拓尔微电子 TOLL Microelectronic

TMI8721-Q1 Automotive Single-Channel Smart Gate Driver

Product Features

ÿ AEC-Q100 compliant for automotive applications:

- Temperature Grade 1: -40°C to +125°C, TA

ÿ 5.5V to 38V operating voltage range

ÿ Single channel H-bridge gate driver

- Drives 4 external N-MOSFETs
- Support 100% PWM

ÿ Three control modes available

- PWM
- PH/EN
- Independent half-
- bridge ÿ Gate drive capability
 - Peak drive source current: 10mA to 220mA Peak drive sink

current: 20mA to 440mA

ÿ Integrated current sampling and regulation

- Sampling gain adjustable: 10, 20, 40, 80 V/V

ÿ Support 1.8V, 3.3V, 5V logic input

ÿ Ultra-low power sleep mode

ÿ Protection features

- VM undervoltage lockout (UVLO) -

Charge pump undervoltage protection (CPUV)

- VDS Over Current Protection (OCP)

- VGS Gate Fault Protection (GDF) -

Watchdog Timer - Fault

Indication Pin (nFAULT) - Thermal

Shutdown (TSD) ÿ

Package Size

- QFN5x5-32

application

ÿ Automotive brushed DC motor

ÿ Seat module

ÿ Electric lifting window

ÿ Electric sunroof

拓尔微

Product Overview

The TMI8721-Q1 is an integrated single-channel H-bridge gate driver that drives a brushed DC motor using four external N-MOSFETs.

The TMI8721-Q1 input control modes provide PWM, PH/EN, and independent half-bridge. The independent bridge mode can control multiple DC motors simultaneously. The integrated charge pump supports 100% duty cycle. The internal sensing amplifier provides adjustable current control, and the corresponding circuit is built in to achieve PWM current chopping with fixed off time to regulate the motor winding current.

The TMI8721-Q1 provides a range of protection features including VM undervoltage protection, charge pump undervoltage protection, VDS overcurrent protection and VGS gate fault protection for the external MOSFET, and internal thermal shutdown.

The package is QFN 5mmx5 mm, with exposed pads to enhance heat dissipation. It complies with ROHS regulations and the lead frame is 100% lead-free.

Typical application circuit

Figure 1. Typical application circuit diagram

Absolute Maximum Ratings(1)

Parameter		Min	Мах	Unit
Driver supply voltage (VM, VDRAIN) Drain	VM	-0.3	40	V
pin voltage (VDRAIN) Charge	VDRAIN	-0.3	40	V
pump voltage (VCP)	VVCP	-0.3	52	V
Internal digital regulator voltage (DVDD)	VDVDD	-0.3	5.75	V
Internal analog regulator voltage (AVDD)	VAVDD	-0.3	3.8	V
Logic input voltage (IN1, IN2, nSLEEP, nFAULT,				
VREF, MODE, nSCS, SCLK, SDI, SDO,	COME	-0.3	5.75	V
nWDFLT)				
High-side gate drive pin voltage (GHx) Low-	VGHx	-0.3	52	V
side gate drive pin voltage (GLx) High-side	VGLx	-0.3	12	V
source voltage (OUTx)	VOUTx	-1.2	40	V
	VSP, VSL2	-0.5	1.2	V
Amplifier input pin voltage (SP, SL2, SN)	VSN	-0.3	0.3	V
Amplifier output pin voltage (SO) Amplifier	ALL	-0.3	5.75	V
output pin current (SO) Operating ambient	ISO	0	5	mA
temperature Junction	FACING	-40	125	°C
temperature (2)	TJ	-40	150	°C
Storage temperature	Tstg	-60	150	°C

(1) Absolute Maximum Ratings are those values at which the life of the device may be impaired. Stresses beyond the Absolute Maximum Ratings may cause permanent damage to the device. Extended operation at absolute maximum rating conditions may affect device reliability.

(2) TJ is calculated from the ambient temperature TA and the power dissipation PD according to the following formula: $TJ = TA + PD \times \ddot{y}JA$. The maximum allowable continuous The continuous power dissipation is calculated by PD (MAX) = (TJ(MAX) - TA) / $\ddot{y}JA$.

ESD Level

parameter		value	unit
THROW IT	Description Human Body Model HBM, AEC	±2000	V
	Q100-002(1) Charged Device Model CDM, AEC Q100-011	±750	V

(1) AEC Q100-002 states that HBM stress should comply with ANSI/ESDA/JEDEC JS-001 specification.

Package pin definition

Order Information

Product model pac	kaging type silk scr	een	Packing quantity
TMI8721-Q1	QFN5x5-32	TMI8721-Q1 XXXXX	5000/plate

The TMI8721-Q1 product meets the lead-free requirements and RoHS standards.

Pin Function

Pin No. Pin	Name Input/Outpu	t	describe
1ÿ13ÿ17	GND		Systematically.
2	IN1/PH	Input control pi	n. The logic of this pin depends on the MODE pin. Internal pull-down
3	IN2/EN	Input resistanc	e.
4	SDO	Output	SPI - Serial data output. Data is updated on the rising edge of SCLK.
		Output	Internal pull-up resistor.
5	nSCS	enter	SPI - Chip Select. An active low signal on this pin enables the serial interface
6	SDI	Input SPI - Ser	al Data In. Data is captured on the falling edge of SCLK.
7	SCLK	Input SPI - Ser	ial Clock Input.
8	nSLEEP	Input enable pi	n. Logic low puts the device into sleep mode.
9	nWDFLT	Open Drain	Watchdog fault indication pin. When a watchdog fault is detected, this pin is pulled Low. External pull-up resistor required.
10	nFAULT	Open Drain	Fault indication pin. When a fault is detected, this pin is pulled low. Pull resistor.
11	MODE	enter	Mode control pin. This pin is locked at power-up or when exiting sleep mode.
12	DVDD	Output	Digital regulator. 3.3V logic power regulator. Connect this pin to GND. Connect a 6.3V, 1µF ceramic capacitor.
14	DEPARTMENT	Output	Analog Regulator. 5V analog power regulator. Connect this pin to GND. A 6.3V, 1µF ceramic capacitor.
15	VREF	Enter the refer	ence input voltage.
16	SO	Output Current	Sense Amplifier Output.
18	GH1	Output High-sig	e gate drive output. Connect to the gate of the high-side MOS.
19	OUT1	Output high-sic	le source. Connect to the source of the high-side MOS.
20	GL1	Output Low-sid	e gate drive output. Connect to the gate of the low-side MOS.
21	SP	Input amplifier	positive input. Connect to one end of the sampling resistor.
22	SN	Input amplifier	negative input. Connect to one end of the sampling resistor.
23	SL2	- Low-Side	Source. Connect to the source of the low-side MOS.
24	GL2	Output Low-sid	e gate drive output. Connect to the gate of the low-side MOS.
25	OUT2	Output high-sid	le source. Connect to the source of the high-side MOS.
26	GH2	Output High-sid	de gate drive output. Connect to the gate of the high-side MOS.
27	VDRAIN	Input high-side	drain connection. Common for both half-bridges.
28	VM	enter	Power input. Connect a 0.1μ F ceramic capacitor to GND and a A capacitor of at least 22μ F is required.
29	VCP	Input/Output Charg	e Pump Output. Connect a 1µF ceramic capacitor from this pin to VM.
30	CP1	Input/output charge	pump switching node. Connect a 0.1µF ceramic resistor between CP1 and CP2.
31	CP2	Input/output ceram	ic capacitors.
32	NC		No connection.

www.toll-semi.com

拓尔微

Recommended operating conditions

parameter	symbol	Minimum	maximum	unit
Operating voltage	VM	5.5	38	V
range Logic input	COME	0	5.5	V
voltage Reference	VREF	0.3(1)	3.6	V
input voltage Logic operating frequency range (IN1/IN2)	f(PWM)		100	kHz
AVDD Load Capacity	IAVDD	0	30(2)	mA
DVDD Load Capacity	IDVDD	0	30(2)	mA
Operating Ambient	FACING	-40	125	°C

Temperature (1) When operating at VREF = 0 to about 0.3V, the accuracy will be reduced;

(2) Comply with power consumption and heat dissipation limits;

Thermal performance parameters

	TMI8721-Q1		
Thermal Indicators	QFN5x5-32	unit	
	32 PINS		
RÿJ Junction-to-ambient thermal resistance	33.5	°C/W	
RÿJC(top) junction to case (top) thermal resistance	20.1	°C/W	
RÿJB Junction-to-Board Thermal Resistance	7.0	°C/W	
ÿJT Junction-Top Characterization Parameters	0.35	°C/W	
ÿJB Connected to Board Characterization Parameters	7.0	°C/W	
RÿJC(bot) junction to case (bottom) thermal resistance	1.95	°C/W	

Electrical characteristics parameters

	symbol	condition	Min.Typ.	Max.Unit		
Parameters Power supply parameter	s (VM, DVDD, AVDD), VCP)				
		Driver module working	5.5		38	V
Vivi operating voltage	EIA	Digital module operation	4.5		38	v
VM operating current	IVM	VM = 13.5V, nSLEEP=1	3	5	7	mA
		VM = 13.5V, nSLEEP=0, TA=25°C			2	
	IVMS DRAG	VM = 13.5V, nSLEEP=0, TA=125°C	0		10	μΑ
Internal digital regulator voltage		2mA load	3	3.3	3.5	V
		30mA load, VM = 13.5 V	2.9	3.2	3.5	·
Internal analog regulator voltage		2mA load	4.7	5	5.3	V
internal analog regulator voltage	VAVDD	30mA load, VM = 13.5 V	4.6	5	5.3	·
Charge Pump (VCP, CP2, CP1)						
		VVM = 13.5 V; IVCP = 0 to 12 mA	22.5 23.5	24.5		
VCP Voltage	VVCP	VVM = 8 V; IVCP = 0 to 10 mA	13.7	14	14.8 V	
		VVM = 5.5 V; IVCP = 0 to 8 mA	8.9	9.1	9.5	
		VVM > 13.5 V	12			
VCP Load Capacity	IVCP	8 V < VVM < 13.5 V	10			mA
		5.5 V < VVM < 8 V	8			
Charge pump frequency	fs(VCP)		1	90		kHz
Sleep time	tsleep	nSLEEP = 0 V to sleep mode			100	μs
Wake-up time	his	nSLEEP = 5 V to operating mode			1	ms
Logic input parameters (IN1/PH, IN2/	EN, nSLEEP, MODE	E, nSCS, SCLK, SDI)				
Input low level	WILL		0		0.8 V	
Input high level	HIV		1.5		5	V
Input hysteresis	VHYS		100			mV
Input low level current	IIL	VIN = 0V	-5		5	ÿA
Input high level current	ІІН	VIN = 5V			50	ÿA
		IN1/PH, IN2/EN, nSLEEP,		100		kÿ
Pull-down resistor	RPD	nSCS, SCLK, SDI		100		,
		MODE		65		kÿ
Pull-up resistor	RPU MODE			48		kÿ
Open-drain output parameters (nFAUL	T, nWDFLT, SDO)	0				
Output low level voltage	VOL	I = 2 mA			0.5 V	
Output high level current	IOD	VOD = 5V	-2		2	ÿΑ

Electrical characteristics parameters (continued)

parameter	symbol	condition	Min.Typ.Max.Unit		
Gate drive parameters (GH1, G	H2, GL1, GL2)	2			
		VVM > 13.5 V;	10.5		
		VGSH with respect to OUTx	10.5		v
High eide VCS voltage	VGSH	VVM = 8 V;	6.9		Ŷ
Flight side VGS voltage		VGSH with respect to OUTx	0.0		
		VVM = 5.5 V;	4.3		v
		VGSH with respect to OUTx			-
Low side VGS voltage	VGSL	VVM > 10.5 V	10.5		v
		VVM < 10.5 V	EIA		-
		IDRIVE = 3'b000	10		
		IDRIVE = 3'b001	20		
		IDRIVE = 3'b010	50		
High side peak drive current		IDRIVE = 3'b011	70		- mA
(SOURCE)	IDRIVE(SRC_HS)	IDRIVE = 3'b100	100		
		IDRIVE = 3'b101	150		
		IDRIVE = 3'b110	200		
		IDRIVE = 3'b111	240		
		IDRIVE = 3'b000	20		- mA
		IDRIVE = 3'b001	40		
		IDRIVE = 3'b010	95		
High side peak drive current		IDRIVE = 3'b011	130		
(SINK)	IDRIVE(SRC_HS)	IDRIVE = 3'b100	180		
		IDRIVE = 3'b101	280		
		IDRIVE = 3'b110	380		
		IDRIVE = 3'b111	460		
		IDRIVE = 3'b000	10		
		IDRIVE = 3'b001	20		
		IDRIVE = 3'b010	45		-
Low side peak drive current		IDRIVE = 3'b011	70		- mA
(SOURCE)	IDRIVE(SRC_HS)	IDRIVE = 3'b100	90		
		IDRIVE = 3'b101	130		
		IDRIVE = 3'b110	180		8
		IDRIVE = 3'b111	225		

Electrical characteristics parameters (continued)

parameter	symbol	condition	Min.Typ.I	Max.Unit		
		IDRIVE = 3'b000		20		
		IDRIVE = 3'b001		40		
		IDRIVE = 3'b010		95		
Low side peak drive current		IDRIVE = 3'b011		130		
(SINK)	IDRIVE(SRC_HS)	IDRIVE = 3'b100		180		mA
		IDRIVE = 3'b101		280		
		IDRIVE = 3'b110		350		
		IDRIVE = 3'b111		440		
		Source current after tDRIVE		10		
Holding current	IHOLD	Sink current after tDRIVE		40		mA
		GHx		750		
Strong pull-down current	STRONG	GLx		1000		mA
		Pulldown GHx to OUTx		150		
Gate pull-down resistor	ROFF	Pulldown GLx to GND		150		ký
Propagation Delay	tpd	IN1, IN2 to GHx or GLx		500		ns
	tDEAD	TDEAD = 2'b00		120		- ns
Output dead time		TDEAD = 2'b01		240		
		TDEAD = 2'b10		480		
		TDEAD = 2'b11		960		
Gate drive current driving						
bitween	tDRIVE			2.5		ÿs
		Forward clamping voltage		16		
Gate clamping voltage (GHx)	VC(GS)	Negative clamping voltage		-0.7		V
Current regulation parameters	(SP, SN, SO, VREF)					
VREF Input Voltage	VVREF		0.3		3.6 V	
		VREF_SCL = 00 (100%)	1			Mÿ
VREF Input Impedance	RVREF	VREF_SCL = 2'b01, 2'b10 or 2'b11		180		kÿ
		GAIN_CS = 00; 10 < VSP < 450 mV;	0.75	10 10 2	-	
		VSN = GND	9.75	10 10.2	0	
		GAIN_CS = 01; 10 < VSP < 225 mV;	19 5 20 2	0.5		VA
Sampling Coin	OF	VSN = GND	13.3 20 2	.0.5		v/v
Sampling Gam		GAIN_CS = 10; 10 < VSP < 112 mV;	39	40	41	
		VSN = GND				
		GAIN_CS = 11; 10 < VSP < 56 mV;	78 80		82	V/V
		VSN = GND				
Input voltage bias	SAW	VSP = VSN = GND		5	10 mV	
Bias temperature drift	VIO(OPERATION)	VSP = VSN = GND		10		ÿV/°C
www.toll-semi.com						拓尔微

Electrical characteristics parameters (continued)

Unless otherwise specified, TA = 25°C.

parameter	symbol	condition	Min Typ M	lax Unit		
SP input current	ISP	V/SP = 100 mV/: V/SN = GND		-20		
			055.0	-20		уА
SO output voltage	ALL		SAW		4.5	v
		$\sqrt{SD} = \sqrt{SN} = CND$ to $\sqrt{SD} = 240$ mV	0,111			
		VSP = VSN = GND 10 VSP = 240 MV,			0.5	
		VSN = GND, OFF = 10; CSO = 200 pF				-
		VSP = VSN = GND to VSP = 120 mV,			1	
Sampling settling time ±1%	tS	VSN = GND, OFF = 20; CSO = 200 pF				ÿs
		VSP = VSN = GND to VSP = 60 mV,			2	
		VSN = GND, OFF = 40; CSO = 200 pF				-
		VSP = VSN = GND to VSP = 30 mV,			4	
		VSN = GND, OFF = 80; CSO = 200 pF	-			
				25		-
Fixed off time	toff	TOFF = 01		50		ÿs
		TOFF = 10		100		
		TOFF = 11		200		
Blanking time	tBLANK			2		ÿs
Protection function						
	VUVLO2	VM falling		5.25		
VM undervoltage threshold		VM rising		5.4] V
VM digital circuit undervoltage threshole	d VUVLO1				4.5	v
VM undervoltage hysteresis	VUVLO_HYS Risin	g to falling threshold		150		mV
				EIA +		
		VCP falling		2.8		
Charge Pump Undervoltage Threshold	VCP_UVLO			EIA +		V
		VCP rising		3.0		
Charge Pump Undervoltage Hysteresis	VCPUV_HYS Risin	g to falling threshold		200		mV
		VDS LEVEL = 3'b000		0.06		
		VDS EVEL = 3'b001		0.145		-
		VDS = EVEL = 3'b010		0.17		-
V/DS Threshold		VDS_LEVEL = 3'b010		0.2		-
				0.12		Ť
		VDS_LEVEL = 3'D100		0.12		-
		VDS_LEVEL = 3'b101		0.24		-
		VDS_LEVEL = 3'b110		0.48		

9

Electrical characteristics parameters (continued)

parameter	symbol	condition	Min.Typ.M	ax.Unit		
VDS Threshold	VDS (OCP) VDS	LEVEL = 3'b111		0.96		V
SP overcurrent protection threshold	VSP (OCP) VSF	with respect to GND	0.8	1	1.2	V
OCP de-peak time	tOCP		4	4.5	5	μs
OCP restart time	tRETRY		2.8	3	3.2 ms	
	tWD	WD_DLY = 2'b00		10		ms
		WD_DLY = 2'b01		20		
Watchdog timer period		WD_DLY = 2'b10		50		
		WD_DLY = 2'b11		100		
Watchdog reset time	peat			64		μs
Over temperature shutdown temperature	TSD			160		°C
Over temperature shutdown hysteresis	THYS			25		°C

SPI Timing Requirements

symbol	describe	Min.Typ.N	/lax.Unit		
tSCLK	SCLK minimum period	100			ns
tSCLKH	CLK minimum high level time	50			ns
tSCLKL	CLK minimum low level time	50			ns
tSU_SDI	SDI input data setup time	20			ns
tHD_SDI	SDI input data hold time	30			ns
tD_SDO	SDO output delay time			30	ns
tSU_nSCS	nSCS setup time	50			ns
tHD_nSCS	nSCS hold time nSCS	50			ns
tHI_nSCS	minimum high level time before pulling low	400			ns
tDIS_nSCS	Shutdown delay time, nSCS pulled high to SDO Hi-Z		10		ns

Figure 2 SPI timing diagram

Functional Description

Overview

The TMI8721-Q1 is an H-bridge gate driver that drives brushed DC motors through four external N-MOSFETs; it operates in independent half-bridges The TMI8721-Q1 operates with a power supply voltage of 5.5V to 38V and can be switched on and off via the nSLEEP pin. The control mode can be configured as: PWM, PH/EN or independent half-bridge.

The TMI8721-Q1 uses smart gate drive technology that combines protection features with gate drive configurability. The gate drive current can be controlled by the device The high-side and low-side

The side gate voltage (VGS) is about 10.5 V. At lower VM voltages, VGS decreases.

The TMI8721-Q1 integrates internal current chopper regulation to effectively limit inrush or startup current and operating current. The device contains a shunt Amplifier, used to provide accurate current measurement for the system controller, SO pin outputs the voltage of the sampling amplifier, and the sampling amplifier gain is adjustable The device provides a range of protection features, including VM undervoltage protection, charge pump undervoltage protection, VDS overvoltage protection for external MOSFET Overcurrent protection and VGS gate fault protection, as well as internal thermal shutdown, etc.

Control method

The TMI8721-Q1 uses a configurable input interface for control and provides three control modes to suit different control schemes. The mode is selected by the MODE pin as shown in Table 1. The MODE pin is latched when the VM is powered on or exits sleep mode.

Table 1 MODE pin configuration

MODE status	Control method
н	Independent Half-Bridge Mode
L	H-bridge PH/EN
Hi-Z	H-bridge PWM
Hi-Z	H-bridge PWM

The truth tables of the logic control method are shown in Table 2, Table 3, and Table 4.

Table 2 PH/EN control mode (MODE = L)

nSLEEP P	Н	EN G	H1 GL1 (DUT1 GH	12 GL2 O	UT2 AV	DD/DVDI	Motor S	tatus	
0	XXXXI	-li-Z XX Hi-Z	Not working							Sleep
1	X 0		0	1	L	0	1	L	Work	brake
1	0	1	0	1	L	1	0	н	Work	Reversal
1	1	1	1	0	н	0	1	L	Work	Forward

				Table 3	iali-briuge co		WODE = H			
nSLEEP I	V 1	IN2 G	H1 GL1 (DUT1 GH	2 GL2 C	UT2 AVI	D/DVD	working	status	
0	XXXX H	li-Z XX Hi-Z	Not working							Sleep
1	х	0	ххх			0	1	L Work	ing HB2 Low side open	
1	х	1	xxx			1	0	H Oper	ation HB2 High side op	en
1	0	х	0	1	L	xxx w	orking HB1 l	ow side on		
1	1	х	1	0	нххх	Operation H	31 High side	open		

Table 3 Half-bridge control mode (MODE = H)

www.toll-semi.com

拓尔微

拓尔微电子

TOLL Microelectronic

Table 4 PWM control mode (MODE = Hi-Z)

nSLEEP IN	1	IN2 G	H1 GL1 (DUT1 GH	2 GL2 OL	T2 AVE	D/DVDD	working s	status	
0	XXXX Hi	-Z XX Hi-Z Not	working							Sleep
1	0	0	0	0	Hi-Z	0	0	Hi-Z Work		slide
1	1	0	1	0	н	0	1	L	Work	Forward
1	0	1	0	1	L	1	0	н	Work	Reversal
1	1	1	0	1	L	0	1	L	Work	brake

Current Regulation

The maximum current through the motor winding can be adjusted by current PWM chopping with a fixed off time.

The motor current depends on the winding DC voltage and inductance to rise at a certain rate. When the current reaches the chopping threshold, the H-bridge enters the braking mode (low-side slow

During the sampling process, the voltage on the SP pin will be blanked for a period of time (tBLANK), and then the current is enabled.

Sampling circuit.

The maximum current limit is set by selecting the sampling resistor and the VREF pin voltage. The sampling gain AV is adjustable to 10, 20, 40, 80V/V.

Use the following formula to calculate the chopping current (ICHOP).

For example, if the sampling resistance is 50mÿ, VREF voltage is 3.3V, sampling ratio is 20V/V, and bias voltage VIO is 5mV, then the maximum current limit value ICHOP is

for

3.2A. Sampling amplifier output (SO)

The voltage at the SO pin of the TMI8721-Q1 is equal to the voltage across the SP and SN pins multiplied by the sampling gain Av.

The following formula can be used to approximately calculate the H-bridge current.

When the SP and SN voltages are 0V, the SO pin outputs the amplifier bias voltage multiplied by the amplifier gain VIO x Av.

When the voltage is greater than 0V, the SO pin output is the sum of the amplifier bias voltage and the voltage across the sense resistor multiplied by the amplifier gain (VIO + VRSENSE) × Av.

Figure 3 Current sampling amplifier output

拓尔微电子 TOLL Microelectronic

The SO pin can provide 5mA of current. If the pin is shorted to ground, or the pin drives a higher current load, the output acts as a constant current source. In this state, the output voltage cannot represent the H-bridge current. In the braking mode device, the current circulates through the low-side MOS, and no current flows through the sampling resistor, so the output voltage cannot represent the H-bridge current.

Figure 4 Current sampling amplifier and current chopping working state

TMI8721-Q1 allows the amplifier to operate in sample-and-hold mode. To enable this mode, set the SH_EN bit to 1 via SPI.

In mode, when the driver is in braking mode, the amplifier output is disabled and in Hi-Z.

Figure 5 Sample and hold working mode

Gate drive structure

The TMI8721-Q1 is a single-channel H-bridge gate driver, and Figure 6 shows the block diagram of the pre-driver.

Figure 6 Pre-driver block diagram

The gate driver inside the TMI8721-Q1 device directly drives the N-channel MOSFET to drive the motor.

Provided by a charge pump, an internal regulator generates the low-side gate drive voltage.

The peak drive current of the gate driver can be configured through the IDRIVE register of the TMI8721-Q1. The peak SOURCE current can be set to the values listed in the Gate Drive Parameters section of the Electrical Parameters. The peak value of the SINK current is approximately twice the peak value of the SOURCE current. Adjusting the peak current changes the output slew rate, which also depends on the input capacitance and gate charge of the MOSFET.

Higher switching frequencies cause additional noise on the VM and GND pins. This additional noise is likely to occur due to the relatively slow reverse recovery of the lowside body diode when the body diode turns on momentarily due to reverse bias voltage (similar to breakdown). Lower switching frequencies result in additional power dissipation because the external MOSFET is turned on and off for longer periods of time. When changing

the output state, a peak current (IDRIVE) is applied for a short time (tDRIVE) to charge the gate capacitance. After this time, a weak current source (IHOLD) is used to hold the gate in the desired state. When selecting the gate drive current for a given external MOSFET, the selected current must be large enough to fully charge or discharge the gate during tDRIVE, otherwise excessive power will be dissipated.

During high-side turn-on, the low-side gate is pulled low by a strong pull-down (ISTRONG). This pull-down prevents the low-side MOSFET QGS from charging and Keeps the MOSFET off even when fast switching occurs at the output. The gate

drive circuit includes dead time in the analog circuit to prevent both the high-side and low-side MOS from turning on at the same time.

Figure 7 Gate drive control external MOS

Overcurrent protection

The TMI8721-Q1 monitors the VDS voltage of each external MOSFET during operation. The OCP state is detected when the VDS voltage is greater than the VDS threshold for longer than the OCP de-spike time (tOCP). After detection, all GATEs in the H-bridge are disabled for the tretry duration. Afterwards, the H-bridge is re-enabled based on the state of the INx pins. If the overcurrent fault persists, the cycle repeats; otherwise the device resumes normal operation. The VDS threshold voltage of the TMI8721-Q1 device is adjustable. The block diagram of VDS detection is shown in Figure 8. 拓尔微电子 TOLL Microelectronic

Figure 8 VDS block diagram

VM undervoltage protection

When the VM voltage is less than the VM undervoltage threshold (UVLO2), all MOSFETs in the H-bridge are turned off, the charge pump is turned off, nFAULT is pulled low, and VM_UVFL is set to

1. After the VM voltage is higher than the undervoltage threshold (UVLO2), the operation resumes, nFAULT is pulled high, and VM_UVFL remains until CLR_FLT is written. Even if the output driver is

disabled, the SPI settings on the

TMI8721-Q1 device are not reset by this fault, and the SPI maintains the settings and corresponding internal activities until the VM voltage is lower than the digital block undervoltage threshold

(UVLO1).

Digital module undervoltage

When the VM voltage is lower than the digital block undervoltage threshold (UVLO1), the internal SPI is reset and nFAULT is pulled low.

VCP undervoltage protection

When the voltage on the VCP pin is lower than the charge pump undervoltage threshold, all MOS in the H-bridge are disabled, nFAULT is pulled low, and VCP_UVFL is set to 1. When the VCP

voltage is higher than the CPUV threshold, the working state is restored. After recovery, nFAULT is pulled high and VCP_UVFL remains until CLR_FLT is written.

Gate Fault Protection (GDF)

The TMI8721-Q1 detects gate driver faults by monitoring the GHx and GLx pins.

A gate fault is detected if there is no increase or decrease after a certain period of time. A gate fault can also occur when GHx or GLx is shorted to GND, OUTx, or VM pins. In addition, a gate driver fault can occur when the selected drive current is insufficient to turn on the external MOSFET. After that, all MOSFETs are disabled, nFAULT is pulled low, and the GDF register bit is set to 1. After the OCP restart time tretry, the driver When the driver is re-enabled, nFLULT is restored. The GDF bit remains until CLR_FLT is written.

Over temperature protection (TSD)

If the device temperature exceeds the overtemperature shutdown temperature, all MOSFETs in the H-bridge are turned off, the charge pump is turned off, and the AVDD regulator is turned off. The nFAULT pin is pulled low and the OTSD register is set to 1. When the device temperature is lower than the TSD-THYS temperature, the device automatically recovers. OTSD remains set until CLR_FLT is written. **Watchdog**

(WDFLT)

The TMI8721-Q1 device supports the MCU-enabled watchdog function, ensuring that the external controller that indicates the device is in a known working state.

SPI sets the WD_EN bit to 1 to enable the watchdog function (disabled by default). After the watchdog is enabled, the internal timer will be set according to the time set by the WD_DLY bit. Register address 0x00 must be read by the MCU within the time interval set by the WD_DLY bit to reset the watchdog.

If the timer expires, the nWDFLT pin is enabled. When the nWDFLT pin is enabled:

- 1. nWDFLT pin is pulled low for 64us;
- 2. The nFAULT pin is pulled low;
- 3. Clear the WD_EN bit;
- 4. The driver is disabled;

Fault Response

The response of the device under fault conditions is shown in Table 5.

Table 5 Fault Response

FAULT	CONDITION	H-BRIDGE	CHARGE PUMP	DEPARTMENT	DVDD	RECOVERY
UVLO	VVM ÿ V(UVLOx)	Disabled	Disabled	Disabled	Operating	VVM ÿ V(UVLOx)
CPUV	VVCP ÿ V(CP_UV)	Disabled	Operating	Operating	Operating	VVCP ÿ V(CP_UV)
OCP	VDS ÿ VDS(OCP) VSP – VSN > 1 V	Disabled	Operating	Operating	Operating	t(RETRY)
GDF	Gate voltage unchanged after t(DRIVE)	Disabled	Operating	Operating	Operating	t(RETRY)
WDFLT	Watchdog timer expires	Disabled	Operating	Operating	Operating	CLR_FLT bit
TSD	TJ ÿ TSD	Disabled	Disabled	Disabled	Operating	TJ ÿ TSD – Thys

programming

SPI

TMI8721-Q1 implements functions such as device configuration, operating parameter setting, and diagnostic information reading through SPI.

The SPI input data (SDI) word consists of 5-bit command bits, 3-bit don't care bits and 8-bit data bits.

The SPI output data (SDO) word consists of 8-bit don't care bits and 8-bit data bits.

For a write command (W0=0), the value fed back by the SDO pin is the data in the register currently being written.

For a read command (W0=1), the value fed back by the SDO pin is the data in the register currently being read.

Table 6 SDI input data format

R/W		ADDRESS DON'T		N'T CA	RE	DATA									
b15 b	14 b13 l	12 b11	b10 b9				b8	b7	b6	b5	b4	b3	b2	b1	b0
W0 A	3 A2 A1	A0 XXX	D7 D6	D5 D4 E	3 D2 D [.]	1									D0

Table 7 SDO output data format

	DON'T CARE							DATA							
b15 b	14 b13 l	12 b11	b10 b9				b8	b7	b6	b5	b4	b3	b2	b1	b0
XX	×хх				XXX	D7 D6 I	95 D4 D	3 D2 D1			o				D0

Figure 9 SPI slave timing diagram

Register Function Description

Table 8 Register Overview

Name Addres	s	7	6	5	4	3	2	1	0
FAULT Status	0	FAULT WDFLT		GDF	OCP VM_U\	OCP VM_UVFL		OTSD	OTW
VDS and GDF	1	H2_GDF L2_GE	Γ	H1_GDF L1_GD	F H2_VDS		L2_VDS H1_VE	s	L1_VDS
Main	2	RESER	/ED		LOCK		IN1/PH	IN2/EN	CLR_FLT
IDRIVE and WD	3	TDE/	AD	WD_EN	WD_0	DLY	IDRIVE		
VDS	4	SO_LIM		VDS		DIS_H2_ VDS	DIS_L2_ VDS	DIS_H1_ VDS	DIS_L1_ VDS
Config	5	TOF	F	CHOP_IDS	VREF_SCL		SH_EN GAIN_CS		cs

1. FAULT Status Register (address = 0x00h)

FAULT status is shown in Table 9 and described in Table 10.

Table 9. FAULT Status Register

b7	b6	b5	b4	b3	b2	b1	b0
FAULT	WDFLT	GDF	OCP	VM_UVFL VCP_U	VFL	OTSD	OTW

Table 10. FAULT Status Field Descriptions

Bit	Field	Туре	Default Desci	iption
7	FAULT	R	0	Logic OR of the FAULT status register excluding the OTW bit
6	WDFLT	R	0	Watchdog time-out fault
5	GDF	R	0	Indicates gate drive fault condition
4	OCP	R	0	Indicates VDS monitor overcurrent fault condition
3	VM_UVFL	R	0	Indicates VM undervoltage lockout fault condition
2	VCP_UVFL	R	0	Indicates charge-pump undervoltage fault condition
1	OTSD	R	0	Indicates overtemperature shutdown
0	OTW	R	0	Indicates overtemperature warning

拓尔微电子 TOLL Microelectronic

2. VDS and GDF Status Register (address = 0x01h)

VDS and GDF status is shown in Table 11 and described in Table 12.

Table 11. VDS and GDF Status Register

b7	b6	b5	b4	b3	b2	b1	b0
H2_GDF	L2_GDF	H1_GDF	L1_GDF	H2_VDS	L2_VDS	H1_VDS	L1_VDS

Table 12. VDS and GDF Status Field Descriptions

Bit	Field	Туре	Default Desci	iption
7	H2_GDF	R	0	Indicates gate drive fault on the high-side FET of half-bridge 2
6	L2_GDF	R	0	Indicates gate drive fault on the low-side FET of half-bridge 2
5	H1_GDF	R	0	Indicates gate drive fault on the high-side FET of half-bridge 1
4	L1_GDF	R	0	Indicates gate drive fault on the low-side FET of half-bridge 1
3	H2_VDS	R	0	Indicates VDS monitor overcurrent fault on the high-side FET of half-bridge 2
2	L2_VDS	R	0	Indicates VDS monitor overcurrent fault on the low-side FET of half-bridge 2
1	H1_VDS	R	0	Indicates VDS monitor overcurrent fault on the high-side FET of half-bridge 1
0	L1_VDS	R	0	Indicates VDS monitor overcurrent fault on the low-side FET of half-bridge 1

3. Main Control Register (address = 0x02h)

Main control is shown in Table 13 and described in Table 14.

Table 13. Main Control Register

b7	b6	b5	b4	b3	b2	b1	b0
RESER'	VED		LOCK		IN1/PH	IN2/EN	CLR_FLT

Table 14. Main Control Field Descriptions

Bit	Field	Туре	Default Des	cription
7-6	RESERVED	R/W	00	Reserved
5-3	LOCK	R/W	011	Write 110b to lock the settings by ignoring further register changes except to address 0x02h. Writing any sequence other than 110b has no effect when unlocked. Write 011b to this register to unlock all registers. Writing any sequence other than 011b has no effect when locked.
2	IN1/PH	R/W	0	This bit is ORed with the IN1/PH pin
1	IN2/EN	R/W	0	This bit is ORed with the IN2/EN pin
0	CLR_FLT	R/W	0	Write a 1 to this bit to clear the fault bits

4. IDRIVE and WD Control Register (address = 0x03h)

IDRIVE and WD control is shown in Table 15 and described in Table 16.

Table 15. IDRIVE and WD Control Register

b7	b6	b5	b4	b3	b2	b1	b0
RESER	VED		LOCK		IN1/PH	IN2/EN	CLR_FLT

Table 16. IDRIVE and WD Control Field Descriptions

Bit	Field	Туре	Default Des	ription
				Dead time
				00b = 120 ns
7-6	TDEAD	R/W	00	01b = 240 ns
				10b = 480 ns
				11b = 960 ns
5	WD_EN	R/W	0	Enables or disables the watchdog time (disabled by default)
			00	Watchdog timeout delay (if WD_EN = 1)
				00b = 10 ms
4-3	WD_DLY	R/W		01b = 20 ms
				10b = 50 ms
				11b = 100 ms
3.0		D AA/	111	Sets the peak source current and peak sink current of the gate
2-0	IDRIVE	r./ VV		drive. Table lists the bit settings.

拓尔微

拓尔微电子

TOLL Microelectronic

Table 17. IDRIVE Bit Settings

Bit Value	Source C	urrent	Sink Current			
Dit Value	VVM = 5.5 V	VVM = 13.5 V	VVM = 5.5 V	VVM = 13.5 V		
000	High-side: 10 mA	High-side: 10 mA	High-side: 20 mA	High-side: 20 mA		
	Low-side: 10 mA	Low-side: 10 mA	Low-side: 20 mA	Low-side: 20 mA		
010	High-side: 20 mA	High-side: 20 mA	High-side: 40 mA	High-side: 40 mA		
010	Low-side: 20 mA	Low-side: 20 mA	Low-side: 40 mA	Low-side: 40 mA		
010	High-side: 50 mA	High-side: 50 mA	High-side: 90 mA	High-side: 95 mA		
010	Low-side: 40 mA Low-side: 45 mA		Low-side: 85 mA	Low-side: 95 mA		
011	High-side: 70 mA	High-side: 70 mA	High-side: 120 mA	High-side: 130 mA		
	Low-side: 55 mA	Low-side: 60 mA	Low-side: 115 mA	Low-side: 125 mA		
100	High-side: 100 mA	High-side: 105 mA	High-side: 170 mA	High-side: 185 mA		
100	Low-side: 75 mA	Low-side: 90 mA	Low-side: 160 mA	Low-side: 180 mA		
101	High-side: 145 mA	High-side: 155 mA	High-side: 250 mA	High-side: 265 mA		
	Low-side: 115 mA	Low-side: 130 mA	Low-side: 235 mA	Low-side: 260 mA		
110	High-side: 190 mA	High-side: 210 mA	High-side: 330 mA	High-side: 350 mA		
	Low-side: 145 mA	Low-side: 180 mA	Low-side: 300 mA	Low-side: 350 mA		
111	High-side: 240 mA	High-side: 260 mA	High-side: 420 mA	High-side: 440 mA		
	Low-side: 190 mA	Low-side: 225 mA	Low-side: 360 mA	Low-side: 430 mA		

5. VDS Control Register (address = 0x04h)

VDS control is shown in Table 18 and described in Table 19.

Table 18. VDS Control Register

b7	b6	b5	b4	b3	b2	b1	b0
SO_LIM	VDS		DIS_H2_VDS DIS_L	2_VDS DIS_H1_VDS	DIS_L1_VDS		

Bit	Field	Туре	Default Des	ription
7	80. LIM	R/W	0	0b = Default operation
,	' SU_LIM R/W		0	1b = SO output is voltage-limited to 3.6 V
				Sets the VDS(OCP) monitor for each FET
				000b = 0.06V
				001b = 0.145V
				010b = 0.17 V
6-4	VDS	R/W	111	011b = 0.2 V
				100b = 0.12V
				101b = 0.24 V
				110b = 0.48V
				111b = 0.96 V
		B/M/	0	Disables the VDS monitor on the high-side FET of half-bridge 2
3	DIS_H2_VDS	R/W	0	(enabled by default)
		DAA		Disables the VDS monitor on the low-side FET of half-bridge 2
2	DIS_L2_VDS	R/W	0	(enabled by default)
		5.44		Disables the VDS monitor on the high-side FET of half-bridge 1
1	DIS_H1_VDS	K/W	0	(enabled by default)
		B M		Disables the VDS monitor on the low-side FET of half-bridge 1
	UIS_L1_VDS	K/ VV	U	(enabled by default)

Table 19. VDS Control Field Descriptions

6. Config Control Register (address = 0x05h)

Config control is shown in Table 20 and described in Table 21.

Table 20. Config Control Register

b7	b6	b5	b4	b3	b2	b1	b0
TOFF		CHOP_IDS	VREF_	SCL	SH_EN	GAIN_	_CS

拓	尔	微	电	子
TOL	L Mi	croe	lectro	onic

able 21. Config Con	trol Field Descriptions
---------------------	-------------------------

Bit	Field	Туре	Default Des	cription
7-6	TOFF	R/W	00	Off time for PWM current chopping 00b = 25 μs 01b = 50 μs 10b = 100 μs 11b = 200 μs
5	CHOP_IDS	R/W	0	Disables current regulation (enabled by default)
4-3	VREF_SCL	R/W	00	Scale factor for the VREF input 00b = 100% 01b = 75% 10b = 50% 11b = 25%
2	SH_EN	R/W	0	Enables sample and hold operation of the shunt amplifier (disabled by default)
1-0	GAIN_CS	R/W	01	Shunt amplifier gain setting 00b = 10V/V 01b = 19.8 V/V 10b = 39.4 V/V 11b = 78 V/V

Application Schematic

www.toll-semi.com

拓尔微

VM

1µF VCP

CP1

DVDD

= 0.1µF CP<u>2</u>

Power

Charge Pump

3.3-V LDO

拓尔微电子 TOLL Microelectronic

block diagram

TMI8721-Q1

Figure 11 TMI8721-Q1 block diagram

Packaging information

QFN5x5-32

Top View

	Dimensions In Mil	limeters		Dimensions In Millimeters		
Symbol	Min	Мах	Symbol	Min	Мах	
A	0.700	0.800	E1	3.300 3.500		
A1	0.000	0.050	k	0.200MIN		
A3	0.203R	EF	and	0.500TYP		
D	4.924	5.076	b	0.200	0.300	
AND	4.924	5.076	L	0.324	0.476	
D1	3.300	3.500				

拓尔微电子 TOLL Microelectronic

Packing size

Tape size: QFN5x5-32

Unit: mm

Symbol Di	mensions Symbo	I Dimensions	Symbol Dimens	ions Symbol	Dimensions		
A0	6.70±0.10	i	5° TYPE	AND	1.75±0.10	D1	1.55 MIN
B0	10.05±0.10	t	0.30±0.05	F	7.50±0.10	P0	0.30±0.10
К0	1.50±0.10 At 1	6.00±0.30		P2	2.00±0.10	10P0	40.00±0.20
Q1	1.35±0.10	Р	8.00±0.10	D	1.50±0.10		

Reel size: QFN5x5-32

Unit: mm

ØA	ØN	W1(+2/0) W2(Max)		W2(Max)
330±2.0	100±1.0	12.4	18.4	11.9/15.4

Notes:

1) All dimensions are in millimeters.

2) The unit quantity per roll is 5000.

3) The MSL level is 3.

Important Notice

This document only provides product information. Toer Microelectronics Co., Ltd. reserves the right to make corrections, modifications, enhancements, improvements and other

He reserves the right to change or discontinue any product at any time without notice.

Toll Microelectronics Co., Ltd. is not responsible for the use of any circuitry other than circuitry wholly embodied in the product. No circuit patent license is

implied.

All rights reserved by Toer Microelectronics Co., Ltd.

http://www.toll-semi.com