related to: Port B
PB6MOD	8F.3~0	R/W	1	PB6 I/O mode control
OPTION2 (91		10 11	-	Function related to: PWM0/INT2/INT1/INT0
	)			PWM Clock Source
				00: Fsys
PWMCKS	0154	R/W	00	01: FIRC/256
PWMCKS	91.5~4	K/W	00	10: FIRC (16 MHz)
				11: FIRC*2 (32 MHz). Refer to the graph of minimal operating voltage
				for PWMCKS=FIRC x 2.
<b>PWMPRDH</b> (	92h)			Function related to: PWM
PWMPRDH	92.7~0	R/W	FF	PWM Period bit 15~8
PWMPRDL (9	93h)			Function related to: PWM
PWMPRDL	93.7~0	R/W	FF	PWM Period bit 7~0
<b>PWM0DH (94</b>	h)			Function related to: PWM0
PWM0DH	94.7~0	R/W	80	PWM0 Duty bit 15~8
<b>PWM0DL (95</b>	h)			Function related to: PWM0
PWM0DL	95.7~0	R/W	00	PWM0 Duty bit 7~0
PWM1DH (96	óh)			Function related to: PWM1
PWM1DH	96.7~0	R/W	80	PWM1 Duty bit 15~8
PWM1DL (97	<b>h</b> )			Function related to: PWM1
	97.7~0	R/W	00	PWM1 Duty bit 7~0
PWM1DL	Sh)			Function related to: PWM2
	98.7~0	R/W	80	PWM2 Duty bit 15~8
PWM1DL	h)			Function related to: PWM2
PWM1DL PWM2DH (98		I	00	
PWM1DL PWM2DH (98 PWM2DH	99.7~0	R/W	00	PWM2 Duty bit 7~0
PWM1DL <b>PWM2DH (98</b> PWM2DH <b>PWM2DL (99</b>		R/W	00	Function related to: PWM3
PWM1DL PWM2DH (98 PWM2DH PWM2DL (99 PWM2DL		R/W R/W	80	
PWM1DL PWM2DH (98 PWM2DH PWM2DL (99 PWM2DL PWM3DH (9A	<b>Ah)</b> 9A.7~0			Function related to: PWM3
PWM1DL PWM2DH (98 PWM2DH PWM2DL (99 PWM2DL PWM3DH (9A PWM3DH	<b>Ah)</b> 9A.7~0			Function related to: PWM3         PWM3 Duty bit 15~8
PWM1DL (98 PWM2DH (98 PWM2DH (99 PWM2DL (99 PWM2DL (94 PWM3DH (94 PWM3DL (98	Ah) 9A.7~0 Bh) 9B.7~0	R/W	80	Function related to: PWM3         PWM3 Duty bit 15~8         Function related to: PWM3
PWM1DL PWM2DH (98 PWM2DH (99 PWM2DL (99 PWM2DL PWM3DH (9A PWM3DH (9B PWM3DL (9B	Ah) 9A.7~0 Bh) 9B.7~0	R/W	80	Function related to: PWM3         PWM3 Duty bit 15~8         Function related to: PWM3         PWM3 Duty bit 7~0
PWM1DL         PWM2DH       (98         PWM2DL       (99         PWM2DL       (99         PWM3DH       (94         PWM3DH       (94         PWM3DH       (98         PWM3DL       (98         PWM4DH       (90	Ah)         9A.7~0         Bh)         9B.7~0         Ch)         9C.7~0	R/W R/W	80 00	Function related to: PWM3         PWM3 Duty bit 15~8         Function related to: PWM3         PWM3 Duty bit 7~0         Function related to: PWM4
PWM1DL         PWM2DH       (98         PWM2DL       (99         PWM2DL       (94         PWM3DH       (94         PWM3DH       (94         PWM3DL       (98         PWM3DL       (98         PWM3DL       (98         PWM4DH       (90         PWM4DH       (90	Ah)         9A.7~0         Bh)         9B.7~0         Ch)         9C.7~0	R/W R/W	80 00	Function related to: PWM3         PWM3 Duty bit 15~8         Function related to: PWM3         PWM3 Duty bit 7~0         Function related to: PWM4         PWM4 Duty bit 15~8



Name	Address	R/W	Rst	Description
PWM5DH	9E.7~0	R/W	80	PWM5 Duty bit 15~8
PWM5DL (9F	ĥ)			Function related to: PWM5
PWM5DL	9F.7~0	R/W	00	PWM5 Duty bit 7~0
User Data Mer	nory			
RAM	A0~BF	R/W	-	RAM Bank1 area (32 Bytes)
PINMOD (105	sh)			Function related to: IO Port
Reserved	105.5	R	Х	read as unknown after reset
				All IO port high sink current enable
HSINK	105.2	R/W	1	0: low sink current
Decemied	105 1	DAV	0	1: high sink current. PA7 has no high-sink capability.
Reserved Reserved	105.1	R/W	0	must be kept at 0
	105.0	R/W	0	must be kept at 0
LVRPD (109h	)			Function related to: LVR/POR Write 37h to force LVR+POR Disable
	100 - 0			Write 38h to force LVR Disable, POR still enable
LVRPD	109.7~0	W	0	Write 39h to force POR Disable, LVR still enable
				Write others LVR and POR enable
PORPDF	109.1	R	0	POR force power down flag 0: POR enable
FORFDI	109.1	ĸ	0	1: POR is forced power down
				LVR force power down flag
LVRPDF	109.0	R	0	0: LVR enable
			1: LVR is forced power down	
<b>PCH</b> (10Ch)		1	1	Function related to: PCH
				Programming Counter high byte source selection when instruction with PCL as destination is executed
РСН	10C.7~0	W	00	write $0x1C$ to set PCH_S = 1: PCH keep the original value
			00	write others to clear $PCH_S = 0$ : $PCH$ is from $PCLATH$
				After reset, the PCH_S is cleared
РСН	10C.2~0	R	0	Program Counter data bit 10~8
BGTRIM (10)	-	-	~~~~	Function related to: Bandgap
BGTRIM	10E.4~0	R/W	CFG	VBG 1.2V trim value
IRCF (10Fh)			[	Function related to: Internal RC
IRCF	10F.6~0	R/W	CFG	FIRC trim value
<b>BG2TRIM</b> (11	1 <b>h</b> )	[	r	Function related to: Bandgap
BG2TRIM	111.7~0	R	CFG	VBG 2V trim value. The users could move this register to BGTRIM for exact 2V VBG. This feature can't be emulated.
RDCTL (113h	)			Function related to: Program ROM
RDCTL	113.1~0	R/W	02	Read signal delay control for Program ROM 00: 16ns delay for read signal of Program ROM 01: 12ns delay for read signal of Program ROM 10: 8ns delay for read signal of Program ROM 11: 4ns delay for read signal of Program ROM Change this register at slow clock for safety. <b>The user must switch this register to "4ns" to enhance the</b> <b>performance of minimal operating voltage.</b> This feature can't be emulated.
User Data Mer	nory			
RAM	120~16F	R/W	-	Don't Use
DPL (185h)				Function related to: Table Read

_____



Name	Address	R/W	Rst	Description		
DPL	185.7~0	R/W	00	TBL Data Pointer bit 7~0		
<b>DPH</b> (186h)				Function related to: Table Read		
DPH	186.3~0	R/W	00	TBL Data Pointer bit 11~8		
CRCDL (187)	n)			Function related to: CRC16		
CRCDL	187.7~0	R/W	FF	16-bit CRC checksum data bit 7~0		
<b>CRCDH</b> (188	h)			Function related to: CRC16		
CRCDH	188.7~0	R/W	FF	16-bit CRC checksum data bit 15~8		
CRCIN (189h)				Function related to: CRC16		
CRCIN	189.7~0	W	0	CRC data input, write this register to start CRC calculation		
TABR (18Ch)	1			Function related to: Table Read		
TABR	18C.7~0	R/W	0	<ol> <li>TABR write 01h = instruction TABRL (Read PROM low byte data to W and TABR)</li> <li>TABR write 02h = instruction TABRH (Read PROM high byte data to W and TABR)</li> <li>Don't write the value other than 01h or 02h into register TABR</li> <li>After step.1 or step.2, read TABR to get main ROM table read value for C language</li> <li>Table Read for ASM: Support instruction TABRL / TABRH or register TABR. Suggest not using the method of register TABR. SFR HWAUTO=1 is also suggested.</li> <li>Table Read for C: using register TABR. Only be used outside or inside the interrupt service routine. Don't utilize it inside and outside interrupt service routine simultaneously. Otherwise, something will be wrong.</li> </ol>		



## **INSTRUCTION SET**

Each instruction is a 16-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description
f	Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
С	Carry Flag or /Borrow Flag
DC	Decimal Carry Flag or Decimal /Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
	Bit Field
В	Before
А	After
←	Assign direction



Mnemoni	c	Op Code	Cycle	Flag Affect	Description
		Byte-Oriente	d File Reg	ister Instructio	n
ADDWX	f, d	ff00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWX	f, d	ff00 0101 dfff ffff	1	Z	AND W with "f"
CLRX	f	ff00 0001 1fff ffff	1	Z	Clear "f"
CLRW		0000 0001 0100 0000	1	Z	Clear W
COMX	f, d	ff00 1001 dfff ffff	1	Z	Complement "f"
DECX	f, d	ff00 0011 dfff ffff	1	Z	Decrement "f"
DECXSZ	f, d	ff00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCX	f, d	ff00 1010 dfff ffff	1	Z	Increment "f"
INCXSZ	f, d	ff00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWX	f, d	ff00 0100 dfff ffff	1	Z	OR W with "f"
MOVX	f,d	ff00 1000 dfff ffff	1	Z	Move "f"
MOVXW	f	ff00 1000 Offf ffff	1	Z	Move "f" to W
MOVWX	f	ff00 0000 1fff ffff	1	-	Move W to "f"
RLX	f, d	ff00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRX	f, d	ff00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWX	f, d	ff00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAP <mark>X</mark>	f, d	ff00 1110 dfff ffff	1	-	Swap nibbles in "f"
TSTX	f	ff00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWX	f, d	ff00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriented	File Regi	ster Instruction	1
BCX	f, b	ff11 00bb bfff ffff	1	-	Clear "b" bit of "f"
BSX	f, b	ff11 01bb bfff ffff	1	-	Set "b" bit of "f"
BTXSC	f, b	ff11 10bb bfff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTXSS	f, b	ff11 11bb bfff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal ar	nd Contro	l Instruction	
ADDLW	k	0001 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	0001 1011 kkkk kkkk	1	Z	AND Literal "k" with W
LCALL	k	<pre>kk10 0kkk kkkk kkkk</pre>	2	-	Call subroutine "k"
CLRWDT		$0001 \ 1110 \ 0000 \ 0100$	1	TO, PD	Clear Watch Dog Timer
LGOTO	k	<pre>kk10 1kkk kkkk kkkk</pre>	2	-	Jump to branch "k"
IORLW	k	0001 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	0001 1001 kkkk kkkK	1	-	Move Literal "k" to W
NOP		$0000 \ 0000 \ 0000 \ 0000$	1	-	No operation
RET		$0000 \ 0000 \ 0100 \ 0000$	2	-	Return from subroutine
RETI		$0000 \ 0000 \ 0110 \ 0000$	2	-	Return from interrupt
RETLW	k	0001 1000 kkkk kkkk	2	-	Return with Literal in W
SLEEP		0001 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
SUBLW	k	0001 1111 kkkk kkkk	1	C, DC, Z	Subtract W from literal
TABRH		0000 0000 0101 1000	2	-	Lookup ROM high data to W and TABR
TABRL		0000 0000 0101 0000	2	-	Lookup ROM low data to W and TABR
XORLW	k	0001 1101 kkkk kkkk	1	Z	XOR Literal "k" with W



ADDLW	Add Literal "k" and	W
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	0001 1100 kkkk kkkk	
Description	The contents of the W replaced in the W register.	egister are added to the eight-bit literal 'k' and the result is
Cycle	1	
Example	ADDLW 0x15	B:W=0x10
-		A : W =0x25

ADDWX	Add W and "f"	
Syntax	ADDWX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	$(destination) \leftarrow (W) + (f)$	
Status Affected	C, DC, Z	
OP-Code	ff00 0111 dfff ffff	
Description	Add the contents of the W	register with register 'f'. If 'd' is 0, the result is stored in
	the W register. If 'd' is 1, the	he result is stored back in register 'f'.
Cycle	1	
Example	ADDWX FSR, 0	B: W = 0x17, FSR = 0xC2
		A: W = 0xD9, FSR $= 0xC2$

ANDLW	Logical AND Literal	"k" with W
Syntax	ANDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) AND k$	
Status Affected	Z	
OP-Code	0001 1011 kkkk kkkk	
Description	The contents of W regist placed in the W register.	er are AND'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	ANDLW 0x5F	B: W = 0xA3
-		A : W =0x03

ANDWX	AND W with "f"	
Syntax	ANDWX f [,d]	
Operands	f:000h ~ 1FFh, d:0, 1	
Operation	$(destination) \leftarrow (W) ANI$	<b>D</b> (f)
Status Affected	Z	
OP-Code	ff00 0101 dfff ffff	
Description	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	C C
Example	ANDWX FSR, 1	B : W =0x17, FSR =0xC2 A : W =0x17, FSR =0x02



BCX	Clear "b" bit of "f"	
Syntax	BCX f [,b]	
Operands	f : 000h ~ 1FFh, b : 0 ~ 7	
Operation	$(f.b) \leftarrow 0$	
Status Affected	-	
OP-Code	ff11 00bb bfff ffff	
Description	Bit 'b' in register 'f' is cleared.	
Cycle	1	
Example	BCX FLAG_REG, 7	B : FLAG_REG =0xC7 A : FLAG_REG =0x47
BSX	Set "b" bit of "f"	
Syntax	BSX f[,b]	
Operands	f : 000h ~ 1FFh, b : 0 ~ 7	
Operation	$(f.b) \leftarrow 1$	
Status Affected	-	
OP-Code	ff11 01bb bfff ffff	
Description	Bit 'b' in register 'f' is set.	
Cycle	1	
Example	BSX FLAG_REG, 7	B : FLAG_REG =0x0A
		A : FLAG_REG =0x8A
BTXSC	Test "b" bit of "f", skip if c	lear(0)
Syntax	BTXSC f [,b]	
Operands	f : 000h ~ 1FFh, b : 0 ~ 7	
Operation	Skip next instruction if (f.b) =0	
Status Affected	-	
OP-Code	ff11 10bb bfff ffff	
Description	If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register	
		on is discarded, and a NOP is executed instead
~ .	making this a 2nd cycle instruct	ion.
Cycle	1 or 2	
Example	LABEL1: BTXSC FLAG, 1	B : PC =LABEL1
	TRUE: LGOTO SUB1	A : if FLAG.1 =0, PC =FALSE
	FALSE:	if FLAG.1 =1, PC =TRUE
BTXSS	Test "b" bit of "f", skip if s	et(1)
Syntax	BTXSS f [,b]	
Operands	f : 000h ~ 1FFh, b : 0 ~ 7	
Operation	Skip next instruction if (f.b) =1	
Status Affected	-	
OP-Code	ff11 11bb bfff ffff	
Description	-	he next instruction is executed. If bit 'b' in register
	f  = 1 then the most instruction	on is discarded and a NOP is executed instead

'f is 1, then the next instruction is discarded, and a NOP is executed instead, making this a 2nd cycle instruction. Cycle Example 1 or 2 LABEL1: BTXS

LABEL1: B7	ΓXSS FLAG, 1	B : PC = LABEL1
TRUE: LO	GOTO SUB1	A : if FLAG.1 =0, PC =TRUE
FALSE:		if FLAG.1 =1, PC =FALSE



CLRX	Clear "f"	
Syntax	CLRX f	
Operands	f : 000h ~ 1FFh	
Operation	(f) $\leftarrow$ 00h, Z $\leftarrow$ 1	
Status Affected	Z	
OP-Code	ff00 0001 1fff ffff	
Description	The contents of register 'f' are cleared and the Z bit is set.	
Cycle	1	
Example	CLRX FLAG_REG	B : FLAG_REG =0x5A A : FLAG_REG =0x00, Z =1

_____

CLRW	Clear W	
Syntax	CLRW	
Operands	-	
Operation	(W) $\leftarrow$ 00h, Z $\leftarrow$ 1	
Status Affected	Z	
OP-Code	0000 0001 0100 0000	
Description	W register is cleared a	and Z bit is set.
Cycle	1	
Example	CLRW	B: W = 0x5A
		A: W = 0x00, Z = 1

CLRWDT	Clear Watchdog Tim	er
Syntax	CLRWDT	
Operands	-	
Operation	WDT Timer ← 00h	
Status Affected	TO, PD	
OP-Code	0001 1110 0000 0100	
Description	CLRWDT instruction cle	ars the Watchdog Timer
Cycle	1	C C
Example	CLRWDT	B : WDT counter =?
*		A : WDT counter $=0x00$

COMX	Complement "f"	
Syntax	COMX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	(destination) $\leftarrow$ ( $\bar{f}$ )	
Status Affected	Z	
OP-Code	ff00 1001 dfff ffff	
Description	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.	
	If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	COMX REG1, 0	B : REG1 = 0x13
		A : REG1 =0x13, W =0xEC



DECX	Decrement "f"	
Syntax	DECX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	(destination) $\leftarrow$ (f) - 1	
Status Affected	Z	
OP-Code	ff00 0011 dfff ffff	
Description	Decrement register 'f'. If 'd' is 0, the result is stored back in register 'f'.	he result is stored in the W register. If 'd' is 1, the
Cycle	1	
Example	DECX CNT, 1	B : CNT =0x01, Z =0
		A : CNT =0x00, Z =1
DECXSZ	Decrement "f", Skip if 0	
Syntax	DECXSZ f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	$(destination) \leftarrow (f) - 1$ , skip next i	instruction if result is 0
Status Affected	-	
OP-Code	ff00 1011 dfff ffff	
Description	register. If 'd' is 1, the result is pla	remented. If 'd' is 0, the result is placed in the W aced back in register 'f'. If the result is 1, the next
		ult is 0, then a NOP is executed instead, making
<b>a</b> 1	it a 2 cycle instruction.	
Cycle	1 or 2	
Example	LABEL1: DECXSZ CNT, 1	
	LGOTO LOOP	A: CNT = CNT - 1
	CONTINUE:	if CNT =0, "LGOTO LOOP" is replace
		with NOP
		if CNT $\neq 0$ , "LGOTO LOOP" will be

INCX	Increment "f"	
Syntax	INCX f [,d]	
Operands	f : 000h ~ 1FFh	
Operation	$(destination) \leftarrow (f) + 1$	
Status Affected	Z	
OP-Code	ff00 1010 dfff ffff	
Description	The contents of register 'f' a register. If 'd' is 1, the result	re incremented. If 'd' is 0, the result is placed in the W is placed back in register 'f'.
Cycle	1	
Example	INCX CNT, 1	B : CNT =0xFF, Z =0 A : CNT =0x00, Z =1

executed



INCXSZ	Increment "f", Skip if 0	
Syntax	INCXSZ f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	(destination) $\leftarrow$ (f) + 1, skip next in	nstruction if result is 0
Status Affected	-	
OP-Code	ff00 1111 dfff ffff	
Description	register. If 'd' is 1, the result is plac	emented. If 'd' is 0, the result is placed in the W ced back in register 'f'. If the result is 1, the next it is 0, a NOP is executed instead, making it a 2
Cycle	1 or 2	
Example	LABEL1: INCXSZ CNT, 1	B : PC = LABEL1
	LGOTO LOOP	A: CNT = CNT + 1
	CONTINUE:	if CNT =0, "LGOTO LOOP" is replace with NOP if CNT ≠0, "LGOTO LOOP" will be executed

IORLW	<b>Inclusive OR Literal</b>	with W
Syntax	IORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Z	
OP-Code	0001 1010 kkkk kkkk	
Description	The contents of the W r placed in the W register	egister are OR'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	IORLW 0x35	B: W = 0x9A
-		A : W =0xBF, Z =0

IORWX	Inclusive OR W with "f	'
Syntax	IORWX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	$(destination) \leftarrow (W) OR (f)$	
Status Affected	Z	
OP-Code	ff00 0100 dfff ffff	
Description	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	
Cycle	1	and is placed block in register 1.
Example	IORWX RESULT, 0	B : RESULT =0x13, W =0x91 A : RESULT =0x13, W =0x93, Z =0



LCALL	Call subroutine "k"
Syntax	LCALL k
Operands	k : 0000h ~ 1FFFh
Operation	Operation: TOS $\leftarrow$ (PC) + 1, PC.12 $\sim$ 0 $\leftarrow$ k
Status Affected	-
OP-Code	kk10 0kkk kkkk
Description	LCALL Subroutine. First, return address (PC+1) is pushed onto the stack. The 13-bit immediate address is loaded into PC bits <12:0>. LCALL is a two-cycle instruction.
Cycle	2
Example	LABEL1: LCALL SUB1 B : PC =LABEL1 A : PC =SUB1, TOS =LABEL1 + 1

LGOTO	<b>Unconditional Branch</b>	
Syntax	LGOTO k	
Operands	k : 0000h ~ 1FFFh	
Operation	$PC.12\sim0 \leftarrow k$	
Status Affected	-	
OP-Code	kk10 1kkk kkkk kkkk	
Description	LGOTO is an unconditional branch. The 13-bit immediate value is loaded into PC	
	bits <12:0>. LGOTO is a two-cycle instruction.	
Cycle	2	
Example	LABEL1: LGOTO SUB1	B : PC = LABEL1
		A : PC = SUB1

MOVX	Move f	
Syntax	MOVX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	(destination) $\leftarrow$ (f)	
Status Affected	Z	
OP-Code	ff00 1000 dfff ffff	
Description	The contents of register 'f' are me	oved to a destination dependent upon the status of
	d. If d=0, destination is W regist	er. If d=1, the destination is file register f itself.
	d=1 is useful to test a file registe	r, since status flag Z is affected.
Cycle	1	
Example	MOVX FSR,0	B : FSR = 0xC2, W = ?
		A : FSR = 0xC2, W = 0xC2

MOVXW	Move "f" to W	
Syntax	MOVXW f	
Operands	f : 000h ~ 1FFh	
Operation	$(W) \leftarrow (f)$	
Status Affected	Z	
OP-Code	ff00 1000 Offf ffff	
Description	The contents of register 'f	are moved to W register.
Cycle	1	-
Example	MOVXW FSR	B : FSR =0xC2, W =?
		A : FSR $=0xC2$ , W $=0xC2$



MOVLW	Move Literal to W	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	0001 1001 kkkk kkkk	
Description	The eight-bit literal 'k' is 0's.	s loaded into W register. The don't cares will assemble as
Cycle	1	
Example	MOVLW 0x5A	B : W =? A : W =0x5A

MOVWX	Move W to "f"	
Syntax	MOVWX f	
Operands	f : 000h ~ 1FFh	
Operation	$(f) \leftarrow (W)$	
Status Affected	-	
OP-Code	ff00 0000 1fff ffff	
Description	Move data from W register to register 'f'.	
Cycle	1	
Example	MOVWX REG1	B : REG1 = 0xFF, W = 0x4F
-		A : REG1 =0x4F, W =0x4F

NOP	No Operation
Syntax	NOP
Operands	-
Operation	No Operation
Status Affected	-
OP-Code	0000 0000 0000 0000
Description	No Operation
Cycle	1
Example	NOP -
RET	Return from Subroutine
Syntax	RET
Operands	-
Operation	$PC \leftarrow TOS$
Status Affaatad	

Status Affected	-	
OP-Code	0000 0000 0100 0000	
Description	Return from subroutine. The stack is POPed and the top of the stack (TOS) is	
	loaded into the program counter	r. This is a two-cycle instruction.
Cycle	2	
Example	RET	A : PC = TOS





RETI	Return from Interrupt	
Syntax	RETI	
Operands	-	
Operation	$PC \leftarrow TOS, GIE \leftarrow 1$	
Status Affected	-	
OP-Code	0000 0000 0110 0000	
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the	
	PC. Interrupts are enabled. This is a two-cycle instruction.	
Cycle	2	
Example	RETI A : PC =TOS, GIE =1	

RETLW	Return with Literal in W		
Syntax	RETLW k		
Operands	$k: 00h \sim FFh$		
Operation	$PC \leftarrow TOS, (W) \leftarrow k$		
Status Affected	-		
OP-Code	0001 1000 kkkk kkkk		
Description	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.		
Cycle	2		
Example	LCALL TABLE B: W = 0x07		
1	:	A : W =value of k8	
	TABLE: ADDWX PCL, 1		
	RETLW k1		
	RETLW k2		
	:		
	RETLW kn		

RLX	Rotate Left "f" through Carry
Syntax	RLX f [,d]
Operands	f : 000h ~ 1FFh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	ff00 1101 dfff ffff
Description	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.
Cycle	1
Example	RLX REG1, 0 B : REG1 =1110 0110, C =0 A : REG1 =1110 0110 W =1100 1100, C =1



RRX	Rotate Right "f" through Carry
Syntax	RRX f [,d]
Operands	f : 000h ~ 1FFh, d : 0, 1
Operation	C Register f
Status Affected	C
OP-Code	ff00 1100 dfff ffff
Description	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Cycle	1
Example	RRX REG1, 0 B : REG1 =1110 0110, C =0 A : REG1 =1110 0110 W =0111 0011, C =0

_____

SLEEP	Go into Power-down mode, Clock oscillation stops
Syntax	SLEEP
Operands	-
Operation	-
Status Affected	TO, PD
OP-Code	001 1110 0000 0011
Description	Go into Power-down mode with the oscillator stops.
Cycle	1
Example	SLEEP -

SUBLW	Subtract W from Lite	ral	
Syntax	SUBLW k		
Operands	k : 00h ~ FFh		
Operation	$(W) \leftarrow k - (W)$		
Status Affected	C, DC, Z		
OP-Code	0001 1111 kkkk kkkk		
Description	The W register is subtracted (2's complement method) from the eight-bit literal		
-	"k". The result is placed i	n the W register.	
Cycle	1		
Example	SUBLW 0x15	B: W = 0x25	
-		A: W = 0xF0	



SUBWX	Subtract W from ''f''		
Syntax	SUBWX f [,d]		
Operands	f: 000h ~ 1FFh, d: 0, 1		
Operation	$(destination) \leftarrow (f) - (W)$		
Status Affected	C, DC, Z		
OP-Code	ff00 0010 dfff ffff		
Description	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.		
Cycle	1		
Example	SUBWX REG1, 1	B : REG1 =0x03, W =0x02, C =?, Z =?	
		A : REG1 =0x01, W =0x02, C =1, Z =0	
	SUBWX REG1, 1	B : REG1 =0x02, W =0x02, C =?, Z =?	
		A : REG1 =0x00, W =0x02, C =1, Z =1	
	SUBWX REG1, 1	B : REG1 =0x01, W =0x02, C =?, Z =? A : REG1 =0xFF, W =0x02, C =0, Z =0	

SWAPX	Swap Nibbles in "f"		
Syntax	SWAPX f[,d]		
Operands	f : 000h ~ 1FFh, d : 0, 1		
Operation	(destination, 7~4) $\leftarrow$ (f.3~0), (destination.3~0) $\leftarrow$ (f.7~4)		
Status Affected	-		
OP-Code	ff00 1110 dfff ffff		
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is		
G 1	placed in W register. If 'd' is 1, the result is placed in register 'f'.		
Cycle	1		
Example	SWAPX REG1, 0	B : REG1 =0xA5 A : REG1 =0xA5, W =0x5A	

TABRH	Return DPTR high byte to W		
Syntax	TABRH		
Operands	-		
Operation	(W) $\leftarrow$ ROM[DPTR] high byte content, (TABR) $\leftarrow$ ROM[DPTR] high byte content, Where DPTR = {DPH[max:8], DPL[7:0]}		
Status Affected	-		
OP-Code	0000 0000 (	0101 1000	
Description	The W and	TABR register is loade	ed with high byte of ROM[DPTR]. This is a
-	two-cycle ir	nstruction.	
Cycle	2		
Example	MOVLW	(TAB1&0xFF)	
-	MOVWX	DPL	;Where DPL is register
	MOVLW	(TAB1>>8)&0xFF	-
	MOVWX	DPH	;Where DPH is register
	TABRL		;W =0x89, TABR=0x89
	TABRH		;W =0x37, TABR=0x37
	<b>TAD1</b> .	ORG 0234H	
	TAB1: DT	0x3789, 0x2277	;ROM data 16 bits



TABRL	Return DPTR low byte to W		
Syntax	TABRL		
Operands	-		
Operation	(W) $\leftarrow$ ROM[DPTR] low byte content, (TABR) $\leftarrow$ ROM[DPTR] low byte content, Where DPTR = {DPH[max:8], DPL[7:0]}		
Status Affected	-		
OP-Code	0000 0000 (	0101 0000	
Description	The W and TABR register is loaded with low byte of ROM[DPTR]. This is a two-cycle instruction.		
Cycle	2		
Example	MOVLW	(TAB1&0xFF)	
-	MOVWX	DPL	;Where DPL is register
	MOVLW	(TAB1>>8)&0xFF	2
	MOVWX	DPH	;Where DPH is register
	TABRL		;W =0x89, TABR=0x89
	TABRH		;W =0x37, TABR=0x37
	<b>TAD1</b> .	ORG 0234H	
	TAB1: DT	0x3789, 0x2277	;ROM data 16 bits

____

TSTX	Test if "f" is zero		
Syntax	TSTX f		
Operands	f : 000h ~ 1FFh		
Operation	Set Z flag if (f) is 0		
Status Affected	Ζ		
OP-Code	ff00 1000 1fff ffff		
Description	If the content of register 'f' is 0, Zero flag is set to 1.		
Cycle	1		
Example	TSTX REG1	B : REG1 =0, Z =?	
		A : REG1 =0, Z =1	

XORLW	<b>Exclusive OR Literal</b>	with W	
Syntax	XORLW k		
Operands	k : 00h ~ FFh		
Operation	$(W) \leftarrow (W) XOR k$		
Status Affected	Z		
OP-Code	0001 1101 kkkk kkkk		
Description	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result		
	is placed in the W register.		
Cycle	1		
Example	XORLW 0xAF	B: W = 0xB5	
-		A: W = 0x1A	



XORWX	Exclusive OR W with '	'f''
Syntax	XORWX f [,d]	
Operands	f : 000h ~ 1FFh, d : 0, 1	
Operation	$(destination) \leftarrow (W) XOR$	(f)
Status Affected	Z	
OP-Code	ff00 0110 dfff ffff	
Description		of the W register with register 'f'. If 'd' is 0, the result is 'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	XORWX REG1, 1	B : REG1 =0xAF, W =0xB5 A : REG1 =0x1A, W =0xB5



# **ELECTRICAL CHARACTERISTICS**

# **1. Absolute Maximum Ratings** $(T_A = 25^{\circ}C)$

Parameter	Rating	Unit
Supply voltage	$V_{SS}$ -0.3 to $V_{SS}$ +5.5	
Input voltage	$V_{SS}$ -0.3 to $V_{CC}$ +0.3	V
Output voltage	$V_{SS}$ -0.3 to $V_{CC}$ +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	A
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +105	ംറ
Storage temperature	-65 to +150	Ċ

____

## 2. DC Characteristics ( $T_A = 25$ °C, $V_{CC} = 5.0$ V, unless otherwise specified)

Parameter	Symbol	Cond	itions	Min.	Typ.	Max.	Unit
Operating Voltage	V _{cc}	•	Fsys = 16 MHz (FIRC)(RDCTL=4ns) (PWMCKS=FIRC*1)(-40°C ~ 105°C)		-	5.5	V
	· u		C/2) (RDCTL=4ns) (-40°C ~ 105°C)	1.55	_	5.5	V
Input High Voltage	V _{IH}	All Input	$V_{CC} = 3.0 \sim 5.0 V$	$0.6V_{CC}$	_	V _{CC}	V
Input Low Voltage	V _{IL}	All Input	$V_{CC} = 3.0 \sim 5.0 V$	V _{ss}	-	$0.2V_{CC}$	V
I/O port	т		$V_{CC} = 5.0V,$ $V_{OH} = 4.5V$	6	12.7	-	
Source Current	I _{OH}	All I/O pin	$V_{CC} = 3.0V,$ $V_{OH} = 2.7V$	2.5	5.3	-	mA
		All I/O pin except PA7	$V_{CC} = 5.0V,$ $V_{OL} = 0.5V$	32	63	-	mA
I/O port	т	(HSINK=1)	$V_{CC} = 3.0V,$ $V_{OL} = 0.3V$	15	29	-	IIIA
Sink Current	I _{OL}	All I/O pin	$V_{CC} = 5.0V,$ $V_{OL} = 0.5V$	18	36	-	mA
		(HSINK=0)	$V_{CC} = 3.0V,$ $V_{OL} = 0.3V$	8	16	-	
Input Leakage Current (pin high)	I _{ILH}	All Input $V_{IN} = V_{CC}$		-	-	1	μΑ
Input Leakage Current (pin low)	I _{ILL}	All Input	$V_{\rm IN} = 0V$	_	_	-1	μΑ



Parameter	Symbol	Cond	itions	Min.	Typ.	Max.	Unit
		FAST mode	$V_{CC} = 5.0V$	-	3.3	-	
		FIRC 16 MHz	$V_{CC} = 3.0V$	-	1.9	_	
		FAST mode	$V_{CC} = 5.0V$	-	2.3	-	
		FIRC 8 MHz	$V_{CC} = 3.0V$	-	1.3	_	
		FAST mode	$V_{CC} = 5.0V$	-	1.6	-	
		FIRC 4 MHz	$V_{CC} = 3.0V$	-	1.0	—	
		FAST mode	$V_{CC} = 5.0V$	-	1.1	-	
		FIRC 2 MHz	$V_{CC} = 3.0V$	-	0.69	-	
		SLOW mode SIRC div1	$V_{CC} = 5.0 V$	_	0.058	_	mA
Power Supply Current (No Load) (ATDOFF=0)		FIRC STOP POR/LVR On	$V_{\rm CC} = 3.0 V$	_	0.032	_	
	I _{CC}	SLOW mode SIRC div1	$V_{CC} = 5.0 V$	_	0.028	_	
(112011-0)		FIRC STOP POR/LVR Off	$V_{\rm CC} = 3.0 \rm V$	_	0.017	_	
		SLOW mode SIRC div1 FIRC STOP POR/LVR Off ATD Off	$V_{\text{CC}} = 5.0 \text{V}$	-	0.62	-	
			$V_{CC} = 3.0 V$	_	0.45	_	
		IDLE mode SIRC div1	$V_{\rm CC} = 5.0 V$	-	8.1	-	μΑ
		POR/LVR Off	$V_{CC} = 3.0V$	-	2.6	_	•
		STOP mode	$V_{\rm CC} = 5.0 V$	-	-	1	
		POR/LVR Off	$V_{\rm CC} = 3.0 V$	-	-	1	μA
Deall and Dealer	D	$V_{IN} = 0 V$	$V_{CC} = 5.0V$	-	37.5	_	КO
Pull-up Resistor	R _{UP}	Ports A, B	$V_{CC} = 3.0V$	-	38.7	_	KΩ
POR Voltage	V _{POR}	$T_A =$	25°C	1.48	1.63	1.78	V

## 3. Clock Timing

Parameter	Condi	Min.	Тур.	Max.	Unit	
	$T_A = -40^{\circ}C \sim 105^{\circ}C$	$V_{CC} = 3.0 \sim 5.0 V$	-5%	16	+2%	
	$T_A = -40^{\circ}C \sim 105^{\circ}C$	$V_{CC} = 4.0 V$	-3%	16	+1.5%	
FIRC Frequency (*)	$T_A = 0^{\circ}C \sim 70^{\circ}C$	$V_{CC} = 4.0 V$	-2%	16	+1.5%	MHz
	$T_A = 25 ^{\circ}C$	$V_{CC} = 3.0 \sim 5.0 \text{ V}$	-1%	16	+1%	
	$T_A = 25 ^{\circ}C$	$V_{CC} = 4.0 V$	-0.5%	16	+0.5%	

(*) FIRC frequency can be divided by 1/2/4/8.

# 4. Reset Timing Characteristics $(T_A = 25^{\circ}C)$

Parameter	Conditions		Тур.	Max.	Unit
RESET Input Low width	Input $V_{CC} = 5.0 \text{ V} \pm 10 \%$	-	11	-	μs
WDT time	$V_{CC} = 5.0 \text{ V}, \text{WDTPSC} = 11 \text{b}$	-	1463	-	ms
WKT time	$V_{CC} = 5.0 \text{ V}, \text{WKTPSC} = 11 \text{ b}$	-	91	-	ms
CPU start up time	$V_{CC} = 5.0 V$	-	21	-	ms



## **5.** LVR Circuit Characteristics $(T_A = 25 \degree C)$

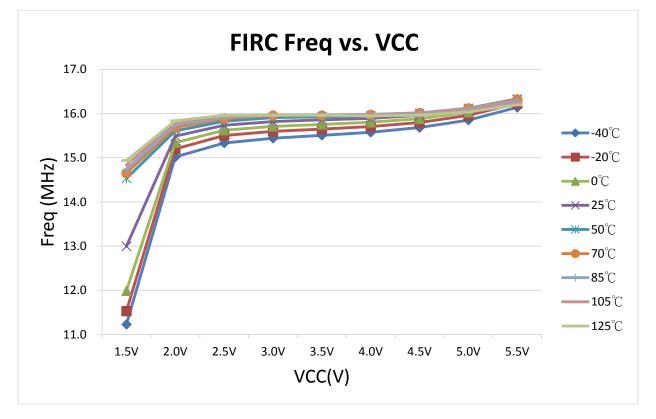
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
			-	1.73	-	
			-	1.85	-	
			-	1.98	-	
			-	2.11	_	
			1	2.23	-	
			-	2.36	_	
		$T_A = 25 ^{\circ}C$	-	2.49	_	
LVR Voltage	LVR _{th}		-	2.61	_	V
			-	2.74	_	
			-	2.87	_	
			-	2.99	_	
			-	3.12	_	
			-	3.25	_	
			-	3.37	_	
			-	3.50	-	
LVR Hysteresis Window	$V_{HYS_LVR}$	$T_A = 25 ^{\circ}C$	Ι	0	_	mV
Low Voltage Detection time	T _{LVR}	$T_A = 25^{\circ}C$	100	-	_	μs

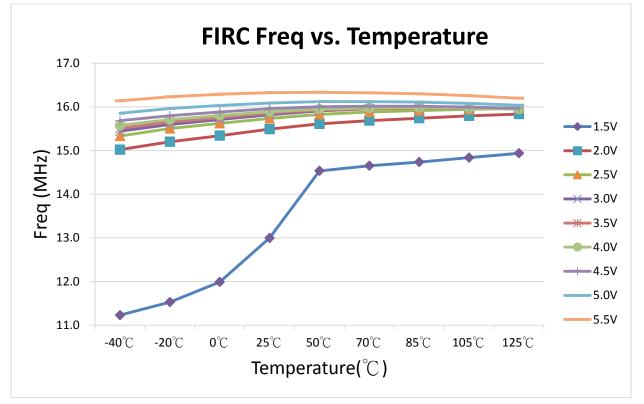
_____

# 6. LVD Circuit Characteristics $(T_A = 25 \degree C)$

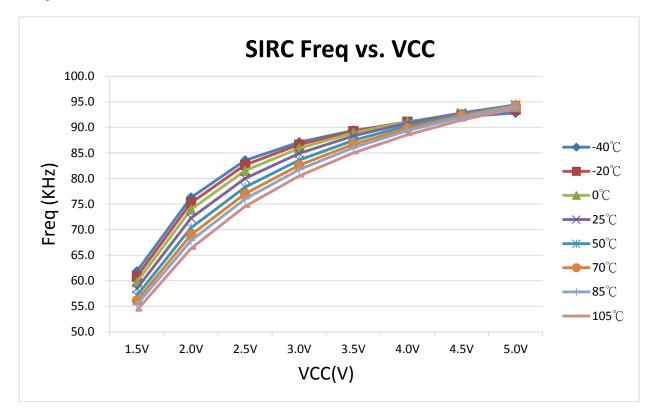
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
			-	1.73	-	
			-	1.85	_	
			-	1.98	-	
			-	2.11	_	
			-	2.23	_	
			-	2.36	-	
LVD Voltage		$T_A = 25^{\circ}C$	-	2.49	_	
	LVD _{th}		-	2.61	_	V
			-	2.74	_	
			-	2.87	_	
			-	2.99	_	
			-	3.12	-	
			-	3.25	-	
			-	3.37	-	
			-	3.50	-	
LVD Hysteresis	V	LVDHYS = 0		0	-	mV
Window	$V_{HYS_LVD}$	LVDHYS = 1	-	100	-	111 V
Low Voltage Detection time	$T_{LVD}$	$T_A = 25 ^{\circ}C$	100	_	_	μs

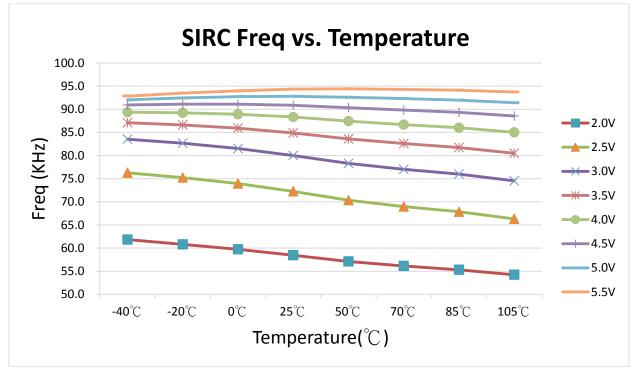



Parameter	Conditions	Min.	Тур.	Max.	Units
Total Accuracy		-	±3	_	
Integral Non-Linearity	$V_{CC} = 5.0V, V_{SS} = 0V, F_{ADC} = 1 \text{ MHz}$	-	±3.2	-	LSB
Differential Non-Linearity		-	±1	±4	
	Source impedance (Rs<10K ohm)	-	_	2	
Mars In most Cite als first a (E	Source impedance (Rs<20K ohm)	-	-	1	MII-
Max Input Clock freq. (F _{ADC} )	Source impedance (Rs<50K ohm)	-	-	0.5	MHz
	Source is VBG (ADCHS=01110b)	-	-	2	
Conversion Time	$F_{ADC} = 1 \text{ MHz}$ (Include sample and hold time)	-	42	_	μs
	$25^{\circ}$ C, V _{CC} = $3.0$ V~ $5.0$ V	-1.5%	1.20	+1.5%	V
BandGap Voltage Reference $(V_{BG})$	$25^{\circ}$ C~105°C, V _{CC} = 3.0V~5.0V	-2%	1.20	+2%	V
(V _{BG} )	$-20^{\circ}$ C~ $105^{\circ}$ C, V _{CC} = $3.0$ V~ $5.0$ V	-2.5%	1.20	+2.5%	V
ADC reference voltage ( $V_{REF}$ )	$25^{\circ}$ C, V _{CC} = $3.0$ V~ $5.2$ V	-2%	2.48	+2%	V
(ADVREFS=01b)	$-20^{\circ}$ C~ $105^{\circ}$ C, V _{CC} = $3.0$ V~ $5.2$ V	-2.5%	2.48	+2.5%	V
ADC reference voltage ( $V_{REF}$ )	$25^{\circ}$ C, V _{CC} = $3.0$ V~ $5.2$ V	-	2	-	V
(ADVREFS=11b)	$-20^{\circ}$ C~ $105^{\circ}$ C, V _{CC} = $3.0$ V~ $5.2$ V	-	2	—	V
V _{CC} /4 reference voltage	$25^{\circ}$ C, V _{CC} = $3.0$ V~ $5.5$ V	-1%	$0.25 V_{CC}$	+1%	V
Input Voltage	_	V _{ss}	-	V _{CC}	V

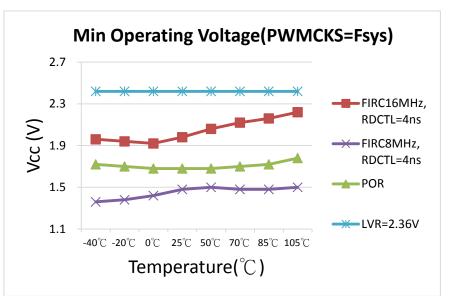

# 7. ADC Electrical Characteristics ( $T_A = 25 \,^{\circ}C$ , $V_{CC} = 3.0V$ to 5.5V, $V_{SS} = 0V$ )

____

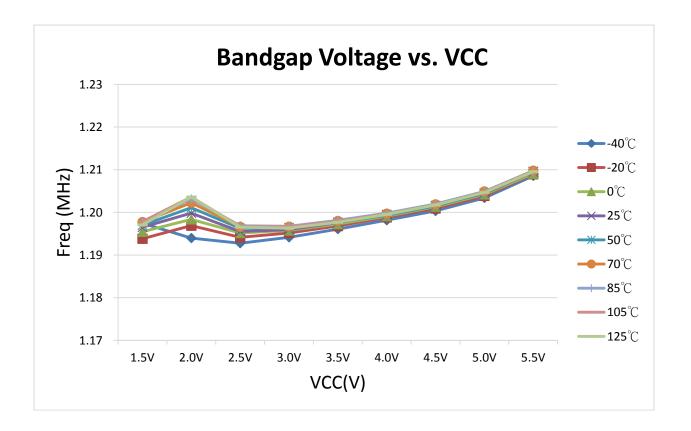




#### 8. Characteristics Graphs











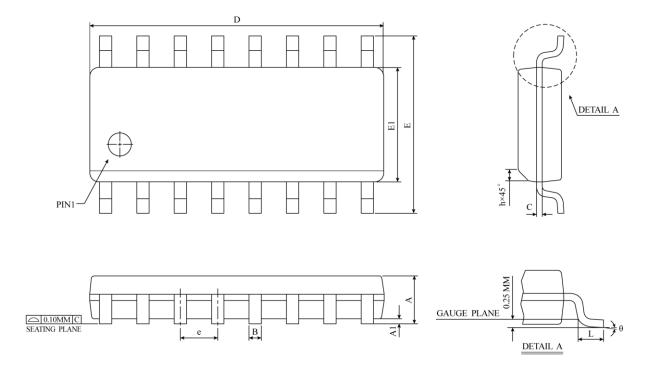



Note: The user must switch RDCTL to "4ns" to enhance the performance of minimal operating voltage.





# PACKAGING INFORMATION

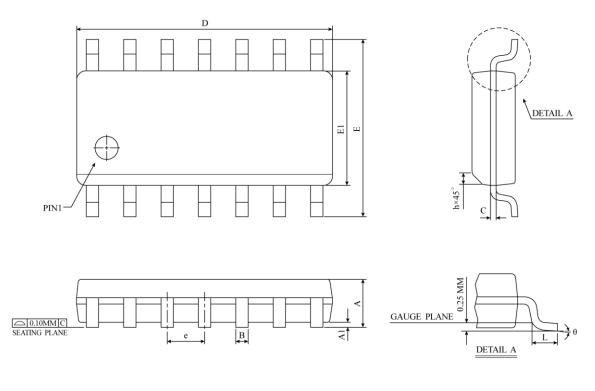

Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.

The ordering information:

Ordering number	Package
TM56M152A-MTP-16	SOP 16-pin (150 mil)
TM56M152A-MTP-15	SOP 14-pin (150 mil)
TM56M152A-MTP-53	MSOP 10-pin (118 mil)
TM56M152A-MTP-14	SOP 8-pin (150 mil)
TM56M152A-MTP-96	QFN 16-pin (3*3*0.75 - 0.5mm)
TM56M152A-MTP-B4	DFN 10-pin (3*3*0.75 - 0.5mm)



#### SOP-16 (150 mil) Package Dimension



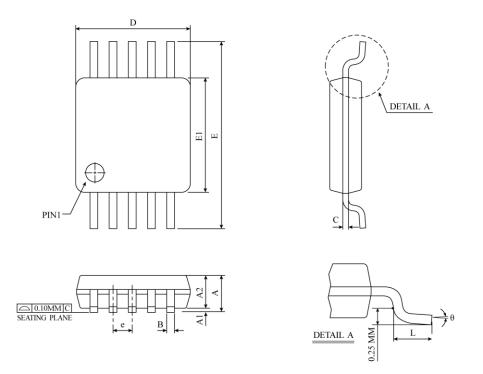

SVMDOL	DI	MENSION IN M	ſM	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.35	1.55	1.75	0.0532	0.0610	0.0688	
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	9.80	9.90	10.00	0.3859	0.3898	0.3937	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e	1.27 BSC				0.050 BSC		
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	$4^{\circ}$	$8^{\circ}$	0°	4°	$8^{\circ}$	
JEDEC		MS-012 (AC)					

* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.



#### SOP-14 (150 mil) Package Dimension




SYMDOL	DI	MENSION IN M	IM	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.35	1.55	1.75	0.0532	0.0610	0.0688	
Al	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	8.55	8.65	8.75	0.3367	0.3410	0.3444	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e		1.27 BSC			0.050 BSC		
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	$0^{\circ}$	4°	8°	0°	4°	$8^{\circ}$	
JEDEC		MS-012 (AB)					

* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

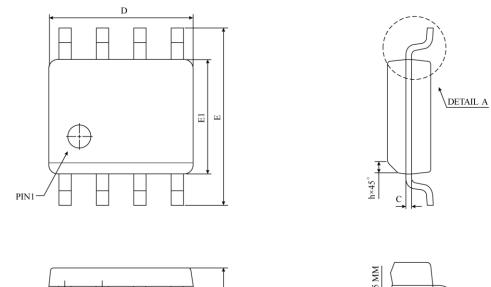


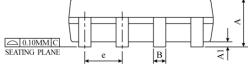


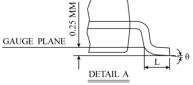
#### MSOP-10 (118 mil) Package Dimension



SVMDOL	DIMENSION IN MM			DIN	MENSION IN IN	ICH
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	0.81	0.96	1.10	0.032	0.038	0.043
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.75	0.85	0.95	0.030	0.034	0.037
В	0.17	0.22	0.27	0.007	0.009	0.011
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	4.75	4.90	5.05	0.187	0.193	0.199
E1	2.90	3.00	3.10	0.114	0.118	0.122
e	0.50 BSC 0.020 BSC					
L	0.40	0.55	0.70	0.016	0.022	0.028
θ	0°	3°	$6^{\circ}$	0°	3°	6°
JEDEC					-	


* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS.


MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.12 MM (0.005 INCH) PER SIDE. DIMENSION "E1" DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE.

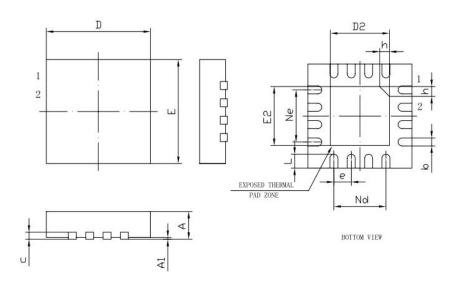





#### SOP-8 (150 mil) Package Dimension

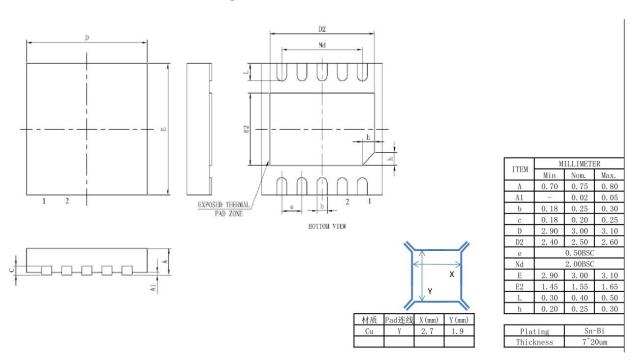







SVMDOL	DIMENSION IN MM			DIN	IENSION IN IN	ICH
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	1.35	1.55	1.75	0.0532	0.0610	0.0688
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	4.80	4.90	5.00	0.1890	0.1939	0.1988
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e	1.27 BSC 0.050 BSC					
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	$4^{\circ}$	8°	0°	4°	$8^{\circ}$
JEDEC	MS-012 (AA)					

* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.




#### QFN-16 (3*3*0.75-0.5mm) Package Dimension



SYMBOL	MILLIMETER				
SYMBOL	MIN	NOM	MAX		
А	0.70	0.75	0.80		
Al	-	0.02	0.05		
b	0.18	0.25	0.30		
с	0.18	0.20	0.25		
D	2,90	3.00	3.10		
<b>D</b> 2	1.55	1.65	1.75		
e	0.50BSC				
Ne	1. 50 <b>BSC</b>				
Nd	1.50BSC				
Е	2.90	3.00	3, 10		
E2	1.55	1.65	1.75		
L	0, 35	0.40	0.45		
h	0.20	0.25	0.30		
L/F载体尺寸 (mil)	75x75				

#### DFN-10 (3*3*0.75-0.5mm) Package Dimension

