

TMP4399C TOSHIBA MOS Digital Integrated Circuit Silicon Monolithic N-channel Silicon Gate Depletion Load

PIN CONNECTIONS

DESCRIPTION

TMP4399C is a single-chip microcomputer for evaluation, provided with the general purpose 16K EPROM (TMM323D) inserting socket, being capable of developing and checking hardware and software of TLCS-43 Application System by use of the EPROM.

TMP4399C is equipped with a 24-pin socket which may directly mount the general purpose 16K EPROM (TMM323D) on the surface of the package. Therefore, when the fixed program written in the general purpose 16K EPROM is mounted on the package, TMP4399C becomes pin-compatible with TMP4315BP/ TMP4320AP as the end product which the program has been written in the mask ROM. The former operates the same as the latter.

TMP4399C can be used within the range of a microcomputer for evaluating the TLCS-43 system as well as for mounting an equipment made on an experimental basis.

FEATURES

- General purpose 16K EPROM TMM323D (equivalent to INTEL2716) can be used.
- Compatible with TLCS-43 single-chip microcomputer family TMP4315BP/ 4320AP in pin.
- Compatible with TLCS-43 Series in software.
- o ROM 2KW x 8 BIT RAM 128W x 4 BIT
- Can be operated by +5V single power supply. Voltage margin is ±10% equal to that of mass-produced products.
- o Operating temperature range is $-10 \sim$ _G 70°C equal to that of mass-produced products.

TEST			7	\mathcal{T}		ſ	42	þ	VDI)
INOO							41	Þ	INl	0
INO1	□3					į	40	Þ	INl	1
INO2						i	39	Þ	INl	2
INO3	d₅					1	38	口	INI	3
oto _o	de						37	Ь	1N2	0
oto _l	d7					1	36	Ь	INZ	ʻ1
OTO2	3 8						35	Ь	1N2	2
OTOZ							34	h	INA	3
OTIO	H10	$\bigcirc 1$	A7	Vee	24	б	33	F	101	-0
0T11	H11	2 2	A6	×00 A8	23	õ	32	F	101	- 1
0110	H1 2	03	45	49	22	õ	31	Fi	101	-
0710	H.,		44	Vnn	21	5	30	F	TOI	~
0113	1.	0*	A#	• PP	~ - ~	8	20	H	100	
0120		05	A3 42			X	~ ~ ~	Ľ	100	'U _
01&1	<u>Ч</u> *°	0.	A.	A10	19	0	20 07	E	100	'1
OT 22	\Box^{16}	07	Al	′D∕ R01	118	Q	27	Ш	100	2
ot23	[]17	O8	AO	D7	17	Ο	26	Ρ	100) ₃
OT 3 C	18	О۹	DO	D_6	16	Ο	25		Xou	JТ
OT31	D 19	Ou		D_5	15	0	24		XIN	1
OT 32	20	O1	1 DR	D_4	14	0	23	Ь	RSI	ē
GND		01	S G NI	D ₃	13	0	22	þ	INT	ā
s.	(Not	te) () ma	ark:	So TM	cke M32	et 23D	fo	r	

TMP4399C

PRECAUTIONS FOR USING TMP4399C

1. Precautions for using OT3 Output Port

The output port and input/output port of TLCS-43 are composed as shown in the following figures.

(OUTPUT PORT)

Therefore, when the circuit which clamps the output voltage level is connected directly to the outside of terminal, if the output data is referred to by the program, for the output port such data can be normally read, but for the input/output port erroneous data may be read unless the voltage level can be ensured as an input signal by the clamp circuit. For the purpose of reading correct data, it is necessary to separate the terminal from the clamp circuit by the buffer circuit.

The output port OT3 of TMP4399C serves as an input/output port owing to the configuration of the chip. In case of the system using TMP4315BP or TMP4320AP, therefore, if the output data of OT3 Port must be referred to by the program, care should be taken that the circuit which clamps the output level may not be connected directly to OT3 Port at the stage of development where TMP4399C is used.

TMP4399C

INTEGRATED CIRCUIT

TECHNICAL DATA

2. Precautions for using large output current

In case of TMP4399C, each terminal of the output port OT1 and OT2 may sink large output current IoL =20mA TYP. (VoL =2V) when there ports sink large output current, a part of the DC electrical characteristics is changed. Attention should be paid to the main characteristics that the high input voltage of $V_{\rm IH1}$ and the low output voltage of $V_{\rm OL}$ at every terminal to be applied will become the values shown as follows:

V_{IH1} MIN. & 2.3 \sim 2.4V V_{OL} MAX. & 0.5 \sim 0.6V (I_{OL} = 1.6mA.)

The maximum rating of large output current is 30 mA.

INTEGRATED CIRCUIT

TECHNICAL DATA

ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS

Symbol	CHARACTERISTICS	RATING	UNIT
VDD	Supply Voltage	-0.5 ~ 7	V
VIN	Input Voltage	-0.5 ∿ 7	V
V _{OUT1}	Output Voltage(excepting open drain terminal)	-0.5 ~ 7	V
VOUT2	Output Voltage(Open drain terminal)	-0.5 ~ 10	V
IOUT1	Output Current(Excepting OT1, OT2)	4	mA
IOUT2	Output Current (OT1, OT2)	30	mA
Tstg	Storage Temperature	-55 ~ 125	°C
Topr	Operating Temperature	-10 ~ 70	°C
Tsld	Soldering Temperature	260(10 sec.)	°C
PW	Power Consumption (Ta = 70°C)	1	W

D.C. ELECTRICAL CHARACTERISTICS (VDD = $5V \pm 10\%$, Topr = $-10 \sim 70$ °C)

Symbol	CHARACTERISTICS	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
V _{IH1}	Input High V. (excepting INT, XIN)	-	2.2	-	VDD	V
V _{IH2}	Input High Voltage (INT)	-	3.5	-	VDD	v
VIL	Input Low Voltage	_	0	-	0.6	V
VCH	Clock Input High Voltage (XIN)	-	3.8	-	VDD	v
VCL	Clock Input Low Voltage (^X IN)	-	0	-	0.6	V
IIN	Input Current(excepting RST, INT)	VIN = VDD	-	-	20	μ A
I _{IL2}	Input Low Current (RST, INT)	$V_{IN} = 0.6V$	-	-	-0.1.	mA
ILO	Output Leak Current(OTO,OT1,OT2)	V _{OUT} = V _{DD}	-	-	20	μA
VOH	Output High Voltage (AO \sim A1O)	$I_{OH} = -100 \mu A$	24	-	-	V
VOL	Output Low V. (excepting XOUT)	IOL = 1.6 mA	-	-	0.4	v
IDD	Supply Voltage	-	-	70	120	mA

[Operation of Evaluator Chip] Refer to the paragraph entitled "Precautions for Using Large Output Current".

Refer to timing charts (1) and (2).

А.С.	ELECTRICAL	CHARACTERISTICS	$(V_{DD} = 5V \pm$	10%,	$T_{opr} = -10 \sim 70^{\circ}$	°C)
------	------------	-----------------	--------------------	------	---------------------------------	-----

Symbol	CHARACTERISTIC	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
tø0	Clock Cycle Time	_	2	-	5	μs
ts	Input Setup Time	_	0.9	-	-	μs
tH	Input Hold Time	_	0.9	-	-	μs
tD	Output Delay Time	CL=50PF R(Pull UP)=50kΩ,1TTL	-	-	1.8	μs
tINT	INT Low Level Width	-	4	-	-	Cycle
tRST	RST Low Level Width	-	4	-	-	Cycle
tCD	Clock Output Delay Time	$C_L = 50PF, 1TTL$	-	-	0.4	μs
tAD	Address Output Delay Time	$C_L = 50PF, 1TTL$	-	-	0.95	μs
tIS	Instruction Input Setup Time	-	0.4	-	-	μs
t _{IH}	Instruction Input Hold Time	-	0	-	-	μs

TMP4399C

Toshiba **R Z**

TECHNICAL DATA

TIMING CHART

(Note) Since internal clock (CLK1) is not output, it cannot be seen from the outside.

 $254 \times 11 = 27.94 \pm 0.3$

1524±02 17.7MAX. 19.05±02

2.54±0.25

 \bigcirc

۲

1206±02

86

17,15±0,15 13,3±0,1 10,91±0,1

TMP4399C

INTEGRATED CIRCUIT

