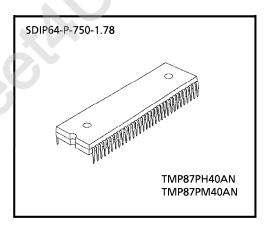
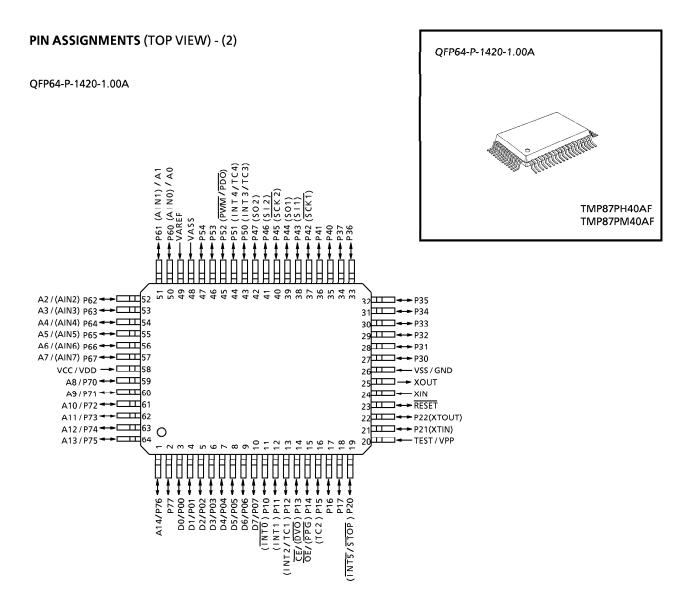

CMOS 8-BIT MICROCONTROLLER


TMP87PH40AN, TMP87PH40AF, TMP87PM40AN, TMP87PM40AF

The 87PH40A is a One-Time PROM microcontroller with low-power 128K bits (16K bytes) electrically programmable read only memory for the 87C840/CC40/CH40 system evaluation. The 87PM40A is a One-time PROM microcontroller with low-power 256K bits (32K bytes) electrically programmable read only memory for the 87CK40A/M40A system evaluation. The 87PH40A/PM40A are pin compatible with the 87C840/CC40/CH40/CK40A/CM40A. The operations possible with the 87C840/CC40/CH40/CK40A/CM40A can be performed by writing programs to PROM. The 87PH40A/PM40A can write and verify in the same way as the TC57256AD using an adaptor socket BM1136/BM1137 and an EPROM programmer.


PART No	OTP	RAM	PACKAGE	Adapter socket
TMP87PH40AN	16K × 8-bit	512 × 8-bit	SDIP64-P-750-1.78	BM1136
TMP87PH40AF	TOK X 6-DIL	312 X 6-DIL	QFP64-P-1420-1.00A	BM1137
TMP87PM40AN	22K v 0 hi+	1K × 8-bit	SDIP64-P-750-1.78	BM1136
TMP87PM40AF	32K × 8-bit		QFP64-P-1420-1.00A	BM1137

PIN ASSIGNMENTS (TOP VIEW) - (1)

www.DataSheetAll.com

PIN FUNCTION

The 87PH40A/PM40A have two modes: MCU and PROM.

(1) MCU mode

In this mode, the 87PH40A/PM40A are pin compatible with the 87C840/CC40/CH40/CK40A/CM40A (fix the TEST pin at low level).

(2) PROM mode

PIN NAME (PROM mode)	INPUT/OUTPUT	FUNCTIONS	PIN NAME (MCU mode)			
A14 to A8 A7 to A0	Input	PROM address inputs	P76 to P70 P67 to P60			
D7 to D0	I/O	PROM data input/outputs	P07 to P00			
CE		Chip enable signal input (active low)	P13			
ŌĒ	Input	Output enable signal input (active low)	P14			
VPP		+ 12.5V / 5V (Program supply voltage)	TEST			
vcc	Power supply	+ 5V	VDD			
GND		0V	VSS			
P37 to P30						
P47 to P40		Pull-up with resistance for input processing				
P54 to P50						
P11						
P21	I/O	I/O PROM mode setting pins. Be fixed at high level.				
P77						
P17 to P15						
P12, P10		DROM mode setting nine. Be fived at level and				
P22, P20		PROM mode setting pins. Be fixed at low level.				
RESET						
XIN	Input	Connect an 8MHz oscillator to stabilize the internal state.				
XOUT	Output	connect an own iz oscinator to stabilize the internal state.				
VAREF	Power Supply	0V (GND)				
VASS		, ,				

OPERATIONAL DESCRIPTION

The following explains the 87PH40A/PM40A hardware configuration and operation. The configuration and functions of the 87PH40A are the same as those of the 87CK40A/CH40, 87PM40A are the same as those of the 87CK40A/CM40A, except in that a one-time PROM is used instead of an on-chip mask ROM.

The 87PH40A/PM40A are placed in the *single-clock* mode during reset. To use the dual-clock mode, the low-frequency oscillator should be turned on by executing [SET (SYSCR2). XTEN] instruction at the beginning of the program.

1. OPERATING MODE

The 87PH40A/PM40A have two modes: MCU and PROM.

1.1 MCU Mode

The MCU mode is activated by fixing the TEST / VPP pin at low level.

In the MCU mode, operation is the same as with the 87C840/CC40/CH40/CK40A/CM40A (the TEST / VPP pin cannot be used open because it has no built-in pull-down resistance).

1.1.1 Program Memory

The 87PH40A has a $16K \times 8$ -bit (addresses $C000_H$ -FFFF_H in the MCU mode, addresses 4000_H -7FFF_H in the PROM mode), the 87PM40A has a $32K \times 8$ -bit (address 8000_H -FFFF_H in the MCU mode, address 0000_H -7FFF_H in the PROM mode) of program memory (OTP).

To use the 87PH40A/PM40A as the system evaluation for the 87C840/CC40/CH40/CK40A/CM40A, the program should be written to the program memory area as shown in Figure 1-1.

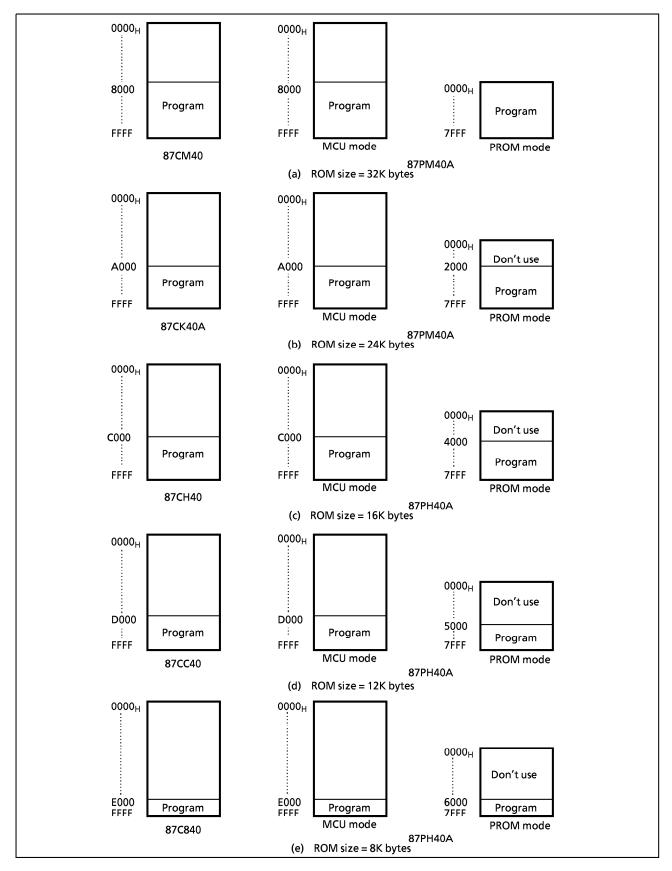


Figure 1-1. Program Memory Area

Note: Either write the data FFH to the unused area or set the PROM programmer to access only the program storage area.

1.1.2 Data Memory

The 87PH40A has an on-chip 512 \times 8-bit data memory (static RAM). The 87PM40A has an on-chip 1K \times 8-bit data memory (static RAM).

1.1.3 Input/Output Circuitry

(1) Control pins

The control pins of the 87PH40A/PM40A are the same as those of the 87C840/CC40/CH40/CK40A /CM40A except that the TEST pin has is no built-in pull-down resistance.

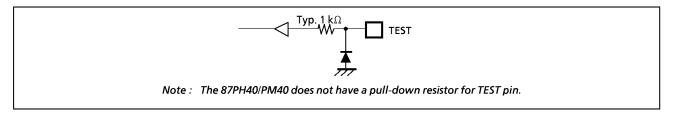


Figure 1-2. TEST pin

(2) I/O ports

The I/O circuitries of 87PH40A/PM40A I/O ports the are the same as the code A type I/O circuitries of the 87C840/CC40/CH40/CK40A/CM40A.

When using as an evaluator of other I/O codes (B, C, G), external pull-up resistors are required.

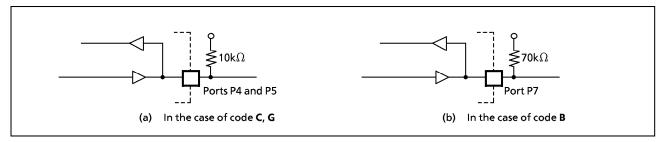


Figure 1-3. I/O Circuitry Code and External Circuitry

1.2 PROM Mode

The PROM mode is activated by setting the TEST, RESET pin and the ports P17-P10, P22-P20 and P77 as shown in Figure 1-4. The PROM mode is used to write and verify programs with a general-purpose PROM programmer. The high-speed programming mode can be used for program operation.

The 87PH40A/PM40A are not supported an *electric signature* mode, so the ROM type must be set to TC57256AD.

Set the adaptor socket switch to "P".

Note: Please set the high-speed programing mode according to each manual of PROM programmer.

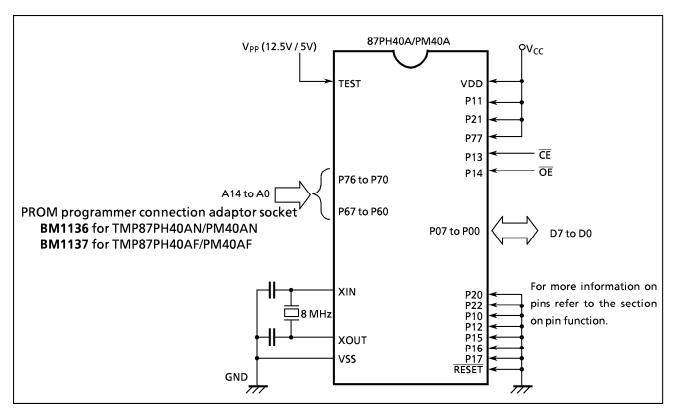


Figure 1-4. Setting for PROM Mode

1.2.1 Programming Flowchart (High-speed Programming Mode-I)

The high-speed programming mode is achieved by applying the program voltage (\pm 12.5 V) to the Vpp pin when Vcc = 6 V. After the address and input data are stable, the data is programmed by applying a single 1ms program pulse to the \overline{CE} input. The programmed data is verified. If incorrect, another 1ms program pulse is applied and then the programmed data is verified. This process should be repeated (up to 25 times) until the program operates correctly. Programming for one address is ended by applying additional program pulse with width 3 times that needed for initial programming (number of programmed times \times 1 ms). After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = Vpp = 5 V.

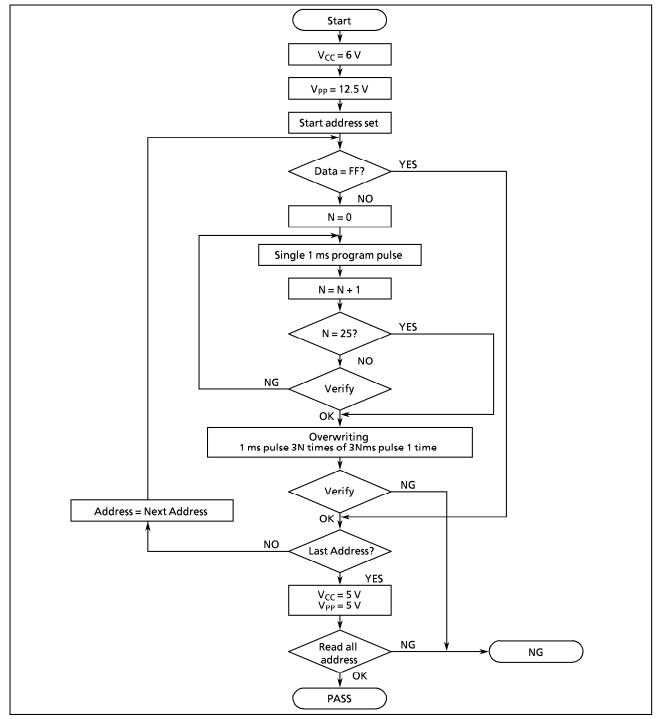


Figure 1-5. Flowchart of High-speed Programming Mode - I

1.2.2 Programming Flowchart (High-speed Programming Mode-II)

The high-speed programming mode is achieved by applying the program voltage (+ 12.75 V) to the Vpp pin when Vcc = 6.25 V. After the address and input data are stable, the data is programmed by applying a single 0.1ms program pulse to the $\overline{\text{CE}}$ input. The programmed data is verified. If incorrect, another 0.1ms program pulse is applied and then the programmed data is verified. This process should be repeated (up to 25 times) until the program operates correctly. After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = Vpp = 5 V.

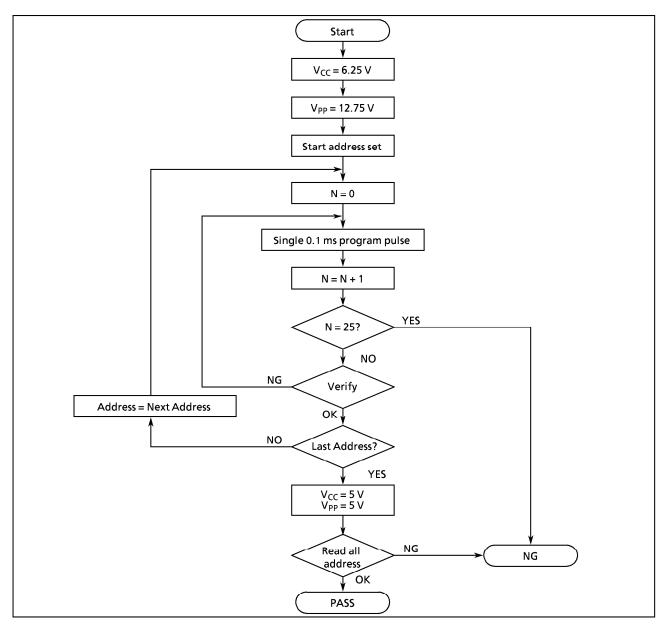


Figure 1-6. Flowchart of High-speed Programming Mode - II

1.2.3 Writing Method for General-purpose PROM Program

(1) Adapters

BM1136: TMP87PH40AN, 87PM40AN BM1137: TMP87PH40AF, 87PM40AF

(2) Adapter setting

Switch (SW1) is set to side N.

- (3) PROM programmer specifying
 - i) PROM type is specified to TC57256AD.

Writing voltage: 12.5 V (high-speed program I mode)

12.75 V (high-speed program II mode)

ii) Data transfer (copy) (note 1)

In TMP87PH40A, EPROM is within the addresses 4000 to 7FFFH. In TMP87PM40A, EPROM is within the address 0000 to 7FFFH. Data is required to be transferred (copied) to the addresses where it is possible to write. The program area in MCU mode and PROM mode is referred to "Program memory area" in figure 1-1.

Ex. In the block transfer (copy) mode, executed as below.

ROM capacity of 16KB: transferred addresses C000 to FFFFH to addresses 4000 to 7FFFH

iii) Writing address is specified. (note 1)

(4) Writing

Writing/Verifying is required to be executed in accordance with PROM programmer operating procedure.

- Note 1: In case of TMP87PH40A, the specifying method is referred to the PROM programmer description. The data in addresses 0000 to 3FFFH must be specified to FFH.
- Note 2: When MCU is set to an adapter or the adapter is set to PROM programmer, a position of pin 1 must be adjusted. If the setting is reversed, MCU, the adapter and PROM program is damaged.
- Note 3: TMP87PH40A, 87PM40A do not support the electric signature mode (hereinafter referred to as "signature"). If the signature is used in PROM program, a device is damaged due to applying $12V \pm 0.5V$ to the address pin 9 (A9). The signature must not be used.

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

 $(V_{SS} = 0V)$

PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNIT
Supply Voltage	V _{DD}		- 0.3 to 7	V
Program Voltage	V _{PP}		– 0.3 to 13.0	٧
Input Voltage	V _{IN}		- 0.3 to V _{DD} + 0.3	V
Output Voltage	V _{OUT1}	Except sink open drain pin , but include P2 and RESET	- 0.3 to V _{DD} + 0.3	
	V _{OUT2}	Sink open drain pin except port P2, RESET	- 0.3 to 10	· ·
	I _{OUT1}	Ports P0, P1, P2, P4, P5, P6, P7	3.2	
Output Current (Per 1 pin)	I _{OUT2}	Port P3	30	mA
	Σ I _{OUT1}	Ports P0, P1, P2, P4, P5, P6, P7	120	
Output Current (Total)	Σ I _{OUT2}	Port P3	120	mA
		TMP87PH40AN/PM40AN	600	
Power Dissipation [Topr = 70 °C]	PD	TMP87PH40AF/PM40AF	350	mW
Soldering Temperature (time)	Tsld		260 (10 s)	°C
Storage Temperature	Tstg		– 55 to 125	°C
Operating Temperature	Topr		- 30 to 70	°C

RECOMMENDED OPERATING CONDITIONS

 $(V_{SS} = 0V, Topr = -30 to 70 °C)$

PARAMETER	SYMBOL	PINS	c	ONDITIONS	Min.	Max.	UNIT
			fc = 8MHz	NORMAL1, 2 mode	4.5		
			IC - GIVITIZ	IDLE1, 2 mode	10		
			fc =	NORMAL1, 2 mode			
Supply Voltage	V_{DD}		4.2MHz	IDLE1, 2 mode	2.7	6.0	V
			fs =	SLOW mode	2.7		
			32.768kHz	SLEEP mode			
				STOP mode	2.0		
	V _{IH1}	Except hysteresis input] ,	> 4 5 1	$V_{DD} \times 0.70$		
Input High Voltage	V _{IH2}	Hysteresis input	V _{DD} ≥ 4.5V V _{DD} <4.5V		$V_{DD} \times 0.75$	V_{DD}	V
	V _{IH3}				V _{DD} × 0.90		
	V _{IL1}	Except hysteresis input				V _{DD} × 0.30	
Input Low Voltage	V _{IL2}	Hysteresis input	V _{DD} ≧ 4.5V		0	V _{DD} × 0.25	v
	V_{IL3}		V _{DD} <4.5V			V _{DD} × 0.10	
		WILL VOLLE	V _{DD} = 4.5 to 6V		0.4	8.0	N411-
Clock Frequency	fc XIN, XOUT		V _{DD} = 2.7 to 6V		0.4	4.2	MHz
	fs	XTIN, XTOUT			30.0	34.0	kHz

Note 1: Clock frequency fc; Supply voltage range is specified in NORMAL mode and IDLE mode.

D.C. CHARACTERISTICS

($V_{SS} = 0V$, Topr = -30 to 70 °C)

PARAMETER	SYMBOL	PINS	CONDIT	CONDITIONS		Тур.	Max.	UNIT
Hysteresis Voltage	V _{HS}	Hysteresis inputs	V _{DD} = 5.0V		_	0.9	_	V
	I _{IN1}	TEST						
Input Current	I _{IN2}	Open drain ports and tri-state ports	$V_{DD} = 5.5V$		_	-	± 2	μΑ
	I _{IN3}	RESET, STOP	$V_{IN} = 5.5 V/0 V$					
Input Resistance	R _{IN2}	RESET			100	220	450	kΩ
Output Leakage	I _{LO1}	Open drain ports	V _{DD} = 5.5V, VOU	V _{DD} = 5.5V, VOUT = 5.5V		-	2	
Current			V _{DD} = 5.5V, VOU	_	-	+ 2	μΑ	
Output High Voltage	V _{OH2}	Tri-state ports	V _{DD} = 4.5V, I _{OH} =	$V_{DD} = 4.5V, I_{OH} = -0.7mA$		-	_	V
Output Low Voltage	V _{OL}	Except XOUT and port P3	V _{DD} = 4.5V, I _{OL} =	1.6mA	_	-	0.4	v
Output Low Current	I _{OL3}	Port P3	V _{DD} = 4.5V, V _{OL} :	= 1.0V	-	20	-	mA
Supply Current in			V _{DD} = 5.5V	87PH40A	_	9	14	mA
NORMAL 1, 2 mode			fc = 8 MHz	87PM40A	_	12	18	
Supply Current in			fs = 32.768 kHz	87PH40A	_	4	6	mA
IDLE 1, 2 mode Supply Current in	ł		$V_{IN} = 5.3V/0.2V$	87PM40A	_	4.5	-	
SLOW mode	I_{DD}		$V_{DD} = 3.0V$ fs = 32.768 kHz		_	30	60	μA
Supply Current in SLEEP mode			$V_{IN} = 2.8 V/0.2 V$		-	15	30	μA
Supply Current in STOP mode			$V_{DD} = 5.5V$ $V_{IN} = 5.3V/0.2V$		_	0.5	10	μΑ

Note1 : Typical values show those at Topr = 25 °C.

Note 2 : Input Current l_{IN1} , l_{IN3} ; The current through pull-up or pull-down resistor is not included.

Note 3: IDD; Except for I_{REF}

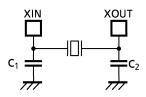
A / D CONVERSION CHARACTERISTICS

 $(V_{SS} = 0V, V_{DD} = 2.7 \text{ to } 5.5V, Topr = -30 \text{ to } 70 \,^{\circ}\text{C})$

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
Analog Reference Voltage	V _{AREF}		2.7	_	V _{DD}	.,
	V _{ASS}	$V_{AREF} - V_{ASS} \ge 2.5 V$	V _{SS}	-	1.5	V
Analog Input Voltage	V_{AIN}		V _{ASS}	-	V _{AREF}	V
Analog Supply Current	I _{REF}	$V_{AREF} = 5.5 \text{ V}, \ V_{ASS} = 0.0 \text{ V}$	_	0.5	1.0	mA
Nonlinearity Error		$V_{DD} = 5.0 \text{ V}, V_{SS} = 0.0 \text{ V}$ $V_{ARFF} = 5.000 \text{ V}$	_	_	± 1	
Zero Point Error		V _{ASS} = 0.000 V	_	_	± 1	
Full Scale Error		or V _{DD} = 2.7 V, V _{SS} = 0.0 V V _{ARFF} = 2.700 V	_	_	± 1	LSB
Total Error		V _{ASS} = 0.000 V	_	_	± 2	

Note: The above errors has no quantizing error.

A.C. CHARACTERISTICS


 $(V_{SS} = 0V, V_{DD} = 4.5 \text{ to } 6.0V, Topr = -30 \text{ to } 70 \,^{\circ}\text{C})$

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
		In NORMAL1, 2 modes	0.5		10	
		In IDLE1, 2 modes	0.5	_	10	
Machine Cycle Time	t _{cy}	In SLOW mode				μS
		In SLEEP mode	117.6	_	133.3	
High Level Clock Pulse Width	t _{WCH}	For external clock operation	62.5			
Low Level Clock Pulse Width	t _{WCL}	(XIN input), fc = 8 MHz	62.5	_	_	ns
High Level Clock Pulse Width	t _{WSH}	For external clock operation				
Low Level Clock Pulse Width	t _{WSL}	(XTIN input), fs = 32.768 kHz	14.7	_	_	μS

RECOMMENDED OSCILLATING CONDITIONS

 $(V_{SS} = 0V, V_{DD} = 4.5 \text{ to } 6.0V, Topr = -30 \text{ to } 70 \,^{\circ}\text{C})$

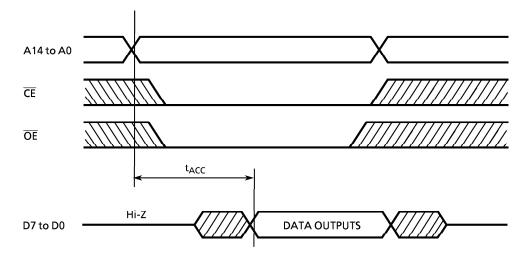
		Oscillation	_		Recommended Constar		
PARAMETER	Oscillator	Frequency	Recommer	nded Oscillator	C ₁	C ₂	
			KYOCERA	KBR8.0M			
	Ceramic Resonator High-frequency Oscillation	8 MHz					
			KYOCERA	KBR4.0MS	30pF	30pF	
Oscillation		4 MHz	MURATA	CSA4.00MG			
		8 MHz	тоуосом	210B 8.0000			
	Crystal Oscillator	4 MHz	тоуосом	204B 4.0000	20pF	20pF	
Low-frequency Oscillation	Crystal Oscillator	32.768 kHz	NDK	MX-38T	15pF	15pF	

XTIN XTOUT

C₁ C

(1) High-frequency Oscillation

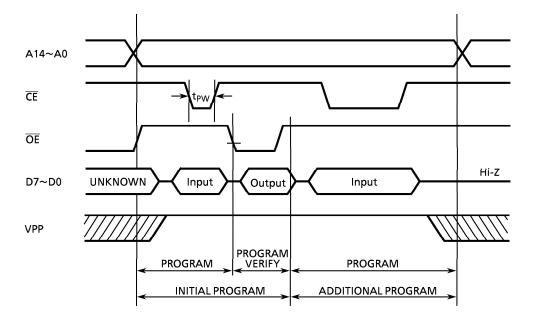
(2) Low-frequency Oscillation


Note: When used in high electric field such as a picture tube, the package is recommended to be electrically shielded to maintain a regular operation.

D.C./A.C. CHARACTERISTICS (PROM mode) (V_{SS} = 0V)

(1) Read Operation (Topr = -30 to 70 °C)

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
Input High Voltage	V _{IH4}		V _{CC} × 0.7	-	V _{CC}	٧
Input Low Voltage	V _{IL4}		0	-	V _{CC} × 0.12	V
Power Supply Voltage	V _{CC}		4.75	5.00	5.25	V
Program Power Supply Voltage	V _{PP}		V _{CC} – 0.6	V _{CC}	V _{CC} + 0.6	V
Address Access Time	t _{ACC}	$V_{CC} = 5.0 \pm 0.25 V$	-	1.5tcyc + 300	_	ns

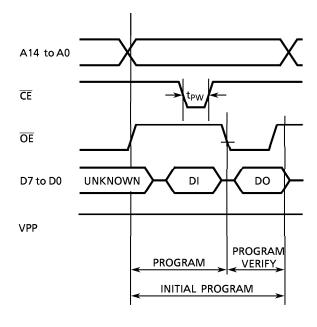

Note: tcyc = 500 ns at 8 MHz

TIMING WAVEFORMS OF READ OPERATION

(2) PROGRAM OPERATION (High-Speed Write Mode - I) (Topr = 25 ± 5 °C)

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
Input High Voltage	V _{IH4}		V _{CC} × 0.7	-	V _{CC}	V
Input Low Voltage	V_{IL4}		0	-	V _{CC} × 0.12	V
Power Supply Voltage	v _{cc}		5.75	6.0	6.25	V
Program Power Supply Voltage	V _{PP}		12.0	12.5	13.0	V
Initial Program Pulse Width	t _{PW}	$V_{CC} = 6.0 \text{ V} \pm 0.25 \text{ V},$ $V_{PP} = 12.5 \pm 0.25 \text{ V}$	0.95	1.0	1.05	ms

TIMING WAVEFORMS OF PROGRAMMING OPERATION


Note 1: When V_{cc} power supply is turned on or after, V_{pp} must be increased. When V_{cc} power supply is turned off or before, V_{pp} must be decreased.

Note 2: The device must not be set to the EPROM programmer or picked up from it under applying the program voltage (12.5V \pm 0.5V) to the V_{pp} pin as the device is damaged.

Note 3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.

(3) PROGRAM OPERATION (High speed write mode -II) (Topr = 25 ± 5 °C)

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
Input High Voltage	V_{IH4}		$V_{CC} \times 0.7$	-	V _{CC}	٧
Input Low Voltage	V_{IL4}		0	_	$V_{CC} \times 0.12$	V
Supply Voltage	V _{CC}		6.00	6.25	6.50	٧
Program Supply Voltage	V _{PP}		12.50	12.75	13.0	٧
Initial Program Pulse Width	t _{PW}	$V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V},$ $V_{PP} = 12.75 \text{ V} \pm 0.25 \text{ V}$	0.095	0.1	0.105	ms

Note: DO ; Data output (10 to 17) DI ; Data input (10 to 17)

- Note 1: When V_{cc} power supply is turned on or after, V_{pp} must be increased. When V_{cc} power supply is turned off or before, V_{pp} must be decreased.
- Note 2: The device must not be set to the EPROM programmer or picked up from it under applying the program voltage (12.75V \pm 0.25V) to the V_{pp} pin as the device is damaged.
- Note 3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.