

十速

TM57PT45/PA45/ PT45C/PA45C

DATA SHEET

Rev 1.2

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description					
D0.93	Dec, 2015	 Modify Operating Voltage (p7) Add LVR selection table (p24) Modify DC (p95) Modify LVR vs. temperature (p99) 					
1.0	Aug, 2016	(原 Doc No: TM57PT45_PA45_PT45C_PA45C_EDV093 因不再標示 Detailed 版,所以檔名修改為 DS- TM57PT45_PA45_PT45C_PA45C_EV10) 1. p46: add PWM0PSC issue and PWM0 block diagram modified 2. p48: PWM0 example code modified 3. p51: PWM0PSC issue 4. p52: add PWM1PSC issue and PWM1 block diagram modified 5. p54: PWM1 example code modified 6. p57: PWM1PSC issue 7. p80: PWM0PSC, PWM1PSC descriptions modified 8. p84: instruction table modified 9. p93: remove SUBLW instruction 10. p95: add table read instructions					
1.1	Feb, 2017	 p5:remove dual system clock statement p7:remove 24-pin DIP package type p9:remove 24-pin DIP pin assignment p11-12:remove SKINNY DIP 24-pin (300mil) p104:remove 24-Skinny DIP Package Dimension p28:remove "Dual" from section name and related statement below p30:remove "Dual System" from section name p3:modified 2.5/2.6 section name 					
1.2	Mar, 2018	 p7,p100 modify packages type p6 modify operating voltage & freq. 					

CONTENTS

AMI	ENDMENT HISTORY	2
CON	NTENTS	3
	ATURES	
BLO	OCK DIAGRAM	8
	ASSIGNMENT	
	DESCRIPTION	
	SUMMARY	
	NCTIONAL DESCRIPTION	
1.	CPU Core	13
	1.1 Clock Scheme and Instruction Cycle	13
	1.2 RAM Addressing Mode	
	1.3 Programming Counter (PC) and Stack	
	1.4 ALU and Working (W) Register	
	1.5 STATUS Register (F-Plane 03H)	
	1.6 Interrupt	
2.	Chip Operation Mode	24
	2.1 Reset	24
	2.2 System Configuration Register (SYSCFG)	
	2.3 PROM Re-use ROM	26
	2.4 Power Down Mode	
	2.5 System Clock	
	2.6 Clock Modes Transition	30
3.	Peripheral Functional Block	33
	3.1 Watchdog (WDT) Timer/Wakeup (WKT) Timer	33
	3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)	36
	3.3 Timer1	
	3.4 PWM0: (8+2) bits PWM	
	3.5 PWM1: (8+2) bits PWM	
	3.6 Buzzer Output	
	3.7 Touch Key (The function only available for TM57PT45)	
	3.8 ADC: 12-bit Analog-to-Digital Converter	
	3.9 OPA: 2 Sets Operational Amplifiers	
	·	
4.	I/O Port	68
	4.1 PA0-2	
	4.2 PA3-6, PB0-5, PD0-7	
	4.3 PA7	71

MEMORY MAP	74
F-Plane	74
R-Plane	79
INSTRUCTION SET	83
ELECTRICAL CHARACTERISTICS	95
1. Absolute Maximum Ratings	95
2. DC Characteristics	95
3. Clock Timing	97
4. Reset Timing Characteristics	
5. OPA	97
6. Characteristic Graphs	98
PACKAGING INFORMATION	100
16-SSOP (150mil) Package Dimension	101
20-DIP Package Dimension	102
20-SOP Package Dimension	103
24-SOP Package Dimension	104
24-SSOP (150mil) Package Dimension	

FEATURES

1. ROM: 4K x 14 bits OTP, or 2K x 14 bits TTP

2. RAM: 184 x 8 bits

3. STACK: 6 Levels

- 4. System Oscillation Sources (Fsys)
 - Fast-clock
 - FXT (Fast Crystal): 1M~24 MHz
 - FIRC (Fast Internal RC): 2/4/8/16 MHz
 - Slow-clock
 - SXT (Slow Crystal): 32768 Hz
 - SIRC (Slow Internal RC): 150K/37.5K/9.4K/2.3 KHz @5V; 116K/29K/7.25K/1.8 KHz @3V

5. Power Saving Operation Mode

- FAST mode: Slow-clock can be disabled or enabled
- SLOW mode: Fast-clock stops, CPU is running
- Fast Mode and Slow Mode can be chosen by CPUCKS control bit.
- STOP mode: All Clocks stop, Wake-up Timer is disabled or enabled
- 6. Operation Voltage and Speed: VDD=2.2V @4 MHz

7. 2 Independent Timers

- Timer0
 - 8-bit timer divided by 1~256 pre-scaler option, Counter/Interrupt/Stop function
 - Capture high duty or low duty (pulse width measurement)
 - Overflow and Toggle out
- Timer1
 - 16-bit timer with two pre-scalers, Counter/Interrupt/Stop/Clear&Hold/Set/Reload function
 - Capture period time
 - Overflow and Toggle out

8. Interrupt

- Three External Interrupt pins
 - 2 pins are falling edge wake-up triggered
 - 1 pin is rising or falling edge wake-up triggered
- Timer0/Timer1/WKT (wake-up) Interrupts
- PWM0/PWM1 Interrupt

9. Port B individual pin low level wake up

10. Wake-up (WKT) Timer

Clocked by built-in RC oscillator with 4 adjustable Interrupt times
 1.1 ms/2.2 ms/36 ms/144 ms @5V, 1.4 ms/2.8 ms/46 ms/184 ms @3V

11. Watchdog Timer

Clocked by built-in RC oscillator with 4 adjustable Reset Times
 144 ms/289 ms/1155 ms/2312 ms @5V, 184 ms/367 ms/1469 ms/2939 ms @3V
 Watchdog timer can be disabled/enabled in STOP mode (WDTSTP, (R0D.5))

12. 2 Independent PWMs

- PWM0:
 - 8+2 bits, period-adjustable/duty-adjustable/Clear&Hold
 - Clock source: 16 MHz (double of FIRC 8MHz) or system clock (Fsys)
 - With differential output pair
 - Non-overlap durations adjustable
- PWM1:
 - 8+2 bits, period-adjustable/duty-adjustable/Clear&Hold
 - Clock sources: 16 MHz (double of FIRC 8 MHz) or system clock (Fsys)
 - With differential output pair
 - Non-overlap durations adjustable
- 13. 12-bit ADC converter with 12 input channels
- 14. 16 channel Touch Key (TM57PT45 only)
- 15. 2 Operational Amplifiers with series/parallel applications
- 16. Reset Sources
 - Power On Reset / Watchdog Reset / Low Voltage Reset / External Pin Reset
- 17. Low Voltage Reset Option: LVR2.0V (Battery application don't suggest to select this level), LVR2.0V disable in STOP mode, LVR2.9V
- 18. Operating Voltage: LVR Level to 5.5V (Ref. Characteristic Graph of Fsys Minimum Operating Voltage & LVR)
 - Fsys=4 MHz @2.2V~5.5V & LVR=2.9V & -40°C < Ta< 85°C
 - Fsys=8 MHz @2.4V~5.5V & LVR=2.9V & -40°C < Ta< 70°C
 - Fsys=12 MHz @2.8V~5.5V & LVR=2.9V
 - Fsys=16 MHz @3.3V~5.5V & LVR=2.9V

19. Enhanced Power Noise Rejection.

20. Instruction set: 36 Instructions

21. Instruction Execution Time

• 2 oscillation clocks per instruction except branch

22. I/O ports: Maximum 22 programmable I/O pins

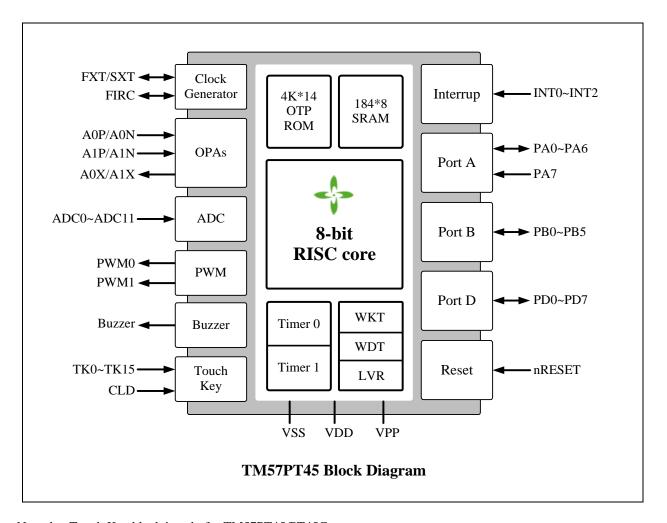
- Pseudo-Open-Drain Output
- Open-Drain Output
- CMOS Push-Pull Output
- Schmitt Trigger Input with pull-up resistor option
- 6 high sink current output pins

23. Package Types:

- 16-pin SSOP (150mil)
- 20-pin DIP (300 mil), SOP (300 mil)
- 24-pin SOP (300 mil), SSOP (150 mil)

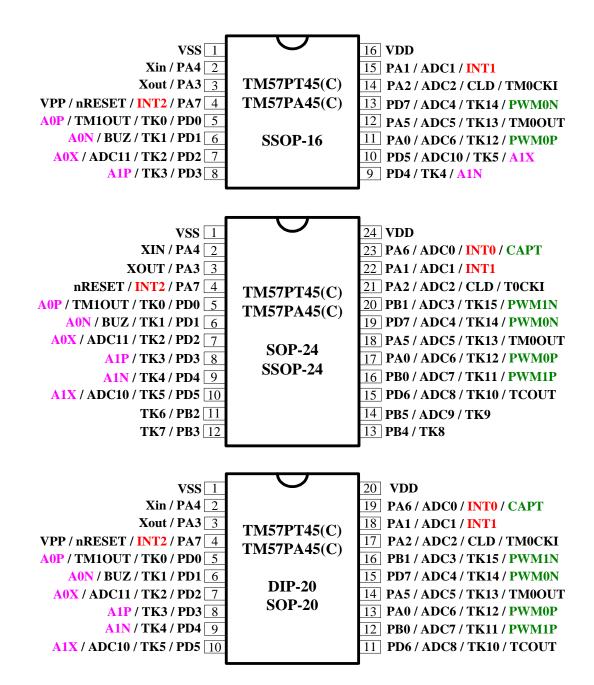
24. Supported EV board on ICE

EV board: EV2768


Difference between TM57PT45/PA45 and TM57PT45C/PA45C

	PWM0P, PWM0N PWM1P, PWM1N						
	Drive Current	Sink Current					
TM57PT45/PA45	8 mA @VDD=5V 3 mA @VDD=3V	20 mA @VDD=5V 10 mA @VDD=3V except PB0(PWM1P)					
TM57PT45C/PA45C	27 mA @VDD=5V 10 mA @VDD=3V	45 mA @VDD=5V 20 mA @VDD=3V					

TM57PT45C/PA45C enlarge the drive and sink currents of the PWM0P, PWM0N, PWM1P, and PWM1N.


BLOCK DIAGRAM

Note that Touch Key block is only for TM57PT45/PT45C

PIN ASSIGNMENT

^{*} Note that TM57PA45/PA45C do not has TK0~TK15 and CLD pins.

PIN DESCRIPTION

Name	In/Out	Pin Description
PA0-PA2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. Pull-up resistors are assignable by software.
PA3–PA6 PB0–PB5 PD0–PD7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
PB0, PB2 PB3, PB4 PB5, PD6	I/O	High Sink current pins
VPP/nRESET/ PA7	I	Schmitt-trigger input with pull-high configurable, External active low reset, normal stay to "high".
Xin, Xout	-	Crystal/Resonator oscillator connection for system clock.
VDD, VSS	P	Power Voltage input pin and ground
VPP	I	PROM programming high voltage input
INT0-INT2	I	External interrupt input
PWM0N PWM0P PWM1P PWM1N	О	PWM outputs
TCOUT	О	Instruction cycle clock divided by N output. Where N is 1,2,4,8. The instruction clock frequency is system clock frequency divided by two (Fsys/2).
TM0CKI	I	Timer0's input in counter mode
CAPT	I	Timer0/Timer1 Capture input
BUZ	О	Buzzer output
TM0OUT	О	Timer0 overflow toggle output
TM1OUT	О	Timer1 overflow toggle output
ADC0~ADC11	I	A/D converter input
TK0~TK15	I	Touch Key input (for TM57PT45 only)
CLD	I	Touch Key capacitor input (for TM57PT45 only)
A0P, A1P	I	Positive inputs of OPA0 and OPA1
A0N, A1N	I	Negative inputs of OPA0 and OPA1
A0X, A1X	О	Outputs of OPA0 and OPA1

PROGRAMMING PINS:

VDD/VSS/PA0/PA1/PA3/PA4/PA7 (VPP)

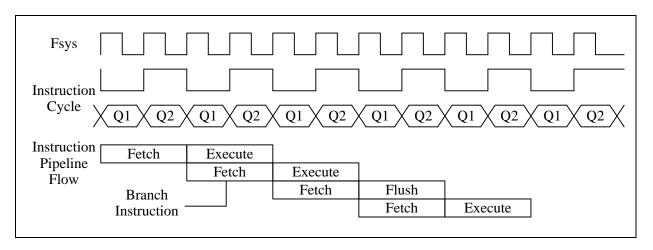
PIN SUMMARY

Pi Nun						GPIO)		et		Alt	ernat	e Fun	ction
Null	ibei			Inj	out	(Outpu	t	Res					
24-SOP/ SSOP	20-SOP/DIP	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	0.0	P.O.D	P.P	Function After Reset	MMd	Touch Key	ADC	OPA	MISC
1	1	VSS	P											
2	2	Xin/PA4	I/O	0		0		0	PA4					Xin
3	3	Xout/PA3	I/O	0		0		0	PA3					Xout
4	4	VPP/nRESET/ INT2/PA7	I/O	0	0	0			PA7					VPP nRESET
5	5	A0P/TM1OUT/ TK0/PD0	I/O	0		0		0	PD0		0		0	TM1OUT
6	6	A0N/BUZ/TK1/PD1	I/O	0		0		0	PD1		0		0	BUZ
7	7	A0X/ADC11/TK2/ PD2	I/O	0		0		0	PD2		0	0	0	
8	8	A1P/TK3/PD3	I/O	0		0		0	PD3		0		0	
9	9	A1N/TK4/PD4	I/O	0		0		0	PD4		0		0	
10	10	A1X/ADC10/TK5/ PD5	I/O	0		0		0	PD5		0	0	0	
11	-	TK6/PB2	I/O	0		0		0	PB2		0			H.S.
12	-	TK7/PB3	I/O	0		0		0	PB3		0			H.S.
13	-	TK8/PB4	I/O	0				0	PB4		0			H.S.
14	-	TK9/ADC9 PB5	I/O	0		0		0	PB5		0	0		H.S.
15	11	TK10/TCOUT/ ADC8/PD6	I/O	0		0		0	PD6		0	0		TCOUT H.S.
16	12	TK11/PWM1P/ ADC7/PB0	I/O	0		0		0	PB0	0	0	0		H.S.
17	13	TK12/PWM0P /ADC6/PA0	I/O	0			0	0	PA0	0	0	0		
18	14	TK13/TM0OUT/ ADC5/PA5	I/O	0	0	0		0	PA5		0	0		TM0OUT
19	15	TK14/PWM0N/ ADC4/PD7	I/O	0	0	0		0	PD7	0	0	0		
20	16	TK15/PWM1N/ ADC3/PB1	I/O	0		0		0	PB1	0	0	0		

	Pin Number				GPIO						Alt	Alternate Function			
					Inj	put	Output			r Reset					
24-SOP / SSOP	20-SOP/DIP	Pin Name	Type	Weak Pull-up	Ext. Interrupt	0.D	Q.O.9	ďď	Function After	MMd	Touch Key	ADC	VAO	MISC	
21	17	CLD/TM0CKI/ ADC2/PA2	I/O	0			0	0	PA2		0	0		TM0CKI	
22	18	INT1/ADC1/ PA1	I/O	0			0	0	PA1			0			
23	19	CAPT/INT0/ ADC0/PA6	I/O	0		0		0	PA6			0		CAPT	
24	20	VDD	P												

Symbol: P.P. = Push-Pull Output
P.O.D. = Pseudo Open Drain
O.D. = Open Drain
H.S. = High Sink Pins

^{*} Note that TM57PA45 do not has TK0~TK15 and CLD pins.



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle

The system clock (Fsys) is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

Terminology definitions:

Fsys: System clock. The main clock that drives the core logic and all peripherals. The clock source can be either Fast-clock or Slow-clock which can be set by registers.

Fast-clock: The clock source that contains Fast crystal (FXT), Fast Internal RC oscillator (FIRC), and External RC oscillator (XRC). *

Slow-clock: The clock source that contains Slow crystal (SXT), Slow Internal RC oscillator (SIRC), and External RC oscillator (XRC).

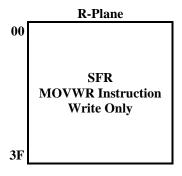
Instruction Cycle=Fsys/2

FXT: Fast Crystal

FIRC: Fast Internal RC oscillator

*XRC: Fast or Slow External RC oscillator

SXT: Slow Crystal (32 KHz)


SIRC: Slow Internal RC oscillator

^{*} TM57PT45/PA45/PT45C/PA45C doesn't support XRC mode.

1.2 RAM Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The registers in R-Plane are write-only. The "MOVWR" instruction copy the W-register's content to R-Plane registers by direct addressing mode. The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR (F04.6~0) register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bit-addressable. There are two RAM banks can be selected by RAMBK (F03.5).

	F-Plane											
00 1F	SFR Bit-Addressable											
20 27	SRAM Bit-Addressable											
28	SRAM	SRAM										
	Bit-Addressable	Bit-Addressable										
3F	(RAMBK=0)	(RAMBK=1)										
40 7F	SRAM (RAMBK=0)	SRAM (RAMBK=1)										
/ F												

; Check the FSR is end address of user SRAM?

♦ Example: Write immediate data into R-Plane register

MOVLW AAH ; Move immediate AAH into W register MOVWR 05H ; Move W value into R-Plane location 05H

♦ Example: Write immediate data into F-Plane register

MOVLW 55H ; Move immediate 55H into W register MOVWF 20H ; Move W value into F-Plane location 20H

♦ Example: Move F-Plane location 20H data into W register

MOVFW 20H ; To get a content of F-Plane location 20H to W

♦ Example: Clear SRAM Bank0 data by indirect addressing mode

FSR, 0

MOVLW 20H ; W = 20H (SRAM start address)

MOVWF FSR ; Set start address of user SRAM into FSR register

BCF STATUS, 5 ; Set RAMBK=0

LOOP:

MOVLW 00H

XORWF

MOVWF INDF ; Clear user SRAM data

INCF FSR, 1 ; Increment the FSR for next address

MOVLW 80H ; W=80H (SRAM end address)

BTFSS STATUS, 2 ; Check the Z flag

GOTO LOOP ; If Z=0, goto LOOP label

... ; If Z=1, exit LOOP

1.3 Programming Counter (PC) and Stack

The Programming Counter is 12-bit wide capable of addressing a 4K x 14 OTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 12 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC[7:0], the PC[11:8] keeps unchanged. Therefore, the data of a lookup table must be located with the same PC[11:8]. The STACK is 12-bit wide and 6-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instructions pop the STACK level in order.

♦ Example: To look up the PROM data located "TABLE"

ORG 000H ; Reset Vector
GOTO START ; Goto user program address

START:

MOVLW 00H
MOVWF INDEX ; Set lookup table's address (INDEX)

MOVFW INDEX ; Move INDEX value to W register

CALL TABLE ; To Lookup data (W=55H when INDEX=00H)

. . .

INCF INDEX, 1; Increment the INDEX for next address

. . .

GOTO LOOP ; Goto LOOP label

ORG X00H ; X=1, 2, 3, ..., 6, 7

TABLE:

LOOP:

ADDWF PCL, 1; (Addr=X00H) Add the W with PCL, the result

; is stored back in PCL

RETLW 55H ; W=55H when return RETLW 56H ; W=56H when return RETLW 58H ; W=58H when return

Note: TM57PT45 defines 256 ROM addresses as one page, so that TM57PT45 has 16 pages, 000H~0FFH, 100H~1FFH, 200H~2FFH, ..., and F00H~FFFH. On the other words, PC[11:8] can be defined as page. A lookup table must be located at the same page to avoid getting wrong data. Thus, the lookup table has maximum 255 data for above example with starting a lookup table at X00H (X=1, 2, 3, ..., 6, 7). If a lookup table has fewer data, it does not need to set the starting address at X00H, just only confirm all lookup table data are located at the same page.

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a/Borrow and/Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register (F-Plane 03H)

This register contains the arithmetic status of ALU, the reset status, and the voltage status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits. The RAMBK bit is used to the SRAM Bank selection.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
Reset Value	0	0	0	0	0	0	0	0					
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W					
Bit				Desci	ription								
7	GB0: Gene	GB0: General Purpose Bit 0											
6	GB1: Gene	GB1: General Purpose Bit 1											
5	0: SRAM I	RAMBK: SRAM Bank Selection 0: SRAM Bank0 1: SRAM Bank1											
4	0: after Po	TO: Time Out Flag 0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instructions 1: WDT time out occurs											
3	0: after Po	PD: Power Down Flag 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction											
2		t of a logic	operation is a										
	DC: Decim	nal Carry Fla	g or Decima	l/Borrow Fl									
		ADD in	ADD instruction SUB instruction										
1	0: no carry 1: a carry froccurs	rom the low	nibble bits o	0: a borrow from the low nibble bits of the result occurs 1: no borrow									
0	C: Carry Fl	lag or/Borro	w Flag										
0		ADD in	struction			SUB ins	struction						
	0: no carry				0: a borrow	occurs fron	n the MSB						
	1: a carry o	ccurs from t	he MSB		1: no borro	W							

♦ Example: Write immediate data into STATUS register

MOVLW 00H

MOVWF STATUS ; Clear STATUS register

♦ Example: Bit addressing set and clear STATUS register

BSF STATUS, C ; Set C=1 BCF STATUS, C ; Clear C=0

♦ Example: Determine the C flag by BTFSS instruction

BTFSS STATUS, C ; Check the C flag

GOTO LABEL_1 ; If C=0, goto LABEL_1 label GOTO LABEL_2 ; If C=1, goto LABEL_2 label

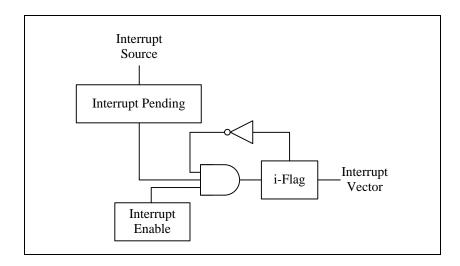
♦ Example: Detect WDT time out event occurs

LOOP:

BTFSC STATUS, TO ; Check the LVD flag

GOTO WDT_Timeout_Proc ; If TO=1, goto WDT_Timeout_Proc

MAIN:



1.6 Interrupt

The TM57PT45/PA45/PT45C/PA45C has 1 level, 1 vector and 8 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because TM57PT45/PA45/PT45C/PA45C has only 1 vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

♦ Example: Setup INT1 (PA1) interrupt request with rising edge trigger

ORG 000H ; Reset Vector

GOTO START ; Goto user program address

ORG 001H ; All interrupt vector

GOTO INT ; If INT1 (PA1) input occurred rising edge

ORG 002H

START:

MOVLW xxxxxx**0**xB

MOVWR PAPUN ; Select INT1 (PA1) pin mode pull-up enable

MOVLW xxxxxx**1**xB

MOVWF PAD ; Release INT1 (PA1), it becomes Schmitt-trigger

; input mode with input pull-up resistor

MOVLW xxxxxx**0**xB

MOVWR PAE ;Disable INT1(PA1) push-pull output

MOVLW $\underline{\mathbf{1}}$ xxxxxxxB

MOVWR R0D ; Set INT1 interrupt trigger as rising edge

MOVLW 1111111<u>0</u>1B

MOVWF INTF ; Clear INT1 interrupt request flag

MOVLW 000000<u>1</u>0B

MOVWF INTE ; Enable INT1 interrupt

MAIN:

GOTO MAIN

INT:

MOVWF 20H ; Store W data to SRAM 20H

MOVFW STATUS ; Get STATUS data

MOVWF 21H ; Store STATUS data to SRAM 21H

BTFSS XINT1F ; Check XINT1F bit

GOTO EXIT_INT ; XINT1F=0, exit interrupt subroutine

; INT1 interrupt service routine

MOVLW 1111111<u>0</u>1B

MOVWF INTF ; Clear INT1 interrupt request flag

EXIT_INT:

MOVFW 21H ; Get SRAM 21H data MOVWF STATUS ; Restore STATUS data

MOVFW 20H ; Restore W data

RETI ; Return from interrupt

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	PWM1IE	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.7 **PWM0IE**: PWM0 interrupt enable

0: disable 1: enable

F08.6 **PWM1IE**: PWM1 interrupt enable

0: disable 1: enable

F08.5 **TM1IE**: Timer1 interrupt enable

0: disable 1: enable

F08.4 **TM0IE**: Timer0 interrupt enable

0: disable 1: enable

F08.3 **WKTIE**: WKT interrupt enable

0: disable 1: enable

F08.2 **XINT2E**: External pin XINT2 (PA7) interrupt enable

0: disable 1: enable

F08.1 **XINT1E**: External pin XINT1 (PA1) interrupt enable

0: disable 1: enable

F08.0 **XINT0E**: External pin XINT0 (PA6) interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	PWM1IF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F09.7 **PWM0I**: PWM0 interrupt event pending flag

This bit is set by H/W while PWM0 period is completed, write 0 to this bit will clear this flag

F09.6 **PWM1IF**: PWM1 interrupt event pending flag

This bit is set by H/W while PWM1 period is completed, write 0 to this bit will clear this flag

F09.5 **TM1IF**: Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

F09.4 **TM0IF**: Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F09.3 **WKTIF**: WKT interrupt event pending flag

This bit is set by H/W while WKT overflows, write 0 to this bit will clear this flag

F09.2 **XINT2F**: INT2 interrupt event pending flag

This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag

F09.1 **XINT1F**: INT1 interrupt event pending flag

This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag

F09.0 **XINT0F**: INT0 interrupt event pending flag

This bit is set by H/W at INT0 pin's falling edge, write 0 to this bit will clear this flag

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0D	INT1EDG	TM1CM	WDTSTP	FIRCKS			ADCKS	
R/W	_	W		W			-	
Reset	_	0	0	()		-	

R0D.7 **INT1EDG:** INT1 pin (PA1) edge interrupt event

0: falling edge to trigger1: rising edge to trigger

2. Chip Operation Mode

2.1 Reset

The TM57PT45/PA45/PT45C/PA45C can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value. The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are two threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register.

There are two voltage selections for the LVR threshold level, one is higher level which is suitable for application with V_{DD} is more than 3V, the other one is suitable for application with V_{DD} is more than 2.0V. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:

LVR Threshold Level	Consider the operating voltage to choose LVR
LVR2.0	$5.5V > V_{DD} > 2.0V$
LVR2.9	$5.5V > V_{DD} > 3.3V \text{ or } V_{DD} = 5.0V$

Different Fsys have different system minimum operating voltage, reference to Operating Voltage of DC characteristics, if current system voltage is lower than minimum operating voltage and lower LVR is selected, then the system maybe enter dead-band and error occur.

The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value.

2.2 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at ROM address FFCh. The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select LVR threshold voltage and chip operation mode by SYSCFG register. The default value of SYSCFG is 3FFFh. The 14th bit of SYSCFG is code protection selection bit. If this bit is 0, the data in PROM will be protected, when user reads PROM.

Bit		13~0
Default Value		111111111111
Bit		Description
13	PROTECT:	Code protection selection
	0	Enable
	1	Disable
12	REUSE: PRO	OM Re-use control
	0	Enable
	1	Disable
11-10	LVR: Low V	Voltage Reset Mode
	00	LVR disable
	01	LVR=2.9V, always enable
	10	LVR=2.0V, disable at STOP mode
	11	LVR=2.0V; always enable
9-8	CLKT: Cloc	k type selection
	01	FIRC
	10	Slow Crystal
	11	Fast Crystal
7	XRSTE: Ext	ternal Pin (PA7) Reset Enable
	0	Disable, PA7 as IO pin
	1	Enable
6	WDTE: WD	T Reset Enable
	0	WDT Reset Disable
	1	WDT Reset Always Enable
5-0	Reserved	

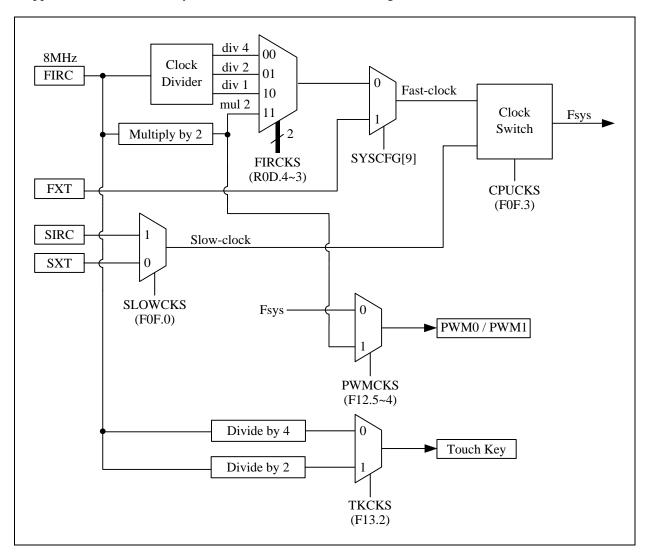
2.3 PROM Re-use ROM

The PROM of this device is 4K words. For some F/W program, the program size could be less than 2K words. To fully utilize the PROM, the device allows users to reuse the PROM. This feature is named as Two Time Programmable (TTP) ROM. While the first half of PROM is occupied by a useless program code and the second half of the PROM remains blank, users can re-write the PROM with the updated program code into the second half of the PROM. In the Re-use mode, the Reset Vector and Interrupt Vector are re-allocated at the beginning of the PROM's second half by the Assembly Compiler. Users simply choose the "REUSE" option in the ICE tool interface, and then the Compiler will move the object code to proper location. That is, the user's program still has reset vector at address 000h, but the compiled object code has reset vector at 800h. In the SYSCFG, if protect mode is enabled and not Re-use, the Code protection area is first half of PROM. This allows the Writer tool to write then verify the Code during the Re-use Code programming. After the Re-use Code being written into the PROM's second half, user should write "REUSE" control bit to "0". In the mean while, the Code protection area becomes the whole PROM except the Reserved Area.

	PROM, not Re-use		PROM, Re-use			
000	Reset Vector	000				
001	Interrupt Vector	001				
7 FF	••	Code Protect Area	Useless Code	Code Protect		
800	User Code	800	Reset Vector	Area		
801	Couc	801	Interrupt Vector			
			User Code			
FFC	SYSCFG	FFC	SYSCFG			
FFD	Manufacturer	FFD	Manufacturer			
FFE	Reserved	FFE	Reserved			
FFF	Area	FFF	Area			

2.4 Power Down Mode

The Power-down mode of TM57PT45/PA45/PT45C/PA45C has only STOP Mode. It is activated by SLEEP instruction. During the Power-down mode, the system clock and peripherals stop to minimize power consumption. The WDT is working or not depends on SYSCFG. The WKT is working or not depends on WKTIE (MF08.3). The Power-down mode can be terminated by Reset, or enabled Interrupts (External pins and WKT) or PA1-6 and PB1-6 pins low level wake up.


R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRDN		PWRDN						
R/W		W						
Reset	_	_	_	_	-	_	_	_

R03.7~0 **PWRDN:** Write this register to enter Power Down (STOP) Mode

2.5 System Clock

TM57PT45/PA45/PT45C/PA45C four kinds of clock source, FXT (Fast Crystal) Clock, SXT (Slow Crystal) Clock, SIRC (Slow Internal RC) Clock and FIRC (Fast Internal RC) Clock. Each clock source can be applied to CPU kernel as system clock source. Refer to the Figure as below.

FAST Mode:

After power-on or reset, TM57PT45/PA45/PT45C/PA45C enters FAST or SLOW mode depends on SYSCFG[9:8]. In FAST mode, TM57PT45/PA45/PT45C/PA45C can select FXT or FIRC as its CPU clock. TM57PT45/PA45/PT45C/PA45C enters FAST mode by setting the CPUCKS (F0F.3) when it is in SLOW mode. If user wants to change to SLOW mode, Slow-clock should be enabled first (F0F.2=1), then switch to Slow-clock as CPU clock (F0F.3=1), turn off Fast-clock (F0F.4=1) in the end.

In this mode, the program is executed using Fast-clock as system clock source. The Timer0 and Timer1 blocks are driven by Fast-clock. PWMs can be driven by Fast-clock or FIRC 16 MHz by setting PWMCKS (F12.5~4).

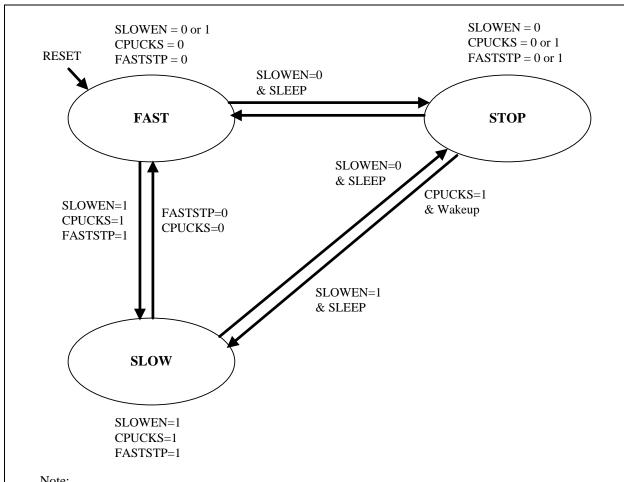
SLOW Mode:

After power on or reset, TM57PT45/PA45/PT45C/PA45C enters SLOW mode if SYSCFG[9:8]=10. User can select SXT or SIRC as its System clock by setting SLOWCKS (F0F.0). However, changing Slow-clock type under SLOW mode is not allowed. User should let TM57PT45/PA45/PT45C/PA45C enter FAST mode first, change SLOWCKS, then back to SLOW mode.

IDLE Mode:

The TM57PT45/PA45/PT45C/PA45C does not support IDLE mode because there is no T2 exist in this model.

STOP Mode:


If Slow-clock is disabled, all blocks will be turned off and the TM57PT45/PA45/PT45C/PA45C will enter the "STOP Mode" after executing the SLEEP instruction. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock are stopped and no clocks are generated.

2.6 Clock Modes Transition

TM57PT45/PA45/PT45C/PA45C is operated in one of three modes: FAST Mode, SLOW Mode, and STOP Mode.

Modes Transition Diagram:

Note:

- SLEEP denotes SLEEP instruction
- Wakeup denotes wake-up events, such as External pin, WKT, or Port B pin wake-up
- Slow-clock will be turn-on (SLOWEN=1) if one of the following conditions is true:
- 1. WDT is enabled (SYSCFG.6=1)
- 2. Wakeup Timer (WKT) interrupt is enabled
- 3. SLOWCKS=1 and (CPUCKS=1 or SLOWEN=1)

Make sure the above 3 conditions is false to enter STOP mode.

- CPUCKS (F0F.3), FASTSTP (F0F.4), SLOWEN (F0F.2)

CPU Mode & Clock Functions Table:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0	TM1	PWM0/1	Wakeup event
FAST	FIRC, FXT	Fast-clock	Run	Run	Run	Run	Run	X
SLOW	SIRC, SXT	Slow-clock	Run	Run	Run	Run	Run	X
STOP	Stop	Stop	Stop	Stop	Stop	Stop	Stop	IO

FAST Mode transits to SLOW Mode:

The source clock of Slow-clock can be chosen by SLOWCKS (F0F.0). If SLOWCKS is set, the source clock of Slow-clock is Slow Crystal (SXT), otherwise is Slow Internal RC (SIRC). The following steps are suggested to be executed by order when FAST mode transits to SLOW mode:

- (1) Select Slow-clock type (SXT: SLOWCKS=0, SIRC: SLOWCKS=1)
- (2) Switch system clock source to Slow-clock (CPUCKS = 1)
- (3) Stop Fast-clock (FASTSTP=1)
- ♦ Example: Switch operating mode from FAST mode to SLOW mode with SXT

BSF SLOWCKS ; Select SIRC as Slow-clock source

BSF CPUCKS ; Switch system clock source to Slow-clock

BSF FASTSTP ; Stop Fast-clock

SLOW Mode transits to FAST Mode:

The source clock of Fast-clock can be chosen by SYSCFG[9]. If SYSCFG[9] is set, the source clock of Fast-clock is Fast Crystal (FXT), otherwise is Fast Internal RC (FIRC). The following steps are suggested to be executed by order when SLOW mode transits to FAST mode:

- (1) Enable Fast-clock (FASTSTP=0)
- (2) Switch system clock source to Fast-clock (CPUCKS=0)
- ♦ Example: Switch operating mode from SLOW mode to FAST mode with FXT

BCF FASTSTP ; Enable Fast-clock

BCF CPUCKS ; Switch system clock source to Fast-clock

STOP Mode Setting:

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (SLOWEN=0)
- (2) Execute SLEEP instruction

Besides SLOWEN=0, user must make sure all possibilities to make Slow Internal RC running are disabled. First, make sure WDT is not enabled. Second, WKT interrupt is not enabled. Third, SLOWCKS is not set to SIRC and CPUCKS is not set to Slow-clock.

STOP mode can be woken up by interrupt (INT0, INT1, INT2), WKT, or PB0-5 pins low level wake up.

♦ Example: Switch operating mode to STOP mode

BCF SLOWEN ; Stop Slow-clock SLEEP ; Enter STOP mode

IO setting notes in STOP mode:

Note: In STOP/IDLE mode, PA3 and PA4 must be set as input mode with internal pull-up enable to avoid floating state when select FXT or SXT mode. The PA3 and PA4 IO setting list is as below.

	Fast-clock	Slow-clock	PAE3	PAPUN3	PAD3	PAE4	PAPUN4	PAD4
1	FIRC	SIRC	*	*	*	*	*	*
2	FIRC	SXT	0	0	1	0	0	1
3	FXT	SIRC	0	0	1	0	0	1

F0F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	-	_	FASTSTP	CPUCKS	SLOWEN	_	SLOWCKS
R/W	ı	-	1	R/W	R/W	R/W	ı	R/W
Reset	_	_	_	0	0	0	_	1

F0F.4 **FASTSTP**: Fast-clock Enable / Disable

0: enable 1: disable

F0F.3 **CPUCKS**: System clock source select

0: Fast-clock 1: Slow-clock

F0F.2 **SLOWEN**: Slow-clock Enable / Disable

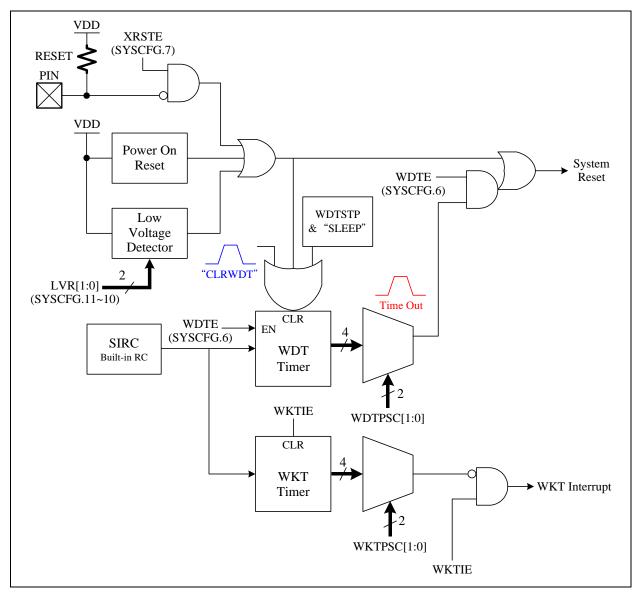
0: disable in Power-down mode

1: enable

F0F.0 **SLOWCKS**: Slow-clock type select

0: SXT 1: SIRC

Warning: The CLKCTL (F0F) can't be set directly for CPU modes transition. It may cause the transition fail. Please refer the mentioned steps for transition in this chapter.



3. Peripheral Functional Block

3.1 Watchdog (WDT) Timer/Wakeup (WKT) Timer

The WDT and WKT share the same internal RC oscillator (SIRC). The overflow period of WDT, WKT can be selected by WDTPSC[1:0] and WKTPSC[1:0]. The WDT timer is cleared by the CLRWDT instruction. If the Watchdog is enabled (WDTE=1), the WDT generates the chip reset signal when WDT overflows. Set WDTSTP (R0D.5) to '1' can let WDT timer stop counting after executing SLEEP instruction, i.e. WDTSTP=0 WDT timer always keeps counting even if the SLEEP instruction is executed.

The WKT timer is an interval timer, if WKT timer overflows, it will generate WKT Interrupt Flag (WKTIF). The WKT timer is cleared/stopped by WKTIE=0. Set WKTIE=1, the WKT timer will always count regardless at any CPU operating mode.

WDT/WKT Block Diagram

The WDT and WKT's behavior in different Mode are shown as below table.

Mode	WDTE	WKTIE	WDTSTP	Internal SIRC Oscillator
	0	0		Stop
Normal Mode	0	1	0/1	
Normai wiode	1	0	0/1	Run
	1	1		
	0	0	0	Stop
	0	1	0	Run
	1	0	0	Run
Power Down Mode	1	1	0	Run
Power Down Mode	0	0	1	Stop
	0	1	1	Run
	1	0	1	Stop
	1	1	1	Run

F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	GBIT1	GBIT0	RAMBK	TO	PD	Z	DC	С
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F03.4 **TO:** WDT time out flag, read-only

0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instructions

1: WDT time out occurs

R04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTCLR		WDTCLR						
R/W		W						
Reset	_	_	_	_	_	_	_	_

R04.7~0 **WDTCLR:** Write this register to clear WDT

R0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0C	WK	TPSC	WDT	TPSC	TM1CKS	TM0OE	TCOE	TM10E
R/W	-	W		W	W	W	W	W
Reset		0	0	0	0	0	0	0

R0C.7~6 **WKTPSC:** WKT pre-scale select: (the time IS NOT precise enough for accurate timing applications)

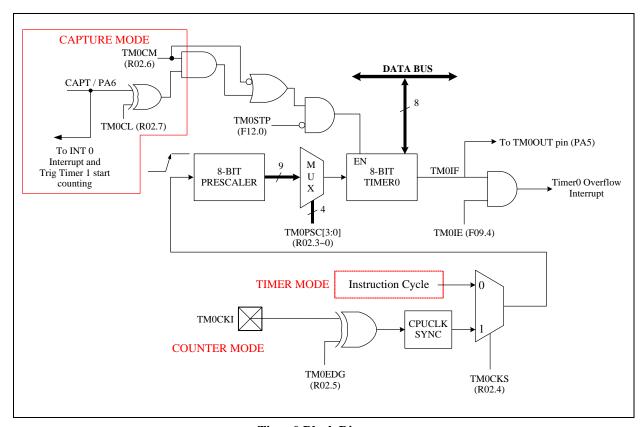
Bit 1	Bit 0	5V	3V
0	0	1.1 ms	1.4 ms
0	1	2.2 ms	2.7 ms
1	0	36 ms	44 ms
1	1	143 ms	177 ms

R0C.5~4 **WDTPSC:** WDT pre-scale select: (the time IS NOT precise enough for accurate timing applications)

Bit 1	Bit 0	5V	3V		
0	0	140 ms	175 ms		
0	1	280 ms	355 ms		
1	0	1140 ms	1440 ms		
1	1	2280 ms	2880 ms		

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0D	INT1EDG	TM1CM	WDTSTP	FIRCKS		ADCKS		
R/W	-	W		W		_		
Reset	_	0	0	0		-		

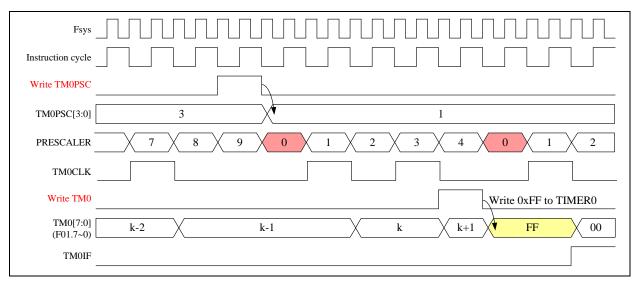
ROD.5 **WDTSTP:** WDT stops counting when in STOP mode


0: WDT keeps counting when in STOP mode

1: WDT stops counting when in STOP mode

3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)

The Timer0 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the pre-scaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising/falling input. The Timer0's increasing rate is determined by the TM0PSC[3:0] (R02.3~0). The Timer0 can generate interrupt flag TM0IF (F09.4) when it rolls over. It generates Timer0 interrupt if the TM0IE (F08.4) bit is set. Timer0 can be stopped counting if the TM0STP (F12.0) bit is set.



Timer0 Block Diagram

The following timing diagram describes the Timer0 works in pure timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to 00h, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

Timer0 works in Timer mode

The equation of TM0OUT initial value is as following.

TM0OUT output frequency=Instruction cycle/TM0PSC/ (256-TM0)

TM0OUT output time period=1/TM0OUT output frequency.

◇Example:

Setup TM0 Work in Timer mode and counting overflow toggle output to TM0OUT (PA5) pin configuration.

; Setup TM0 clock source and divider.

MOVLW 00000101B

MOVWR R02 ; Setup TM0=Timer mode.

; TM0 clock source=Instruction cycle.

; Divided by 32

; Set TM0 timer.

BSF TM0STP ; Disable TM0 counting (Default "0").

MOVLW 156

MOVWF TM0 ; Write 156 into TM0 register of F-Plane.

; Set TM0OUT pin function.

MOVLW 11010100B

MOVWR ROC ; Enable TM0 match toggle output to TM0OUT (PA5).

; Enable TM0 timer and interrupt function.

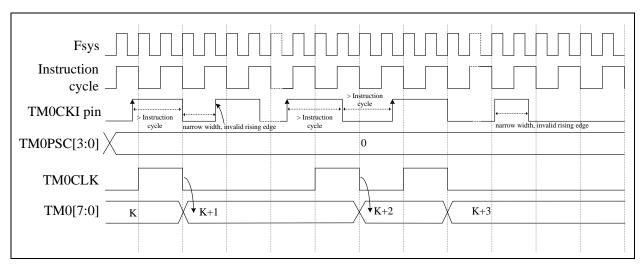
MOVLW 11101111B ; Clear TM0 request interrupt flag

MOVWF INTIF

BSF TM0IE ; Enable TM0 interrupt function. BCF TM0STP ; Enable TM0 counting (Default "0").

Example:

TM0 clock source is Fsys=4 MHz, Instruction cycle=2 MHz, TM0PSC=/32, TM0=156,


TM0OUT output frequency=2 MHz/32/ (256-156) =2 MHz/32/100=312.5 Hz

TM0OUT output time period=1/312.5 Hz=3.2 ms.

The following timing diagram describes the Timer0 works in counter mode.

TM0CKS=1 if Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle, which means the high/low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0CKI (TM0EDG=0)

◇Example:

Setup TM0 Work in counter mode and clock source from TM0CKI pin (PA2) configuration.

; Setup TM0 clock source from TM0CKI pin (PA2) and divider.

MOVLW 00010000B

MOVWR R02 ; Setup TM0=Counter mode.

; Select TM0 prescaler counting edge=rising edge.

; TM0 clock source=TM0CKI pin (PA2)

; Divided by 1

; Set TM0 timer and stop TM0 counting.

BSF TM0STP ; Disable TM0 counting (Default "0").

MOVLW 00H

MOVWF TM0 ; Write 0 into TM0 register of F-Plane.

; Start TM0 count and read TM0 count.

BCF TM0STP ; Enable TM0 counting.

NOP NOP

BSF TM0STP ; Disable TM0 counting (Default "0")

MOVFW TM0

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0				TN	M0				
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

F01.7~0 **TM0:** Timer0 content

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	PWM1IE	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.4 **TM0IE**: Timer0 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	PWM1IF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F09.4 **TM0IF**: Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	PWM0CLR	PWM1CLR	PWM0CKS	PWM1CKS	TM1SET	TM1CLR	TM1STP	TM0STP
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

F12.0 **TM0STP**: Timer0 counter stop

0: Timer0 is counting1: Timer0 stops counting

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	TM0CL	TM0CM	TM0EDG	TM0CKS	TM0PSC			
R/W	W	W	W	W	W			
Reset	0	0	0	0	0	0	0	0

R02.7 TM0CL: Timer0 Capture Mode Level

0: CAPT pin high level capture

1: CAPT pin low level capture

R02.6 **TM0CM:** Timer0 Mode Selection

0: Timer/Counter Mode, clock source from Instruction Cycle (Fsys/2) or TM0CKI

1: Capture Mode, counts CAPT pin level duration.

R02.5 **TM0EDG:** TM0CKI (PA2) edge selection for Timer0 prescaler count

0: TM0CKI (PA2) rising edge for Timer0 prescaler count

1: TM0CKI (PA2) falling edge for Timer0 prescaler count

R02.4 TM0CKS: Timer0 clock source select

0: Instruction Cycle (Fsys/2) as Timer0 prescaler clock

1: TM0CKI (PA2) as Timer0 prescaler clock

R02.3~0 TM0PSC: Timer0 prescaler. Timer0 clock source

0000: divided by 1

0001: divided by 2 0010: divided by 4

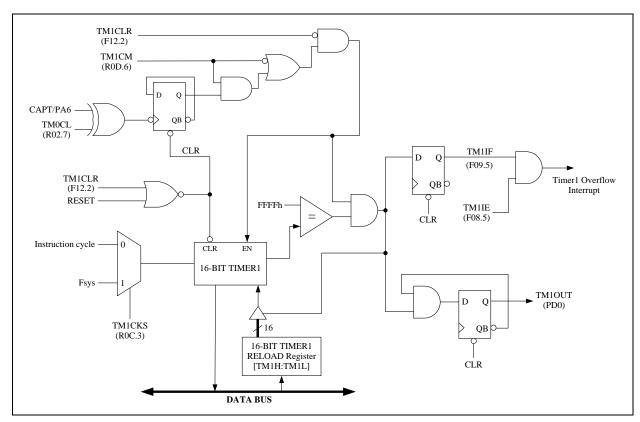
0010. divided by 4

0011: divided by 8

0100: divided by 16

0101: divided by 32

0110: divided by 64


0111: divided by 128

1xxx: divided by 256

3.3 Timer1

Timer1 is a 16-bit counter used as Capture/Timer mode with 16-bit auto-reload register. Timer1 can only be accessed by reading F-Plane TM1H and TM1L. Writing TM1H and TM1L is actually writing to Timer1 reload registers. The clock sources of Timer1 are Fsys and Instruction cycle, selected by TM1PSC. Setting the bit TM1CLR will clear Timer1 and hold Timer1 on 0000h. Setting the TM1STP bit will stop Timer1 counting. TM1OUT is an output signal that toggles when Timer1 overflow.

Timer1 Block Diagram

Note that writing to TM1H and TM1L is actually writing to Timer1 reload register, while reading TM1H and TM1L is actually reading the Timer1 counter itself. That is, Timer1 counter and Timer1 reload register share two addresses (0ah, 0bh) of F-Plane.

40

◇Example:

Setup TM1 Work in Timer mode and counting overflow toggle output to TM1OUT (PD0) pin configuration.

; Setup TM1 clock source and divider.

MOVLW 00001001B ; TM10E=1 (Enable TM10UT)

MOVWR ROC ; TM1CKS=1 (Fsys as Timer1 clock source)

MOVLW 0001000B ; TM1CM=0 (Timer1 as timer mode)

MOVWR R0D

; Set TM1 timer.

BSF TM1STP ; Stop TM1 counting (Default "0").

BCF TM1SET

BSF TM1CLR ; Clear TM1 counter (Default "0").

MOVLW FFH

MOVWF TM1H ; Write FFH into TM1 counting high byte.

MOVLW 00H

MOVWF TM1L ; Write 00H into TM1 counting low byte.

; Enable TM0 timer and interrupt function.

MOVLW 11011111B ; Clear TM1 request interrupt flag

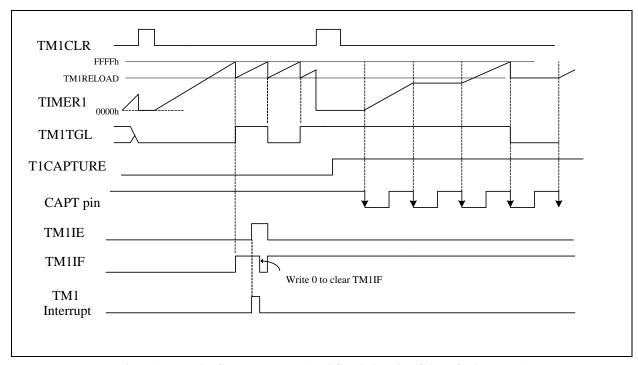
MOVWF INTIF

BSF TM1IE ; Enable TM1 interrupt function.

BCF TM1SET

BCF TM1CLR

BCF TM1STP ; Enable TM1 counting (Default "0").

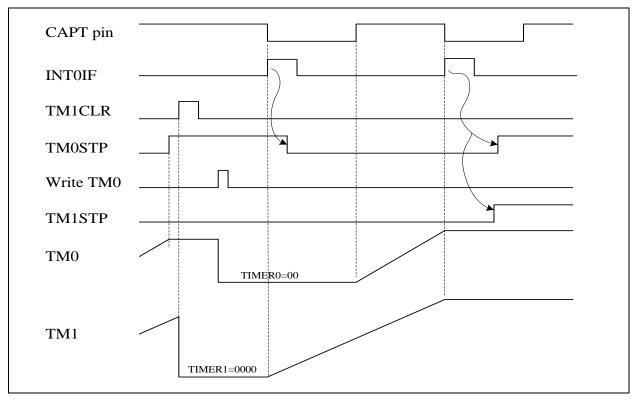

Example:

TM1 clock source prescaler is Fsys=4 MHz, TM1 LSB=FFH, TM1 LSB=01H TM1OUT output frequency=2 MHz/ (FFFF-FF00) =2 MHz/256=7.8 KHz

TM1OUT output time period=1/7.8 KHz=128 u

Timer1 can also works with Capture mode. When works in Capture mode, Timer1 will start counting when the TM1CLR bit is cleared and the first falling edge of CAPT pin (if TM0CL=0) is coming. When the 2nd falling edge of CAPT pin is coming, Timer1 stops counting and hold the value. When the 3rd falling edge of CAPT pin is coming, the Timer1 continues counting. The following figure shows the detail timing diagram.

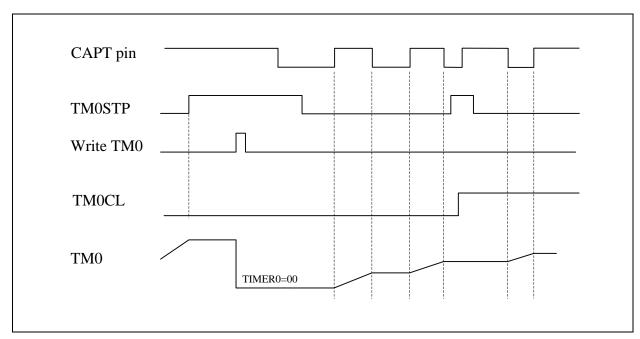
Timer1 works in Capture mode (TM0CL=0, implies CAPT falling edge)


Timer0 and Timer1 are used for Pulse Width and Period Capture

Timer0 and Timer1 can cooperate to measure the signal period and duty cycle time. The key is multifunction of PA6 (CAPT, INT0). Suppose that:

- TM0CKS=0, Timer0 prescaler increases per instruction cycle.
- TM0CM=1, TM1CM=1. Timer0 and Timer1 work in Capture mode.
- PA6 pin (CAPT pin) interrupts every falling edge. TM0CL=0, **Timer1** starts/holds in turn when PA6 pin (CAPT pin) falling edge is coming. **Timer0** starts counting when PA6 pin (CAPT pin) is in logic '1' level, and holds the Timer0 value when PA6 pin (CAPT pin) is in logic '0' level.
- Timer1 is used to measure the signal period, Timer0 is used to measure the PA6 (CAPT pin) in logic '1' time (i.e. the duty cycle of the signal).

The following figure shows how to use Timer0 and Timer1 to measure the PA6 (CAPT pin) signal's period and duty cycle (TM0CL=0).


Timer0 and Timer1 are used to measure the signal on CAPT pin.

Follow the steps below to start measuring the CAPT pin's period and duty cycle.

- **1.** Stop Timer0 by firmware (TM0STP=1, Timer0 will be stopped and hold)
- **2.** Clear Timer1 by firmware (TM1CLR=1)
- **3.** Clear Timer0 by directly write 00h to Timer0 (Timer0 is still hold). Once CAPT pin falling edge is coming, the Timer1 starts counting; meanwhile the PA6 interrupt is generated and clears the TM0STP by firmware. Now the Timer0 is ready to count when CAPT pin goes high.
- **4.** CAPT pin rising edge is coming, Timer0 starts counting until the CAPT pin returns to 0 and holds the counting value. Timer1 also stops counting and holds the value.
- **5.** PA6 interrupt is generated again, firmware stops Timer1 and Timer0 to read the period and duty cycle.

It is not necessary to use both Timer0 and Timer1. If only the duty cycle (CAPT high time) needs to be measured, there is no need to use Timer1 to measure the period. In such case, user can set the TM0CM=1 and TM1CM=0. Timer0 is counting up only when CAPT pin is '1'. Note that the internal prescaler will be kept to next Timer0 count, so it will not lose the counting accuracy.

Timer0 is used to measure the high (or low) time on CAPT pin

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	PWM1IE	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.6 **TM1IE**: Timer1 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	PWM1IF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F09.6 **T2IF**: T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

F0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM1L		TM1L								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

F0A.7~0 **TM1L**: Timer1 counter low byte

Read TM1L will get the Timer1 counter low byte. Write TM1L will write the Timer1 reload register low byte.

F0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM1H		TM1H							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

F0B.7~0 **TM1H**: Timer1 counter high byte

Read TM1H will get the Timer1 counter high byte. Write TM1H will write the Timer1 reload register high byte.

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	PWM0CLR	PWM1CLR	PWM0CKS	PWM1CKS	TM1SET	TM1CLR	TM1STP	TM0STP
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

F12.1 **TM1STP**: Timer1 counter stop

0: Timer1 is counting

1: Timer1 stops counting

F12.2 **TM1CLR:** Timer1 counter clear

0: Release Timer1 clear

1: Clear Timer1 to '0000'h and hold

F12.3 **TM1SET:** Timer1 counter set to 'FFFF'h

0: Release Timer1 set1: Set Timer1 to 'FFFF'

R0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0C	WK	TPSC	WDTPSC		TM1CKS	TM0OE	TCOE	TM10E
R/W	_	W		W	W	W	W	W
Reset	_	0	0	0	0	0	0	0

R0C.0 **TM10E**: Timer1 overflow toggle output to PD0

0: disable output TM1OUT1: enable output TM1OUT

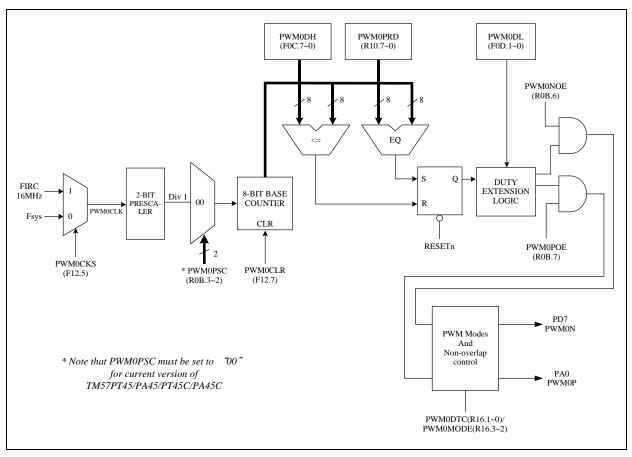
R0C.3 TM1CKS: Timer1 clock source selection

0: Instruction cycle (Fsys/2)1: System clock (Fsys)

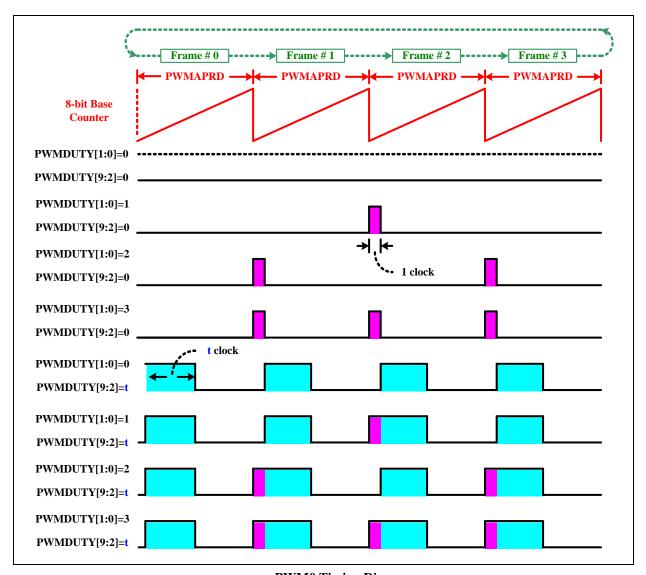
R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0D	INT1EDG	TM1CM	WDTSTP	FIRCKS ADCKS		ADCKS		
R/W	-	W		W			-	
Reset	-	0	0	()		-	

R0D.6 **TM1CM:** Timer1 Mode Selection

0: Timer1 in Timer Mode


1: Timer1 in Capture Mode to measure CAPT pin period time between successive rising or falling edges.

3.4 PWM0: (8+2) bits PWM


The PWM can generate fix frequency waveform with 1024 duty resolution based on System Clock (Fsys) or FIRC 16MHz. A spread LSB technique allows PWM to run its frequency at "System Clock divided by 256" instead of "System Clock divided by 1024", which means the PWM is 4 times faster than normal. The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit MSB of PWM duty register PWM0DH (F0C.7~0). When the base counter rolls over, the 2-bit LSB of PWM duty register PWM0DL (F0D.1~0) decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay.

PWM0PSC is not be implemented in this version, user must set PWM0PSC to "00" to prevent malfunction.

PWM0 Block Diagram

PWM0 Timing Diagram

47

Example:

[CPU running at Fast mode, Fsys=FIRC 8 MHz]

♦Example:

; Setup PWM0 clock prescaler.

BCF PWM0CKS ; PWM0 clock source=Fsys

MOVLW <u>11</u>00<u>00</u>00B ; Fsys=8 MHz, PWM0POE=1, PWM0NOE=1

MOVWR R0B ;

MVOLW 0000<u>0000</u>B ; PWM0 Mode=00 MOVWR R16 ; PWM0DTC=00

MOVLW 80H

MOVWR PWM0PRD ; Set PWM0 period=80H.

MOVLW 00000000B

MOVWF F0D ; Set PWM0DL duty=00H

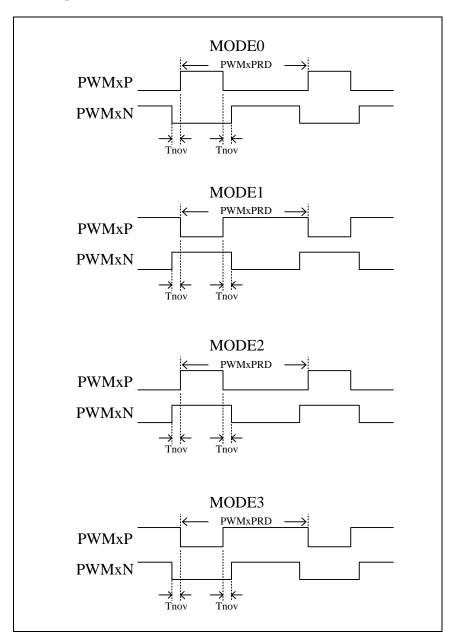
MOVLW 20H

MOVWF PWM0DH ; Set PWM0DH duty=20H

BCF PWM0CLR ; Enable PWM0 counting

Example:

Fsys=8 MHz, PWM0PRD=80H,


PWM0DL=00H, PWM0DH=20H

PWM0 output frequency=8 MHz/ (PWM0PRD+1) =8 MHz/129=62 KHz.

PWM0P output duty=32:129=24.8%.

PWM0 can be output via PWM0P and PWM0N with four different modes. The edges of the PWM pulse can be separated with 4 different time non-overlap clocks intervals, 0s, 1 Fsys clock, 2 Fsys clocks, and 4 Fsys clocks which are selected by PWM0DTC (R16.1~0). The default output form is MODE0. The waveforms of the four output modes are shown below

PWM0/PWM1 output modes

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	PWM1IE	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.7 **PWM0IE**: PWM0 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	PWM1IF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F09.7 **PWM0IF**: PWM0 interrupt event pending flag

This bit is set by H/W while PWM0 finish period, write 0 to this bit will clear this flag

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0DH		PWM0DH								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

F0C.7~0 **PWM0DH**: PWM0 duty 8-bit MSB

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0D		PC	CH	-	PWN	11DL	PWN	10DL
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0D.1~0 **PWM0DL**: PWM0 duty 2-bit LSB

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	PWM0CLR	PWM1CLR	PWM0CKS	PWM1CKS	TM1SET	TM1CLR	TM1STP	TM0STP
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

F12.7 **PWM0CLR**: PWM0 clear and hold

0: PWM0 is running

1: PWM0 is clear and hold

F12.5 **PWM0CKS**: PWM0 clock selection

0: Fsys as PWM0 clock source

1: FIRC 16MHz as PWM0 clock source

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	PWM0POE	PWM0NOE	PWM1POE	PWM1NOE	PWM	OPSC	PWM	1PSC
R/W	W	W	W	W	W	W	W	W
Reset	1	1	0	0	0	0	0	0

R0B.7 PWM0POE: PWM0P output enable

0: disable PWM0P output 1: enable PWM0P output

R0B.6 **PWM0NOE**: PWM0N output enable

0: disable PWM0N output 1: enable PWM0N output

R0B.3~2 **PWM0PSC**: PWM0 clock source is divided by

Users must set these 2 bits to "00".

R10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0PRD		PWM0PRD								
R/W		W								
Reset	1	1	1	1	1	1	1	1		

R10.7~0 **PWM0PRD**: PWM0 period data

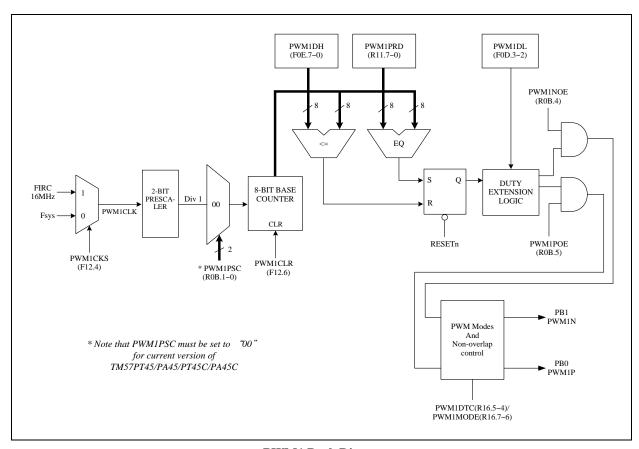
R16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR16	PWM1	MODE	PWM1DTC		PWM0MODE		PWM0DTC	
R/W	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

R16.1~0 **PWM0DTC**: PWM0 dead time control

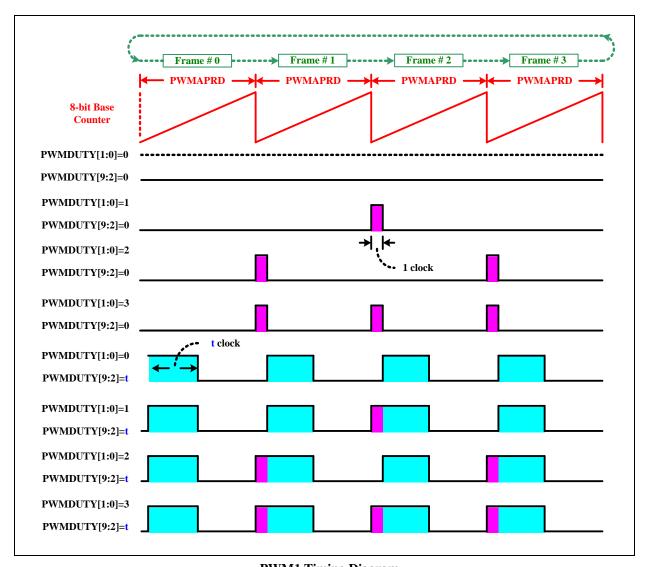
00: 0 Fsys clock (original PWM0)

01: 1 Fsys clock 10: 2 Fsys clocks 11: 4 Fsys clocks

R16.3~2 **PWM0MODE**: PWM0P and PWM0N output mode


00: Mode 0 01: Mode 1 10: Mode 2 11: Mode 3

3.5 PWM1: (8+2) bits PWM


The PWM can generate fix frequency waveform with 1024 duty resolution based on System Clock (Fsys) or FIRC 16MHz. A spread LSB technique allows PWM to run its frequency at "System Clock divided by 256" instead of "System Clock divided by 1024", which means the PWM is 4 times faster than normal. The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit MSB of PWM duty register PWM1DH (F0E.7~0). When the base counter rolls over, the 2-bit LSB of PWM duty register PWM1DL (F0D.3~2) decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay.

PWM1PSC is not be implemented in this version, user must set PWM1PSC to "00" to prevent malfunction.

PWM1 Bock Diagram

PWM1 Timing Diagram

Example:

[CPU running at Fast mode, Fsys=FIRC 8 MHz]

\Diamond Example:

; Setup PWM0 clock prescaler.

BCF PWM1CKS ;PWM1 clock source=Fsys

MOVLW 00<u>11</u>00<u>00</u>B ; Fsys=8 MHz, PWM1POE=1, PWM1NOE=1

MOVWR ROB ;

MOVLW <u>0000</u>0000B ; PWM1 MODE=00 MOVWR R16 ; PWM1DTC=00

MOVLW 80H

MOVWR PRM1PRD ; Set PWM1 period=80H

MOVLW 00000000B

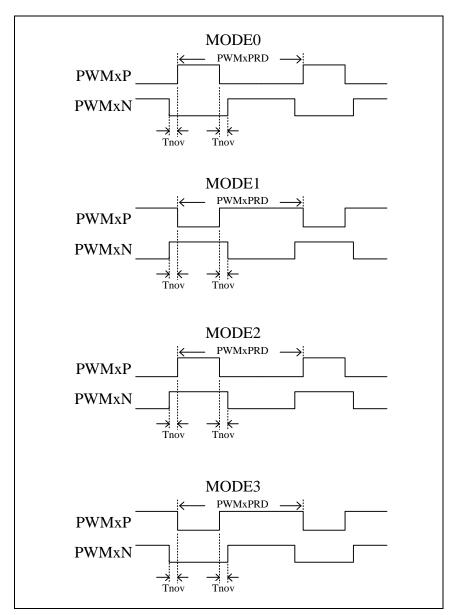
MOVWF F0D ; Set PWM1DL duty=00H

MOVLW 20H

MOVWF PWM1DH ; Set PWM1DH=20H

BCF PWM1CLR ; Enable PWM1 counting

Fsys=8 MHz, PWM0PRD=80H,


PWM1DL=00H, PWM1DH=20H

PWM1 output frequency=8 MHz/ (PWM1PRD+1) =8 MHz/129=62 KHz.

PWM1P output duty=32:129=24.8%

PWM1 can be output via PWM1P and PWM1N with four different modes. The edges of the PWM pulse can be separated with 4 different time non-overlap clocks intervals, 0s, 1 Fsys clock, 2 Fsys clocks, and 4 Fsys clocks which are selected by PWM1DTC (R16.5~4). The default output form is MODE0. The waveforms of the four output modes are shown below.

PWM0/PWM1 output modes

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	PWM1IE	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F08.6 **PWM1IE**: PWM1 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	PWM1IF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F09.6 **PWM1IF**: PWM1 interrupt event pending flag

This bit is set by H/W while PWM1 finish period, write 0 to this bit will clear this flag

F0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM1DH		PWM1DH								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

F0E.7~0 **PWM1DH**: PWM1 duty 8-bit MSB

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0D		PC	CH	-	PWN	11DL	PWM	10DL
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0D.3~2 **PWM1DL**: PWM1 duty 2-bit LSB

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	PWM0CLR	PWM1CLR	PWM0CKS	PWM1CKS	TM1SET	TM1CLR	TM1STP	TM0STP
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

F12.6 **PWM1CLR**: PWM1 clear and hold

0: PWM1 is running

1: PWM1 is clear and hold

F12.4 **PWM1CKS**: PWM1 clock selection

0: Fsys as PWM1 clock source

1: FIRC 16 MHz as PWM1 clock source

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	PWM0POE	PWM0NOE	PWM1POE	PWM1NOE	PWM	10PSC	PWM	1PSC
R/W	W	W	W	W	W	W	W	W
Reset	1	1	0	0	0	0	0	0

R0B.5 PWM1POE: PWM1P output enable

0: disable PWM1P output1: enable PWM1P output

R0B.5 **PWM1NOE**: PWM1N output enable

0: disable PWM1N output 1: enable PWM1N output

R0B.1~0 **PWM1PSC**: PWM1 clock source

Users must set these 2 bits to "00".

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1PRD		PWM1PRD						
R/W		W						
Reset	1	1	1	1	1	1	1	1

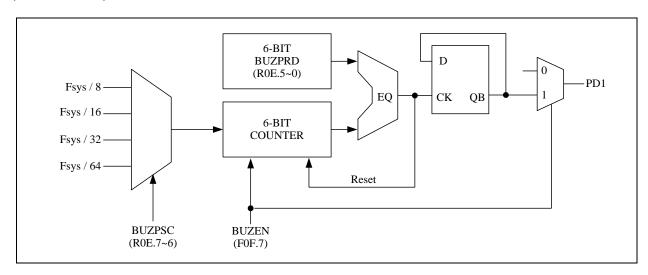
R11.7~0 **PWM1PRD**: PWM1 period data

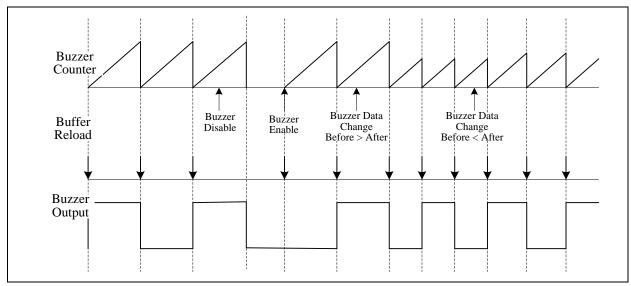
R16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR16	PWM1	MODE	PWM	1DTC	PWM0	MODE	PWM	0DTC
R/W	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

R16.5~4 **PWM1DTC**: PWM1 dead time control

00: 0 Fsys clock (original PWM1)

01: 1 Fsys clock 10: 2 Fsys clocks 11: 4 Fsys clocks


R16.7~6 **PWM1MODE**: PWM1P and PWM1N output mode


00: Mode 0 01: Mode 1 10: Mode 2 11: Mode 3

3.6 Buzzer Output

The Buzzer driver consists of 6-bit counter and a clock divider. It generates 50% duty square waveform with wide frequency range. To use the Buzzer function, user needs to set both the Buzzer enable control bit (BUZEN F0F.7)

Frequency calculation is as follows. F_{BZ} = (Fsys/BUZPSC) / (BUZPRD+1) /2

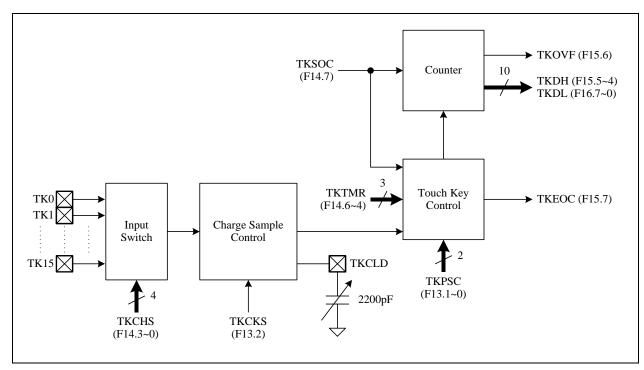
 F_{BZ} = (4 MHz/32) / (9+1) /2=6.25 KHz

Example: [CPU running in FAST mode, Fsys=4 MHz]

MOVLW <u>1</u>0000001B

MOVWF F0F ; F0F.7 (BUZEN)=1, enable Buzzer counting and output to PD1

MOVLW <u>10 001001</u>B ; R0E.7~6 (BUZPSC)=Fsys/32


MOVWR R0E ; R0E.5~0 (BUZPRD)=9

3.7 Touch Key (The function only available for TM57PT45)

The Touch Key offers an easy, simple and reliable method to implement finger touch applications. For most applications, only requires an external capacitor component on TKCLD pin. The TKCKS default is 4 MHz is sufficient for general touch plane.

Setting the TKSOC (F14.7) bit to start touch key conversion, the TKSOC bit will be cleared by H/W while end of conversion. "TKEOC=0" means conversion is in process, while "TKEOC=1" means the conversion is finish. After TKEOC's (F15.7) edge rising, user must wait at least 10 us for next conversion. The touch key counting value is stored into TKDATA[9:0] (TKDH, TKDL). If TKOVF=1, it means the conversion has exceeded in period time, reduce TKTMR (F14.6~4) or increase TKPSC (F13.1~0) to fit the range of TKDATA[9:0]. On the other hand, if TKOVF=0, but TKDATA[9:0] is too small, increase TKTMR or reduce TKPSC to adapting the system board circumstances. The more detailed information, refer to touch key application note.

Touch Key Block Diagram

♦ Example: Touch key channel=TK7 (PB3).

MOVLW xxxx0xxxB

MOVWR PBE ; disable PB3 push-pull output MOVWR PBM ; disable PB3 digital input

MOVLW xxxx1xxxB ; disable PB3 pull high

MOVWR PBPUN

MOVLW xxxxx<u>0</u>xxB ; Set PA2 as TKCLD for connecting capacitor

MOVWR PAE

MOVWR PAM ; disable PA2(CLD) digital input

MOVLW xxxxx1xxB ; disable PA2 pull high

MOVWR PAPUN

MOVLW 0<u>100</u> <u>0111</u>B

MOVWF F14 ; TKTMR=4, TKCHS=7 (TK7)

MOVLW 0000 <u>0</u> <u>1</u> <u>00</u>B ; TKPD=0

MOVWF F13 ; TKCKS=1 (4 MHz), TKPSC=div1 (4 MHz)

:

BSF TKSOC ; touch key start conversion

NOP NOP NOP

BCF TKSOC

WAIT_TK:

BTFSS TKEOC ; wait touch key conversion finish

GOTO WAIT_TK

MOVFW TKDH ; read TKDATA[9:8] MOVFW TKDL ; read TKDATA[7:0]

F13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF13	OPA0EN	OPA1EN	OP1IPSEL	_	TKPD	TKCKS	TKI	PSC
R/W	R/W	R/W	R/W	_	R/W	R/W	R/	W
Reset	0	0	0	0	1	1	()

F13.3 **TKPD**: Touch key power down

0: Touch key running1: Touch key power down

R13.2 **TKCKS**: Touch key clock select

0: 2 MHz 1: 4 MHz

R13.1~0 **TKPSC**: Touch key data prescaler, touch key data

00: divided by 1 01: divided by 2 10: divided by 4 11: divided by 8

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MF14	TKSOC		TKTMR			TKCHS			
R/W	R/W		R/W		R/W				
Reset	0	1	0	0		()		

F14.7 **TKSOC**: Touch key start of conversion, rising edge to start

H/W auto cleared while end of conversion

F14.6~4 **TKTMR**: Touch key conversion time

000: shortest

• • •

111: longest

F14.3~0 **TKCHS**: Touch key channel select

0000: TK0 (PD0)

0001: TK1 (PD1)

0010: TK2 (PD2)

0011: TK3 (PD3)

0100: TK4 (PD4)

0101: TK5 (PD5)

0110: TK6 (PB2)

0111: TK7 (PB3)

1000: TK8 (PB4)

1001: TK9 (PB5)

1010: TK10 (PD6)

1011: TK11 (PB0)

1100: TK12 (PA0)

1101: TK13 (PA5)

1110: TK14 (PD7)

1111: TK15 (PB1)

F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCTL2	TKEOC	TKOVF	TK	DH	_	-	_	_
R/W	R	R	F	₹	-	-	_	_
Reset	1	0	()	_	_	_	_

F15.7 **TKEOC**: Touch key end of conversion

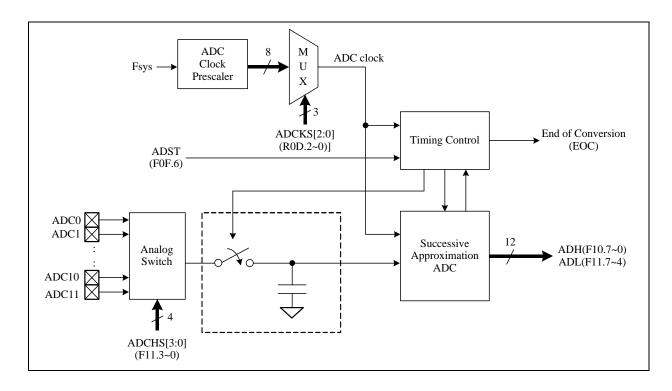
0: conversion is in process

1: end of conversion

F15.6 **TKOVF**: Touch key counter overflow flag

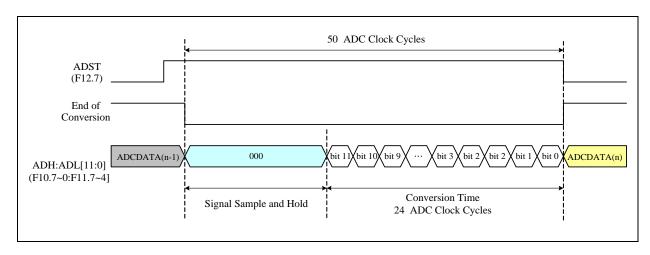
0: not overflow

1: overflow


F15.5~4 **TKDH**: Touch key data MSB [9~8]

F16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKDL		TKDL						
R/W		R						
Reset	0	0	0	0	0	0	0	0

F16.7~0 **TKDL**: Touch key data LSB [7~0]



3.8 ADC: 12-bit Analog-to-Digital Converter

The 12-bit ADC (Analog to Digital Converter) consists of a 12-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCKS(R0D.2~0) to choose a proper ADC clock frequency, which must be less than 1 MHz. User then launches the ADC conversion by setting the ADST (F0F.6) control bit. After end of conversion, H/W automatic clears the ADST (F0F.6) bit. User can poll this bit to know the conversion status. The PAM (R12.7~0), PBM (R13.5~0), PDM (R14.7~0) control registers are used for ADC pin type setting, user can write the corresponding bit to "0" when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption.

The A/D conversion timing diagram

Example:

[CPU running at Fast mode, Fsys=FIRC 8 MHz]

ADC clock frequency=1 MHz, ADC channel=ADC2 (PA2).

♦Example:

MOVLW xxx10<u>101</u>B ; Fsys=8 MHz

MOVWR R0D ; ADC clock prescaler/8

MOVLW 11111<u>0</u>11B

MOVWR PAM ; Enable PA2 pin (ADC2) analog input

MOVLW 0000<u>0010</u>B

MOVWF F11 ; ADC channel select ADC2 (PA2 pin)

BSF ADST ; ADC start conversion

WAIT_ADC:

BTFSC ADST ; Wait ADC conversion

GOTO WAIT_ADC

MOVFW ADH ; Read ADC value [11:4]

MOVWF ADC_MSB

MOVFW F11 ; Read ADC value[3:0]

ANDLW F0H

MOVWF ADC_LSB

. . .

F10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADH		ADH						
R/W		R						
Reset	0	0	0	0	0	0	0	0

F10.7~0 **ADCDH**: ADC Output MSB[11:4]

F11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MF11		AI	DL		ADCHS				
R/W		I	₹			R/	W		
Reset	0	0	0	0	0	0	0	0	

F11.7~4 **ADL**: ADC output LSB[3:0]

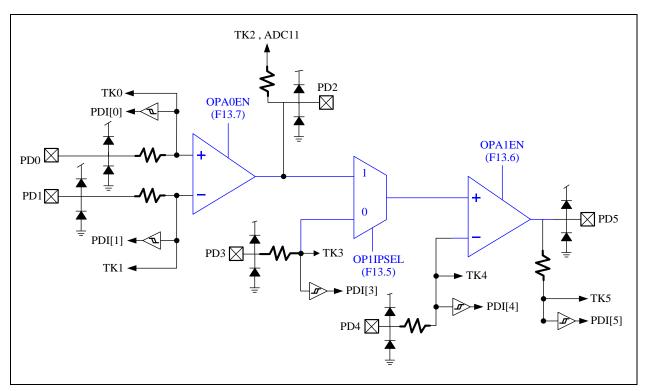
F11.3~0 **ADCHS**: ADC channel select

0000: ADC0 (PA6) 0001: ADC1 (PA1) 0010: ADC2 (PA2) 0011: ADC3 (PB1) 0100: ADC4 (PD7) 0101: ADC5 (PA5) 0110: ADC6 (PA0) 0111: ADC7 (PB0) 1000: ADC8 (PD6) 1001: ADC9 (PB5)

1000 : ADC8 (PD6) 1001 : ADC9 (PB5) 1010 : ADC10 (PD5) 1011 : ADC11 (PD2)

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0D	INT1EDG	TM1CM	WDTSTP	FIR	CKS		ADCKS	
R/W	W	W	W	W	W		W	
Reset	0	0	0	0	1	1	1	1

R0D.2~0 ADCKS: ADC clock selection


000 : Fsys/256 001 : Fsys/128 010 : Fsys/64 011 : Fsys/32 100 : Fsys/16 101 : Fsys/8 110 : Fsys/4 111 : Fsys/2

3.9 OPA: 2 Sets Operational Amplifiers

There are two sets operational amplifiers (OPA0 and OPA1) in the TM57PT45. The default setting of OPA0 and OPA1 are in the power down mode. To use those OPAs, the OPA0EN (F13.7) and OPA1EN (F13.6) bit have to be cleared. The two OPAs can be used with independent or cascade application depends on OP1IPSEL (F13.5) bit. When OP1IPSEL is set, the OPA0 output and OPA1 positive input are connected together. When OP1IPSEL is cleared, the OPA0 and OPA1 are independent. In this way, the TM57PT45 can get more flexible for OPA applications. The OPA Block diagram is shown as below.

With I/O mode setting, the corresponding pins have to set as analog mode (please refer the chapter 4.3). The setting can disable the pin logical input path for save power consumption.

OPA Block Diagram

♦ Example: OPA series application (connects 2 OPAs in series)

MOVLW MOVWF	00000000B PDE	; Disable PD5-0 CMOS output
MOVLW MOVWR	11111111B PDPUN	; Disable PD5-0 pull up resistor
MOVLW MOVWF	11111111B PDD	; Do not output '0's to OPA pins
BSF	OP1IPSEL	; Set OPA1 positive input from output of OPA0
BSF BSF	OPA0EN OPA1EN	; Enable OPA0 ; Enable OPA1

F13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF13	OPA0EN	OPA1EN	OP1IPSEL	_	TKPD	TKCKS	TKI	PSC
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	1	0	0

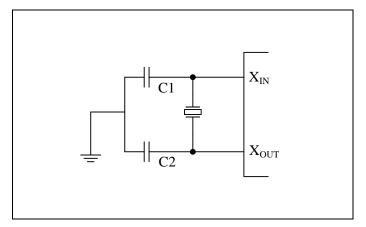
F13.7 **OPA0EN**: OPA0 Enable

0: OPA0 is power down1: OPA0 is enabled

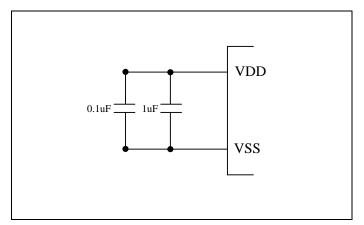
F13.6 **OPA1EN**: OPA1 Enable

0: OPA1 is power down1: OPA1 is enabled

F13.5 **OP1IPSEL**: OPA1 positive input terminal selection


0: OPA1 positive terminal from PD3

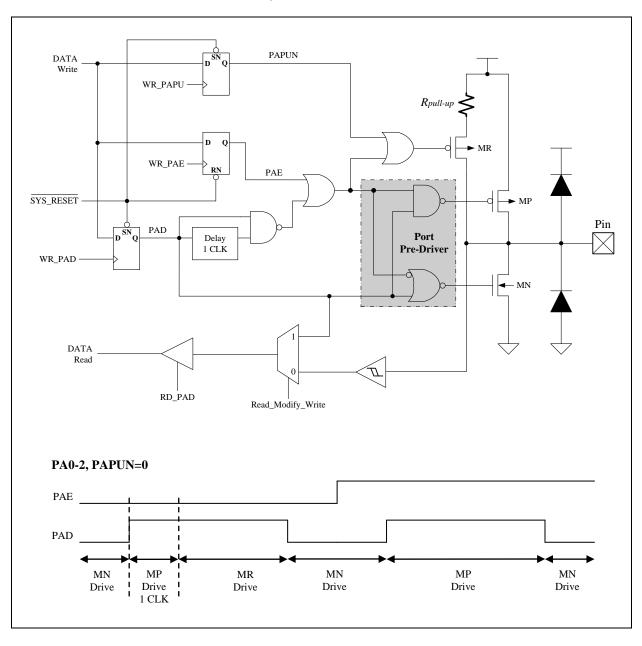
1: OPA1 positive terminal from output of OPA0, a.k.a. PD2



3.10 System Clock Oscillator

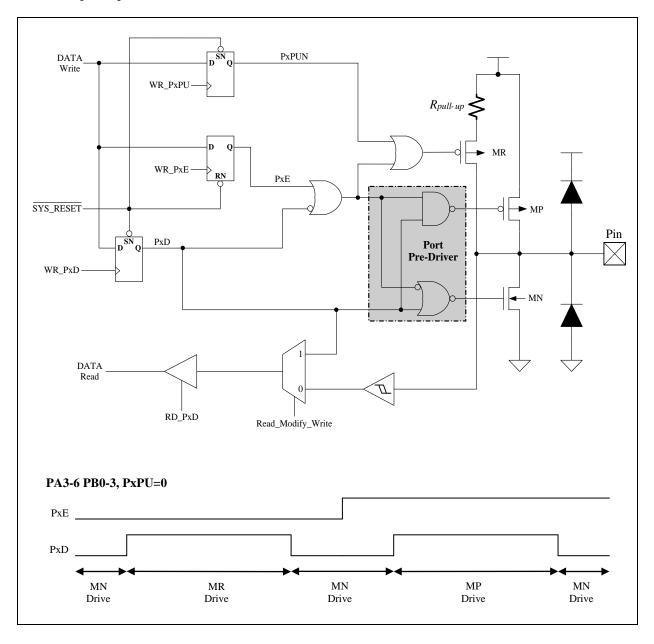
System clock can be operated in four different oscillation modes. Four oscillation modes are FIRC, FXT, SIRC and SXT, respectively. In Fast/Slow Crystal mode (FXT/SXT), a crystal or ceramic resonator is connected to the Xin and Xout pins to establish oscillation. In the Fast Internal RC mode (FIRC), the on-chip oscillator generates 8 MHz system clock. Since power noise degrades the performance of Fast Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VDD/VSS pins to improve the stability of clock and the overall system. In the Slow Internal RC mode (SIRC), it provides a lower speed and accuracy of the oscillator for power saving purpose.

External Oscillator Circuit (Crystal or Ceramic)


Fast Internal RC Mode

4. I/O Port

4.1 PA0-2


These pins can be used as Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the PAE=0 and PAD=1. To use the pin in pseudo-open-drain mode, S/W sets the PAE=0. The benefit of pseudo-open-drain structure is that the output rise time can be much faster than pure open-drain structure. S/W sets PAE=1 to use the pin in CMOS push-pull output mode. Reading the pin data (PAD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

4.2 PA3-6, PB0-5, PD0-7

These pins are almost the same as PA0-2, except they do not support pseudo-open-drain mode. They can be used in pure open-drain mode, instead.

♦ Example: I/O mode selecting

MOVLW FFH
MOVWF PAD
MOVWF PDD
MOVLW 00H
MOVWR PAE
MOVWR PBE

MOVWR PDE ; Set all ports to be Schmitt-trigger input

♦ Example: Set PA0-2 as pseudo-open-drain mode

MOVLW xxxxx<u>000</u>B

MOVWR PAE ; Set PA2-PA0 as pseudo-open-drain mode

MOVLW xxxxx<u>000</u>B

MOVWF PAD ; PA2~PA0 output low level

♦ Example: Set PA0-2 is CMOS push-pull output mode.

MOVLW xxxxx<u>111</u>B

MOVWR PAE ; Set PA2-PA0 as CMOS push-pull output mode

♦ Example: Read data from input port.

MOVFW PAD ; Read data from Port A MOVFW PBD ; Read data from Port B MOVFW PDD ; Read data from Port D

♦ Example: Write data to output port.

MOVLW 55H

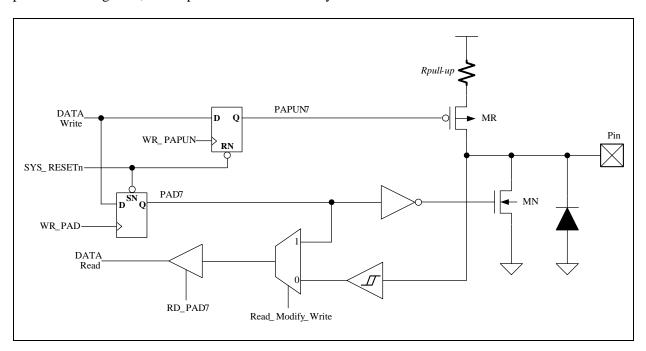
MOVWF PAD ; Write data 55H to Port A MOVWF PBD ; Write data 55H to Port B

♦ Example: Write one bit data to output port.

BCF PAD,0 BCF PBD,1

BCF PDD,2; Set PA0, PB1 and PD2 to be "0"

BSF PAD,3 BSF PBD,4


BSF PDD,7; Set PA3, PB4 and PD7 to be "1"

4.3 PA7

PA7 can be used in Schmitt-trigger input mode or open-drain output which is set by the PAD[7](F05.7) bit. When the PAD[7] bit is set, PA7 is assigned as Schmitt-trigger input mode, otherwise is assigned as open-drain output mode and output low. The pull-up resistor is connected to this pin by default and can be disabled by S/W. In open-drain output mode, the pull-up resistor will not be disabled automatically. The pull-up resistor can be disabled by S/W in open-drain output mode for power saving.

CAUTION: Before turning off the PA7 pull-up resistor (PAPUN.7=1), make sure the SYSCFG[7]: XRSTE bit is "0" that disable the external reset pin function. If XRSTE=1 and PAPUN.7=1, and the PA7 pin is in floating state, the chip will not work correctly.

♦ Example: Read state from PA7.

Condition: SYSCFG[7] is set to "0". If SYSCFG[7] = "1", then PA7 pin is external reset pin function.

BTFSS PAD,7
GOTO LOOP_A ; If PA7=0.
GOTO LOOP_B ; If PA7=1.

F05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAD	PAD7		PAD						
R/W	R/W				R/W				
Reset	1	1	1	1	1	1	1	1	

F05.7 **PAD7:** PA7 data or pin mode control

0: PA7 is open-drain output mode and output low

1: PA7 is Schmitt-trigger input mode

F05.6~0 **PAD:** PA6~PA0 data

0: output low

1: output high or Schmitt-trigger input mode

F06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBD	-	=	PBD					
R/W	_	_	R/W					
Reset	0	0	1	1	1	1	1	1

F06.7~0 **PBD:** PB5~PB0 data

0: output low

1: output high or Schmitt-trigger input mode

F07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PDD		PDD									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			

F07.1~0 **PDD:** PD7~PD0 data

0: output low

1: output high or Schmitt-trigger input mode

R05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PAE	PAE										
R/W		W									
Reset	0	0	0	0	0	0	0	0			

R05.7~0 **PAE**: PA7~PA0 Pin CMOS output enable

0: For PA2-PA0, the pins are Pseudo-open-drain output or Schmitt-trigger input.

For PA3-PA7, the pins are open-drain output or Schmitt-trigger input

1: the pins are CMOS push-pull output except PA7. PA7 can only be open-drain output mode.

R06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBE	-	=	PBE					
TO (17.1				,				
R/W	-	_			V	V		

R06.5~0 **PBE**: PB5~PB0 Pin CMOS output enable

 $\boldsymbol{0}$: the pins are open-drain output or Schmitt-trigger input

1: the pins are CMOS push-pull output.

R07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PDE	PDE										
R/W		W									
Reset	0	0	0	0	0	0	0	0			

R07.7~0 PDE: PD7~PD0 Pin CMOS output enable

0: the pins are open-drain output or Schmitt-trigger input

1: the pins are CMOS push-pull output.

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PAPUN		PAPUN									
R/W		W									
Reset	0	0	0	0	0	0	0	0			

R08.7~0 **PAPUN**: PA7~PA0 pin pull-high enable

0 : the pins are pull-high

1: the pins are not pull-high

R09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBPUN	-	_	PBPUN					
R/W	-	=			V	V		
Reset	0	0	1	1	1	1	1	1

R09.5~0 **PBPUN**: PB5~PB0 Pin pull-high enable

0 : the pins are pull-high1: the pins are not pull-high.

R0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PDPUN		PDPUN									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R0A.7~0 **PDPUN**: PD7~PD0 Pin pull-high enable

0 : the pins are pull-high1: the pins are not pull-high.

R12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PAM		PAM										
R/W		W										
Reset	1	1	1	1	1	1	1	1				

R12.7~0 **PAM**: PA7~PA0 pin mode

0 : the pins disable I/O digital input1: the pins enable I/O digital input

R13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBM	-	_	PBM					
R/W	-	=			V	V		
Reset	1	1	1	1	1	1	1	1

R08.7~0 **PBM**: PB5~PB0 pin mode

0 : the pins disable I/O digital input1: the pins enable I/O digital input

R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PDM		PDM									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R14.7~0 PDM: PD7~PD0 pin mode

0 : the pins disable I/O digital input1: the pins enable I/O digital input

R15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBWKEN	-	_	PBWKEN						
R/W	-	=			V	V			
Reset	_			0	0	0	0	0	

R15.5~0 **PBWKEN:** PB5~PB0 individual pin low level wake up control

0: disable 1: enable

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description		
(F00) INDF				Function related to: RAM W/R		
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register		
(F01) TM0				Function related to : Timer0		
TM0	01.7~0	R/W	0	Timer0 content		
(F02) PCL				Function related to: Program Counter		
PCL	02.7~0	R/W	0	Programming Counter LSB[7~0]		
(F03) STAT	US			Function related to: STATUS		
GBIT1	03.7	R/W	0	General purpose bit 1		
GBIT0	03.6	R/W	0	General purpose bit 0		
RAMBK	03.5	R/W	/W 0 SRAM Bank selection, 0: Bank0, 1: Bank1			
ТО	03.4	R	0	WDT timeout flag		
PD	03.3	R	0	Power-down mode flag		
Z	03.2	R/W	0	Zero flag		
DC	03.1	R/W	0	Decimal Carry flag or Decimal /Borrow flag		
С	03.0	R/W	0	Carry flag or/Borrow flag		
(F04) FSR				Function related to: RAM W/R		
GBIT2	04.7	R/W	0	General purpose bit 2		
FSR	04.6~0	R/W	-	File Select Register, indirect address mode pointer		
(F05) PAD				Function related to: Port A		
		R	-	PA7 pin or "data register" state		
PAD7	05.7	W	1	0: PA7 is open-drain output mode 1: PA7 is Schmitt-trigger input mode		
PAD	05.6~0	R	-	Port A pin or "data register" state		
PAD	03.0~0	W	7F	Port A output data register		
(F06) PBD				Function related to: Port B		
DDD	06.5.0	R	-	Port B pin or "data register" state		
PBD	06.5~0	W	FF	Port B output data register		
(F07) PDD				Function related to: Port D		
BDD	07.7~0	R	-	Port D pin or "data register" state		
PDD	07.7~0	W	FF	Port D output data register		

Name	Address	R/W	Rst	Description
(F08) INTII	(F08) INTIE			Function related to: Interrupt Enable
				PWM0 interrupt enable
PWM0IE	08.7	R/W	0	0: disable
				1: enable
				PWM1 interrupt enable
PWM1IE	08.6	R/W	0	0: disable
				1: enable
				Timer1 interrupt enable
TM1IE	08.5	R/W	0	0: disable
				1: enable
				Timer0 interrupt enable
TM0IE	08.4	R/W	0	0: disable
				1: enable
				WKT interrupt enable
WKTIE	08.3	R/W	0	0: disable
				1: enable
				INT2 (PA7) pin interrupt enable
INT2IE	08.2	R/W	0	0: disable
				1: enable
				INT1 (PA1) pin interrupt enable
INT1IE	08.1	R/W	0	0: disable
				1: enable
			_	INTO (PA6) pin interrupt enable
INT0IE	08.0	R/W	0	0: disable
				1: enable

Name	Address	R/W	Rst	Description
(F09) INTIF	,			Function related to: Interrupt Flag
PWM0IF	09.7	R	-	PWM0 interrupt event pending flag, set by H/W while PWM0 period match
1 WWOII	07.7	W	0	0: clear this flag 1: no action
PWM1IF 09.6		R	-	PWM1 interrupt event pending flag, set by H/W while PWM1 period match
		W	0	0: clear this flag 1: no action
		R	-	Timer1 interrupt event pending flag, set by H/W while Timer1 overflows
TM1IF	09.5	W	0	0: clear this flag 1: no action
		R	ı	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
TM0IF	09.4	W	0	0: clear this flag 1: no action
		R	ı	WKT interrupt event pending flag, set by H/W while WKT time out
WKTIF	09.3	W	0	0: clear this flag 1: no action
		R	ı	INT2 interrupt event pending flag, set by H/W at INT2 pin's falling edge
INT2IF	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W	0	0: clear this flag 1: no action
	R	ı	INT1 interrupt event pending flag, set by H/W at INT1 pin's falling edge	
INT1IF	09.1	W	0	0: clear this flag 1: no action
INT0IF	09.0	R	ı	INT0 interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge
INTOIL	09.0	W	0	0: clear this flag 1: no action
(F0A) TM1	L			Function related to: Timer1
TM1L	0a.7~0	R/W	0	(Read) Timer1 counter low byte. (Write) Timer1 reload low byte
(F0B) TM1H	I			Function related to: Timer1
TM1H	0b.7~0	R/W	0	(Read) Timer1 counter high byte. (Write) Timer1 reload high byte
(F0C) PWM	0DH			Function related to: PWM0
PWM0DH	0c.7~0	R/W	0	PWM0 duty 8-bit MSB
(F0D) MF0I	D			Function related to: PWM0, PWM1, Program Counter
PCH	0d.7~4	R	0	Program Counter high byte, i.e. PC11~PC8
PWM1DL	0d.3~2	R/W	0	PWM1 duty 2-bit LSB
PWM0DL	0d.1~0	R/W	0	PWM0 duty 2-bit LSB
(F0E) PWM	11DH			Function related to: PWM1
PWM1DH	0e.7~0	R/W	0	PWM1 duty 8-bit MSB

Name	Address	R/W	Rst	Description				
(F0F) MF0F	י			Function related to: Buzzer, ADC, CPU clock				
BUZEN	0f.7	R/W	0	Buzzer function, 1=enable, 0=disable				
ADST	0f.6	R/W	0	ADC start bit. 0:H/W clear after end of conversion 1: ADC start conversion				
-	0f.5	R	0	N/A				
FASTSTP	0f.4	R/W	0	Fast-clock Enable/Disable 0: Enable 1: Disable				
CPUCKS	0f.3	R/W	0	System clock (Fsys) selection 0: Fast-clock 1: Slow-clock				
SLOWEN	0f.2	R/W	0	If CPUCKS =1, this SLOWEN bit is invalid, Slow-clock keeps oscillating If CPUCKS =0, set 1 to enable Slow-clock oscillate, clear 0 to stop Slow-clock oscillating				
-	0f.1	R	0	N/A				
SLOWCKS	0f.0	R/W	1	Slow-clock type 0: SXT 1: SIRC				
(F10) ADCD	(F10) ADCDH Function related to: ADC							
ADCDH	DCDH 10.7~0 R - ADC output data MSB[11:4]							
(F11) MF11				Function related to: ADC				
ADCDL	11.7~4	R	-	ADC output data LSB [3:0]				
ADCHS	11.3~0	R/W	0	ADC channel select 0000: ADC0				
(F12) MF12			Func	ction related to: PWM0, PWM1, Timer0, Timer1				
PWM0CLR	12.7	R/W	1	PWM0 counter clear 0: Release 1: Clear and hold				
PWM1CLR	12.6	R/W	1	PWM1 counter clear 0: Release 1: Clear and hold				
PWM0CKS	12.5	R/W	0	PWM0 clock source 0: Fsys 1: FIRC 16M				
PWM1CKS	12.4	R/W	0	PWM1 clock source 0: Fsys 1: FIRC 16M				
TM1SET	12.3	R/W	0	Timer1 counter set 0: Release 1: Set to FFFFh and hold				
TM1CLR	12.2	R/W	0	Timer1 counter clear 0: Release 1: Clear to 0000H and hold				
TM1STP	12.1	R/W	0	Timer1 counter stop 0: Release 1: Stop counting				
TM0STP	12.0	R/W	0	Timer0 counter stop 0: Release 1: Stop counting				

Name	Address	R/W	Rst	Description		
(F13) MF13			Func	tion related to: OPA, Touch Key		
OPA0EN	13.7	R/W	0	OPA0 control 0: disable 1: enable		
OPA1EN	13.6	R/W	0	OPA1 control 0: disable 1: enable		
OP1IPSEL	13.5	R/W	0	OPA1 Non-inverted pin input selection 0: from PD3 1: from output of OPA0		
-	13.4	-	0	Reserved		
TKPD	13.3	R/W	1	Touch Key power down 0: power up 1: power down		
TKCKS	13.2	R/W	1	Touch key PWM clock select, "TK-clock" is 0: 2 MHz 1: 4 MHz		
TKPSC	13.1~0	R/W	0	Touch key counter data prescaler. Touch key prescaler divided by 0: TK-clock 1: TK-clock/2 2: TK-clock/4 3: TK-clock/8		
(F14) TKCTL1 Function related to: Touch Key						
TKSOC	14.7	R/W	0	Touch key start of conversion, rising edge to start		
TKTMR	14.6~4	R/W	4	Touch key conversion time. 0=shortest, 7=longest		
TKCHS	14.3~0	R/W	0	Touch key channel select, TKCHS[3:0]= 0000: TK0		
(F15) TKCT	L2		Functi	on related to: Touch Key		
TKEOC	15.7	R	1	Touch key end of conversion, 1: end of conversion 0: conversion is in process		
TKOVF	15.6	R	0	Touch key counter overflow		
TKDH	15.5~4	R	1	Touch key counter high byte TKDATA[9:8]		
(F16) TKDL	,		Funct	ion related to: Touch Key		
TKDL	16.7~0	R	-	Touch key counter low byte TKDATA[7:0]		
User Data Memory						
	20~27	R/W	-	SRAM common area (8 bytes)		
SRAM	28~7f	R/W	-	SRAM Bank0 area (RAMBK=0, 88 bytes)		
	28~7f	R/W	-	SRAM Bank1 area (RAMBK=1, 88 bytes)		

Note that the Touch Key function is always be power down when the body is TM57PA45, and MF13.3~0, TKCTL1, TKCTL2, TKDL functions would not affect the internal Touch Key function which is disabled permanently!

R-Plane

Name	Address	R/W	Rst	Description			
(R02) TM00	CTL			Function related to: Timer0			
TM0CL	02.7	W	0	Timer0 Capture Mode Level 0: High level capture 1: Low level capture			
ТМ0СМ	02.6	W	0	Timer0 Mode 0: Timer/Counter Mode Clock source from TM0PSC (set R02.3~0) TM0CKI (set R02.4) 1: Capture Mode Clock source from CAPT pin			
TM0EDG	02.5	W	0	Timer0 prescaler counting edge for TM0CKI pin 0: rising edge 1: falling edge			
TM0CKS	02.4	W	0	Timer0 prescaler clock source 0: Instruction cycle 1: TM0CKI pin (PA2 pin)			
TM0PSC	02.3~0	W	0	Timer0 prescaler. Timer0 prescaler clock source divided by 0000: /1 0001: /2 0010: /4 0011: /8 0100: /16 0101: /32 0110: /64 0111: /128 1xxx: /256			
(R03) PWR	DN			Function related to: POWER DOWN			
PWRDN	03	W	=.	Write this register to enter Power-down (STOP/IDLE) Mode			
(R04) WDT	CLR			Function related to: WDT			
WDTCLR	04	W	-	Write this register to clear WDT timer			
(R05) PAE				Function related to: Port A			
DAE	05.6~3	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output			
PAE	05.2~0	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is pseudo-open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output			
(R06) PBE				Function related to: Port B			
PBE	06.5~0	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output			
(R07) PDE							
PDE	07.7~0	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output			

Name	Address	R/W	Rst	Description
(R08) PAPUN	1			Function related to: Port A
PAPUN	08.7~0	W	7F	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PAD) is 0 b. the pin's CMOS push-pull mode is chosen (PAE=1) c. the pin is working for FXT/SXT/PWMs/TM0OUT/TM1OUT/TCOUT/Buzzer output 1: the pin pull up resistor is disabled
(R09) PBPUN	Ī			Function related to: Port B
PBPUN	09.5~0	W	3F	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PBD) is 0 b. the pin's CMOS push-pull mode is chosen (PBE=1) c. the pin is working for FXT/SXT/PWMs/TM0OUT/TM1OUT/TCOUT/Buzzer output 1: the pin pull up resistor is disabled
(R0A) PDPU	N			Function related to: Port D
PDPUN	0a.7~0	W	FF	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PDD) is 0 b. the pin's CMOS push-pull mode is chosen (PDE=1) c. the pin is working for FXT/SXT/PWMs/TM0OUT/TM1OUT/TCOUT/Buzzer output 1: the pin pull up resistor is disabled
(R0B) MR0B				Function related to: PWM0/PWM1
PWM0POE	0b.7	W	0	0: PA0 as its function 1: enable PWM0P output to PA0 pin
PWM0NOE	0b.6	W	0	0: PD7 as its function 1: enable PWM0N output to PD7
PWM1POE	0b.5	W	0	0: PB0 as its function 1: enable PWM1P output to PB0
PWM1NOE	0b.4	W	0	0: PB1 as its function 1: enable PWM1N output to PB1
PWM0PSC	0b.3~2	W	00	PWM0 clock source is divided by Users must set these 2 bits to "00"
PWM1PSC	0b.1~0	W	00	PWM1 clock source is divided by User must set these 2 bits to "00"

Name	Address	R/W	Rst	Description					
(R0C) MR0C				Function related to: WDT/WKT/7	Γimer0/Timer1/TCOUT				
				WKT Period					
					TDD=3V				
					1.4 ms				
WKTPSC	0c.7~6	W	11		2.8 ms				
				10 36 ms	46 ms				
				11 144 ms	184 ms				
				WDT Period	·				
					TDD=3V				
					284 ms				
WDTPSC	0c.5~4	W	01		367 ms				
					469 ms				
					2939 ms				
				Timer1 clock source					
TM1CKS	0c.3	W	0	0: Fsys/2 (instruction cycle)					
	00.0		Ů	1: Fsys					
				Timer0 overflow toggle output to P.	A5				
TM0OE	0c.2	W	0	0: disable					
				1: enable					
				Instruction cycle (Fsys/2) output to I	PD6				
TCOE	0c.1	W	0	0: disable					
				1: enable					
				Timer1 overflow toggle output to PD0					
TM10E	0c.0	W	0	0: disable					
				1: enable Function related to : INT1/Timer1/WDT/FIRC/ADC					
(R0D) MR0D	I	1							
INT1EDG	0d.7	W	0	0: INT1 pin falling edge to trigger in					
				1: INT1 pin rising edge to trigger int Timer1 Mode	errupt event				
					C alcals out)				
TM1CM	0d.6	W	0	0:Timer Mode (source form TM1PSC clock out) 1:Capture Mode (source from CAPT pin), measure CAPT pin period					
TWITCIVI	04.0	, ,,	time						
				between successive rising or falling edges					
				WDT disable in STOP mode					
WDTCTD	04.5	13.7	0	If WDTE=0, this bit is don't care.					
WDTSTP	0d.5	W	0	0: stop counting WDT in STOP mod					
				1: always counting WDT in STOP m	node				
				FIRC clock selection					
				00: 2 MHz					
FIRCKS	0d.4~3	W	01	01: 4 MHz					
				10: 8 MHz					
				11: 16 MHz					
				ADC clock frequency selection					
				000: Fsys/256 001: Fsys/128					
				010: Fsys/64					
				011: Fsys/32					
	04.2	''	111	100: Fsys/16					
				101: Fsys/8					
110: Fsys/4									
				110. 1 Sys/4					

Name	Address	R/W	Rst	Description
(R0E) BUZCT	TL .			Function related to: Buzzer
BUZPSC	0e.7~6	W	00	Buzzer clock frequency selection 00: Fsys/8 01: Fsys/16 10: Fsys/32 11: Fsys/64
BUZPRD	0e.5~0	W	0	Buzzer Period
(R0F) Reserve	ed			Tenx reserved
Reserved	0f.7~0	-	-	Tenx reserved register. Users do not write it.
(R10) PWM0I	PRD			Function related to: PWM0
PWM0PRD	10.7~0	W	FF	PWM0 Period
(R11) PWM1I	PRD			Function related to: PWM1
PWM1PRD	11.7~0	W	FF	PWM1 Period
(R12) PAM				Function related to: Port A
PAM	12.7~0	W	FF	Each bit control its corresponding pin 0: disable I/O digital input to save power when ADC channels are selected 1: enable I/O digital input
(R13) PBM				Function related to: Port B
PBM	13.5~0	W	3F	Each bit control its corresponding pin 0: disable I/O digital input to save power when ADC channels are selected 1: enable I/O digital input
(R14) PDM				Function related to Port D
PDM	14.7~0	W	FF	Each bit control its corresponding pin 0: disable I/O digital input to save power when ADC channels are selected 1: enable I/O digital input
(R15) PBWK	EN			Function related to: Wake up
PBWKEN	15.5~0	W	00	PB5~PB0 low level wakeup 0: disable 1: enable
(R16) PWMC	TL			Function related to: PWM0/PWM1
PWM1MODE	16.7~6	W	0	PWM1 differential output mode 00: Mode 0, 01: Mode 1, 10: Mode 2, 11: Mode 3
PWM1DTC	16.5~4	W	0	00: original PWM1, 01: non-overlap 1 PWM1 clock 10: non-overlap 2 PWM1 clocks 11: non-overlap 4 PWM1 clocks
PWM0MODE	16.3~2	W	0	PWM0 differential output mode 00: Mode 0, 01: Mode 1, 10: Mode 2, 11: Mode 3
PWM0DTC	16.1~0	W	0	00: original PWM0, 01: non-overlap 1 PWM0 clock 10: non-overlap 2 PWM0 clocks 11: non-overlap 4 PWM0 clocks

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description				
f	F-Plane Register File Address				
r	R-Plane Register File Address				
b	Bit address				
k	Literal. Constant data or label				
d	Destination selection field, 0: Working register, 1: Register file				
W	Working Register				
Z	Zero Flag				
С	Carry Flag or/Borrow Flag				
DC	Decimal Carry Flag or Decimal/Borrow Flag				
PC	Program Counter				
TOS	Top Of Stack				
GIE	Global Interrupt Enable Flag (i-Flag)				
[]	Option Field				
()	Contents				
	Bit Field				
В	Before				
A	After				
←	Assign direction				

Mnemonic		Op Code	Cycle Flag Affect		Description	
Byte-Oriente			ted File R	egister Instru	ction	
ADDWF	f,d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"	
ANDWF	f,d	00 0101 dfff ffff 1		Z	AND W with "f"	
CLRF	f	00 0001 1fff ffff	1	Z	Clear "f"	
CLRW		00 0001 0100 0000	1	Z	Clear W	
COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"	
DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"	
DECFSZ	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero	
INCF	f,d	00 1010 dfff ffff	1	Z	Increment "f"	
INCFSZ	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero	
IORWF	f,d	00 0100 dfff ffff	1	Z	OR W with "f"	
MOVFW	f	00 1000 0fff ffff	1	-	Move "f" to W	
MOVWF	f	00 0000 1fff ffff	1	-	Move W to "f"	
MOVWR	r	00 0000 00rr rrrr	1	-	Move W to "r"	
RLF	f,d	00 1101 dfff ffff	1	С	Rotate left "f" through carry	
RRF	f,d	00 1100 dfff ffff	1	С	Rotate right "f" through carry	
SUBWF	f,d	00 0010 dfff ffff			Subtract W from "f"	
SWAPF	f,d	00 1110 dfff ffff	00 1110 dfff ffff 1 - Swap nibb		Swap nibbles in "f"	
TESTZ	f	00 1000 1fff ffff	1	Z	Test if "f" is zero	
XORWF f,d 00 0110 dfff ffff		1	Z	XOR W with "f"		
		Bit-Orient	ed File Re	egister Instruc	tion	
BCF	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"	
BSF	f,b	01 001b bbff ffff	1	-	Set "b" bit of "f"	
BTFSC	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear	
BTFSS	BTFSS f,b 01 011b bbff ffff		1 or 2	-	Test "b" bit of "f", skip if set	
		Literal	and Cont	rol Instruction	n	
ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W	
ANDLW	k	01 1101 kkkk kkkk	1	Z	AND Literal "k" with W	
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"	
CLRWDT		00 0000 0000 0100	1	TO, PD	Clear Watch Dog Timer	
GOTO	k	11 1010 kkkk kkkk	2	-	Jump to branch "k"	
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W	
MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W	
NOP		00 0000 0000 0000	1	-	No operation	
RET		00 0000 0100 0000	2	-	Return from subroutine	
RETI		00 0000 0110 0000	2	-	Return from interrupt	
RETLW	k	01 1000 kkkk kkkk	2	-	Return with Literal in W	
SLEEP		00 0000 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops	
XORLW	k	01 1111 kkkk kkkk	1	Z	XOR Literal "k" with W	
TABRH		00 0000 0101 1000	2	-	Lookup ROM high data to W	
TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W	

Add Literal "k" and W **ADDLW**

ADDLW k **Syntax** Operands k: 00h ~ FFh Operation $(W) \leftarrow (W) + k$ Status Affected C, DC, Z

OP-Code 01 1100 kkkk kkkk

Description The contents of the W register are added to the eight-bit literal 'k' and the result is

placed in the W register.

Cycle

Example ADDLW 0x15 B: W = 0x10

A: W = 0x25

ADDWF Add W and "f"

Syntax ADDWF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) + (f)$

Status Affected C, DC, Z OP-Code 00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example ADDWF FSR, 0 B: W = 0x17, FSR = 0xC2

A : W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

Syntax ANDLW k Operands k:00h~FFh Operation $(W) \leftarrow (W) \text{ AND } k$ Status Affected Z

OP-Code 01 1011 kkkk kkkk

The contents of W register are AND'ed with the eight-bit literal 'k'. The result is Description

placed in the W register.

Cycle

Example ANDLW 0x5F B:W=0xA3

A: W = 0x03

ANDWF AND W with "f"

ANDWF f [,d] **Syntax Operands** $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) AND (f)$

Status Affected Z

OP-Code 00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example ANDWF FSR, 1 B: W = 0x17, FSR = 0xC2

A: W = 0x17, FSR = 0x02

BCF Clear "b" bit of "f"

Syntax BCF f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 0$

Status Affected

OP-Code 01 000b bbff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle 1

Example BCF FLAG_REG, 7 B: FLAG_REG = 0xC7

 $A : FLAG_REG = 0x47$

BSF Set "b" bit of "f"

Syntax BSF f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected -

OP-Code 01 001b bbff ffff

Description Bit 'b' in register 'f' is set.

Cycle 1

Example BSF FLAG_REG, 7 $B : FLAG_REG = 0x0A$

 $A : FLAG_REG = 0x8A$

BTFSC Test "b" bit of "f", skip if clear(0)

Syntax BTFSC f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 0

Status Affected -

OP-Code 01 010b bbff ffff

Description If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register

'f' is 0, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSC FLAG, 1 B: PC = LABEL1

TRUE GOTO SUB1 A : if FLAG.1 = 0, PC = FALSE FALSE ... if FLAG.1 = 1, PC = TRUE

BTFSS Test "b" bit of "f", skip if set(1)

Syntax BTFSS f [,b] Operands f: $00h \sim 3Fh$, b: $0 \sim 7$

Operation Skip next instruction if (f.b) = 1

Status Affected

OP-Code 01 011b bbff ffff

Description If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register

'f' is 1, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSS FLAG, 1 B: PC = LABEL1

TRUE GOTO SUB1 A: if FLAG.1 = 0, PC = TRUE

FALSE ... if FLAG.1 = 1, PC = FALSE

CALL Call subroutine "k"

Syntax CALL k Operands $k: 000h \sim FFFh$

Operation Operation: $TOS \leftarrow (PC) + 1$, $PC.11 \sim 0 \leftarrow k$

Status Affected -

OP-Code 10 kkkk kkkk kkkk

Description Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit

immediate address is loaded into PC bits <11:0>. CALL is a two-cycle

instruction.

Cycle 2

Example LABEL1 CALL SUB1 B: PC = LABEL1

A : PC = SUB1, TOS = LABEL1 + 1

CLRF Clear "f"

SyntaxCLRF fOperands $f: 00h \sim 7Fh$ Operation $(f) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code 00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example CLRF FLAG_REG B: FLAG_REG = 0x5A

A: $FLAG_REG = 0x00$, Z = 1

CLRW Clear W

Syntax CLRW Operands -

Operation (W) \leftarrow 00h, Z \leftarrow 1

Status Affected Z

OP-Code 00 0001 0100 0000

Description W register is cleared and Z bit is set.

Cycle 1

Example CLRW B: W = 0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT/WKT Timer \leftarrow 00h

Status Affected TO, PD

OP-Code 00 0000 0000 0100

Description CLRWDT instruction clears the Watchdog/Wakeup Timer

Cycle 1

Example CLRWDT B: WDT counter = ?

A: WDT counter = 0x00

COMF Complement "f"

Syntax COMF f [.d] f:00h ~ 7Fh, d:0, 1 Operands Operation $(destination) \leftarrow (\bar{f})$

Status Affected

OP-Code 00 1001 dfff ffff

Description The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.

If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example COMF REG1, 0 B : REG1 = 0x13

A: REG1 = 0x13, W = 0xEC

DECF Decrement "f"

Syntax DECF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (f) - 1$

Status Affected Z

OP-Code 00 0011 dfff ffff

Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the Description

result is stored back in register 'f'.

Cycle

DECF CNT, 1 Example B : CNT = 0x01, Z = 0

A : CNT = 0x00, Z = 1

DECFSZ Decrement "f", Skip if 0

DECFSZ f [.d] Syntax Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (f) - 1, skip next instruction if result is 0

Status Affected

00 1011 dfff ffff OP-Code

Description The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making

it a 2 cycle instruction.

Cycle 1 or 2

Example LABEL1 DECFSZ CNT, 1 B: PC = LABEL1GOTO LOOP A:CNT=CNT-1

> CONTINUE if CNT = 0, PC = CONTINUE

if CNT \neq 0, PC = LABEL1 + 1

GOTO Unconditional Branch

Syntax GOTO k k: 000h ~ FFFh Operands Operation $PC.11 \sim 0 \leftarrow k$

Status Affected

OP-Code 11 kkkk kkkk kkkk

Description GOTO is an unconditional branch. The 12-bit immediate value is loaded into PC

bits <11:0>. GOTO is a two-cycle instruction.

Cycle

Example LABEL1 GOTO SUB1 B : PC = LABEL1

A : PC = SUB1

INCF Increment "f" Syntax INCF f [,d] Operands f:00h~7Fh Operation $(destination) \leftarrow (f) + 1$ Status Affected Z OP-Code 00 1010 dfff ffff Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. Cycle Example INCF CNT, 1 B : CNT = 0xFF, Z = 0A : CNT = 0x00, Z = 1

INCFSZ Increment "f", Skip if 0

INCFSZ f [,d] **Syntax** Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation (destination) \leftarrow (f) + 1, skip next instruction if result is 0 Status Affected OP-Code 00 1111 dfff ffff Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2 cycle instruction. Cycle 1 or 2 Example LABEL1 INCFSZ CNT, 1 B : PC = LABEL1GOTO LOOP A:CNT=CNT+1**CONTINUE** if CNT = 0, PC = CONTINUEif CNT \neq 0, PC = LABEL1 + 1

IORLW Inclusive OR Literal with W

Syntax IORLW k Operands k: 00h ~ FFh Operation $(W) \leftarrow (W) OR k$ Status Affected Z OP-Code 01 1010 kkkk kkkk Description The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register. Cycle Example IORLW 0x35 B: W = 0x9AA : W = 0xBF, Z = 0

A: W = 0xI

IORWF Inclusive OR W with "f"

Syntax IORWF f [,d]
Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) OR k$

Status Affected Z

OP-Code 00 0100 dfff ffff

Description Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the

W register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example IORWF RESULT, 0 B: RESULT = 0x13, W = 0x91

A: RESULT = 0x13, W = 0x93, Z = 0

MOVFW Move "f" to W

SyntaxMOVFW fOperands $f:00h \sim 7Fh$ Operation $(W) \leftarrow (f)$

Status Affected -

OP-Code 00 1000 0fff ffff

Description The contents of register 'f' are moved to W register.

Cycle 1

Example MOVFW FSR B : FSR = 0xC2, W = ?

A: FSR = 0xC2, W = 0xC2

MOVLW Move Literal to W

SyntaxMOVLW kOperands $k:00h \sim FFh$ Operation $(W) \leftarrow k$

Status Affected

OP-Code 01 1001 kkkk kkkk

Description The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as

0's.

Cycle 1

Example MOVLW 0x5A B: W = ?

A:W=0x5A

MOVWF Move W to "f"

SyntaxMOVWF fOperands $f:00h \sim 7Fh$ Operation $(f) \leftarrow (W)$

Status Affected

OP-Code 00 0000 1fff ffff

Description Move data from W register to register 'f'.

Cycle 1

Example MOVWF REG1 B : REG1 = 0xFF, W = 0x4F

A : REG1 = 0x4F, W = 0x4F

MOVWR Move W to "r"

Status Affected

OP-Code 00 0000 00rr rrrr

Description Move data from W register to register 'r'.

Cycle 1

Example MOVWR REG1 B : REG1 = 0xFF, W = 0x4F

A : REG1 = 0x4F, W = 0x4F

NOP No Operation

Syntax NOP Operands -

Operation No Operation

Status Affected -

OP-Code 00 0000 0000 0000 Description No Operation

Cycle 1 Example NOP

RET Return from Subroutine

Syntax RET Operands -

Operation $PC \leftarrow TOS$

Status Affected

OP-Code 00 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack (TOS) is

loaded into the program counter. This is a two-cycle instruction.

Cycle 2

Example RET A: PC = TOS

RETI Return from Interrupt

Syntax RETI Operands -

Operation $PC \leftarrow TOS, GIE \leftarrow 1$

Status Affected

OP-Code 00 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the

PC. Interrupts are enabled. This is a two-cycle instruction.

Cycle 2

Example A: PC = TOS, GIE = 1

RETLW Return with Literal in W

SyntaxRETLW kOperands $k:00h \sim FFh$ Operation $PC \leftarrow TOS, (W) \leftarrow k$

Status Affected -

OP-Code 01 1000 kkkk kkkk

Description The W register is loaded with the eight-bit literal 'k'. The program counter is

loaded from the top of the stack (the return address). This is a two-cycle

instruction.

Cycle 2

Example CALL TABLE B: W = 0x07

: A: W = value of k8

TABLE ADDWF PCL, 1

RETLW k1 RETLW k2

:

RETLW kn

RLF Rotate Left "f" through Carry

RLF f [,d] Syntax f:00h ~ 7Fh, d:0, 1 Operands Operation C Register f C

Status Affected

OP-Code 00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle 1

Example RLF REG1, 0 $B : REG1 = 1110 \ 0110, C = 0$

> A : REG1 = 11100110= 1100 1100, C = 1W

RRF Rotate Right "f" through Carry

RRF f [,d] Syntax $f: 00h \sim 7Fh, d: 0, 1$ Operands Operation

Status Affected C

OP-Code 00 1100 dfff ffff

Description The contents of register 'f' are rotated one bit to the right through the Carry Flag.

If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back

in register 'f'.

Cycle 1

Example RRF REG1, 0 $B : REG1 = 1110 \ 0110, C = 0$

A : REG1 = 11100110W $= 0111\ 0011, C = 0$

SLEEP Go into Power-down mode, Clock oscillation stops

SLEEP Syntax Operands Operation Status Affected TO, PD

OP-Code 00 0000 0000 0011

Description Go into Power-down mode with the oscillator stops.

Cycle

Example **SLEEP**

SUBWF	Subtract W from "f"	
Syntax	SUBWF f [,d]	
Operands	f:00h ~ 7Fh, d:0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	00 0010 dfff ffff	
Description	` .	thod) W register from register 'f'. If 'd' is 0, the result 'd' is 1, the result is stored back in register 'f'.
Cycle	1	•
Example	SUBWF REG1, 1	B: REG1 = $0x03$, W = $0x02$, C = ?, Z = ?
		A: REG1 = $0x01$, W = $0x02$, C = 1 , Z = 0
	SUBWF REG1, 1	B: REG1 = $0x02$, W = $0x02$, C = ?, Z = ?
		A: REG1 = $0x00$, W = $0x02$, C = 1, Z = 1
	SUBWF REG1, 1	B : REG1 = 0x01, W = 0x02, C = ?, Z = ?
		A: REG1 = $0xFF$, W = $0x02$, C = 0 , Z = 0

SWAPF Swap Nibbles in "f	oles in ''f''
--------------------------	---------------

D 111111	2 up 1 2202 111 1							
Syntax	SWAPF f [,d]							
Operands	f: 00h ~ 7Fh, d: 0, 1	$f: 00h \sim 7Fh, d: 0, 1$						
Operation	$(destination, 7\sim4) \leftarrow (f.3\sim0), (destination.3\sim0) \leftarrow (f.7\sim4)$							
Status Affected	-							
OP-Code	00 1110 dfff ffff							
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.							
Cycle	1							
Example	SWAPF REG, 0	B: REG1 = $0xA5$ A: REG1 = $0xA5$, W = $0x5A$						

TESTZ Test if "f" is zero

Syntax	TESTZ f						
Operands	f: 00h ~ 7Fh	f:00h~7Fh					
Operation	Set Z flag if (f) is 0	Set Z flag if (f) is 0					
Status Affected	Z						
OP-Code	00 1000 1fff ffff	00 1000 1fff ffff					
Description	If the content of register	If the content of register 'f' is 0, Zero flag is set to 1.					
Cycle	1	•					
Example	TESTZ REG1	B : REG1 = 0, Z = ?					
•		A : REG1 = 0, Z = 1					

XORLW Exclusive OR Literal with W

Syntax	XORLW k						
Operands	k: 00h ~ FFh						
Operation	$(W) \leftarrow (W) \text{ XOR } k$						
Status Affected	Z						
OP-Code	01 1111 kkkk kkkk						
Description	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result						
	is placed in the W register.						
Cycle	1						
Example	XORLW 0xAF	B:W=0xB5					
		A: W = 0x1A					

XORWF Exclusive OR W with "f" XORWF f [,d] **Syntax**

Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation $(destination) \leftarrow (W) XOR (f)$

Status Affected Z

00 0110 dfff ffff OP-Code

Description Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example XORWF REG, 1 B : REG = 0xAF, W = 0xB5

A : REG = 0x1A, W = 0xB5

TABRL Return DPTR low byte to W

TABRL Syntax

Operands

Operation (W) \leftarrow ROM[DPTR] low byte content, Where DPTR={DPH[max:8],DPL[7:0]}

After TABRL is executed, DPTR ← DPTR+1 automatically

Status Affected

OP-Code 00 0000 0101 0000

Description The W register is loaded with low byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle 2 Example :

MOVLW (TAB1&0xFF)

MOVWF DPL ; Where DPL is F-plane register

MOVLW (TAB1>>8)&0xFF

MOVWF **DPH** ; Where DPH is F-plane register

; DPTR=0234H

TABRH ; W=0x37

TABRL ; W=0x89, DPTR=0235H

TABRH W=0x22

TABRL ; W=0x77, DPTR=0236H

> ORG 0234H ;ROM data 14 bits

TAB1:

.DT 0x3789, 0x2277

TABRH Return DPTR high byte to W

Syntax **TABRH**

Operands

 $(W) \leftarrow ROM[DPTR]$ high byte content, Where $DPTR = \{DPH[max:8], DPL[7:0]\}$ Operation

Status Affected

OP-Code 00 0000 0101 1000

The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle Description

instruction.

Cycle

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings (T_A=25°C)

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +6.5	
Input voltage	V_{SS} -0.3 to V_{DD} +0.3	V
Output voltage	V_{SS} -0.3 to V_{DD} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	mA
Output current low per 1 PIN	+30	
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	

2. DC Characteristics ($T_A=25$ °C, $V_{DD}=2.0V$ to 5.5V unless otherwise specified)

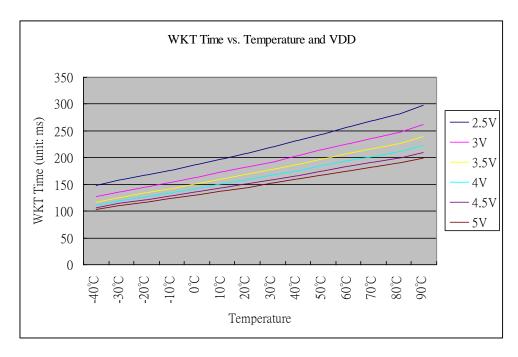
Parameter	Symbol		Min	Тур	Max	Unit			
		FAST mo	de, 25°C, Fsys=24 MHz	4.2	_	5.5			
Operating Voltage		FAST mode, 25°C, Fsys=16 MHz		3.3	_	5.5			
	V_{DD}	FAST mo	ode, 25°C, Fsys=8 MHz	2.4	_	5.5	V		
		FAST mo	ode, 25°C, Fsys=4 MHz	2.2	_	5.5			
		SLOV	V mode, 25°C, SIRC	1.7	_	5.5			
		All Input,	V _{DD} =5V	$0.6V_{DD}$	_	_	V		
Input High	$V_{ m IH}$	except PA7	$V_{DD}=3V$	$0.6V_{DD}$	-	_	V		
Voltage	V IH	PA7	$V_{DD}=5V$	$0.7V_{DD}$	-	_	V		
		IA/	$V_{DD}=3V$	$0.7V_{DD}$	-	_	V		
Input Low Voltage	$V_{\Pi_{-}}$	All Input	$V_{DD}=5V$	_	_	$0.2V_{DD}$	V		
	V _{IL}	An Input	$V_{DD}=3V$	_	_	$0.2V_{DD}$	V		
I/O Port Source	Low	I_{OH}	T	All Output	$V_{DD} = 5V, V_{OH} = 0.9V_{DD}$	4	8	_	
Current	TOH	An Output	$V_{DD} = 3V, V_{OH} = 0.9V_{DD}$	2	4	_			
PWM Ports Source	I_{OH}	I_{OH}	PA0, PD7	$V_{DD} = 5V, V_{OH} = 0.9V_{DD}$	13	27		mA	
Current (TM57PT45C/PA45C)			PB0, PB1	$V_{DD} = 3V, V_{OH} = 0.9V_{DD}$	5	10			
		All Output,	$V_{DD} = 5V, V_{OL} = 0.1V_{DD}$	10	20	_			
		except PA7	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	5	10	_			
I/O Port Sink	T	PA7	$V_{DD} = 5V, V_{OL} = 0.1V_{DD}$	15	30	_			
Current	I_{OL}	ra/	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	6	12	_			
		High sink	$V_{DD} = 5V, V_{OL} = 0.1V_{DD}$	20	40	_	mA		
		current pins	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	10	20	_			
PWM Ports Sink		PA0, PD7	$V_{DD} = 5V, V_{OL} = 0.1V_{DD}$	20	40				
Current (TM57PT45C/PA45C)	I_{OL}	PB0, PB1	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	10	20				
Input Leakage Current (pin high)	$I_{\Pi L H}$	All Input	$V_{IN} = V_{DD}$	_	ı	1	^		
Input Leakage Current (pin low)	$I_{\Pi LL}$	All Input	V _{IN} =0V	_	-	-1	μA		

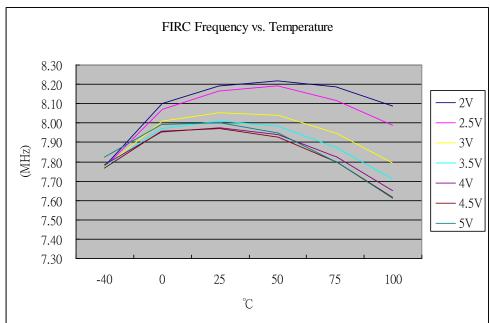
Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
			V _{DD} =5V, FXT=12 MHz	_	- 3.5			
			V _{DD} =3V, FXT=12MHz	_	1.7	_		
			V _{DD} =5V, FXT=8 MHz	_	2.6	_	mA	
		FAST mode, LVR enable,	V _{DD} =3V, FXT=8 MHz	_	1.2	_		
		WDT enable	V_{DD} =5V, FXT=4 MHz	_	1.6	_	ША	
			$V_{DD}=3V$, FXT=4 MHz	_	0.7	_		
			V_{DD} =5V, FIRC=8 MHz	_	2.4	_		
			V _{DD} =3V, FIRC=8 MHz	_	1.3	_		
Supply Current	$I_{ m DD}$		V_{DD} =5V, SXT=32 KHz	_	127	_		
Supply Cultent	- DD	CI OW	$V_{DD}=3V$, SXT=32 KHz	_	38	_		
		SLOW mode, LVR enable	V _{DD} =5 V, SIRC, CPUPSC=11	_	139	_	μΑ	
			V _{DD} =3 V, SIRC, CPUPSC=11	_	44	-		
		STOP mode, LVR enable	$V_{DD}=5V$	_	1.0	_		
			V _{DD} =3V	_	0.4	_		
		STOP mode,	$V_{DD}=5V$	_	1	0.1		
		LVR disable	$V_{DD}=3V$	_	_	0.1		
Caratana Classia			$V_{DD}=3.0V$	_	_	12		
System Clock Frequency	Fsys	$V_{DD} > LVR_{th} \\$	$V_{DD}=2.1V$	_	_	8	MHz	
Trequency			$V_{DD}=1.6V$	_	_	4		
LVR Reference	V_{LVR}		$T_A=25$ °C	_	2.0	_	V	
Voltage	V LVR		1 _A -23 C	_	2.9	_	V	
LVR Hysteresis Voltage	V_{HYST}		_	±0.1	_	V		
Low Voltage Detection time	t_{LVR}		100	_	_	μs		
		V _{IN} =0 V	$V_{DD}=5V$		62	_		
Pull-Up Resistor	$R_{\rm P}$	Port A, B, D V _{IN} =0 V	$V_{DD}=3V$		113		ΚΩ	
Tun Op Resistor	Кр		$V_{DD}=5V$	_	53	_	K22	
		PA7	$V_{DD}=3V$		109			

3. Clock Timing ($T_A = -40$ °C to +85°C)

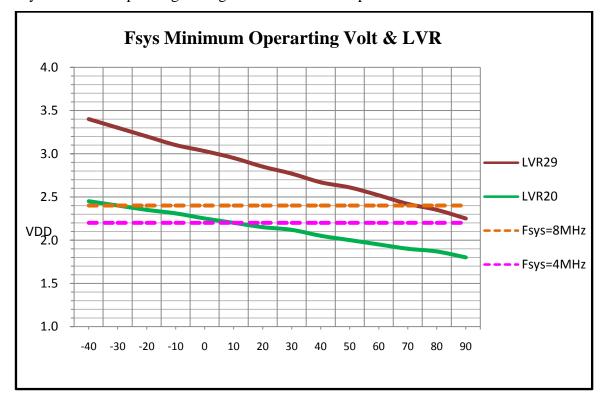
Parameter	Condition	Min	Тур	Max	Unit
Internal RC Frequency	25°C, V_{DD} =3 ~ 5.5V	7.75	8	8.25	
	25°C, V_{DD} =2.6 ~ 3V	7.6	8	8.4	MHz
	-40 °C ~ 85 °C, $V_{DD}=2.6$ ~ 5.5 V	7.5	8	8.5	

4. Reset Timing Characteristics (T_A = -40°C to +85°C, V_{DD} =3V to 5V)

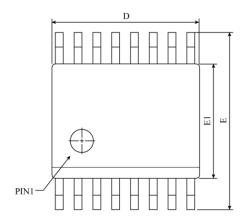

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input V_{DD} =5 V ±10 %	3	_	_	μs
WDT wakeup time	V_{DD} =5V, WDTPSC=00	-	19	_	*** ***
	V _{DD} =3V, WDTPSC=00	-	24	_	ms
CDI Latart un tima	$V_{DD}=5V$	_	19	_	*** ***
CPU start up time	$V_{DD}=3V$	_	24	_	ms

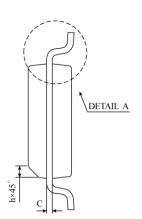

5. OPA Electrical Characteristics (VDD=5V, TA=25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VOS0	Input Offset Voltage for op0	Vo=1.4V			5	mv
VOS1	Input Offset Voltage for op1	Vo=1.4V			5	mv
AVOL	Large Signal Voltage Gain	RL=1MΩ CL=60pF		80		dB
GBW	Gain Band Width Product	RL=1MΩ CL=60pF		1		MHz
CMRR	Common Mode Rejection Ratio	Vo=1.4V Vi=0V		80		dB
PSRR	Power Supply Rejection Ratio	Vo=1.4V		60		dB
ICC	Supply Current Per Single Amplifier	Av=1 Vo=1.4V No load		40	60	μΑ
SR	Slew Rate at Unity Gain	No load		0.3		$V/\mu s$
Фт	Phase Margin at Unity Gain	RL=1MΩ CL=60pF		30		Degree
IOH	Output Source Current			-500		μΑ
IOL	Output Sink Current			500		μΑ

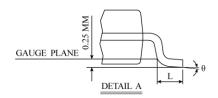

6. Characteristic Graphs

Fsys Minimum Operating Voltage & LVR relationship

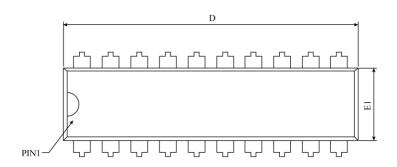

PACKAGING INFORMATION

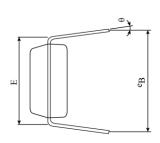

The ordering information:

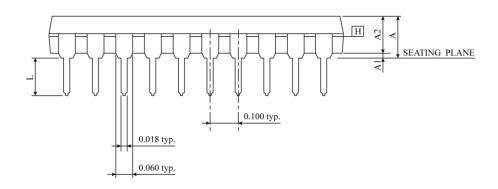
Ordering number	Package
TM57PT45-OTP TM57PA45-OTP TM57PT45C-OTP TM57PA45C-OTP	Wafer/Dice blank chip
TM57PT45-COD TM57PA45-COD TM57PT45C-COD TM57PA45C-COD	Wafer/Dice with code
TM57PT45-OTP-26 TM57PA45-OTP-26 TM57PT45C-OTP-26 TM57PA45C-OTP-26	SSOP 16-pin (150mil)
TM57PT45-OTP-05 TM57PA45-OTP-05 TM57PT45C-OTP-05 TM57PA45C-OTP-05	DIP 20-pin (300 mil)
TM57PT45-OTP-21 TM57PA45-OTP-21 TM57PT45C-OTP-21 TM57PA45C-OTP-21	SOP 20-pin (300 mil)
TM57PT45-OTP-22 TM57PA45-OTP-22 TM57PT45C-OTP-22 TM57PA45C-OTP-22	SOP 24-pin (300 mil)
TM57PT45-OTP-28 TM57PA45-OTP-28 TM57PT45C-OTP-28 TM57PA45C-OTP-28	SSOP 24-pin (150 mil)



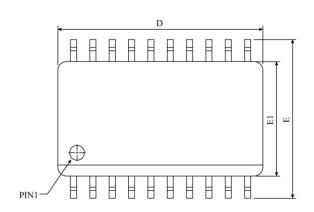
16-SSOP (150mil) Package Dimension

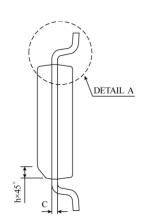


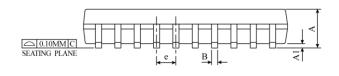

SYMBOL	DI	MENSION IN M	IM	DIMENSION IN INCH				
	MIN	NOM	MAX	MIN	NOM	MAX		
A	1.35	1.55	1.75	0.053	0.061	0.069		
A1	0.10	0.18	0.25	0.004	0.007	0.010		
A2	-	-	1.50	-	-	0.059		
В	0.20	0.25	0.30	0.008	0.010	0.012		
С	0.18	0.22	0.25	0.007	0.009	0.010		
D	4.80	4.90	5.00	0.189	0.193	0.197		
Е	5.79	6.00	6.20	0.228	0.236	0.244		
E1	3.81	3.90	3.99	0.150	0.154	0.157		
e		0.635 BSC		0.025 BSC				
L	0.41	0.84	1.27	0.016	0.033	0.050		
θ	0°	4°	8°	0°	4°	8°		
JEDEC		M0-137 (AB)						

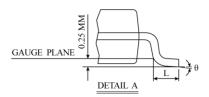

 $\$ * Notes : dimension $\$ D $\$ Does not include mold protrusions or gate burrs, mold protrusions and gate burrs shall not exceed 0.15 MM (0.006 Inch) Per side.

20-DIP Package Dimension

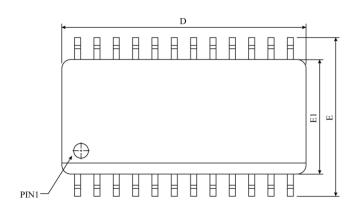

CVMDOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH				
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX		
A	-	-	4.445	-	-	0.175		
A1	0.381	-	-	0.015	-	-		
A2	3.175	3.302	3.429	0.125	0.130	0.135		
D	25.705	26.061	26.416	1.012	1.026	1.040		
Е	7.620	7.747	7.874	0.300	0.305	0.310		
E1	6.223	6.350	6.477	0.245	0.250	0.255		
L	3.048	3.302	3.556	0.120	0.130	0.140		
eB	8.509	9.017	9.525	0.335	0.355	0.375		
θ	0°	7.5°	15°	0°	7.5°	15°		
JEDEC		MS-001 (AD)						

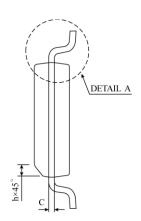

NOTES:

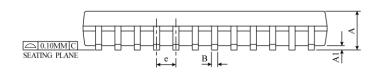

- 1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE \boxplus COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

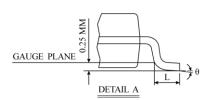


20-SOP Package Dimension

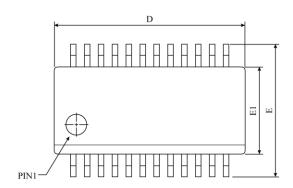


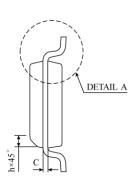

SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e		1.27 BSC		0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AC)						

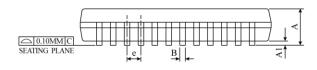

 \triangle * NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

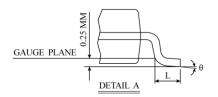


24-SOP Package Dimension




SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	15.20	15.40	15.60	0.5985	0.6063	0.6141	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e		1.27 BSC		0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AD)						


 \triangle * NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.



24-SSOP (150mil) Package Dimension

SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.35	1.55	1.75	0.053	0.061	0.069	
A1	0.10	0.18	0.25	0.004	0.007	0.010	
A2	-	-	1.50	-	-	0.059	
В	0.20	0.25	0.30	0.008	0.010	0.012	
C	0.18	0.22	0.25	0.007	0.009	0.010	
D	8.56	8.65	8.74	0.337	0.341	0.344	
Е	5.79	6.00	6.20	0.228	0.236	0.244	
E1	3.81	3.90	3.99	0.150	0.154	0.157	
e		0.635 BSC		0.025 BSC			
L	0.41	0.84	1.27	0.016	0.033	0.050	
θ	0°	4°	8°	0°	4°	8°	
JEDEC		M0-137 (AE)					

 $\underline{\mathring{\mathbb{A}}}$ * Notes : dimension " d " does not include mold protrusions or gat burns.

MOLD PROTRUSIONS AND GATE BURRS SHALL NOT

EXCEED 0.006 INCH PER SIDE.