
TOSHIBA

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Notes and Restrictions".

Especially, take care below cautions.

CAUTION

How to release the HALT mode

Usually, interrupts can release all halts stats. However, the interrupts = ($\overline{\text{NMI}}$, INT0, INTRTC), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interupt request is kept on hold internally.)

If another interupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

CMOS 16-Bit Microcontrollers

TMP91CU27UG/TMP91CP27UG/TMP91CK27UG/TMP91CU27FG

1. Outline and Features

The TMP91CU27/CP27/CK27 are high-speed 16-bit microcontrollers designed for the control of various mid- to large-scale equipment.

The TMP91CU27UG/CP27UG/CK27UG/CU27FG come in a 64-pin flat package respectively. Listed below are the features.

Product Name	RAM	ROM	Package
TMP91CU27UG	10KB	96KB	
TMP91CP27UG	4KB	48KB	LQFP64-P-1010-0.50D
TMP91CK27UG	1KB	24KB	
TMP91CU27FG	10KB	96KB	QFP64-P-1414-0.80A

(1) High-speed 16-bit CPU (900/L1 CPU)

Instruction mnemonics are upward-compatible with TLCS-90/900

- 16 Mbytes of linear address space
- General-purpose registers and register banks
- 16-bit multiplication and division instructions; bit transfer and arithmetic instructions
- Micro DMA: 4 channels (593 ns/2 bytes at 27 MHz)

RESTRICTIONS ON PRODUCT USE

20070701-EN

• The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
TOSHIBA products could cause loss of human life, bodily injury or damage to property.

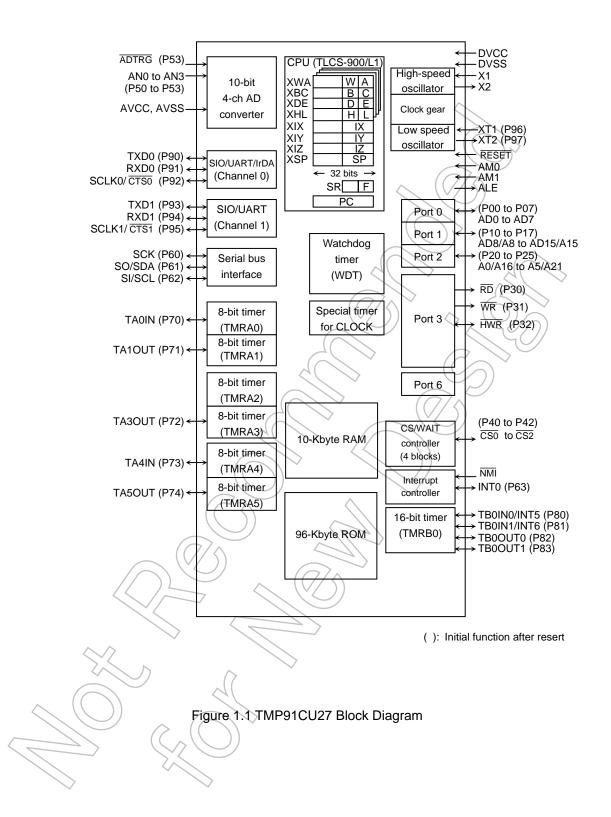
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

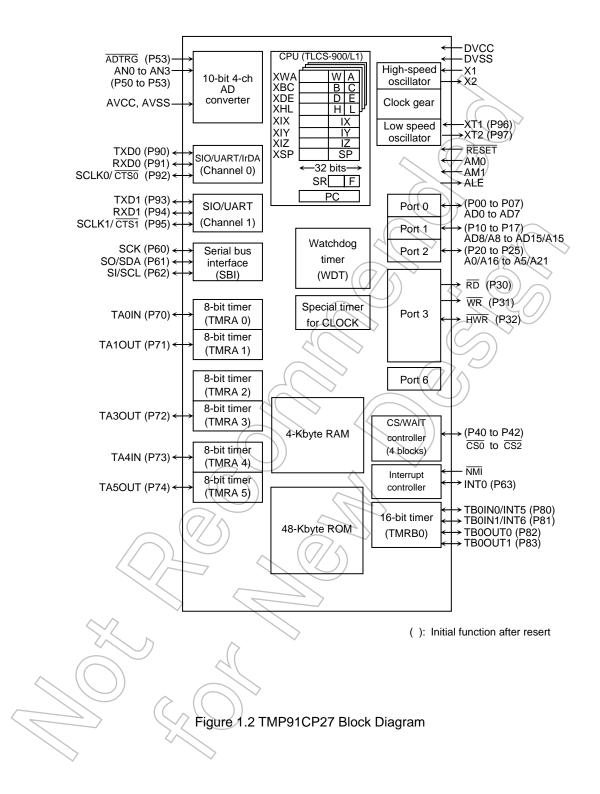
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.

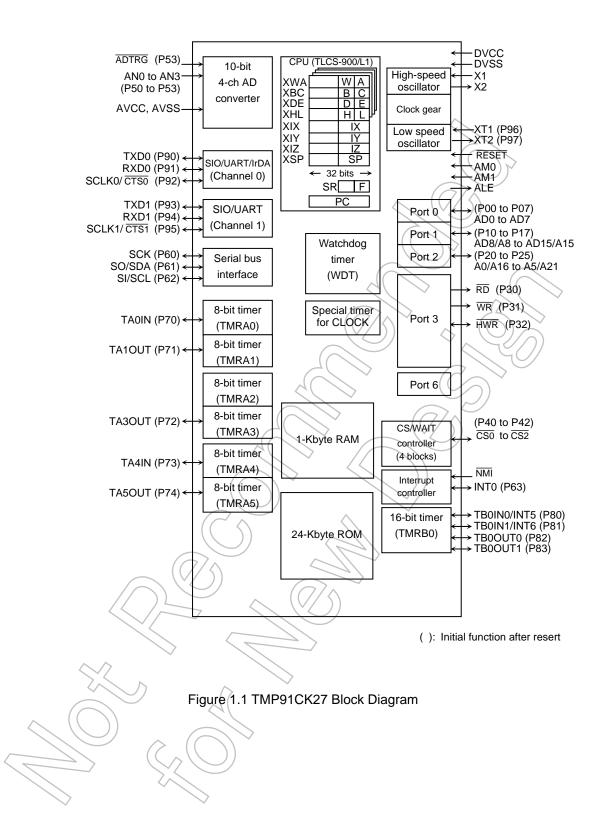
- (2) Minimum instruction execution time: 148 ns (at 27 MHz)
- (3) External memory expansion
 Expandable up to 16 Mbytes (Shared program/data area)
 Can simultaneously support 8-/16-bit width external data bus (Dynamic data bus sizing)
- (4) 8-bit timers: 6 channels
- (5) 16-bit timers: 1 channel
- (6) General-purpose serial interface: 2 channels
 - UART/Synchronous mode: 2 channels
 - IrDA Ver.1.0 (115.2 kbps) mode selectable: 1 channel
- (7) Serial bus interface: 1 channel
 - I²C bus mode/clock synchronous mode selectable
- (8) 10-bit AD converter (Sample hold circuit is inside): 4 channels
- (9) Watchdog timer
- (10) Special timer for CLOCK
- (11) Chip select/wait controller: 4 blocks
- (12) Interrupts: 34 interrupts
 - 9 CPU interrupts: Software interrupt instruction and illegal instruction
 - 21 internal interrupts: 7 priority levels are selectable
 - 4 external interrupts: 7 priority levels are selectable (among 3 interrupts are selectable edge mode)

(13) Input/output ports: 53 pins

(14) Standby function


Three HALT modes: IDLE2 (Programmable), IDLE1 and STOP


- (15) Clock controller
 - Clock gear function: Select a high-frequency clock fc to fc/16
 - Special timer for CLOCK (fs = 32.768 kHz)
- (16) Operating voltage
 - $V_{CC} = 2.7 \text{ V}$ to 3.6 V (fc max = 27 MHz)
 - $V_{CC} = 1.8 \text{ V to } 3.6 \text{ V (fe max} = 10 \text{ MHz})$


(17) Package

• LQFP64-P-1010-0.50D (TMP91CU27UG, TMP91CP27UG, TMP91CK27UG)

QFP64-P-1414-0.80A (TMP91CU27FG)

2. Pin Assignment and Pin Functions

The assignment of input/output pins for the TMP91CU27/CP27/CK27, their names and functions are as follows:

2.1 Pin Assignment Diagram

Figure 2.1.1 shows the pin assignment of the TMP91CU27/CP27/CK27.

2.2 Pin names and Functions

The names of the input/output pins and their functions are described below. Table 2.2.1 to Table 2.2.3 show pin names and functions.

Pin Names	Number of Pins	I/O	Functions
P00 to P07	8	I/O	Port 0: I/O port that allows I/O to be selected at the bit level
AD0 to AD7		I/O	Address data (Lower): 0 to 7 of address/data bus
P10 to P17	8	I/O	Port1: I/O port that allows I/O to be selected at the bit level
AD8 to AD15		I/O	Address data (Upper): 8 to 15 of address/data bus
A8 to A15		Output	Address: 8 to 15 of address bus
P20 to P25	6	I/O	Port 2: I/O port that allows I/O to be selected at the bit level
A0 to A5		Output	Address: 0 to 5 of address bus
A16 to A21		Output	Address: 16 to 21 of address bus
P30	1	Output	Port 30: Output port
RD		Output	Read: Strobe signal for reading external memory when read internal area also, output \overline{RD} by setting to P3 <p30> = 0, P3FC<p30f> = 1.</p30f></p30>
P31	1	Output	Port 31: Output port
WR		Output	Write: Strobe signal for writing data to pins AD0 to AD7
P32	1	I/O	Port 32: I/O port (with pull-up resistor)
HWR		Output	High write: Strobe signal for writing data to pins AD8 to AD15
P40	1	I/O	Port 40: I/O port (with pull-up resistor)
CS0		Output	Chip select 0: Outputs "0" when address is within specified address area.
P41	1	I/O	Port41: I/O port (with pull-up resistor)
CS1		Output	Chip select 1: Outputs "0" when address is within specified address area.
P42	1	I/O	Port 42: I/O port (with pull-up resistor)
CS2		Output	Chip select 2: Outputs "0" when address is within specified address area.
P50 to P53	4	Input	Port-5: Input port
AN0 to AN3		Input	Analog input: Analog input pins of the AD converter
ADTRG		Input	AD trigger: Pin used for request AD start (Shared with P53).
P60	1	MO	Port 60: I/O port
SCK			Serial bus interface clock I/O at SIO mode
P61	1//	1/0	Port 61: I/O port
SO		Output	Serial bus interface send data at SIO mode
SDA		< i/o	Serial bus interface send/receive data at I ² C mode
			Open-drain output mode by programmable
P62	\sim 1	I/O	Port 62: I/O port
SI	NK .	Input	Serial bus interface receive data at SIO mode
SCL	$\langle \cdot \rangle$	I/O	Serial bus interface clock I/O at I ² C mode
(\sim	A	Open-drain output mode by programmable
P63 🔨 🕔)1)	I/O	Port 63: I/O port (Schmitt input)
INTO		Input	Interrupt request pin 0: Interrupt request pin with selectable level/rising/falling edge

Table 2.2.1	Pin Names and Functions	(1/3)
		(\cdot, \circ)

			Pin Names and Functions (2/3)
Pin Names	Number of Pins	I/O	Functions
P70	1	I/O	Port 70: I/O port
TAOIN		Input	8-bit timer 0 input: Input pin of 8-bit timer TMRA0
P71	1	I/O	Port 71: I/O port
TA1OUT		Output	8-bit timer 1 output: Output pin of 8-bit timer TMRA0 or TMRA1
P72	1	I/O	Port 72: I/O port
TA3OUT		Output	8-bit timer 3 output: Output pin of 8-bit timer TMRA2 or TMRA3
P73	1	I/O	Port 73: I/O port
TA4IN		Input	8-bit timer 4 input: Input pin of 8-bit timer TMRA4
P74	1	I/O	Port 74: I/O port
TA5OUT		Output	8-bit timer 5 output: Output pin of 8-bit timer TMRA4 or TMRA5
P80	1	I/O	Port 80: I/O port
TB0IN0		Input	16-bit timer 0 Input 0: Input of count/capture trigger in 16-bit timer TMRB0
INT5		Input	Interrupt request pin 5: Interrupt request pin with selectable rising/falling edge
P81	1	I/O	Port 81: I/O port
TB0IN1		Input	16-bit timer 0 input 1: Input of count/capture trigger in 16-bit timer TMRB0
INT6		Input	Interrupt request pin 6: Interrupt request pin of rising edge
P82	1	I/O	Port 82: I/O port
TB0OUT0		Output	16-bit timer 0 output 0: Outpit pin of 16-bit timer TMRB0
P83	1	I/O	Port 83: I/O port
TB0OUT1		Output	16-bit timer 0 output 1: Output pin of 16-bit timer TMRB0
P90	1	I/O	Port 90: I/O port
TXD0		Output	Serial 0 send data: Open-drain output pin by programmable
P91	1	I/O	Port 91: I/O port
RXD0		Input	Serial 0 receive data
P92	1	I/O	Port 92: I/O port
SCLK0		I/O	Serial 0 clock I/O
CTS0		Input	Serial 0 data send enable (Clear to send)
P93	1	1/0	Port 93: I/O port
TXD1		Output	Serial 1 send data: Open-drain output pin by programmable
P94	1	((vø))	Port 94: I/O port
RXD1		Input	Serial 1 receive data
P95	4	10	Port 95: I/O port
SCLK1		< 1/0	Serial 1 clock I/O
CTS1		Input	Serial 1 data send enable (Clear to send)
P96	1	I/O	Port 96: I/O port. Open-drain output pin
XT1	XX .	Input	Low-frequency oscillator connection pin
P97		I/O	Port 97: I/O port. Open-drain output pin
XT2	\sim	Output	Low-frequency oscillator connection pin
		(LO	

Table 2.2.2	Pin Names and Functions (2/3)

Pin Names	Number of Pins	I/O	Functions
ALE	1	Output	Address latch enable (It can be set as prohibition of an output for noise reduction.)
NMI	1	Input	Non-maskable interrupt request pin: Receives an interrupt request triggered by a falling edge (Schmitt input). A rising edge can be the trigger as well with additional programming.
AMO, AM1	2	Input	Operation mode: Fixed to AM1 = "1" and AM0 = "1".
RESET	1	Input	Reset: Initialize LSI. (Schmitt input, with pull-up resistor)
AVCC	1		Pin used for both power supply pin for AD converter and standard power supply for AD converter (H).
AVSS	1		Pin used for both GND pin for AD converter (0 V) and standard power supply pin for AD converter (L).
X1	1	Input	High-frequency oscillator connection pin.
X2	1	Output	High-frequency oscillator connection pin.
DVCC	1		Power supply pins (All DVCC pins should be connected to the power supply pin.)
DVSS	1		GND pins (All pins shuold be connected to GND (0 V).)

Table 2.2.3	Pin Names and Functions (3	3/3)
		,

3. Operation

This following describes block by block the functions and operation of the TMP91CU27/CP27/CK27.

3.1 CPU

The TMP91CU27/CP27/CK27 incorporate a high-performance 16-bit CPU (The 900/L1-CPU). For CPU operation, see the "TLCS-900/L1 CPU".

The following describe the unique function of the CPU used in the TMP91CU27/CP27/CK27; these functions are not covered in the TLCS-900/L1 CPU section.

3.1.1 Reset

When resetting the TMP91CU27/CP27/CK27 microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text{RESET}}$ input to low level at least for 10 system clocks (12 µs at 27 MHz).

Thus, when turning on the switch, the power supply voltage being set is within the operating voltage range, and the internal high-frequency oscillator goes into a stable state. Then hold the RESET input to Low level at least for 10 system clocks.

The clock gear is initialized 1/16 mode by reset operation. It means that the system clock mode f_{SYS} is set to fc/32 (= $fc/16 \times 1/2$).

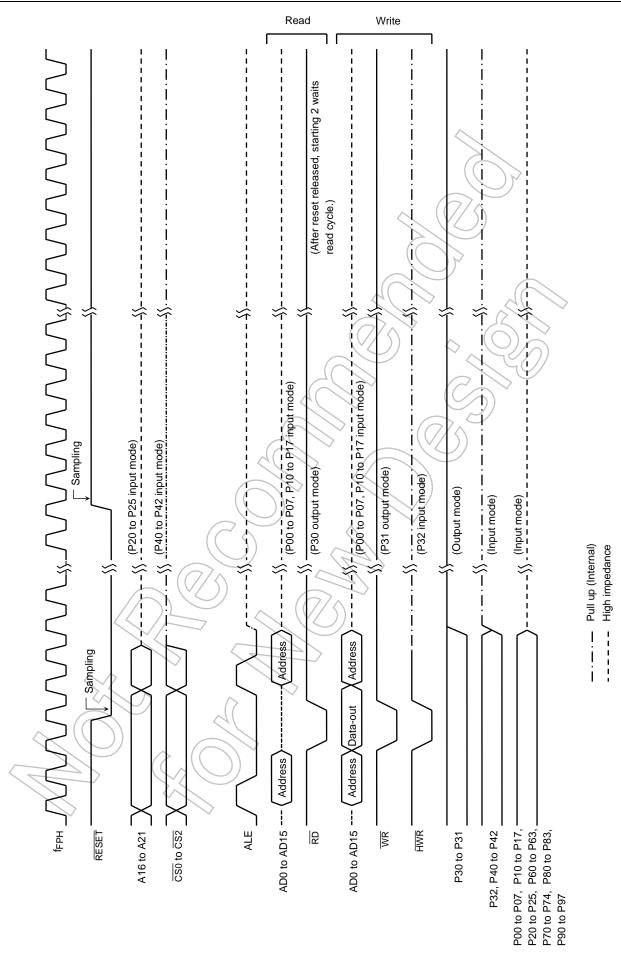
When the reset has been accepted, the CPU performs the following:

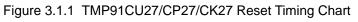
• Sets as follows the program counter (PC) in accordance with the reset vector stored at address FFFF00H to FFFF02H:

PC<7:0>	←	Value at FFFF00H address
PC<15:8>	←	Value at FFFF01H address

PC<23:16> \leftarrow Value at FFFF02H address

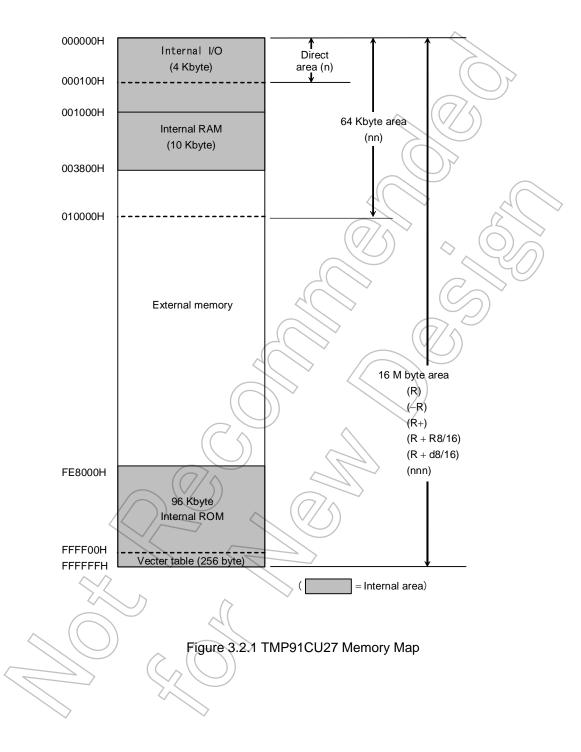
- Sets the stack pointer (XSP) to 100H.
- Sets bits<IFF2:0> of the status register (SR) to "111" (Sets the interrupt level mask register to level 7).
- Sets the <MAX> bit of the status register (SR) to "1" (MAX mode).
- Clears bits<RFP2:0> of the status register (SR) to "000" (Sets the register bank to "0").

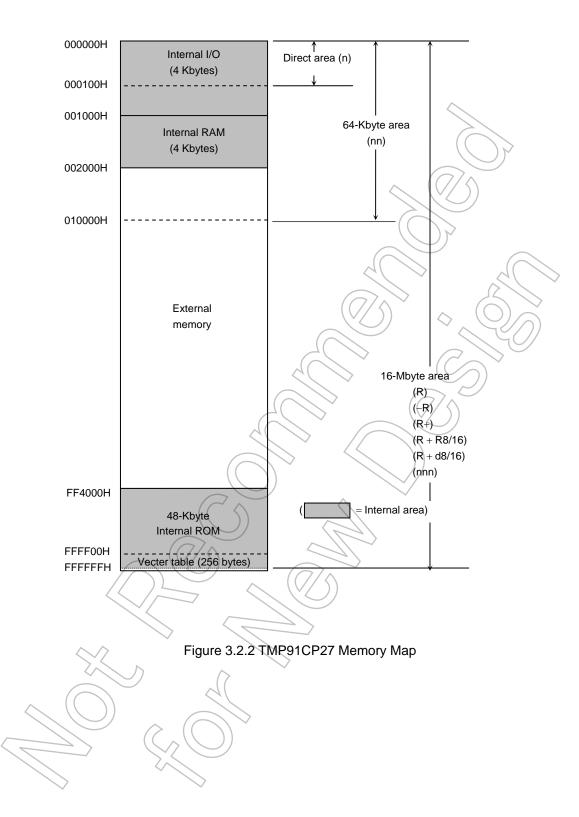

When reset is released, the CPU starts executing instructions in accordance with the program counter settings. CPU internal registers not mentioned above do not change when the reset is released.

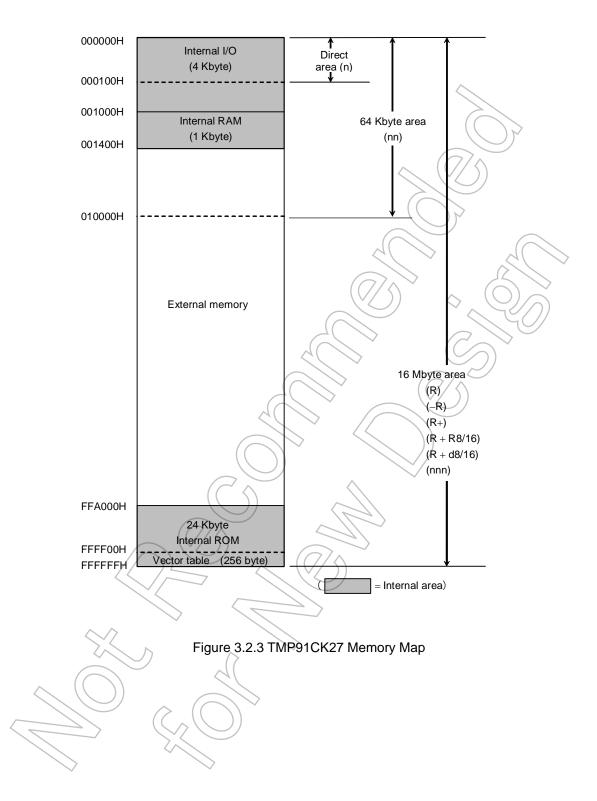

When the reset is accepted, the CPU sets internal I/O, ports, and other pins as follows.

- Initializes the internal I/O registers.
- Sets the port pins, including the pins that also act as internal I/O, to general-purpose input or output port mode.
- Sets ALE pin to high impedance.

Note: The CPU internal register (except to PC, SR, XSP in CPU) and internal RAM data do not change by resetting.


Figure 3.1.1 is a reset timing chart of the TMP91CU27/CP27/CK27.





3.2 Memory Map

Figure 3.2.1, Figure 3.2.2 and Figure 3.2.3 show the memory maps of the TMP91CU27/CP27/CK27 respectively.

3.3 Diversity of TMP91CW12A and TMP91CU27/CP27/CK27

The TMP91CU27/CP27/CK27 achieved downsizing TMP91CW12A with less pins and functions. The specification of the functions is shown in the section 3.3.1 to 3.3.6. Wide difference of AC/DC characteristic is AC characteristics (Shown section 3.3.7). For the details, please refer to Chapter 4, "Electrical characteristics".

3.3.1 Cut Internal I/O

The TMP91CU27/CP27/CK27 are micro controllers that reduced 8-bit timer (TMRA6 to TMRA7), 16-bit timer (TMRB1) and clock doublers circuit (DFM) from TMP91CW12A.

Please doesn't access to special function register address of above internal I/O in TMP91CW12A.

Please refer to "Table of special function register".

3.3.2 Cut Port Function

The TMP91CU27/CP27/CK27 reduced the following port functions from TMP91CW12A.

- Port 2: P27 (A23/A7) and P26 (A22/A6)
- Port 3: P37, P36 (R/\overline{W}), P35 (\overline{BUSAK}), P34 (\overline{BUSRQ}) and P33 (\overline{WAIT})
- Port 4: P43 (CS3)
- Port 5: P57 to P54 (AN7 to AN4)
- Port 6: P66, P65 and P64 (SCOUT)
- Port 7: P75 (TA7OUT)
- Port 8: P87 (TB10UT1), P86 (TB10UT0), P85 (TB1IN1/INT8) and P84 (TB1IN0/INT7)
- Port A: PA7 to PA4, PA3 to PA0 (INT4 to INT1)

3.3.3 Cut factor of Interrupt

TMP91CU27/CP27/CK27 be cut factor of interrupt by cut internal I/O and port function (Refer to Table 3.5.1). Please don't access to interrupt priority setting register for cut factor of interrupt. Please refer to "table of special function register".

3.3.4 Bus Release Function

TMP91CU27/CP27/CK27 don't include bus release function by cutting bus request pin (P34) and bus acknowledge pin (P35).

3.3.5 CS/WAIT Controller

When set TMP91CU27/CP27/CK27 to BxCS<BxW2:0> = "010" (1 + N) WAIT mode, it operates as 1 wait by cutting \overline{WAIT} pin.

And there is not $\overline{CS3}$ pin (P43), but when set MSAR3, MAMR3 and set B3CS<B3E> = "1", wait control is effective.

3.3.6 AD Converter

Analog input pin AN4 to AN7 be cut. Therefore please don't select cutting channel in ADMOD1<ADCH2:0>.

3.3.7 AC Characteristic

When accessing to external, AC characteristic don't guarantee at 2 V operation.

3.4 System Clock Function and Standby Control

The TMP91CU27/CP27/CK27 contains (1) a clock gear, (2) stand-by controller and (3) noise-reduction circuits. It is used for low-power and low-noise systems.

The clock operating modes are as follows: (a) Single clock mode (X1 and X2 pins only), (b) Dual clock mode (X1, X2, XT1 and XT2 pins).

Figure 3.4.1 shows a transition figure.

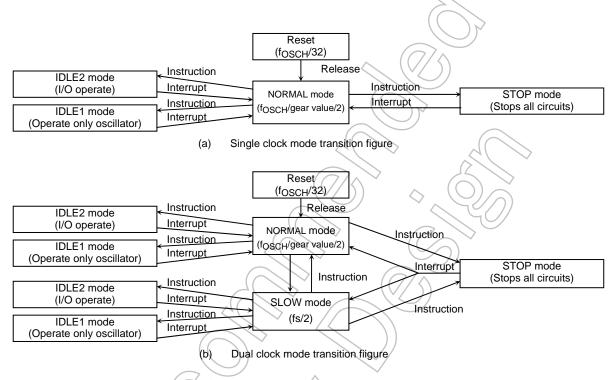


Figure 3.4.1 Clock Operating Mode

Note: The clock frequency input from the X1 and X2 pins is called f_{OSCH} and the clock frequency input from the XT1 and XT2 pins is called fs. The clock frequency selected by SYSCR1<SYSCK> is called f_{FPH} . The system clock f_{SYS} is defined as the divided clock of f_{FPH} , and one cycle of f_{SYS} is defined as one state.

3.4.1 Block Diagram of System Clock

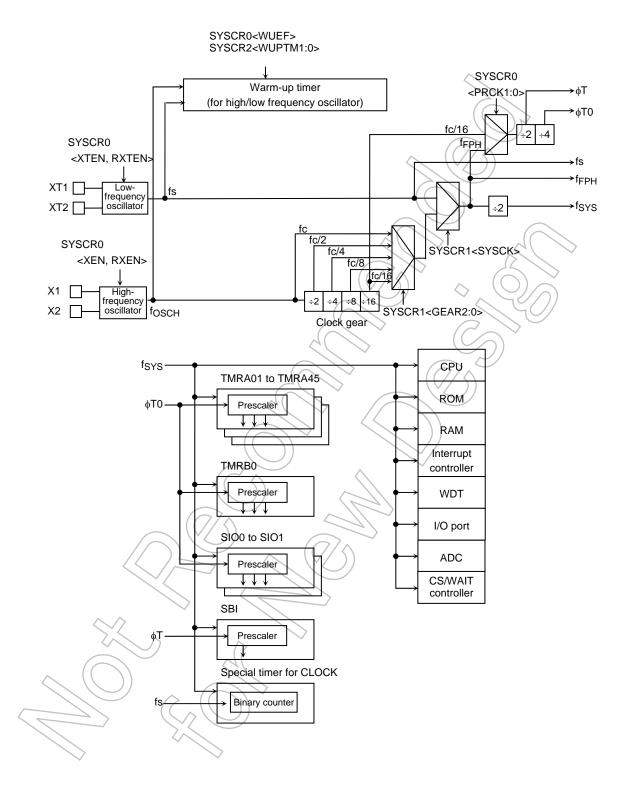


Figure 3.4.2 Block Diagram of System Clock

3.4.2 SFR

SYSCR0 Bit symbol XEN XTEN RXEN RXTEN RSYSCK WUEF PRCK1 PRCK0 Read/Write Read/Write R RW Read/Write <			7	6	5	4	3	2	1	0
Read/Write R/W 0 <t< td=""><td>SYSCR0</td><td>Bit symbol</td><td>XEN</td><td>XTEN</td><td>RXEN</td><td>RXTEN</td><td>RSYSCK</td><td>WUFF</td><td>PRCK1</td><td>PRCK0</td></t<>	SYSCR0	Bit symbol	XEN	XTEN	RXEN	RXTEN	RSYSCK	WUFF	PRCK1	PRCK0
Reset State 1 0 1 0 <th< td=""><td></td><td></td><td></td><td>XIER</td><td>TOLEN</td><td></td><td></td><td>WOL!</td><td>1 HOIH</td><td>1110110</td></th<>				XIER	TOLEN			WOL!	1 HOIH	1110110
Trequency oscillator (fc) frequency oscillator (fc) frequency oscillator (fc) frequency oscillator (fc) frequency oscillator (fc) frequency oscillator (fc) frequency oscillator (fc) frequency oscillator (fc) frequency (fc) clock after release of 0: fc timer over trelease of 0: fc 00: fc 0: fc timer 1: fc 00: fc 0: fc timer 0: fc 00: fc 10: FcH 0: fc 1: Oscillation 1: Oscillation STOP mode mode 0: Stop To 0: fc 1: fs Note 2) Note 2) 1: Oscillation 1: Oscillation 1: Oscillation 1: Oscillation 1: Stop 1: Read: Do not end Note 2) Note 2) SYSCR1 Bit symbol 7 6 5 4 3 2 0 Read/Write 0 7 6 5 4 3 2 1 0 Function 0 1: Measered 0 1: fs 0: fc/4 0 1 SYSCR2 Bit symbol - 7 6 5 4 3 2 1 0 Fun	· · ·		1	0	1		i i	0 <	0	0
Oscillator (fc) Oscillator (fs) Oscillator (fs) Oscillator (fs) Oscillator (fs) Image: fst and fst		Function	High-	Low-	High-	Low-	Selects	Warm-up	Select preso	aler clock
If C) (fs) (fc) (fs) after release of STOP 0. Write 10. fc/16 11: Reserved 1: Oscillation 1: Oscillation </td <td></td> <td></td> <td>frequency</td> <td>frequency</td> <td>frequency</td> <td>frequency</td> <td>clock after</td> <td>timer</td> <td>00: f_{FPH}</td> <td></td>			frequency	frequency	frequency	frequency	clock after	timer	00: f _{FPH}	
Image: Construct of the second of t				oscillator	oscillator				01: Reserve	d
USB0P US0P US0P Indee US0P			(fc)	(fs)	(fc) after	(fs) after	~		$\langle \rangle$	
I.Oscillation 1: Oscillation STOP STOP O: Ic I: Minite: Start (Note 2) 0: Stop 0: Stop 0: Stop 1: Oscillation 1: Oscillation 1: Is Start Warm-up 0, Read: End Warm-up 1, Read: Do not end Note 2) SYSCR1 T 6 5 4 3 2 1 0 SYSCR1 Bit symbol SYSCK GEAR1 GEAR0 O A 0									11: Reserve	d
O: Stop 0: Stop 0: Stop 0: Stop 0: Read: End warm-up YSCR1 7 6 5 4 3 2 1 0 SYSCR1 Bit symbol 7 6 5 4 3 2 1 0 Bit symbol Read:///rite 0 1 0 <td></td> <td></td> <td>1:Oscillation</td> <td>1: Oscillation</td> <td></td> <td></td> <td></td> <td>1 Write:</td> <td></td> <td></td>			1:Oscillation	1: Oscillation				1 Write:		
1: Oscillation 1: Oscillation 1: Oscillation 0 Read: End warm-up YSCR1 7 6 5 4 3 2 4 0 SYSCR1 Bit symbol 7 6 5 4 3 2 4 0 Read/Write 7 6 5 4 3 2 4 0 Read/Write 7 6 5 4 3 2 4 0 Read/Write 7 6 5 4 3 2 0 0 Function Select Select Select Select Select Select 01: fc/2 10: fc/4 101: (Reserved) 110: (Reserved) 110: (Reserved) 111: (Reserved) 111: (Reserved) 111: (Reserved) SYSCR2 7 6 5 4 3 2 1 0 SYSCR2 1 7 6 5 4 3 2 1 0							1: fs		(Note 2)	
T 6 5 4 3 2 1 0 SYSCR1 Bit symbol 7 6 5 4 3 2 1 0 SYSCR1 Bit symbol SYSCK GEAR2 GEAR1 GEAR0 (00E1H) Read/Write 0 1 0 0 1 0 0 Reset State 0 0 1 0 0 000016 00016 00016 00016 00111 100116 00111 01116 01116 01116 01116 01116 01116 01116 011111 01116 011111 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
T 6 5 4 3 2 1 0 SYSCR1 (00E1H) Bit symbol Read/Write 7 6 5 4 3 2 1 0 SYSCR1 (00E1H) Bit symbol Read/Write 7 6 5 4 3 2 1 0 Reset State 0 7 0 2 7 0 0 7 Function Select Select Gear value of high frequency system (fc) clock Select Gear value of high frequency system (fc) clock 000) fc 0 0 0 7 Strespective 7 6 5 4 3 2 1 0 10: (Reserved) 111: (Reserved) 111: (Reserved) 111: (Reserved) 111: (Reserved) 111: (Reserved) 0 111: (Reserved) 0 111: (Reserved) 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0					T: Oscillation	1: Oscillation	$\lambda()$			\sim
SYSCR1 Do not end warm-up Do not end warm-up SYSCR1 Bit symbol 7 6 5 4 3 2 1 0 SYSCR1 Bit symbol SYSCK GEAR2 GEAR1 GEAR0 Read/Write Read/Write 0 1 0 0 1 0 0 Function Select Select gear value of high frequency system clock 0001; fc/2 1 16 Function C C/4 0 11: fc/8 100: fc/14 111: fc/8 100: fc/16 101: (Reserved) 111: (Reserved) 111: (Reserved) 111: (Reserved) 111: Reserved) 111: (Reserved) 111: Reserved) 0 SYSCR2 Bit symbol - WUPTM1 WUPTM0 HALTM1 HALTMO DRVE Read/Write Q 1 0 1 0 Function Always Select warm-up time for HALT NW RWE 00: Reserved 01: 2 ⁶ /nputted frequency 10: IDLE1 mode </td <td></td>										
T 6 5 4 3 2 1 0 SYSCR1 Bit symbol SYSCK GEAR2 GEAR1 GEAR0 Read/Write RW RW RW RW RW RW Reset State 0 0 1 0 0 0 0 Function Select gear value of high frequency system clock 0000: fc 0 0 0 0 Virte 0 1 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>$(\overline{0})$</td> <td>\sim</td> <td>6</td> <td>\searrow</td>							$(\overline{0})$	\sim	6	\searrow
T 6 5 4 3 2 0 SYSCR1 (00E1H) Read/Write Read/Write R/W R/W GEAR2 GEAR1 GEAR0 Function Reset State 0 1 0 1 0<							(\bigcirc)		(\bigcirc)	
SYSCR1 (00E1H) Bit symbol Read/Write SYSCK GEAR2 GEAR1 GEAR0 Read/Write Read/Write R/W 0 1 0 <						6		warm-up		
Read/Write RW Reset State 0 1 0 0 Function Select Select gear value of high frequency system (tc) Select gear value of high frequency system (tc) Clock 0000; fc 0012; fc/2 1: fs 0111; fc/8 100: fc/16 100: fc/16 1011; (Reserved) 1111; (Reserved) 7 6 5 4 3 2 1 0 SYSCR2 (00E2H) Pit symbol - WUPTM1 WUPTM0 HALTM1 HALTM0 DRVE Read/Write R/W R/W R/W R/W R/W R/W Read/Write R/W R/W R/W R/W R/W R/W Function Always Select waim-up time for 00: Reserved 01: 1 0 1 0 Function Always Select waim-up time for 00: 2 ⁴ /inputted frequency 10: IDLE1 mode Pin state 00: Reserved 00: ISTOP mode STOP 01: 2 ⁶ /inputted frequency 10: 0 ²¹ /1; (Inputted frequency) 11: IDLE2 mode 11: Remains <td></td> <td></td> <td>7</td> <td>6</td> <td>5</td> <td>4</td> <td>3</td> <td></td> <td></td> <td>0</td>			7	6	5	4	3			0
Reset State 0 1 0 0 Function Select Select gear value of high frequency system (fc) Select Select gear value of high frequency system (fc) clock 000: fc 001: fc/2 1 16 0 11: fs 010: fc/4 011: fc/8 100: fc/16 100: fc/16 101: (Reserved) 111: (Reserved) 111: (Reserved) 111: (Reserved) 111: (Reserved) 111: (Reserved) 111: (Reserved) SYSCR2 Bit symbol - WUPTM1 WUPTM0 HALTM1 HALTM0 DRVE Read/Write R/W R/W R/W R/W R/W R/W R/W Reset State 0 1 0 1 0 1 0 Function Always Select warm-up time for write to "0". 0: Reserved 0: Reserved 0: Reserved 0: Reserved 0: Reserved 0: Reserved 0: STOP STOP 10: IDLE1 mode 10: I/O off 1: Remains		Bit symbol				\mathcal{A}	SYSCK		- //	GEAR0
Function Select Select gear value of high frequency system (fc) clock 000: fc clock 001: fc/2 1: fs 010: fc/4 011: fc/8 100: fc/16 101: (Reserved) 111: (Reserved) 111: (Reserved) 111: 0 111: (Reserved) 0 111: (Reserved) 111: (Reserved) 111: (Reserved) 0 1	(00E1H)	Read/Write						R		
SYSCR2 (00E2H) Topological Control System Control (fc) Control (fc) Control Control Control <thcontro< th=""> <thcontrol< th=""> Control</thcontrol<></thcontro<>							-	(1/2)		
SYSCR2 (00E2H) T 6 5 4 3 2 1 0 SYSCR2 (00E2H) T 6 5 4 3 2 1 0 SYSCR2 (00E2H) T 6 5 4 3 2 1 0 SYSCR2 (00E2H) Bit symbol - WUPTM1 WUPTM0 HALTM1 HALTM0 DRVE Read/Write R/W		Function			$\mathcal{A}($				value of high	frequency
SYSCR2 (00E2H) Total							7° 6			
$SYSCR2 (00E2H) \begin{array}{ c c c c c c c c c c c c c c c c c c c$					()	\sim		//		
SYSCR2 (00E2H) 7 6 5 4 3 2 1 0 SYSCR2 (00E2H) 7 6 5 4 3 2 1 0 Bit symbol - WUPTM1 WUPTM0 HALTM1 HALTM0 DRVE Read/Write R/W R/W R/W R/W R/W R/W Function Always write to "0" Select warm-up time for oscillator HALT mode Pin state control in 01: STOP mode Pin state control in 01: STOP mode STOP mode 11: 2 ¹⁶ /inputted frequency 11: 2 ¹⁶ /inputted frequency 11: IDLE2 mode 0: I/O off 1: Remains					(\bigcirc)			\sim /		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				6	7	4	1.13			
SYSCR2 7 6 5 4 3 2 1 0 SYSCR2 Bit symbol - WUPTM1 WUPTM0 HALTM1 HALTM0 DRVE (00E2H) Read/Write R/W R/W R/W R/W R/W R/W Function Always Select warm-up time for write to "0". 0 1 1 0 Function Always Select warm-up time for write to "0". 0: Reserved 0: Reserved 0: Reserved 0: Reserved 0: Reserved 0: Reserved 0: I/O off 0: I/O off 1: IDLE1 mode mode 0: I/O off 1: Remains						\sim	\sum			
SYSCR2 (00E2H) 7 6 5 4 3 2 1 0 SYSCR2 (00E2H) Bit symbol - WUPTM1 WUPTM0 HALTM1 HALTM0 DRVE Read/Write R/W R/W R/W R/W R/W R/W Fead/Write R/W R/W R/W R/W R/W R/W Function Always Select warm-up time for write to "0". HALT mode Pin state 00: Reserved 01: STOP mode STOP 01: STOP mode STOP 10: 2 ¹⁴ /inputted frequency 10: 2 ¹⁴ /inputted frequency 11: IDLE2 mode 0: I/O off 11: 2 ¹⁶ /inputted frequency 11: 2 ¹⁶ /inputted frequency 11: Remains						/	$\langle \rangle$	101: (Reser	ved)	
SYSCR2 (00E2H) Topological Bit symbol Topological Constraints <			($(// \uparrow)$				110: (Reser	ved)	
Bit symbol - WUPTM1 WUPTM0 HALTM1 HALTM0 DRVE (00E2H) Read/Write R/W R/W R/W R/W R/W R/W R/W Reset State 0 1 0 1 1 0 Function Always Select warm-up time for write to "0". HALT mode Pin state 00: Reserved 00: Reserved 00: Reserved 01: STOP mode STOP 10: 2 ¹⁴ /inputted frequency 10: 2 ¹⁴ /inputted frequency 11: IDLE1 mode 0: I/O off 11: 2 ¹⁶ /inputted frequency 11: IDLE2 mode 11: Remains			\square	$\langle O \rangle$		\square	$\overline{}$	111: (Reser	ved)	
Read/Write R/W R/W R/W R/W R/W R/W Reset State 0 1 0 1 1 0 Function Always Select warm-up time for write to "0". HALT mode Pin state control in 00: Reserved 00: Reserved 00: Reserved 00: Reserved 00: Reserved 00: Reserved 00: Reserved 01: STOP mode STOP 01: 2 ¹¹ /inputted frequency 11: 2 ¹⁶ /inputted frequency 10: 2 ¹⁴ /inputted frequency 11: IDLE2 mode 0: I/O off 1: Remains			<u> </u>	6	5	(4)	3	2	1	0
Reset State 0 1 0 1 1 0 Function Always Select warm-up time for write to "0". HALT mode Pin state 00: Reserved 00: Reserved 00: Reserved 01: STOP mode STOP 01: 2 ⁸ /inputted frequency 10: 2 ¹⁴ /inputted frequency 10: IDLE1 mode mode 11: 2 ¹⁶ /inputted frequency 11: 1DLE2 mode 11: Remains	SYSCR2	Bit symbol	\mathcal{A}	_	WUPTM1	WUPTM0	HALTM1	HALTM0		DRVE
Function Always Select warm-up time for write to "0". HALT mode Pin state 00: Reserved 00: Reserved 01: STOP mode STOP 01: 2 ⁸ /inputted frequency 10: IDLE1 mode mode 10: 2 ¹⁴ /inputted frequency 11: IDLE2 mode 0: I/O off	(00E2H)	Read/Write	\square	V	R/W		R/W	R/W		
write to "0" oscillator 00: Reserved 01: STOP mode STOP 10: 12 ¹⁴ /inputted frequency 11: 2 ¹⁶ /inputted frequency 11: 2 ¹⁶ /inputted frequency 11: Remains					<u> </u>					
00: Reserved 01: STOP mode 10: IDLE1 mode 10: IDLE1 mode 10: IDLE2 mode 11: IDLE2 mode 11: Remains		Function	7 /			-up time for				
01: 2 ⁸ /inputted frequency 10: 2 ¹⁴ /inputted frequency 11: 2 ¹⁶ /inputted frequency				write to "0".	(· · · · · · · · · · · · · · · · · · ·					
10: 2 ¹⁴ /inputted frequency 11: 2 ¹⁶ /inputted frequency	~		\mathcal{A}	$\langle \langle \rangle$						
11: 2 ¹⁶ /inputted frequency 1: Remains	<	/ /	り _	\square	10: 2 /inputte					
the state			\sim	(())				lode		
	1			\sim		ou noquency				the state
before HALT			<	\sim						

Note 1: The unassigned registers, SYSCR1<bit7:4>, SYSCR2<bit7,bit1> are read as undefined value. Note 2: When using internal SBI, set prescaler clock select register SYSCR0<PRCK1:0> to f_{FPH}.

Figure 3.4.3 SFR for System Clock

		7	6	5	4	3	2	1	0
EMCCR0	Bit symbol	PROTECT	_	_	_	ALEEN	EXTIN	DRVOSCH	DRVOSCL
(00E3H)	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Reset State	0	0	1	0	0	o <	1	1
	Function	Protect flag 0: OFF 1: ON	Always write "0".	Always write "1".	write "0".	1: ALE output enable 0: ALE output disable	1: fc external clock	fc oscillator driver ability 1: NORMAL 0: WEAK	fs oscillator driver ability 1: NORMAL 0: WEAK
EMCCR1 (00E4H)	Bit symbol Read/Write		Protect OFF by writing "1FH".						
	Reset State Function			Prot	ect ON by w	riting except	"1FH".		
							>	52 \	

Note 1: When restarting the oscillator from the stop oscillation state (e.g. restarting the oscillator in STOP mode), set the drive function of the oscillator circuit to NORMAL. When shifting to HALT state while stop mode is set, set EMCCR0<DRVOSCH>, <DRVOSCL>="1" before executing a HALT instruction. Note 2: When V_{cc} exceeds 2.7V, EMCCR0<DRVOSCH> to "1".

Figure 3.4.4 SFR for Noise Reduction

3.4.3 System Clock Controller

The system clock controller generates the system clock signal (fsys) for the CPU core and internal I/O. It contains two oscillation circuits and a clock gear circuit for high-frequency (fc) operation. The register SYSCR1<SYSCK> changes the system clock to either fc or fs, SYSCR0<XEN> and SYSCR0<XTEN> control enabling and disabling of each oscillator, and SYSCR1<GEAR2:0> sets the high-frequency clock gear to either 1, 2, 4, 8 or 16 (fc, fc/2, fc/4, fc/8 or fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

The combination of settings $\langle XEN \rangle = "1"$, $\langle XTEN \rangle = "0"$, $\langle SYSCK \rangle = "0"$ and $\langle GEAR2:0 \rangle = "100"$ will cause the system clock (f_{SYS}) to be set to fc/32 (fc/16 × 1/2) after a Reset.

For example, f_{SYS} is set to 0.84 MHz when the 27 MHz oscillator connected to the X1 and X2 pins.

(1) Switching from NORMAL mode to SLOW mode

When the resonator is connected to the X1 and X2 pins, or to the XT1 and XT2 pins, the warm-up timer can be used to change the operation frequency after stable oscillation has been attained.

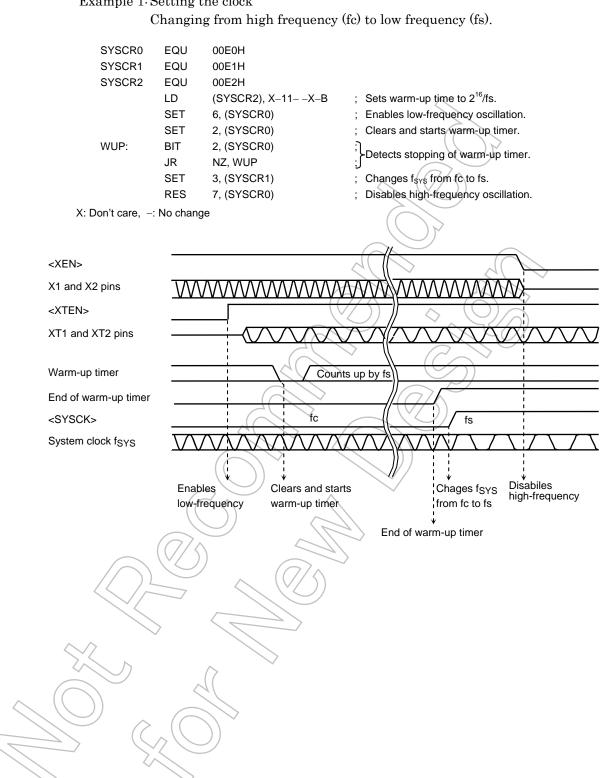
The warm-up time can be selected using SYSCR2<WUPTM1:0>.

This warm-up timer can be programmed to start and stop as shown in the following examples 1 and 2.

Table 3.4.1 shows the warm-up time.

Note 1: When using an oscillator (other than a resonator) with stable oscillation, a warm-up timer is not needed. Note 2: The warm-up timer is operated by an oscillation clock. Hence, there may be some variation in warm-up time.

Note 3: Note of using low-frequency oscillator


When connect low-frequency oscillator to ports 96 and 97, need below setting for cut consumption power. (Case of resonators)

Set P9CR<P96C, P97C> = "11", P9<P96, P97> = "00"

(Case of oscillator) Set P9CR<P96C, P97C> = "11", P9<P96, P97> = "10"

Select Warm-up Time At Change to NORMAL (fc) Change to SLOW (fs) f_{OSCH} = 27 MHz, SYSCR2<WUPTM1:0> fs = 32.768 kHz $01 (2^8/\text{frequency})$ 9.0 [us] 7.8 [ms] 10 (2¹⁴/frequency) 0.607 [ms] 500 [ms] 11 (2¹⁶/frequency) 2.427 [ms] 2000 [ms]

Table 3.4.1 Warm-up Times (when changing clock)

Example 1: Setting the clock

Example 2: Setting the clock Changing from low frequency (fs) to high frequency (fc). EQU SYSCR0 00E0H SYSCR1 EQU 00E1H SYSCR2 EQU 00E2H ; Sets warm-up time to 214/fc. LD (SYSCR2), X-10-X-B 7, (SYSCR0) Enables high-frequency oscillation. SET ; 2, (SYSCR0) Clears and starts warm-up timer. SET ; WUP: BIT 2, (SYSCR0) ; Detects stopping of warm-up timer. NZ, WUP JR RES 3, (SYSCR1) Changes f_{SYS} from fs to fc. ; RES 6, (SYSCR0) Disables low-frequency oscillation. X: Don't care, -: No change <XEN> X1 and X2 pins <XTEN> XT1 and XT2 pins Counts up by fOSCH Warm-up timer End of warm-up timer <SYSCK> ∕fs fc System clock f_{SYS} Chages f_{SYS} Enables Clears and starts from fs to fc ¦ high-frequency warm-up timer Disables End of warm-up low-frequency timer

(2) Clock gear controller

When the high-frequency clock fc is selected by setting SYSCR1<SYSCK> = "0", f_{FPH} is set according to the contents of the clock gear select register SYSCR1<GEAR2:0> to either fc, fc/2, fc/4, fc/8 or fc/16. Using the clock gear to select a lower value of fFPH reduces power consumption.

Below show example of changing clock gear.

Example 3: Changing to a clock gear SYSCR1 EQU 00E1H LD (SYSCR1), XXXX0000B

; Changes f_{FPH} to fc. Changes f_{SYS} to fc/2.

X: Don't care

(Clock gear changing)

To change the clock gear, write the register value to the SYSCR1<GEAR2:0> register. It is necessary for the warm-up time to elapse before the changing occurs after writing the register value.

There is the possibility that the instruction following the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction following the clock gear switching instruction by the clock gear after changing, input the dummy instruction as follows (instruction to execute the write cycle).

Example:		\mathcal{A}	
SYSCR1	EQU	00E1H	
	LD	(SYSCR1), XXXX0001B	; Changes f _{SYS} to fc/4.
	LD	(DUMMY), 00H	; Dummy instruction
	Instruct	ion to be executed after cloc	k gear has changed.
	((75)		
	\sim		

3.4.4 Prescaler Clock Controller

For the internal I/O (TMRA01 to TMRA45, TMRB0, SIO0 to SIO1 and SBI) there is a prescaler which can divide the clock.

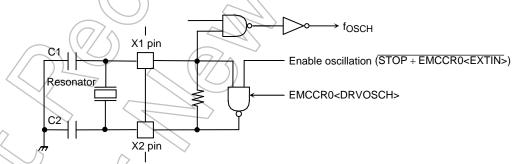
The ϕT , $\phi T0$ clock input to the prescaler is either the clock f_{FPH} divided by 2 or the clock fc/16 divided by 4. The setting of the SYSCR0<PRCK1:0> register determines which clock signal is input.

When using internal SBI, set SYSCR0<PRCK1:0> to "00".

3.4.5 Noise Reduction Circuits

Noise reduction circuits are built in, allowing implementation of the following features.

- (1) Reduced drivability for high-frequency oscillator
- (2) Reduced drivability for low-frequency oscillator
- (3) Single drive for high-frequency oscillator
- (4) Output ALE pin disable
- (5) SFR protection of register contents


The above functions are performed by making the appropriate settings in the EMCCR0 to EMCCR1 registers.

(1) Reduced drivability for high frequency oscillator

(Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)

(Setting method)

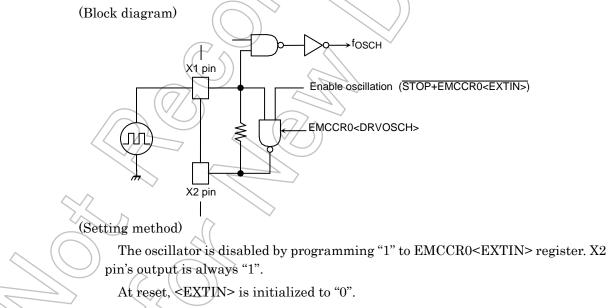
The drivability of the oscillator is reduced by writing "0" to EMCCR0 <DRVOSCH> register. At reset, <DRVOSCH> is initialized to "1" and the oscillator starts oscillation by normal drivability when the power supply is on. When $V_{CC} < 2.7$ V, don't use this function. When $V_{CC} < 2.7$ V, don't set EMCCR0 <DRVOSCH> to "0".

(2) Reduced drivability for low-frequency oscillator

(Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)


(Setting method)

The drivability of the oscillator is reduced by programming "0" to the EMCCR0<DRVOSCL> register. At Reset, <DRVOSCL> is initialized to "1". The oscillation starts in the NORMAL mode at power-on.

(3) Single drive for high-frequency oscillator

(Purpose)

Remove the need for twin drives and prevent operational errors caused by noise input to X2 pin when an external oscillator is used.

Note: Do not write EMCCR0<EXTIN> = "1" when using external resonator.

(4) Output ALE pin disable

(Purpose)

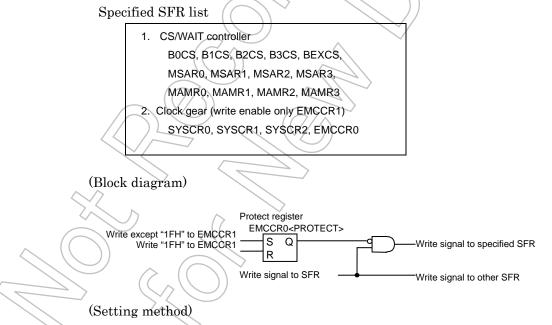
Not need noise of clock property case of don't access external area is reduced.

(Block diagram)

(Setting method)

Output buffer of ALE pin is output disable by programming "0" to EMCCR0<ALEEN>. And ALE pin is high impedance,

At resetting, <ALEEN> is initialized to " θ ".


When you access to external area, you must program "1" to <ALEEN> before access.

(5) Runaway prevention using SFR protection register

(Purpose)

Prevention of program runaway caused by introduction of noise.

Write operations to a specified SFR are prohibited so that the program is protected from runaway caused by stopping of the clock or by changes to the memory control register (CS/WAIT controller) which prevent fetch operations.

If writing except "1FH" code to EMCCR1 register, it becomes protect ON. By this operation, write operation to specified SFR is disabling.

If writing "1FH" to EMCCR1 register, it becomes protect OFF. Protect state can be confirmed by reading EMCCR0<PROTECT>.

At reset, protection becomes OFF.

3.4.6 Standby Controller

(1) HALT modes

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1 or STOP mode, depending on the contents of the SYSCR2<HALTM1:0> register.

The subsequent actions performed in each mode are as follows:

a. IDLE2: Only the CPU halts.

The internal I/O is available to select operation during IDLE2 mode by setting the following register.

Table 3.4.2 shows the register setting operation during IDLE2 mode.

Internal I/O	SER
TMRA01	TA01RUN<12TA01>
TMRA23	TA23RUN <i2ta23></i2ta23>
TMRA45	TA45RUN <i2ta45></i2ta45>
TMRB0	TB0RUN <i2tb0></i2tb0>
SIO0	SCOMOD1 <i2s0></i2s0>
SIO1	SC1MOD1 <i2s1></i2s1>
SBI	SBI0BR0 <i2sbi0></i2sbi0>
AD converter	ADMOD1 <i2ad></i2ad>
WDT	WDMOD <i2wdt></i2wdt>

Table 3.4.2 SFR Setting Operation during IDLE2 Mode

- b. IDLE1: Only the oscillator and the Special timer for CLOCK continue to operate.
- c. STOP: All internal circuits stop operating.

The operation of each of the different HALT modes is described in Table 3.4.3.

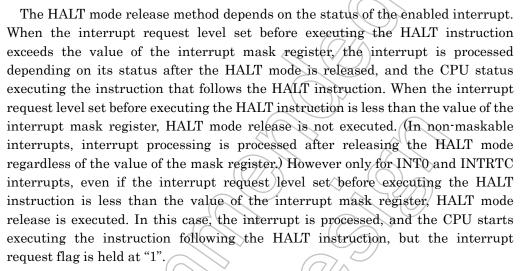

		HALT Mode	IDLE2	IDLE1	STOP
	S	YSCR2 <haltm1:0></haltm1:0>	11	10	01
		CPU		Stop	
		I/O port	Keep the state when the HALT executed.	instruction was	See Table 3.4.6, Table 3.4.7.
		TMRA, TMRB	Available to select operation block	St	ор
	Block	SIO0, SIQ1, SBI			
		AD converter			
\langle		-wdj ()		
		Special timer for CLOCK	Operate enable		
		Interrupt controller	Operate		

Table 3.4.3 I/O Operation during HALT Modes

(2) How to release the HALT mode

These halt states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combination of the states of the interrupt mask register <IFF2:0> and the HALT modes. The details for releasing the halt status are shown in Table 3.4.4.

• Released by interrupt requesting

Note: Usually, interrupts can release all halts status. However, the interrupts = $(\overline{\text{NMI}}, \text{INTO}, \text{INTRTC})$ which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.) If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficulty. The priority of this interrupt is

halt status can be released without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

• Release by resetting

Release of all halt statuses is executed by resetting.

When the STOP mode is released by RESET, it is necessary to allow enough resetting time (See Table 3.4.5) for operation of the oscillator to stabilize.

When releasing the HALT mode by resetting, the internal RAM data keeps the state before the "HALT" instruction is executed. However the other settings contents are initialized. (Releasing due to interrupts keeps the state before the "HALT" instruction is executed.)

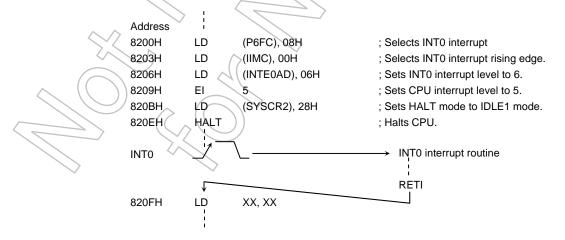
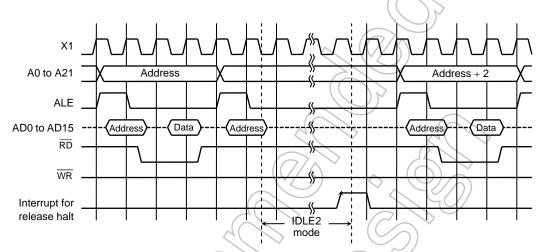

	ę	Status of Received Interrupt	-	t Enable	upt mask) (Interrupt level) < (Interrupt mask)			
		۲	(Interrupt level) ≥ (Interrupt mask)			(Interrupt level) < (Interrupt mask)		
		HALT Mode	IDLE2	IDLE1	STOP	IDLE2	IDLE1	STOP
		NMI	*	•		$\langle \cdot \rangle$	-	-
JCe		INTWD	•	×			-	-
arar		INT0 (Note1)	•	•	*1	0	0	
Halt state clearance	t	INTRTC	•	•	×		0	×
ate	nterrupt	INT5 to INT6	♦ (Note 2)	×	×		×	×
t st	ntei	INTTA0 to INTTA5	•	×	×	((//x))	×	×
Hal	_	INTTB00, INTTB01, INTTBOF0	•	×	×	×	×	×
e of		INTRX0 to INTRX1, INTTX0 to INTTX1	•	×	×	×	×	×
urce		INTSBI	•	×	×	× Y	×	×
Source		INTAD	•	×	×	×	×	×
	RESET				AInitia	lize LSI	\bigcirc	

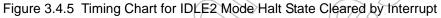
Table 3.4.4	Source of Halt State Clearance and Halt Clearance Operation
-------------	---

- •: After clearing the HALT mode, CPU starts interrupt processing.
- •: After clearing the HALT mode, CPU resumes executing starting from the instruction following the HALT instruction. (Interrupt routine don't execute.)
- $\times:$ Cannot be used to release the HALT mode.
- -: The priority level (Interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. This combination is not available.
- *1: Release of the HALT mode is executed after warm-up time has elapsed.
- Note 1: When the HALT mode is cleared by an INT0 interrupt of the level mode in the interrupt enabled status, hold high level until starting interrupt process. If low level was set before interrupt process is stared, interrupt process is not started correctly.
- Note 2: If using external interrupt INT5 to INT6 in IDLE2 mode, set 16-bit timer RUN register TB0RUN<I2TB0> to "1".

Example: Releaseing halt state

An INTO interrupt clears the halt state when the device is in IDLE1 mode.




(3) Operation

a. IDLE2 mode

In IDLE2 mode only specific internal I/O operations, as designated by the IDLE2 setting register, can take place. Instruction execution by the CPU stops.

Figure 3.4.5 illustrates an example of the timing for clearance of the IDLE2 mode halt state by an interrupt.

b. IDLE1 mode

In IDLE1 mode, only the internal oscillator and the Special timer for CLOCK continue to operate. The system clock in the MCU stops.

In the halt state, the interrupt request is sampled asynchronously with the system clock; however, clearance of the Halt state (e.g., restart of operation) is synchronous with it.

Figure 3.4.6 illustrates the timing for clearance of the IDLE1 mode halt state by an interrupt.

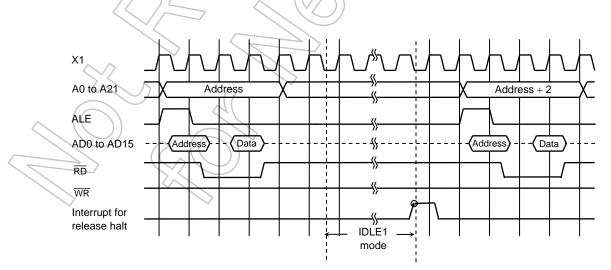


Figure 3.4.6 Timing Chart for IDLE1 Mode Halt State Cleared by Interrupt

STOP mode c.

> When STOP mode is selected, all internal circuits stop, including the internal oscillator. Pin status in STOP mode depends on the settings in the SYSCR2<DRVE> register. Table 3.4.6 and Table 3.4.7 summarizes the state of these pins in STOP mode.

> After STOP mode has been cleared, system clock output starts when the warm-up time has elapsed, in order to allow oscillation to stabilize. After STOP mode has been cleared, either NORMAL mode or SLOW mode can be selected using the SYSCR0<RSYSCK> register. Therefore, <RSYSCK>, <RXEN> and <RXTEN> must be set. See the sample warm-up times in Table 3.4.5.

> Figure 3.4.7 illustrates the timing for clearance of the STOP mode halt state by an interrupt.

Figure 3.4.7 Timing Chart for STOP Mode Halt State Cleared by Interrupt

 $(\overline{\Omega})$

		@ f _O ;	_{SCH} = 27 MHz, fs = 32.768 kHz
SYSCR0		SYSCR2 <wuptm1:0></wuptm1:0>	
<rsysck></rsysck>	01 (2 ⁸)	10 (2 ¹⁴)	11 (2 ¹⁶)
0 (fc)	9.0 μs	0.607 ms	2.427 ms
1 (fs)	7.8 ms	500 ms	2000 ms

Table 3,4,5 Sample V	Varm-up Times	s after Clearance	e of STOP Mode

Example:

• The STOP mode is entered when the low-frequency operates, and high-frequency operates after releasing due to NMI.

Address SYSCR0 EQU 00E0H SYSCR1 EQU 00E1H SYSCR2 EQU 00E2H 8FFDH LD (SYSCR1), 08H ; $f_{SYS} = fs/2$; Sets warm-up time to 214/fc 9000H LD (SYSCR2), X-1001X1B LD (SYSCR0), -11000 - - B ; Operates high frequency after released. 9002H 9005H HALT Clears and starts warm-up timer NMI pin inpu (High frequency) END NMI Interrupt routine ĽD 9006H XX, XX RETI 1 -: No change

Note: When different modes are used before and after STOP mode as the above mentioned, there is possible to release the HALT mode without changing the operation mode by acceptance of the halt release interrupt request during execution of "HALT" instruction (during 6 state). In the system which accepts the interrupts during execution "HALT" instruction, set the same operation mode before and after the STOP mode.

-				51 H 6 H 6	Ballel et	ale Table				
					In	put Buffer S	tate			
			When th	e CPU is	In HAL	T mode		In HALT mo	de (STOP)	
Port	Input Function		Oper	rating	(IDLE2	/IDLE1)	<dr\< td=""><td>/E>=1</td><td><dr\< td=""><td>/E>=0</td></dr\<></td></dr\<>	/E>=1	<dr\< td=""><td>/E>=0</td></dr\<>	/E>=0
Name	Name	During	When	When	When	When	When	When	When	When
		Reset	Used as	Used as	Used as	Used as	Used as	Used as	Used as	Used as
			Function	Input Port	Function	Input Port	Function	Input Port	Function	Input Port
			Pin	input i ort	Pin	input i oit	Pin		Pin	input i ort
P00 to P07	AD0 to AD7		ON upon							
P10 to P17	AD8 to AD15		external		OFF	\sim	OFF	\land	OFF	
	100101010	OFF	read	ON		OFF	$\sum V$	OFF		
P20 to P25	-			ÖN		(\sim			
P32	-		_		_		4()		_	
P40 to P42	-	ON				ON		ON		OFF
P50 to P52	-			ON upon		OFE			\sim	OFF
P53	ADTRG	OFF		port read		UFF	~	OFF	ON	
P60	SCK				(7/	7	6		
P61	SDA				(//))	\diamond	(\bigcirc)		
	SI		ON		ØN		ON <		OFF	
P62	SCL					\bigcirc				
P63	INT0				$\langle \bigcirc \rangle$		(C	A.	ON	ON
P70	TA0IN				\sim			\mathcal{D}	OFF	
P71	_				\sim		$(0/\delta)$			
P72	-		-		\rightarrow	\frown	$(\vee \mathcal{L})$		-	
P73	TA4IN		ON	$\langle \langle \rangle$	ON	$\langle \ $	ON		OFF	
P74	-		- /		_ <	\leq)) -		-	
Doo	TB0IN0		(\bigcap			//			
P80	INT5								055	
DOA	TB0IN1	ON	ON	ON		ON	ON	ON	OFF	
P81	INT6									
P82	-				7/~	\rightarrow				
P83	-		//				-		-	055
P90	- //	/ /		($\overline{\partial h}$	~				OFF
P91	RXD0			$\langle \langle \rangle$	\vee					
	SCLK0		ON		ON		ON		OFF	
P92	CTS0	\searrow	\langle							
P93	_		_		_		_		_	
P94	RXD1									
	SCLK1	0		\sim			ON			
P95	CTS1		ON		ON		_		OFF	
	For oscillator	OFF		OFF		OFF		OFF		
P96	XT1 For port	\land	OFF	\checkmark	OFF		OFF			
P97		$(\langle \rangle$	(\bigcirc)	ON	-	ON	_	ON	_	1
NMI										
RESET	<u> </u>	ON	$\langle \rangle$				ON		ON	
AM0,AM1			ÓN	-	ON	-		-		-
X1		1					OFF	1	OFF	1
				1		1				1

ON: The buffer is always turned on. A current flows through the input buffer if the input pin is not driven.

OFF: The buffer is always turned off.

*1: Port having a pull-up/pull-down resistor.

*2: AIN input does not cause a current to flow through the buffer.

-: Not applicable

					C	utput Buffer	State			
			When th	ne CPU is	1	.T mode	1	In HALT mod	e (STOP)	
Port			Ope	rating	(IDLE2	2/IDLE1)	<dr< td=""><td>VE>=1</td><td><dr\< td=""><td>/E>=0</td></dr\<></td></dr<>	VE>=1	<dr\< td=""><td>/E>=0</td></dr\<>	/E>=0
Name	Output Function Name	During	When	When	When	When	When		When	When
Indiffe	Name	Reset	Used as	Used as	Used as	Used as	Used as	When Used	Used as	Used as
			Function	Output	Function	Output	Function	as Output	Function	Output
			Pin	Port	Pin	Port	Pin	Port	Pin	Port
P00 to P07	AD0 to AD7		ON upon					\bigcirc		
			external		OFF	~	OFF7	\sim		
P10 to P17	AD8 to AD15		write				$\langle \langle \rangle \rangle$	\mathcal{D}		
	A8 to A15	OFF					\geq			
D00 to D05	A0 to A5					($\langle \rangle \rangle$			
P20 to P25	A16 to A21									
P30	RD							((
P31	WR	ON					\sim	12	\sim	
P32	HWR		1			$\overline{\partial}$	>	4	OFF	
	CSO		ON		ON	\langle / \rangle	ON	(\bigcirc)	5	
P40 to P42	CS1))	
						\bigcirc				
P60	SCK				$\langle \bigcirc \rangle$		(C			
FOU	SDA				$\left \right\rangle$			\mathcal{D}		
P61	SO			$(\cap$	\sim		(7)			
P62	SCL					\frown	$\vee \bigcirc$			
P63				ON	\rightarrow	ON		ON		
P70	_		- /		_ <))-		-	OFF
P71	TA1OUT		((//			
P72	TA3OUT		ON	\bigcirc	ON		ON		OFF	
P73	_	OFF			_		_		_	
P74	TA5OUT		ON))	ON		ON		OFF	
P80	-	6	77/2			\sim		1		1
P81	- /	(((/ 5)			\geq	-		-	
P82	TBOOUTO	$)) \ $	\bigcirc		$\overline{\Omega}$	1		1		1
P83	TB0OUT1		7 ON	$ $ $\langle \rangle $	(ON)		ON		OFF	
P90	TXD0	(< -)	-							
P91	-	\searrow			<u> </u>]	_		_	
P92	SCLK0	~								
P93	TXD1		ON	\rightarrow	ON]	ON		OFF	
P94		Y	-(7]	-]	_		_	
P95	SCLK1		ON]	ON]	ON		OFF	
P96 <		ON		\supset	_		_		_	
	For oscillator	ØFF	ON	OFF	ON	OFF	055	OFF	055	
P97	XT2 For port	ON	OFF	ON	OFF	ON	OFF	ON	OFF	
ALE	-	OFF								
X2		ON	ON	-	ON	-	ON	-	ON	—

Table 3.4.7 Output buffer State Table

ON: The buffer is always turned on.

OFF: The buffer is always turned off.

-:Not applicable

*1: Port having a pull-up/pull-down resistor.

3.5 Interrupts

Interrupts are controlled by the CPU interrupt mask register SR<IFF2:0> and by the built-in interrupt controller.

The TMP91CU27/CP27/CK27 have a total of 34 interrupts divided into the following three types:

Interrupts generated by CPU: 9 sources (Software interrupts, illegal instruction interrupt)	
Internal interrupts: 21 sources	
• Interrupts on external pins (<u>NMI</u> , INTO, INT5 and INT6) ² 4 sources	

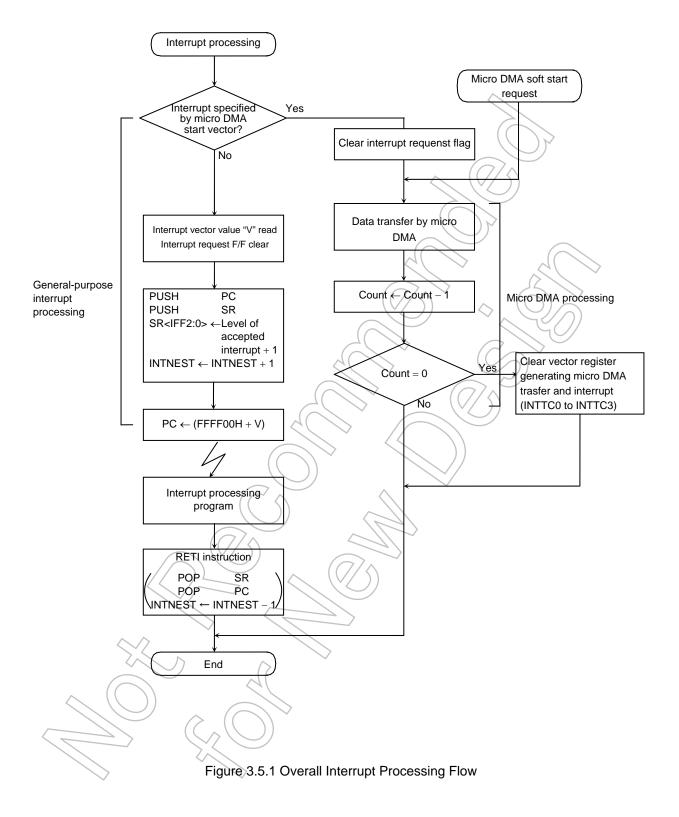
A (fixed) individual interrupt vector number is assigned to each interrupt.

One of six (Variable) priority level can be assigned to each maskable interrupt.

The priority level of non-maskable interrupts are fixed at 7 as the highest level.

When an interrupt is generated, the interrupt controller sends the priority of that interrupt to the CPU. If multiple interrupts are generated simultaneously, the interrupt controller sends the interrupt with the highest priority to the CPU. (The highest priority is level 7 using for non-maskable interrupts.)

The CPU compares the priority level of the interrupt with the value of the CPU interrupt mask register <IFF2:0>. If the priority level of the interrupt is higher than the value of the interrupt mask register, the CPU accepts the interrupt.


The interrupt mask register <IFF2:0> value can be updated using the value of the EI instruction ("EI num" sets <IFF2:0> data to num).

For example, specifying "EI3" enables the maskable interrupts which priority level set in the interrupt controller is 3 or higher, and also non-maskable interrupts.

Operationally, the DI instruction ($\langle IFF2:0 \rangle = "7"$) is identical to the "EI7" instruction. DI instruction is used to disable maskable interrupts because of the priority level of maskable interrupts is 0 to 6. The EI instruction is valid immediately after execution.

In addition to the above general-purpose interrupt processing mode, TLCS-900/L1 has a micro DMA interrupt processing mode as well. The CPU can transfer the data (1/2/4 bytes) automatically in micro DMA mode, therefore this mode is used for speed-up interrupt processing, such as transferring data to the internal or external peripheral I/O. Moreover, TMP91CU27/CP27/CK27 has software start function for micro DMA processing request by the software not by the hardware interrupt.

Figure 3.5.1 shows the overall interrupt processing flow.

3.5.1 General-Purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. That is also the same as TLCS-900/L and TLCS-900/H.

(1) The CPU reads the interrupt vector from the interrupt controller.

If the same level interrupts occur simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt request.

(The default priority is already fixed for each interrupt: The smaller vector value has the higher priority level.)

- (2) The CPU pushes the value of program counter (PC) and status register (SR) onto the stack area (indicated by XSP).
- (3) The CPU sets the value which is the priority level of the accepted interrupt plus 1 (+1) to the interrupt mask register <IFF2:0>. However, if the priority level of the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increases the interrupt nesting counter INTNEST by 1 (+1).
- (5) The CPU jumps to the address indicated by the data at address "FFFF00H + interrupt vector" and starts the interrupt processing routine. The above processing time is 18-states (1.33 μs at 27 MHz) as the best case (16 bits data bus width and 0 waits).

When the CPU completed the interrupt processing, use the RETI instruction to return to the main routine. RETI restores the contents of program counter (PC) and status register (SR) from the stack and decreases the interrupt nesting counter INTNEST by 1(-1).

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source.

If an interrupt request which has a priority level equal to or greater than the value of the CPU interrupt mask register <IFF2:0> comes out, the CPU accepts its interrupt. Then, the CPU interrupt mask register <IFF2:0> is set to the value of the priority level for the accepted interrupt plus 1 (1).

Therefore, if an interrupt is generated with a higher level than the current interrupt during its processing, the CPU accepts the later interrupt and goes to the nesting status of interrupt processing.

Moreover, if the CPU receives another interrupt request while performing the said (1) to (5) processing steps of the current interrupt, the latest interrupt request is sampled immediately after execution of the first instruction of the current interrupt processing routine. Specifying DI as the start instruction disables maskable interrupt nesting.

A reset initializes the interrupt mask register <IFF2:0> to "7", disabling all maskable interrupts.

Table 3.5.1 shows the TMP91CU27/CP27/CK27 interrupt vectors and micro DMA start vectors. The address FFFF00H to FFFFFH (256 bytes) is assigned for the interrupt vector area.

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value (V)	Vector Reference Address	Micro DMA Start Vector
1		"RESET" or SWI0 instruction	0000H	FFFF00H	_
2		SWI1 instruction	0004H	FFFF04H	_
3		INTUNDEF: Illegal Instruction or SWI2 instruction	0008H	FFFF08H	_
4		SWI3 instruction	000CH	FEFF0CH	_
5	Non	SWI4 instruction	0010H	FFFF10H	-
6	-maskable	SWI5 instruction	0014H	FFFF14H	-
7		SWI6 instruction	0018H	FFFF18H	-
8		SWI7 instruction	001CH	FFFF1CH	-
9		NMI pin	0020H	FFFF20H	_
10		INTWD: Watchdog timer	0024H	FFFF24H	_
_		(Micro DMA)			_
11		INTO pin	0028H	FFFF28H	> 0AH
12	1	Reserved	_		_
13	1	Reserved	_ (\sim	_
13	1	Reserved	\Diamond	2/2	_
14	1	Reserved		140/-	_
16		INT5 pin	003CH	FFFF3CH	0FH
17		INT6 pin	0040H	FFFF40H	10H
18		Reserved		11114011	
10		Reserved	7/5	_	
20		INTTA0: 8-bit timer 0	004CH	 FFFF4CH	 13H
20			004CH		13H
21		INTTA1: 8-bit timer 1	1	FFFF50H FFFF54H	
22		INTTA2: 8-bit timer 2 INTTA3: 8-bit timer 3	0054H 0058H	FFFF58H	15H 16H
23		INTTA4: 8-bit timer 4	005CH	FFFF5CH	17H
25		INTTA5: 8-bit timer 5 Reserved	0060H	FFFF60H	18H
26 27		Reserved	-		-
			-		-
28	Maskable	INTTB00: 16-bit timer 0 (TB0RG0)	006CH	FFFF6CH	1BH
29		INTTB01: 16-bit timer 0 (TB0RG1)	0070H	FFFF70H	1CH
30		Reserved	-	_	_
31		Reserved	-	-	-
32		INTTBOF0: 16-bit timer 0 (Over flow)	007CH	FFFF7CH	1FH
33	\bigtriangledown	Reserved	-	-	-
34		INTRX0: Serial reception (Channel 0)	0084H	FFFF84H	21H
35		INTTX0: Serial transmission (Channel 0)	0088H	FFFF88H	22H
36	())	INTRX1: Serial reception (Channel 1)	008CH	FFFF8CH	23H
37		INTTX1: Serial transmission (Channel 1)	0090H	FFFF90H	24H
38		INTSBI: Serial bus interface interrupt	0094H	FFFF94H	25H
39		INTRTC: Special timer for clock	0098H	FFFF98H	26H
40		INTAD: AD conversion end	009CH	FFFF9CH	27H
41		INTTC0: End of Micro DMA (Channel 0)	00A0H	FFFFA0H	-
42		INTTC1: End of Micro DMA (Channel 1)	00A4H	FFFFA4H	-
43		INTTC2: End of Micro DMA (Channel 2)	00A8H	FFFFA8H	-
44		INTTC3: End of Micro DMA (Channel 3)	00ACH	FFFFACH	_
		(Reserved)	00B0H	FFFFB0H	-
			:	:	:
		(Reserved)	00FCH	FFFFFCH	-

Table 3.5.1 TMP91CU27/CP27/CK27 Interrupt Vectors and Micro DMA Start Vectors

Note: Micro DMA default priority: the micro DMA initiation takes priority over other Maskable interrupts.

3.5.2 Micro DMA

In addition to general-purpose interrupt processing, the TMP91CU27/CP27/CK27 supports a micro DMA function. Interrupt requests set by micro DMA perform micro DMA processing at the highest priority level among maskable interrupts, regardless of the priority level of the particular interrupt source. The micro DMA has 4 channels and is possible continuous transmission by specifying the say later burst mode.

Because the micro DMA function is implemented through the CPU, when the CPU is placed in a standby mode by a HALT instruction, the requirements of the micro DMA will be ignored (Pending).

(1) Micro DMA operation

When an interrupt request specified by the micro DMA start vector register is generated, the micro DMA triggers a micro DMA request to the CPU at interrupt priority highest level and starts processing the request in spite of any interrupt source's level. The micro DMA is ignored on $\langle IFF2:0 \rangle = "7"$.

The 4 micro DMA channels allow micro DMA processing to be set for up to 4 types of interrupts at any one time. When micro DMA is accepted, the interrupt request flip-flop assigned to that channel is cleared.

The data are automatically transferred once (1/2/4 bytes) from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decreased by 1(-1).

If the decreased result is "0", the micro DMA transfer end/interrupt (INTTCn) passes from the CPU to the interrupt controller. In addition, the micro DMA start vector register DMAnV is cleared to 0, the next micro DMA is disabled and micro DMA processing completes.

If the decreased result is other than "0", the micro DMA processing completes if it isn't specified the say later burst mode. In this case, the micro DMA transfer end interrupt (INTTCn) aren't generated.

If an interrupt request is triggered for the interrupt source in use during the interval between the clearing of the micro DMA start vector and the next setting, general-purpose interrupt processing executes at the interrupt level set. Therefore, if only using the interrupt for starting the micro DMA (Not using the interrupts as a general-purpose interrupt: Level 1 to 6), first set the interrupts level to 0 (Interrupt requests disabled).

If using the interrupt source to activate both micro DMA and general-purpose interrupts, first set the level of the interrupt used to start micro DMA processing lower than all the other interrupt levels. In this case, the cause of general interrupt is limited to the edge interrupt. (Note)

Note: If the priority level of micro DMA is set higher than that of other interrupts, CPU operates as follows.

In case INTxxx interrupt is generated first and then INTyyy interrupt is generated between checking "Interrupt specified by micro DMA start vector" (in the Figure 3.5.1) and reading interrupt vector with setting below. The vector shifts to that of INTyyy at the time.

This is because the priority level of INTyyy is higher than that of INTxxx.

In the interrupt routine, CPU reads the vector of INTyyy because cheking of micro DMA has finished. And INTyyy is generated regardless of transfer counter of micro DMA.

INTxxx: level 1 without micro DMA

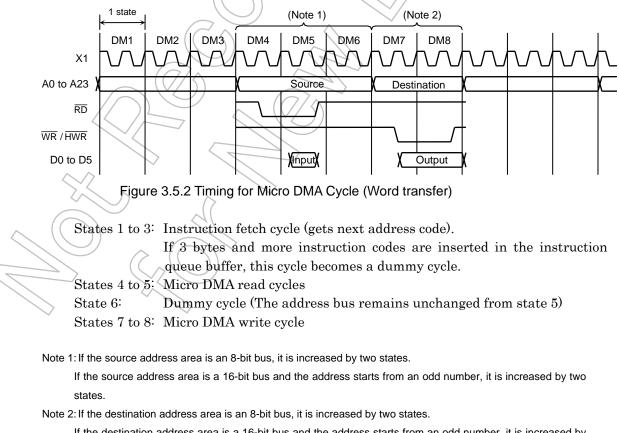
INTyyy: level 6 with micro DMA

The priority of the micro DMA transfer end interrupt is defined by the interrupt level and the default priority as the same as the other maskable interrupt.

If a micro DMA request is set for more than one channel at the same time, the priority is not based on the interrupt priority level but on the channel number. The smaller channel number has the higher priority (Channel 0 (High) > channel 3 (Low)).

While the register for setting the transfer source/transfer destination addresses is a 32-bit control register, this register can only effectively output 24-bit addresses. Accordingly, micro DMA can access 16 Mbytes (The upper eight bits of the 32 bits are not valid).

Three micro DMA transfer modes are supported: 1-byte transfer, 2-byte transfer, and 4-byte transfer. After a transfer in any mode, the transfer source/destination addresses are increased, decreased, or remain unchanged.


This simplifies the transfer of data from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the transfer modes, see 3.5.2 (4) "Detailed description of the transfer mode register: DMAM0 to DMAM3".

As the transfer counter is a 16-bit counter, micro DMA processing can be set for up to 65536 times per interrupt source. (The micro DMA processing count is maximized when the transfer counter initial value is set to 0000H.)

Micro DMA processing can be started by the 30 interrupts shown in the micro DMA start vectors of and by the micro DMA soft start, making a total of 31 interrupts.

Figure 3.5.2 shows the word transfer micro DMA cycle in transfer destination address INC mode (except for Counter mode, the same as for other modes).

(The conditions for this cycle are based on an external 16-bit bus, 0 waits, transfer source/transfer destination addresses both even-numbered values).

If the destination address area is a 16-bit bus and the address starts from an odd number, it is increased by two states.

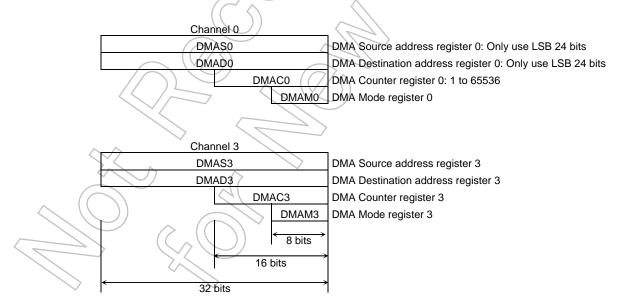
(2) Soft start function

In addition to starting the micro DMA function by interrupts, TMP91CU27/CP27/CK27 includes a micro DMA software start function that starts micro DMA on the generation of the write cycle to the DMAR register.

Writing "1" to each bit of DMAR register causes micro DMA activate once. At the end of transfer, the corresponding bit of the DMAR register is automatically cleared to "0".

Only one-channel can be set once for micro DMA. (Do not write "1" to plural bits.)

When writing again "1" to the DMAR register, check whether the bit is "0" before writing "1". The read value "1" does not cause micro DMA transfer.


When a burst is specified by DMAB register, data is continuously transferred until

the value in the micro DMA transfer counter is 0 after start up of the micro DMA. If execute soft start during micro DMA transfer by interrupt source, micro DMA transfer counter doesn't change. Don't use Read-modify-write instruction to avoid writing to other bits by mistake.

						101	\sim			
Symbol	Name	Address	7	6	5	(4)	3 🔷	20		0
	DMA	0011		/	\neq	X	DMAR3	DMAR2	DMAR1	DMAR0
DMAR	software	89H (Prohibit RMW)	/	/		Ź	(R	W	
DIVIAR	request		/	/	Ł	\backslash	0	0	0	0
	register)/ //				equest	

(3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers in CPU. An instruction of the form "LDC cr,r" can be used to set these registers.

MAM	10 to	DM	IAM	3)		
0	10)	0		Mode Note: The upper three bits of data p	
					these registers must always be	0.
		Г				Execution time
			\int	$\overline{}$	ZZ: 0 = Byte transfer, 1 = Word transfer, 2 = 4-byte transfer, 3 = Reserve	ed 🗸 🗼
0	0	0	Ζ	Ζ	Transfer destination address INC modeI/O to memory	8 states (593 ns)
					$(DMADn+) \leftarrow (DMASn)$	@ byte/word transfer
					DMACn ← DMACn – 1	12 states (889ns)
					if DMACn = 0 then INTTC is generated	@4-byte transfer
0	0	1	Ζ	Ζ	Transfer destination address DEC modeI/O to memory	8 states (593 ns)
					$(DMADn-) \leftarrow (DMASn)$	@ byte/word transfer
					DMACn ← DMACn – 1	12 states (889 ns)
					if DMACn = 0 then INTTC is generated	@4-byte transfer
0	1	0	Ζ	Ζ	Transfer source address INC mode Memory to I/O	8 states (593 ns)
					$(DMADn) \leftarrow (DMASn+)$	@ byte/word transfer
					DMACn ← DMACn – 1	12 states (889 ns)
					if DMACn = 0 then INTTC is generated	@4-byte transfer
0	1	1	Ζ	Ζ	Transfer source address DEC mode Memory to I/O	8 states (593 ns)
					$(DMADn) \leftarrow (DMASn-)$	@ byte/word transfer
					DMACn ← DMACn – 1	12 states (889 ns)
					if DMACn = 0 then INTTC is generated	@4-byte transfer
1	0	0	Ζ	Ζ	Address fixed mode I/O to I/O	8 states (593 ns)
					$(DMADn) \leftarrow (DMASn)$	@ byte/word transfer
					DMACn ← DMACn – 1	12 states (889 ns)
					if DMACn = 0 then INTTC is generated	@4-byte transfer
1	0	1	0	0	Counter mode for counting number of times interrupt is generated	5 states
					$DMASn \leftarrow DMASn + 1$	
					$DMACn \leftarrow DMACn - 1$	(370 ns)
					if DMACn = 0 then INTTC is generated	

(4) Detailed description of the transfer mode register: DMAM0 to DMAM3

Note 1: "n" is the corresponding micro DMA channels 0 to 3

DMADn+/DMASn+: Post increment (Increment register value after transfer)

DMADn-/DMASn-: Post decrement (Decrement register value after transfer)

The I/Os in the table mean fixed address and the memory means increment (INC) or decrement (DEC) addresses.

Note 2: Execution time is under the condition of:

16-bit bus width/0 waits.

table.

fc = 27MHz/selected high frequency mode (fc \times 1)

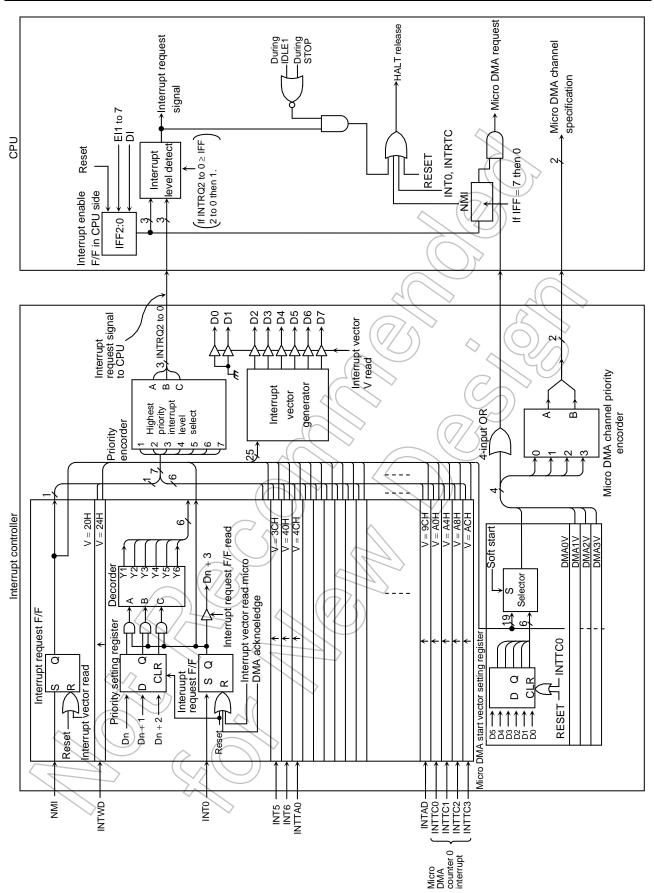
Note 3: Do not use an undefined code for the transfer mode register except for the defined codes listed in the above

3.5.3 Interrupt Controller Operation

The block diagram in Figure 3.5.3 shows the interrupt circuits. The left-hand side of the diagram shows the interrupt controller circuit. The right-hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 25 interrupt channels there is an interrupt request flag (Consisting of a flip-flop), an interrupt priority setting register and a micro DMA start vector register. The interrupt request flag latches interrupt requests from the peripherals. The flag is cleared to zero in the following cases:

- When reset occurs
- When the CPU reads the channel vector after accepted its interrupt
- When executing an instruction that clears the interrupt (Program DMA start vector to INTCLR register)
- When the CPU receives a micro DMA request (When micro DMA is set.)
- When the micro DMA burst transfer is terminated


An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g., INTEOAD or INTE56). 6 interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source. The priority of non-maskable interrupts $(\overline{\text{NMI}}$ pin interrupts and watchdog timer interrupts) is fixed at 7. If interrupt request with the same level are generated at the same time, the default priority (The interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first.

The 3rd and 7th bits of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

The interrupt controller sends the interrupt request with the highest priority among the simultaneous interrupts and its vector address to the CPU. The CPU compares the priority value <IFF2:0> in the status register by the interrupt request signal with the priority value set; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 (+1) in the CPU SR<IFF2:0>. Interrupt request where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine.

When interrupt processing is completed (after execution of the RETI instruction), the CPU restores the priority value saved in the stack before the interrupt was generated to the CPU SR<IFF2:0>.

The interrupt controller also has registers (4 channels) used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (See Table 3.5.1), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter register (e.g., DMAS and DMAD) prior to the micro DMA processing.

	(1) In	terrupt le	vei settin	g register	:s					
Symbol	Name	Address	7	6	5	4	3	2	1	0
				INT	AD			IN	Т0	_
INTE0AD	INT0 & INTAD	90h	IADC	IADM2	IADM1	IADM0	10C	10M2	I0M1	I0M0
INTEGAD	enable	9011	R		R/W		R		R/W	
			0	0	0	0	0 <	0	0	0
				IN	Т6				T5	
INTE56	INT5 & INT6	93h	16C	I6M2	I6M1	16M0	I5C	(I5M2	I5M1	I5M0
	enable	93n	R		R/W		R	\sum	R/W	
			0	0	0	0	0((/_0	0	0
	INTTA0 & INTTA1 enable	95h	INTTA1 (TMRA1)				$\langle \rangle \langle \rangle$		(TMRA0)	
INTETA01			ITA1C	ITA1M2	ITA1M1	ITA1M0	ITA0C	ITA0M2	ITA0M1	ITA0M0
			R		R/W			7	R/W	
			0	0	0	0	0	0	0	0
			INTTA3 (TMRA3)			21	INTTA2 (TMRA2)			
INTETA23	INTTA2 & INTTA3	96h	ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0
111121720	enable	0011	R		R/W	(7/	R	$(\bigcirc$	R/W	
			0	0	0	$\langle 0 \rangle$	0 🛇	0	0	0
				INTTA5	(TMRA5)	\backslash		INTTA4	(TMRA4)	
INTETA45	INTTA4 & INTTA5	97h	ITA5C	ITA5M2	ITA5M1	ITA5M0	ITA4C	TTA4M2	ITA4M1	ITA4M0
	enable	0/11	R		R/W	\searrow	R	$\sim)$	R/W	
			0	0	\bigcirc	0	0	6	0	0

(1) Int. ottit ± 1 1

Interrupt request flag 🔸

	¥		$C \land \land$
lxxM2	lxxM1	lxxM0	Function (Write)
0	0	0	Disable interrupt request
0	0		Setting interrupt priority level to "1".
0	1	/ 0	Setting interrupt priority level to "2".
0	1		Setting interrupt priority level to "3".
1	0	- Q	Setting interrupt priority level to "4".
1	0	1	Setting interrupt priority level to "5".
1	1	0	Setting interrupt priority level to "6".
1	1	1	Disable interrupt request
\langle			

Symbol	Name	Address	7	6	5	4	3	2	1	0	
,				INTTB01	(TMRB0)		INTTB00 (TMRB0)				
	INTTB00 &		ITB01C	ITB01M2	ITB01M1	ITB01M0	ITB00C	ITB00M2	ITB00M1	ITB00M0	
INTETB0	INTTB01 enable	99H	R		R/W		R		R/W		
			0	0	0	0	0	0	0	0	
				_	_		IN	TTBOE0 (TM	IRB0 over flo	ow)	
	INTTBOF0 (over-flow)	0.011	-	-	-	-	ITF0C	ITF0M2	ITF0M1	ITF0M0	
INTETB01V	enable	9BH	R		R/W		R	$\left(\left(\right) \right)$	R/W		
			0	0	0	0	0	0	0	0	
				INT	TX0	4	()	/ S) INT	RX0		
INTES0	INTRX0 & INTTX0	0011	ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0	
INTESU	enable	9CH	R		R/W		R		R/W		
			0	0	0	0	$\left(\begin{array}{c} \\ \end{array} \right)$	0	0	0	
	INTRX1 & INTTX1 enable	9DH		INT	TX1)	INT	RX1		
INTES1			ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0	
INTEST			R		R/W		R	X	RAW		
			0	0	0		0 _	0	0	0	
			INTRTC			7	INT	SBI) /			
INTES2RTC	INTSBI & INTRTC	9EH	IRTCC	IRTCM2	IRTCM1	IRTCM0	IS2C	IS2M2	1S2M1	IS2M0	
INTEGRATO	enable		R		R/W		R ((2 > 1	R/W		
			0	0	0	V 0	0	0	0	0	
				INT	TC1	>					
INTETC01	INTTC0 & INTTC1	A0H	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITCOC	ITC0M2	ITC0M1	ITC0M0	
INTEICOT	enable	АОП	R	20	R/W		R		R/W		
			0	0	0	0	0	0	0	0	
				((int	ТСЗ			INT	TC2		
INTETC23	INTTC2 & INTTC3	A1H	ITC3C	ITC3M2	ITC3M1	ІТСЗМ0	TC2C	ITC2M2	ITC2M1	ITC2M0	
INTET023	enable	AIII	R	$\langle \rangle$	R/W	$\langle \rangle$	R		R/W		
			0	$\bigcirc b$	0	0	0	0	0	0	
					~	\sim					

Interrupt request flag

	↓		
lxxM2	lxxM1	lxxM0	Function (Write)
0	0	6	Disable interrupt request
0	0		Setting interrupt priority level to "1".
0	(1)	0	Setting interrupt priority level to "2".
0) 1	Setting interrupt priority level to "3".
1	0	0 🧷	Setting interrupt priority level to "4".
4	0	1 (Setting interrupt priority level to "5".
	1	0 2	Setting interrupt priority level to "6".
1	1	1	Disable interrupt request

I

(2) External interrupt control

Symbol	Name	Address	7	6	5	4	3	2	1	0
			_	-	_	-	-	I0EDGE	IOLE	NMIREE
						1	N			
	late www.unt		0	0	0	0	0	0	0	0
	Interrupt input	8CH						INTO	INT0	1: Operate
	mode	(Prohibit					edge	mode	even on	
	control	RMW)		А	lways write "		0: Rising	0: Edge	rising/	
						1: Falling	1: Level	falling		
						77~		edge of		
								\bigcirc		NMI
NT0 level en	ahle									
	edge detect	interrupt			,		()	>		
1	"H" level inte					G	\sim		\frown	
IMI rising ed						2		~	$\langle \bigcirc \rangle$	
0		uest generatio	on at falling	edge 🖌				\sim	$\overline{}$	
1	Interrupt req	uest generatio	on at rising/	falling		(7/		6		
	edge	-	-	-		$\langle \cup \rangle$		>	$\langle A \rangle$	

(3) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA start vector, as given in Table 3.5.1, to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

INTCLR \leftarrow 0AH	Clears interrupt request flag INTO

Symbol	Name	Address	7 ((6	5	4	3	2	1	0
	Interrupt clear control		7	\neq	CLRV5	GLRV4	CLRV3	CLRV2	CLRV1	CLRV0
		88H (Prohibit RMW)		\backslash	W					
INTCLR			\mathcal{M}		0	\sim	0	0	0	0
				\sim	((//)		Interrup	t vector		

(4) Micro DMA start vector registers

This register assigns micro DMA processing to which interrupt source. The interrupt source with a micro DMA start vector that matches the vector set in this register is assigned as the micro DMA start source.

When the micro DMA transfer counter value reaches zero, the micro DMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source for the channel is cleared. Therefore, to continue micro DMA processing, set the micro DMA start vector register again during the processing of the micro DMA transfer end interrupt.

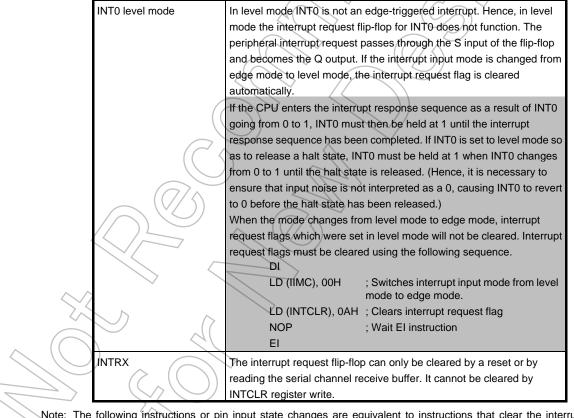
If the same vector is set in the micro DMA start vector registers of more than one Accordingly, if the same vector is set in the micro DMA start vector registers of two channels, the interrupt generated in the channel with the lower number is executed until micro DMA transfer is complete. If the micro DMA start vector for this channel is not set again, the next micro DMA is started for the channel with the higher number. (Micro DMA chaining)

Symbol	Name	Address	7	6	5	4	3	2	1	0
					DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	DMA0 start	80H	/				R/	/W		
DIVIAUV	vector	0011			0	0	0	0	0	0
							DMA0 st	art vector		
	DMAA			/	DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	DMA1 start	81H				÷	R	W		
DIVIATV	vector	0111			0	0	0	$\left(\left(0 \right) \right)$	o	0
Vector						DMA1_st	art vector			
	D1 (1)				DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	DMA2 start	82H					R	w)		
DIVIAZV	vector	0211			0	0	0	0	0	0
							DMA2 st	art vector		
			/		DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
	-	0211				21	R/	w ^	$\left \bigcirc \right $	
DIVIASV	vector	031			0	0	0	0	0	0
						(0/	DMA3 st	art vector	\sim	
DMA3 DMA3V start vector		83H			0	0	0	0	0	

(5) Micro DMA burst specification

Specifying the micro DMA burst continues the micro DMA transfer until the transfer counter register reaches zero after micro DMA start. Setting a bit which corresponds to the micro DMA channel of the DMAB registers mentioned below to "1" specifies a burst.

Symbol	Name	Address	7	6	> 5	4	З	2	1	0
	DMA			Ž			DMAR3	DMAR2	DMAR1	DMAR0
DMAR	software	89H	¥	\sum	/	\geq	*	R/	W	
DIMAR	request	(Prohibit RMW)	4		4	\mathcal{A}	0	0	0	0
	register	((iviv))			~	$\langle \rangle$		1: DMA soft	ware reques	t
		(4	DMAB3	DMAB2	DMAB1	DMAB0
	DMA burst request		Y		$\gamma \gamma \lambda $			R/	W	
DMAB	register	8AH		Ą	\mathcal{H}]	0	0	0	0
	,						1: [DMA request	t on Burst M	ode


(6) Attention point

The instruction execution unit and the bus interface unit of this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction that clears the corresponding interrupt request flag, the CPU may execute the instruction that clears the interrupt request flag (*1) between accepting and reading the interrupt vector. In this case, the CPU reads the default vector 0008H and reads the interrupt vector address FFFF08H.

To avoid the above program, place instructions that clear interrupt request flags after a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 1 instructions (Example: "NOP" \times 1 times). If placed EI instruction without waiting NOP instruction after execution of clearing instruction, interrupt will be enable before request flag is cleared.

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, take care as the following 2 circuits are exceptional and demand special attention.

Note: The following instructions or pin input state changes are equivalent to instructions that clear the interrupt request flag.

INT0: Instructions which switch to Level Mode after an interrupt request has been generated in edge mode. The pin input change from high to low after interrupt request has been generated in Level Mode. $(H \rightarrow L)$

INTRX: Instruction which read the receive buffer

3.6 Port Function

The TMP91CU27/CP27/CK27 I/O port pins are shown in Table 3.6.1. In addition to functioning as general-purpose I/O ports, these pins are also used by the internal CPU and I/O functions.

Table 3.6.2 to Table 3.6.3 lists the I/O registers and their specifications.

			Table 3.6.1	Port Fu	Inction	(R: PU = with pull-up resis
Port Names	Pin Names	Number of Pins	Direction	R	Direction Setting Unit	Pin Names for Built-in Functions
Port 0	P00 to P07	8	I/O	_	Bit	AD0 to AD7
Port 1	P10 to P17	8	I/O	-	Bit	AD8 to AD15/A8 to A15
Port 2	P20 to P25	6	I/O	_	Bit	A16 to A21/A0 to A5
Port 3	P30	1	Output	_	(Fixed)	RD
	P31	1	Output	_	(Fixed)	WR
	P32	1	I/O	PU	Bit	HWR
Port 4	P40	1	I/O	PU	Bit	
	P41	1	I/O	PU-	Bít	CS1
	P42	1	I/O	PU	Bit	CS2
Port 5	P50 to P53	4	Input		(Fixed)	AN0 to AN3, ADTRG (P53)
Port 6	P60	1	I/O <		Bit	SCK
	P61	1	I/O	\geq	Bit	SO/SDA
	P62	1	1/0	\searrow	Bit	SI/SCL
	P63	1	10		Bit	INTO
Port 7	P70	1	١٧O	~ _	Bit	TAOIN
	P71	1	I/O	_	Bit	TA1OUT
	P72	1	(1/0	-	Bit	TA3OUT
	P73	1	1/0	-	Bit	TA4IN
	P74	1 (🦯	√ I/O	_	Bit	TA5OUT
Port 8	P80	1)) i/o	-	Bit	TB0IN0/INT5
	P81		1/0	~_ \	Bit	TB0IN1/INT6
	P82	$((\pi/s))$	I/O	_	Bit	TB0OUT0
	P83		I/O	77~	Bit	TB0OUT1
Port 9	P90	1	(VQ ((/-))	Bit	TXD0
	P91	1	1/0	>	Bit	RXD0
	P92	1	1/0	>-	Bit	SCLK0/ CTS0
	P93	✓ 1	١٧Q		Bit	TXD1
	P94	1	1/0	-	Bit	RXD1
	Z-P95	1	I/O	-	Bit	SCLK1/CTS1
	P96	1	I/O	-	Bit	XT1
	P97	1	I/O	-	Bit	XT2

Ports	Pin Names	Specifications	Reset	I/O Regi	ster Settin	ig Value
FUIIS	Fin Names	opecifications	State	Pn	PnCR	PnFC
Port 0	P00 to P07	Input port	•	×	0	Registe
		Output port		×	1	setting
		AD0 to AD7 bus (Note 1)		×	×	None
Port 1	P10 to P17	Input port	•	×	0	0
		Output port		×	$\left(\left(1 \right) \right)$	> 0
		AD8 to AD15 bus		×	\mathbf{O}	1
		A8 to A15		×	/_1	1
Port 2	P20 to P25	Input port	• <	\times	$\bigcirc 0$	0
		Output port		X	1	0
		A0 to A5 output		$\left(\left(\times \right) \right)$	0	1
		A16 to A21 output		×	1	1
Port 3	P30	Output port		×	Deviation	0
		RD output only when accessing		1	Register	1
		an external area	$\overline{\gamma}$	\bigtriangledown	setting: None	
		Always RD output	// 5)	0 🔿	None	
	P31	Output port)•)	×	Register	0
		WR output only when accessing			setting:	
		an external area	\sim	×	None	
	P32	Input port (without pull up)	2	0	0	0
		Input port (with pull up)	•		0	0
		Output port) 1	0
		HWR output	$\langle -$	X	1	1
Port 4	P40 to P42	Input port (without pull up)	$\langle \rangle$	0	0	0
		Input port (with pull up)	\backslash)1	0	0
		Output port	·/	X/x	1	0
	P40	CS0 output		×	1	1
	P41	CS1 output		×	1	1
	P42	CS2 output	2	×	1	1
Port 5	P50 to P53	Input port		×	_	
		AN0 to AN3 input	\sum	×		r setting:
	P53	ADTRG input		×	NC	one
Port 6	P60 to P63	Input port	•	×	0	0
		Output port		×	1	0
	P60	SCK input		×	0	0
\sim	>	SCK output		×	1	1
24	R61	SDA input		×	0	0
	\searrow	SDA output (Note 2)		×	1	1
	1	SO output		×	1	1
///	P62	Sl input		×	0	0
		SCL input		×	0	0
		SCL output (Note 2)		×	1	1
	P63	INTO input	1	×	0	1

Table 3.6.2	I/O Port	Settina	List ((1/2)
10010 0.0.2	101010	County		1/2/

X: Don't care

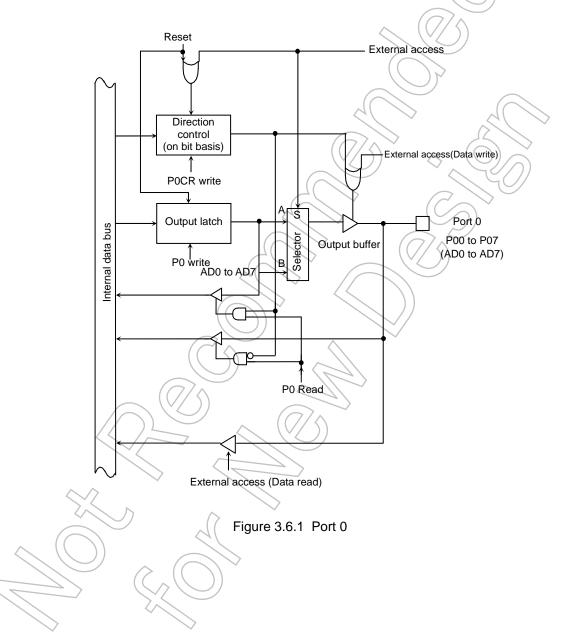
Ports	Pin Names	Specifications	Reset	I/O Regi	ster Settin	g Values
Pons	Pin Names	Specifications	State	Pn	PnCR	PnFC
Port 7	P70 to P74	Input port	٠	×	0	0
		Output port		×	1	0
	P70	TA0IN input		×	0	Register setting: None
	P71	TA1OUT output		×	$\langle \gamma \rangle$	1
	P72	TA3OUT output		×		1
	P73	TA4IN input	<	×	0	Register setting: None
	P74	TA5OUT output	(1	1
Port 8	P80 to P83	Input port	•((×	0	0
		Output port	\sim	×	1 <	
	P80	TB0IN0, INT5 input		×	0	\checkmark
	P81	TB0IN1, INT6 input	$(// \leq)$	× ∧	0	
	P82	TB0OUT0 output	$\mathbf{\mathcal{D}}$	×		/ <u>_1</u>)
	P83	TB0OUT1 output		×		
Port 9	P90 to P95	Input port	~	×	0	0
		Output port	\geq	×		0
	P90	TXD0 output		X		1
	P91	RXD0 input		×	0	Register setting: None
	P92	SCLK0 input) 🗼	0	0
		SCLK0 output		V/x	1	1
		CTS0 input		×	0	0
	P93	TXD1 output		×	1	1
	P94	RXD1 input		×	0	Register setting: None
	P95	SCLK1 input	~	×	0	0
		SCLK1 output		×	1	1
		CTS1 input		×	0	0
	P96 to P97	Input port		×	0	Register
		Output port (Note 3)	•	×	1	setting:
		XT1 to XT2		×	0	None

-		
Table 3.6.3	I/O Port Setting I	List (2/2)

X: Don't care

Note 1: Switching among AD0 to AD7 are automatically executed at accessing external area. No port setting is required.

Note 2: Set ODE<ODE62:61> when using P61 at SDA and P62 at SCL as open drain output.

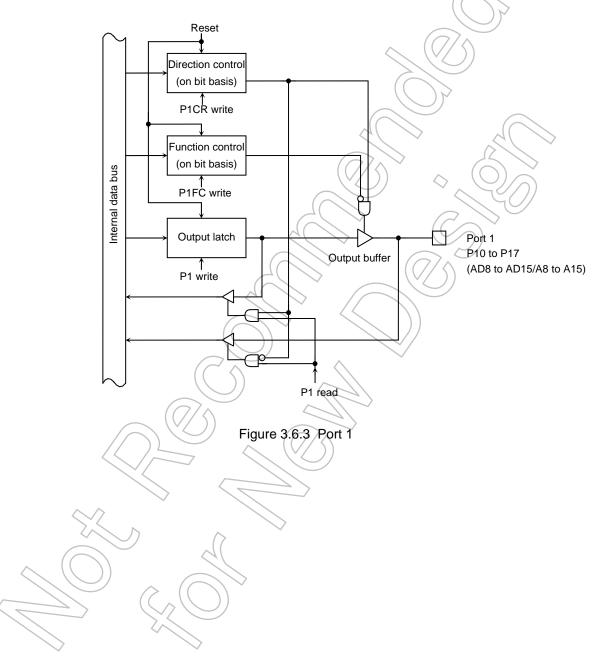

Note 3: P96 to P97 are open-drain buffers if they are used as the output ports.

3.6.1 Port 0 (P00 to P07)

Port 0 is an 8-bit general-purpose I/O port. Each bit can be set individually for input or output using the control register P0CR. Resetting, reset all bits of the control register P0CR to "0" and sets port 0 to input mode.

In addition to functioning as a general-purpose I/O port, port 0 can also function as address data bus (AD0 to AD7).

When access external memory, port 0 function as address data bus (AD0 to AD7) and P0CR be cleared to "0".

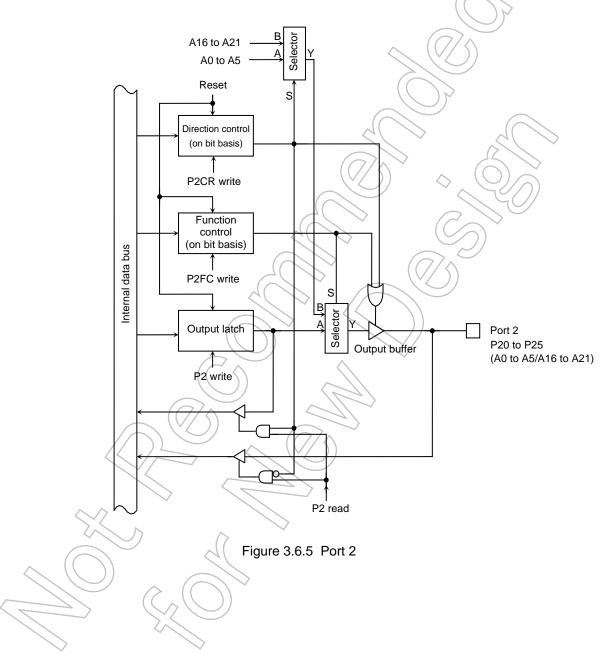


				Por	t 0 Registe	ər			
		7	6	5	4	3	2	1	0
P0	Bit symbol	P07	P06	P05	P04	P03	P02	P01	P00
(0000H)	Read/Write					/W			
	Reset State		Data	a from extern	al port (Outp	out latch regis	ster is undefir	ned.)	
				Port 0 C	Control Re	gister		\geq	
		7	6	5	4	3	2		0
P0CR	Bit symbol	P07C	P06C	P05C	P04C	P03C	P02C	P01C	P00C
(0002H)	Read/Write		·	·	1	N <)	
	Reset State	0	0	0	0	0	0	0	0
	Function					1: Output	$\left(\left(\right) \right)$		
		(V)	hen access	to external, b	ecome AD7	to ADU and I	this register is	s cleared to "()".)
					•	4	\searrow	7(
							>>	Port 0 I/O s	setting
						(0/s)	~ ~	0 Inp	~~~
					\sim		\sim		put)
					1			\mathcal{T}/\mathcal{T})
							(C		
	Note: A r	ead-modify-	write operatio	on cannot be	performed in	POCR.		(\mathcal{A})	
				(\sim	>	(77)		
				Ĝ	$\langle \rangle$)	
			Fię	gure 3.6.2	Register	for Ports 0	\sim		
					\supset	$\langle \rangle$			
				(())			\checkmark		
			6	\sim		~	\checkmark		
				\sim		$\langle \rangle$			
				\bigcirc	(·	\geq			
			(77)			\mathbb{Z}			
			$\langle \vee \rangle$)		\searrow			
				\sim	(// 5))			
					\geq				
		~	\checkmark						
	\sim	Ζ.			\geq				
		\bigtriangledown		\wedge	*				
	$(\frown$	$\overline{)}$	\langle	1					
	$\langle \langle \langle \langle \rangle \rangle$))							
			> (()) ~					
$\langle \cdot \rangle$		C	\mathcal{A}	ノ					
	$\langle \rangle$	4							
	\searrow		\searrow						

3.6.2 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port. Each bit can be set individually for input or output using the control register P1CR and function register P1FC. Resetting reset all bits of output latch P1, the control register P1CR and function register P1FC to "0" and sets port 1 to input mode.

In addition to functioning as a general-purpose I/O port, port 1 can also function as address data bus (AD8 to AD15) and address bus (A8 to A15).



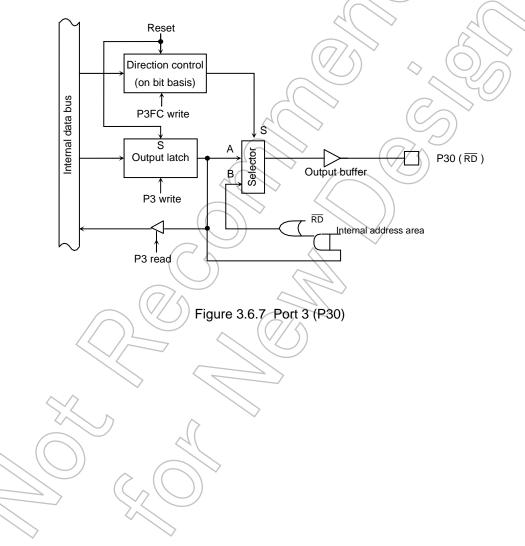
				Port	1 Registe	er				
		7	6	5	4	3	2	1	0]
P1	Bit symbol	P17	P16	P15	P14	P13	P12	P11	P10	1
(0001H)	Read/Write					/W				
	Reset State		Data f	rom external	port (Output	t latch registe	er is cleared	to "0".)		J
				Port 1 C	control Reg	gister	<			-
		7	6	5	4	3	2		0	
P1CR	Bit symbol	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C	
(0004H)	Read/Write				1	N	$\sim (0)$	<u> </u>	1	
	Reset State	0	0	0	0 Defende sek	0	0	0	0	
	Function			<<	Refer to coll	umn of P1FC	>>	>		1
				Port 1 Fu	unction Re	gister				•
		7	6	5	4	3	2	1	0	
P1FC	Bit symbol	P17F	P16F	P15F	P14F	P13F	P12F	P11F	P10F	
(0005H)	Read/Write					(//)	<u> </u>	(\bigcirc)	$\tilde{\frown}$	
	Reset State	0	0	0 CR = 00: Inp	0	0		0	0	
	Function		PIFC/PI	CR = 00: Inp		III, IU: AD IS	10 AD6, 11.	AIDIOA		1
					Por	1 function se	etting	$\langle \rangle$		
						P1FC P1CR <p1xc< td=""><td><p1xf></p1xf></td><td>0</td><td>1</td><td></td></p1xc<>	<p1xf></p1xf>	0	1	
				<				Input Port	Address d (AD15 to	
				\square	\rightarrow	1		Output Port	Address (A15 to	s bus
				\sim	N	ote: <p1xf>/</p1xf>	<p1xc> is</p1xc>	bit X of each r		
			((\sim		$\langle \rangle$			-	
	Note: A r	read-modify-	write operatio	on cannot be	performed in	PICR and	P1FC.			
			(7/1)			2/~				
			F	gure 3.6.4	Register	for Port 1				
		$\langle \langle \rangle_r$			$(\vee \bigcirc)$					
			\geq	$\langle -$						
	\sim	7								
	2~	\searrow	/		\checkmark					
	\square	\sim	4	.(
	\bigcirc (())		\searrow						
			> ((``)) ~						
		\mathcal{C}		<i>)</i>						
		<	\sim							
	\checkmark		\sim							

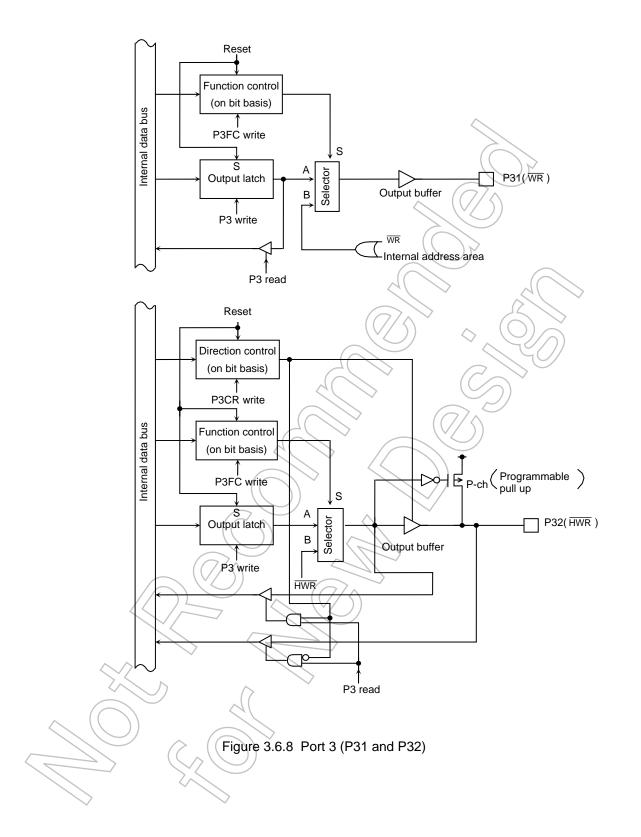
3.6.3 Port 2 (P20 to P25)

Port 2 is a 6-bit general-purpose I/O port. Each bit can be set individually for input or output using the control register P2CR and function register P2FC. Resetting, set all bits of output latch P2 to "1", and reset the control register P2CR and function register P2FC to "0" and sets port 2 to input mode.

In addition to functioning as a general-purpose I/O port, port 2 can also function as address bus (A0 to A5) and address bus (A16 to A21).

				Por	t 2 Registe	er				
		7	6	5	4	3	2	1	0	
P2	Bit symbol	\frown		P25	P24	P23	P22	P21	P20	
(0006H)	Read/Write				•		/W	•		
	Reset State		\sum	Dat	a from exter	nal port (Out	out latch reg	ister is set to	"1".)	
				Port 2 C	Control Re	gister				
		7	6	5	4	3	2		0	
P2CR	Bit symbol			P25C	P24C	P23C	P22C	P21C	P20C	
(0008H)	Read/Write						N			
	Reset State			0	0	0	07		0	
	Function				<-	<refer col<="" td="" to=""><td>umn of P2FC</td><td>>>)</td><td></td><td></td></refer>	umn of P2FC	>>)		
			1	Port 2 F	unction Re	egister				
		7	6	5	4	3	2)	1	0	
P2FC	Bit symbol		\sum	P25F	P24F	P23F	P22F	P21F	P20F	
0009H)	Read/Write		\sum				$_{\rm v}$ \sim	41	$\langle \rangle$	
	Reset State			0	0	0	0	oZ	0	
	Function			P2FC/F	2CR = 00: I	nput, 01: Out	put, 10: A5 t	o A0, 11: A2	1 to A16	
						P2CR <p2xc< td=""><td><p2xf></p2xf></td><td>0</td><td>1 Address</td><td>bus</td></p2xc<>	<p2xf></p2xf>	0	1 Address	bus
					$\langle \rangle$	0	$(// \leq$	Input Port	(A5 to /	
				$\langle \langle \rangle$		1		Output Port	Address (A21 to A	bus
	Note: A re	ead-modify-	write operation)	performed	When sett first and th are output n P2CR and	ng the addre en set P2CF until P2CR i	ess buses A2 R. Otherwise,	jister P2FC/P2 1 to A16, set addresses A5 d P2CR is "0"	P2FC 5 to A
			Fi	gure 3.6.6	Reģister	for Port 2				
					\supset					


3.6.4 Port 3 (P30 to P32)


Port 3 is a 3-bit general-purpose I/O port (however P30 and P31 is only output port). Each bit can be set individually for input or output using the control register P3CR and function register P3FC. Resetting, all bits of output latch P3 is set to "1", and the control register P3CR (Bit0 and bit1 don't using) and function register P3FC are reset to "0". And P30 and P31 of port 3 output "High", and sets P32 to input mode with pull-up resistor.

In addition to functioning as a general-purpose I/O port, port 3 can also function as the output for the CPU's control/status signal.

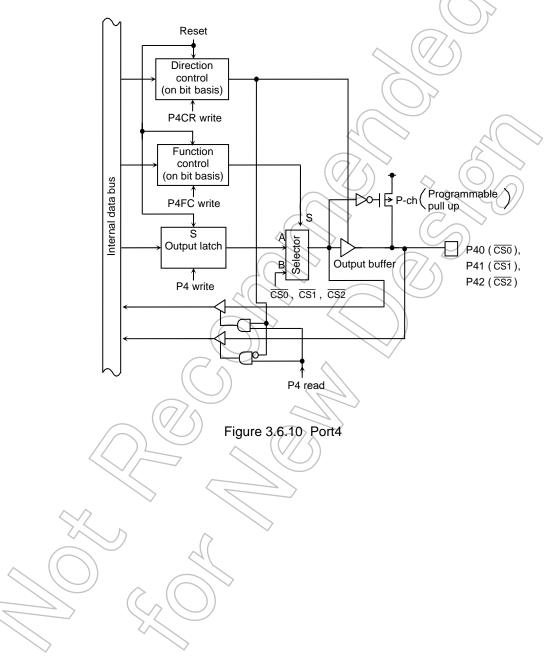
Case of P30 is defined as $\overline{\text{RD}}$ signal output mode (Case of <P30F>= "1"), when the output latch register <P30> clearing to "0", outputs the $\overline{\text{RD}}$ strobe (used for the pseudo static RAM) of the $\overline{\text{RD}}$ pin even when the internal addressed.

If the $\langle P30 \rangle$ remains "1", the \overline{RD} strobe signal is output only when the external address area is accessed.

				Por	t 3 Registe	er				
		7	6	5	4	3	2	1	0	
P3	Bit symbol						P32	P31	P30	
(0007H)	Read/Write							R/W	1	
	Reset State	\backslash	\mathbf{i}		\backslash	\mathbf{i}	Data from	1	1	
							external port Note3			
	Function						0(output	\geq		
							latch	$\left(\bigcirc \right)$		
							register): Pull-up			
							resistor	$\langle \uparrow \rangle$		
							OFF 1 (output	9		
							latch			
							register): Pull-up			
							resistor ON	(
				Port 3 C	Control Reg	gister		R	$\langle \ \rangle$	_
		7	6	5	4	(3)	2	1	O	
P3CR	Bit symbol					Ž	P32C		\supset	\
(000AH)	Read/Write				$ \rightarrow $	\sum	W	\sum	Z^{-}	_
	Reset State					\rightarrow	0(C			_
						\sim	0: Input 1: Output	\mathcal{D}		
					\bigcirc					
				AC	\sim			Input/ Outpu	ut setting	
								0 Input		
					\searrow			1 Output		
				()	*					
	< <u> </u>	Ī		Port 3 Fi	unction Re	gister]
		7	6	Port 3 Fi	unction Re	gister 3	2	1	0	
P3FC	Bit symbol	_	6				2 P32F		0 P30F	
P3FC (000BH)	Read/Write	_ W	6				P32F	1 P31F W	P30F	
	Read/Write Reset State		6				P32F 0	1 P31F W 0	P30F 0	
	Read/Write	- W 0 Always	6				P32F 0 0: Port	1 P31F W 0 0: Port	P30F 0 0: Port	
	Read/Write Reset State		6				P32F 0	1 P31F W 0	P30F 0	
	Read/Write Reset State Function Note 1:	- W 0 Always write "0".	y-write oper		4	3	P32F 0 0: Port 1: HWR	1 P31F W 0 0: Port	P30F 0 0: Port 1: RD	
	Read/Write Reset State Function Note 1:	– W Always write "0". A read-modif	y-write operations	5 ation cannot	4 be performe	3 d in	P32F 0 0: Port 1: \overline{HWR} $\overrightarrow{P3}$	1 P31F W 0 0: Port 1: WR 0 (RD) func '30>	P30F 0 0: Port 1: RD tion setting	
	Read/Write Reset State Function Note 1: Note 2:	- W O Always write "0". A read-modif P3CR and P3 When port 3	ay-write operations BFC.	ation cannot	4 be performe the P3 regi	3 d in ster	P32F 0 0: Port 1: HWR	1 P31F W 0 0: Port 1: ₩R 0 (RD) func ^{30>} 0	P30F 0 0: Port 1: RD tion setting	
	Read/Write Reset State Function Note 1: Note 2:	- W O Always write "0". A read-modif P3CR and P3 When port 3 controls the in	iv-write oper 3FC. is used in nternal pull-u	ation cannot Input mode,	4 be performe the P3 regi ead-modify-w	3 d in ster rrite	P32F 0 0: Port 1: HWR → P3 → P3 → P3	1 P31F W 0 0: Port 1: ₩R 0 (RD) func 30> 0 (RD) func 30> 0 (RD) func 30> 0 (RD) func 30> 0 0 0 0 0 0 0 0 0 0 0 0 0	P30F 0: Port 1: RD tion setting	1 ' output 5 is only
	Read/Write Reset State Function Note 1: Note 2:	- W O Always write "0". A read-modif P3CR and P3 When port 3 controls the in instruction is	iy-write oper 3FC. is used in internal pull-u prohibited	ation cannot Input mode, presistor. Re	4 be performe the P3 regi ead-modify-w le or I/O mo	3 d in ster vrite ode.	P32F 0 0: Port 1: HWR ► P3 ► P30F 0	1 P31F W 0 0: Port 1: WR 0 (RD) func ^{30>} 0 ^{(0"} out _f RD ou always	P30F 0: Port 1: RD tion setting but "1' tput RI . ou	1 ' output 5 is only tput during
	Read/Write Reset State Function Note 1: Note 2:	- W O Always write "0". A read-modif P3CR and P3 When port 3 controls the in instruction is Setting the in	ay-write oper BFC. is used in internal pull-u prohibited internal pull-u	ation cannot Input mode, presistor. Re in Input mode presistor ma	4 be performe the P3 regi ead-modify-w le or I/O mo	3 d in ster vrite ode.	P32F 0 0: Port 1: HWR → P3 → P3 → P3	1 P31F W 0 0: Port 1: ₩R 0 (RD) func '30> 0 (RD) func '30> 0 "0" outp RD outp always (Correst to pseu	P30F 0 0: Port 1: RD tion setting put "1" tput RI . ou spond ex ido ac	1 ' output 5 is only
	Read/Write Reset State Function Note 1: Note 2:	- W 0 Always write "0". A read-modif P3CR and P3 When port 3 controls the in instruction is Setting the in the states of	iv-write oper 3FC. is used in nternal pull-u prohibited nternal pull-u the input pin	ation cannot Input mode, p resistor. Re in Input moc p resistor ma	4 be performe the P3 regi ead-modify-w le or I/O mo	3 d in ster vrite ode.	P32F 0 0: Port 1: HWR	1 P31F W 0 0: Port 1: WR 0 (RD) func 30> 0 (RD) func 30> 0 "0" outp RD ou always (Corres to pseu SRAM)	P30F 0 0: Port 1: RD tion setting but "1' tput RI . spond ex ido ac	1 ' output D is only tput during ternal cesses.
	Read/Write Reset State Function Note 1: Note 2:	- W O Always write "0". A read-modif P3CR and P3 When port 3 controls the in instruction is Setting the in	iv-write oper 3FC. is used in nternal pull-u prohibited nternal pull-u the input pin	ation cannot Input mode, p resistor. Re in Input moc p resistor ma	4 be performe the P3 regi ead-modify-w le or I/O mo	3 d in ster vrite ode.	P32F 0 0: Port 1: HWR → P3 → P3 → P3	1 P31F W 0 0: Port 1: WR 0 (RD) func 30> 0 *0" outp RD ou always (Correst to pseu SRAM) 1 (WR) func 231>	P30F 0 0: Port 1: RD tion setting but "1' tput RT out RT out ex do ex	1 ⁷ output ⁵ is only tput during ternal cesses.
	Read/Write Reset State Function Note 1: Note 2:	- W 0 Always write "0". A read-modif P3CR and P3 When port 3 controls the in instruction is Setting the in the states of	iv-write oper 3FC. is used in nternal pull-u prohibited nternal pull-u the input pin	ation cannot Input mode, p resistor. Re in Input moc p resistor ma	4 be performe the P3 regi ead-modify-w le or I/O mo	3 d in ster vrite ode.	P32F 0 0: Port 1: HWR P30F 0 1 P30F 0 1 P30F 0 1 P30F	1 P31F W 0 0: Port 1: WR 0 (RD) funct '30> 0 (RD) funct '30> 0 (RD) outp RD outp always (Correst to pseuder) SRAM) 1 (WR) functor) 231> 0	P30F 0 0: Port 1: RD tion setting put "1" tput RI . ou spond ex .do ac . ou	1 ⁷ output ⁵ is only tput during ternal cesses. 9 1
	Read/Write Reset State Function Note 1: Note 2:	- W 0 Always write "0". A read-modif P3CR and P3 When port 3 controls the in instruction is Setting the in the states of	iv-write oper 3FC. is used in nternal pull-u prohibited nternal pull-u the input pin	ation cannot Input mode, p resistor. Re in Input moc p resistor ma	4 be performe the P3 regi ead-modify-w le or I/O mo	3 d in ster vrite ode.	P32F 0 0: Port 1: \overline{HWR} $\begin{array}{r} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $	1 P31F W 0 0: Port 1: WR 0 (RD) func '30> 0 (RD) func '30> 0 (RD) out RD ou always (Correstor to pseu SRAM) 1 (WR) func '231> 0''' out	P30F 0 0: Port 1: RD tion setting but "1' tput RI . out RI . out ction setting put "1'	1 ' output D is only tput during ternal cesses. 0 1 ' output
	Read/Write Reset State Function Note 1: Note 2:	- W 0 Always write "0". A read-modif P3CR and P3 When port 3 controls the in instruction is Setting the in the states of	iv-write oper 3FC. is used in nternal pull-u prohibited nternal pull-u the input pin	ation cannot Input mode, p resistor. Re in Input moc p resistor ma	4 be performe the P3 regi ead-modify-w le or I/O mo	3 d in ster vrite ode.	P32F 0 0: Port 1: HWR P30F 0 1 P30F 0 1 P30F 0 1 P30F	1 P31F W 0 0: Port 1: WR 0 (RD) func 30> 0 (RD) func 30> 0 "0" outp RD ou always (Correst to pseu SRAM) 1 (WR) func 231> 0 "0" outp	P30F 0 0: Port 1: RD tion setting put "1" tput RI . ou spond ex .do ac . ou	1 ' output D is only tput during ternal cesses. 2 1 ' output t during
	Read/Write Reset State Function Note 1: Note 2:	- W 0 Always write "0". A read-modif P3CR and P3 When port 3 controls the in instruction is Setting the in the states of	iv-write oper 3FC. is used in nternal pull-u prohibited nternal pull-u the input pin	ation cannot Input mode, p resistor. Re in Input moc p resistor ma	4 be performe the P3 regi ead-modify-w le or I/O mo	3 d in ster vrite ode.	P32F 0 0: Port 1: HWR	1 P31F W 0 0: Port 1: WR 0 (RD) func 30> 0 (RD) func 30> 0 "0" outp RD ou always (Correst to pseu SRAM) 1 (WR) func 231> 0 "0" outp	P30F 0 0: Port 1: RD tion setting out "1" tput RI . out . out	1 ' output D is only tput during ternal cesses. 1 ' output t during s.

Figure 3.6.9 Register for Port 3

Output port HWR output


Input port

0 1

3.6.5 Port 4 (P40 to P42)

Port 4 is a 3-bit general-purpose I/O port. Each bit can be set individually for input or output using the control register P4CR and function register P4FC. Resetting, set P40 to P42 of output register to "1", the control register P4CR and function register P4FC are reset to "0" and P40 to P42 are set to input mode with pull-up resistor.

In addition to functioning as a general-purpose I/O port, port 4 can also function as chip select output signal ($\overline{\text{CS0}}$ to $\overline{\text{CS2}}$).

				Por	t 4 Registe	r			
		7	6	5	4	3	2	1	0
94	Bit symbol						P42	P41	P40
000CH)	Read/Write							R/W	
	Reset State		\searrow					from externa	
								ch register is	set to "1".)
	Function						0(output latch		
							1 (output lotok		o resistor OFF
							1(output latch		up resistor ON
				Port 4 C	Control Reg	gister	(7)	$\langle \uparrow \rangle$	<u>.</u>
		7	6	5	4	3	2	ノ 1	0
4CR	Bit symbol			/		/	P42C	P41C	P40C
000EH)	Read/Write					/		W	
	Reset State						0	0 (0
							0: Inj	out 1:0	utput
						$(\overline{\Omega})$	\rightarrow \uparrow	6	
						$(\vee /))$	\diamond		Output setting
							*		
					20		6		Dutput
				Port 4 Fi	unction Re	gister	(C	\mathcal{D}	
		7	6	5	4	3	(2)	1	0
P4FC	Bit symbol			\sim	\searrow		R42F	P41F	P40F
000FH)	Read/Write			ſ	1	\neq		W	
	Reset State					$\overline{\mathcal{N}}$	0	0	0
	Function			(())			0	Port 1: C	5
			G	γ		~			
				\sim					
				\mathcal{I}	$\langle \cdot \rangle$	\geq			. ,
			(7)					1	CS0
			(VO)			\searrow			
				\sim	$((// \leq))$			$\longrightarrow 0$	· · · /
		$\leq //$			$\langle \bigcirc$			1	CS1
					\geq				Port (P42)
			\checkmark					$\longrightarrow 0$	CS2
		>			>				002
	4	\searrow	/		~				
	\frown	\sim		(

Note 1: A read-modify-write operation cannot be performed in P4CR and P4FC.

Note 2: When port 4 is used in Input mode, the P4 register controls the internal pull-up resistor. Read-modify-write instruction is prohibited in Input mode or I/O mode. Setting the internal pull-up resistor may be depend on the states of the input pin.

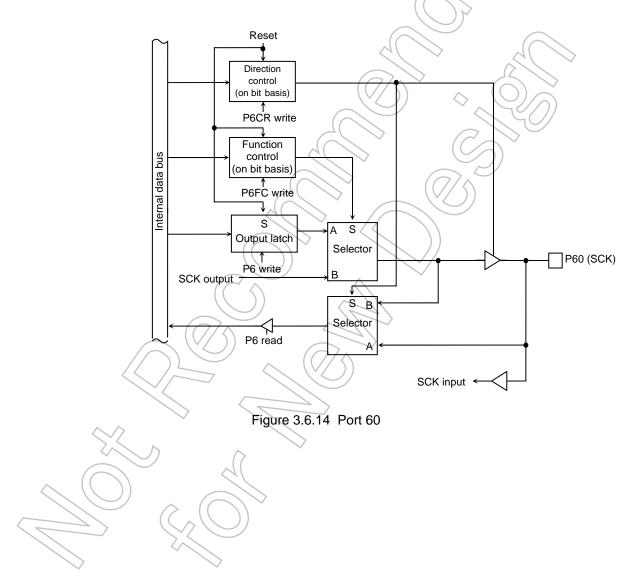
Note 3: When output chip select signal (CS0 to CS2), set bit of control register (P4CR) to "1" after set bit of function register (P4FC) to "1". Otherwise, the value in P4 is output until P4FC is set.

Figure 3.6.11 Register for Port 4

3.6.6 Port 5 (P50 to P53)

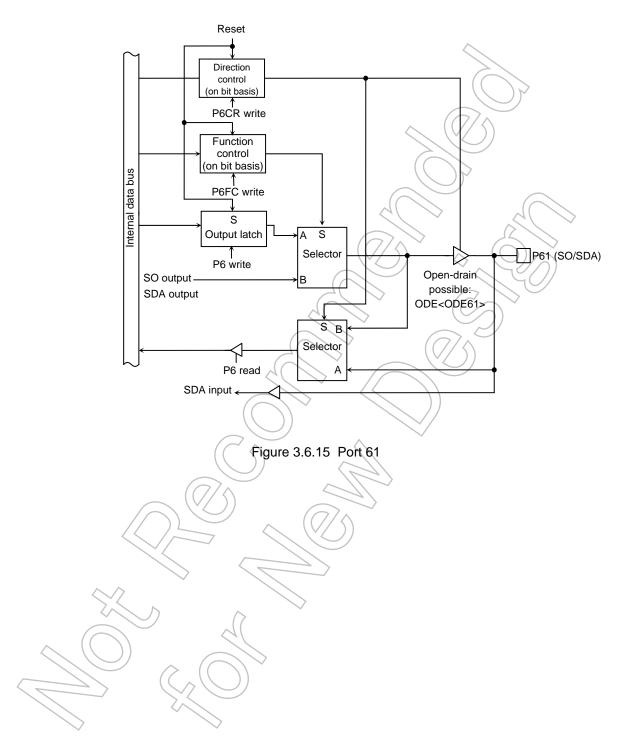
Port 5 is a 4-bit input port and can also be used as the analog input pin for the AD converter. P53 can also be used as AD trigger input pin for AD converter.

3.6.7 Port 6 (P60 to P63)

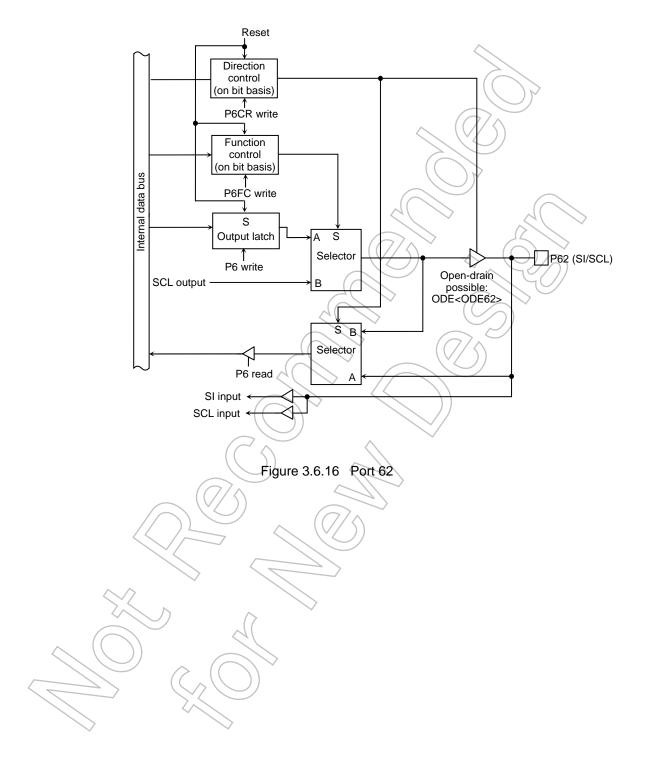

Port 60 to P63 are 4-bit general-purpose I/O ports. It is changed to an input port by resetting. All bits of output latch register P6 are set to "1".

In addition to functioning as an I/O port, port 6 can also function as input or output function of serial bus interface. This function enables each function by writing "1" to applicable bit of Port 6 function register P6FC.

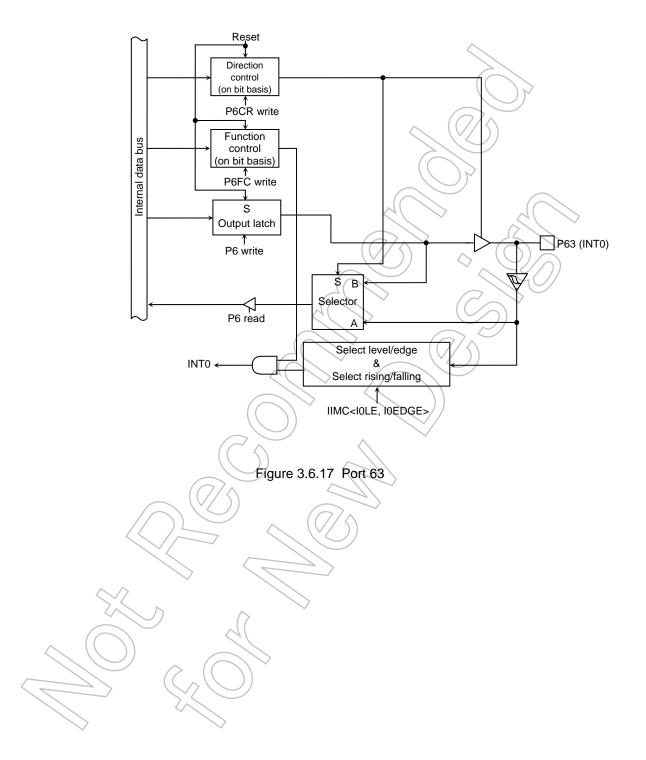
At reset, P6CR and P6FC are reset to "0" and all the bits are changed to the input ports.


(1) Port 60 (SCK)

In addition to functioning as an I/O port, port 60 can also function as clock SCK I/O port in SIO mode of serial bus interface.


(2) Port 61 (SO/SDA)

In addition to functioning as an I/O port, port 61 can also function as data SDA I/O port in I²C mode or data SO output pin in SIO mode of serial bus interface.


(3) Port 62 (SI/SCL)

In addition to functioning as an I/O port, port 62 can also function as data SI receiving pin in SIO mode or clock SCL I/O pin in I²C bus mode of serial bus interface.

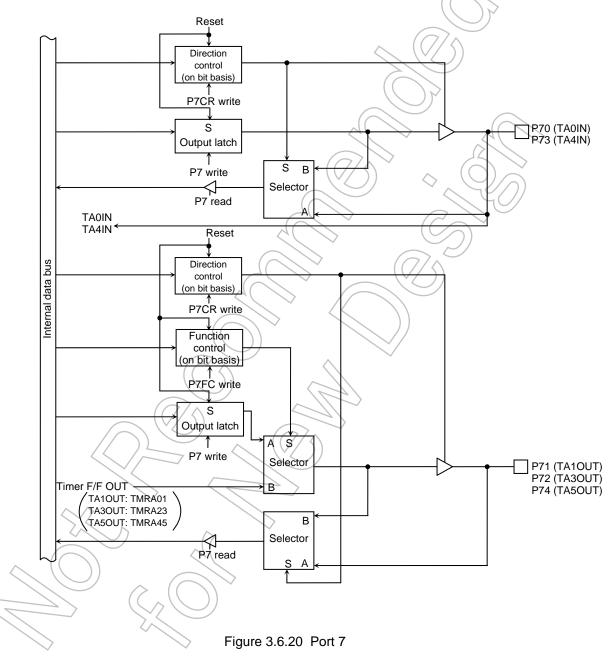
(4) Port 63 (INT0)

In addition to functioning as an I/O port, port 63 can also function as INT0 input pin of external interrupt.

	. <u> </u>			Por	t 6 Registe	er				-
		7	6	5	4	3	2	1	0	
P6 (0012H)	Bit symbol				\sum	P63	P62	P61	P60	
	Read/Write					R/W			-	
	Reset State					Data from external port (Output latch register is set to "1")				
	Port 6 Control Register									-
		7	6	5	4	3	2		0	
P6CR (0014H)	Bit symbol					P63C	P62C	P61C	P60C	_
	Read/Write						777	N	_	
	Reset State Function					0	0 0: Input	0 1: Output	0	-
							Port6 I/O setting			
							0 Input			
		$\overline{\alpha}$				$(\overline{\Omega})$	\rightarrow	1 Output		
	Port 6 Function Register									
		7	6	5	4	3	2		0	1
P6FC (0015H)	Bit symbol					P63F	P62F	P61F	P60F	
	Read/Write				\sim	2 W	W	$\sim_{\sf W}$	W	
	Reset State	/		\mathbb{Z}	\square	0		0	0	
	Function			20		0: Port	0: Port	0: Port	0: Port	
					Ň	1: INTO	1: SCL	1: SDA/SO	1: SCK	
						input	output	output	output	
									J SCK output s	etting
	(\sim				P6FC <p60f></p60f>		
							P6CR <p60c></p60c>		1	
			$(\overline{\Omega})$			\mathbb{Z}_{2}				
			$\langle V \rangle$)					SDA/SO outp	out setting
				\sim	(//))		-	C <p61f></p61f>	1
						/		P6C	R <p61c></p61c>	1
			\geq	$\langle -$	\geq			→ <u>P62</u> \$	SCL output s	etting
	\sim		~					P6F	C <p62f></p62f>	1
	- L	$\leq r$		~	\rightarrow			P6C	R <p62c></p62c>	1
								───→ P63 INT0 input setting		
	$\langle $))		\geq				1	C <p63f></p63f>	1
			> ((γ					R <p63c></p63c>	0
		C	\sim	ノ						
	Note: A re	ead-modify-v	vrite operatio	on cannot be	performed in	P6CR and	P6FC.			
	\searrow		\searrow							

Figure 3.6.18 Register for Port 6

				Ope	n Drain Ou	utput Setti	ng Registe	er		
Read/Write R/W Reset State 0 0 0 Function 0: Tri-state 0: Tri-state 0: Tri-state 0: Tri-state 1: Open 1: Open 1: Open 1: Open 1: Open 0 Tri-state 1: Open 1: Open 1: Open 0 Tri-state 1: Open 1: Open 1: Open 0 Tri-state 1 Open drain 0 0 Tri-state 1 Open drain 0 0 Tri-state 1 Open drain 0			7	6	5	4	3	2	1	0
Read/Write R/W Reset State 0 0 0 Function 0: Tri-state 0: Tri-state 0: Tri-state 0: Tri-state 1: Open 1: Open 1: Open 1: Open 1: Open 0 Tri-state 1: Open 1: Open 1: Open 0 Tri-state 1: Open 1: Open 1: Open 0 Tri-state 1 Open drain 0 0 Tri-state 1 Open drain 0 0 Tri-state 1 Open drain 0	ODE	bit Symbol			/		ODE62	ODE61	ODE93	ODE90
Reset State 0 0 0 0 Function 0: Tri-state 0: Tri-state 0: Tri-state 0: Tri-state 0: Tri-state 1: Open 1: Open 1: Open 1: Open 1: Open 1: Open 0 Tri-state 1: Open 1: Open 0: Tri-state 0 Tri-state 1: Open 1: Open 1 Open drain 0: Tri-state 1: Open 0 Tri-state 1: Open drain 0: Tri-state 1< Open drain	(002FH)				/					
1: Open drain 1: Open drain 1: Open drain 1: Open drain 1: Open drain 0 Tri-state 1 Open drain P62 output setting 0 Tri-state 1 Open drain				/	/	/	0	0	0	0
drain drain drain drain P61 output setting 0 Tri-state 1 Open drain P62 output setting 0 Tri-state 1 Open drain		Function					0: Tri-state	0: Tri-state	0: Tri-state	0: Tri-state
P61 output setting 0 Tri-state 1 Open drain P62 output setting 0 Tri-state 1 Open drain										
0 Tri-state 1 Open drain P62 output setting 0 Tri-state 1 Open drain							drain	drain	drain	drain
0 Tri-state 1 Open drain P62 output setting 0 Tri-state 1 Open drain										tting
1 Open drain P62 output setting 0 Tri-state 1 0 pen drain							<			
P62 output setting 0 Tri-state 1 Open drain										
0 Tri-state 1 Open drain								$(\bigcirc$	- opon an	
0 Tri-state 1 Open drain									P62 output se	atting
1 Open drain								, i		
Figure 3.6.19 Register for Port 6							\square	\geq -	- 6	$\langle \rangle$
Figure 3.6.19 Register for Port 6							$\left(\sqrt{2} \right)$	\diamond	(\bigcirc)	$\tilde{\frown}$
				Fię	gure 3.6.19	Register	for Port 6	Ť		
						20	\searrow	G	7(9
						$\lambda($	\geq	((Δ	
						$\sim //$	~	\bigcirc	Ð	
						\bigcirc		((// \$)	
					ÁC	\sim			/	
					\square	\rightarrow))		
					(())			\checkmark		
				G	7		~	\checkmark		
					$\left(\right)$	~				
					\bigcirc	1	\geq			
				(7/1)			1/			
				$\langle C \rangle$		\square				
			$\left(\right)$		\sim	()				
					$\langle -$	\geq				
		~	~	\checkmark						
			$\langle \rangle$			\geq				
			\searrow	(7					
				\langle						
		< $($))							
				> ((``						
			C		ノ					
\searrow \bigvee		$\langle \rangle$	ζ							
		\searrow		\searrow						


Open Drain Output Setting Register

3.6.8 Port 7 (P70 to P74)

Port 7 is a 5-bit general-purpose I/O port. It is changed to an input port by resetting.

In addition to functioning as a I/O port, port 70 and 73 can also function as clock input pin TA0IN, TA4IN of 8-bit timer 0, 4 and port 71, 72 and 74 can also function 8-bit timer output pin TA10UT, TA30UT and TA50UT. This timer output function enables each function by writing "1" to applicable bit of Port 7 function register P7FC.

At reset, P7CR and P7FC are reset to "0" and all the bits are changed to the input ports.

				Por	t 7 Registe					
		7	6	5	4	3	2	1	0	
	Bit symbol	/			P74	P73	P72	P71	P70	
3H)	Read/Write						R/W			
	Reset State		\sim				a from externa			
						(Output la	tch register is	s set to "1".)		
				Port 7 (Control Reg	gister				
		7	6	5	4	3	2		0	
R	Bit symbol				P74C	P73C	P72C	P71C	P70C	
6H)	Read/Write		/	/			. w(7)	$\langle \wedge \rangle$		
	Reset State	/	/	/	0	0)) o	0	
	Function					0: Inp	out 1:0	Output		
							()			
						6		Dort	7 I/O setting	
						2(\searrow			
									Input Output	
						(0/1)	\sim		Output	
				Dort 7 E	unction Re	aictor	\Diamond			
		7	6	5	A	3	2		0	
;	Bit symbol		\sim	\sim	P74F	\sim	P72F	P71F	\sim	
'H)	Read/Write		\sim	\sim				N	\sim	
,	Reset State	\backslash	\sim			\sim		0	\sim	
	Function	/		C C	0: Port		0: Port	0: Port		
					1: TA5OUT		1: TA3OUT			
					$\langle \rangle$	$\langle \rangle$)))			
				(())			\sqrt{X}			
				\sim		_	✓ 1 → P7	1 timer out 1	output setting	g
			((\sim		$\langle \rangle$		P7FC <p7< td=""><td>71F></td><td></td></p7<>	71F>	
				\bigcirc		$ \rightarrow $		P7CR <p7< td=""><td>71C></td><td></td></p7<>	71C>	
			$\overline{\Omega}$			\sum				
			$\langle \langle \vee \rangle \rangle$)			$\longrightarrow P7$		output setting	g
								P7FC <p7< td=""><td></td><td></td></p7<>		
		$\langle \langle \rangle$						P7CR <p7< td=""><td>72C></td><td></td></p7<>	72C>	
							→ P7	4 timer out 5	output setting	n
			\searrow				× 1 7	P7FC <p7< td=""><td></td><td>9</td></p7<>		9
		7						P7CR <p7< td=""><td></td><td></td></p7<>		
	22	\searrow		\land	\checkmark			1101(31)		
			~	1(
	Note 1. A	read-modify	v-write opera	tion cannot h	e performed i	n P7CR and	P7FC			
				\sim	e performed i ot have a regi			on		

Figure 3.6.21 Register for Port 7

3.6.9 Port 8 (P80 to P83)

Port 8 is a 4-bit general-purpose I/O port. It is changed to an input port by resetting. All the bits of output latch register P8 are set to "1".

In addition to functioning as a I/O port, port 8 can also function as clock input of 16-bit timer, output of 16-bit timer F/F and input function of INT5 to INT6. This function enables each function by writing "1" to applicable bit of port 8 function register P8FC.

At reset, P8CR and P8FC are reset to "0" and all the bits are changed to the input ports.

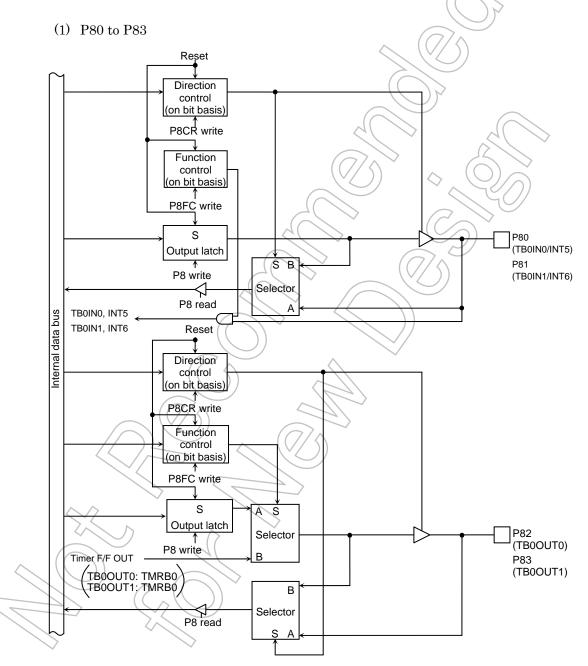


Figure 3.6.22 Port 8 (P80 to P83)

				Port	8 Registe	er				-
		7	6	5	4	3	2	1	0	
P8	Bit symbol					P83	P82	P81	P80	
(0018H)	Read/Write						R/	W		
	Reset State		\searrow		\searrow			external port		
						(Out	put latch reg	ister is set to) "1".)	
	K			Port 8 C	ontrol Reg	gister				
		7	6	5	4	3	2		0	
P8CR	Bit symbol					P83C	P82C	P81C	P80C	
(001AH)	Read/Write						((/)	V 🔿	1	
	Reset State					0	o)) o	0	
							0: Input	1: Output		
							$\left(\left(\right) \right)$			J
								> Port 9	3 I/O setting	
						20	\searrow		Input	
								~ ~	Output	
						(0/s)	~	$\overline{\bigcirc}$	Guiput	
				Port 8 Fu	unction Re	gister	\diamond		γ	
		7	6	5	4	3	2		0	
P8FC	Bit symbol				X	P83F	P82F	P81F	P80F	
(001BH)	Read/Write				\mathcal{A}	W	W	\swarrow	W	
	Reset State				\sim	0		0	0	
	Function			~ (C	\sim	0: Port	0: Port	0: Port	0: Port	
						1: TB0OUT1	1: TBOOUTO		1: TB0IN0	
				\square	\bigcirc			INT6 input	INT5 input	
				(())						
			G	$\overline{2}$		<u> </u>	V → P8:		output setting	
			((\square	~			P8FC <p8< td=""><td></td><td>1</td></p8<>		1
				\mathcal{I}		\geq		P8CR <p8< td=""><td>820></td><td>1</td></p8<>	820>	1
			(77)						output setting	~
			$\langle \langle V \rangle \rangle$			\searrow	× 1 0.	P8FC <p8< td=""><td></td><td>1</td></p8<>		1
				\sim	(// 5)			P8CR <p8< td=""><td></td><td>1</td></p8<>		1
										<u> </u>
					\geq					
	Note: A	read-modify-	write operation	on cannot be	performed ir	P8CR and F	P8FC.			
	\leq	2			>					
		\searrow	~	7						
)	Fig	ure 3.6.23	B Register	for Port 8				
			$>$ (\frown	\sum						
		\mathcal{C}	2V	ノ						
	$\langle \rangle$	2								

3.6.10 Port 9 (P90 to P97)

• Ports 90 to 95

Ports 90 to 95 are a 6-bit general-purpose I/O port. It is changed to an input port by resetting. All the bits of output latch register are set to "1".

In addition to functioning as a I/O port, port 90 to 95 can also function as I/O of SIO0, SIO1. This function enables each function by writing "1" to applicable bit of port 9 function register P9FC.

At reset, P9CR and P9FC are reset to "0" and all the bits are changed to the input ports.

• Ports 96 to 97

Ports 96 to 97 are a 2-bit general-purpose I/O port. When they function as an output port, open drain output is selected. At reset, output latch register and control register are set to "1" and "High-Z" (High impedance) are set.

In addition to functioning as a I/O port, ports 96 to 97 can also function as the low-frequency oscilator connection pins (XT1 and XT2) during using low speed clock function. Therefore, dual clock function can use by setting of system clock control registers SYSCR0 and SYSCR1.

(1) Ports 90 and 93 (TXD0 and TXD1)

In addition to functioning as an I/O port, Ports 90 and 93 can also function as TXD output pin of serial channel.

And P90 and P93 have a programmable open-drain function which can be controlled by the ODE<ODE90, 93> register.

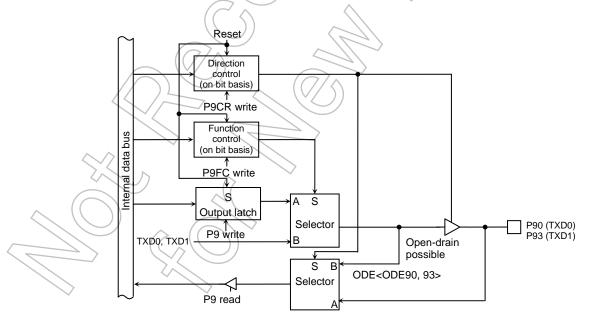


Figure 3.6.24 Ports 90 and 93

(2) Ports 91 and 94 (RXD0 and RXD1)

In addition to functioning as an I/O port, ports 91 and 94 can also function as the RXD input pin of serial channel.

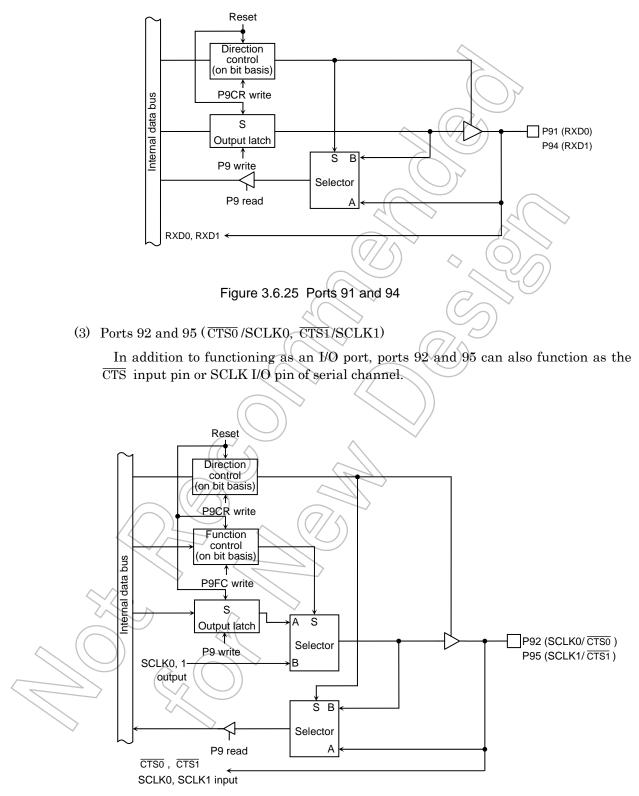
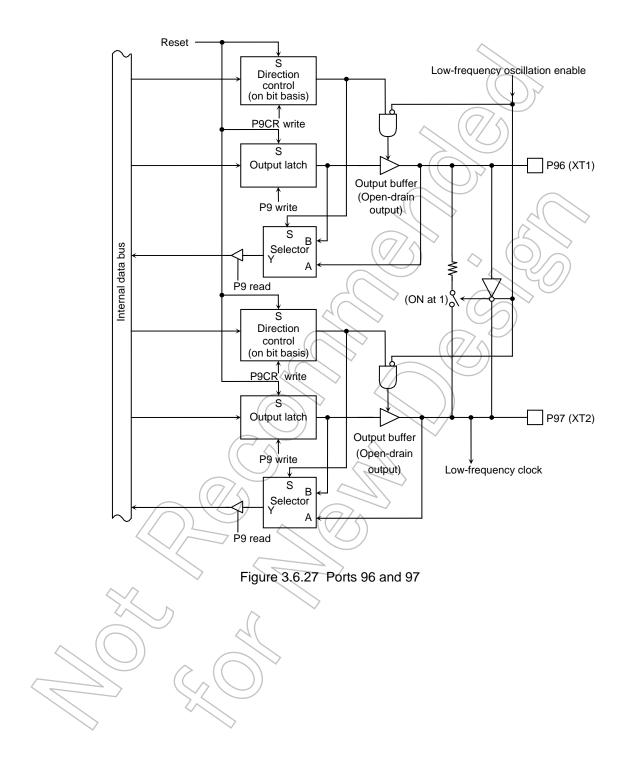



Figure 3.6.26 Port 92, 95

(4) Ports 96 (XT1) and 97 (XT2)

In addition to functioning as an I/O port, ports 96 and 97 can also function as low frequency oscillator connection pins.

				Por	t 9 Registe	er							
		7	6	5	4	3	2	1	0				
P9	Bit symbol	P97	P96	P95	P94	P93	P92	P91	P90				
(0019H)	Read/Write		1	+	R	W							
	Reset State	1	1				external port						
							jister is set to	"1".)					
			1	Port 9 C	Control Reg	gister				I			
		7	6	5	4	3	2		0				
P9CR	Bit symbol	P97C	P96C	P95C	P94C	P93C	P92C	P91C	P90C				
(001CH)	Read/Write			1	V	v	$\sim (Q)$	4					
	Reset State	1	1	0	0	0	0	<i>)</i> 0	0				
	Function				0: Input	1: Output							
								rt9 I/O setting					
							FU		nput				
									Dutput				
						$(\overline{\Omega})$	\supset	- 5	$\overline{}$				
Port 9 Function Register													
		7	6	5	4	3	2	N Y Y	// o				
P9FC	Bit symbol			P95F		P93F	P92F	X	P90F				
(001DH)	Read/Write	\geq		W		√ w	w	\rightarrow	W				
	Reset State			0		0			0				
	Function			0: Port		0: Port	0: Port		0: Port				
				1: SCLK1 output		1: TXD1	1: SCLK0 output		1: TXD0				
					\searrow								
				(())]				
			6			`		1	output setting				
				\square	~			P9FC <p9 P9CR<p9< td=""><td></td><td>1</td></p9<></p9 		1			
				\subseteq		\geq		FUCK	002				
			(7/				Ļ;	P92 SCLK) output setti	ng			
				/	\square			P9FC <p9< td=""><td></td><td>1</td></p9<>		1			
		$\langle \langle \rangle \rangle$						P9CR <p9< td=""><td>2C></td><td>1</td></p9<>	2C>	1			
			\geq	$\langle \langle \langle \langle \rangle \rangle$,		output setting				
	\sim	>						P9FC <p9< td=""><td></td><td>1</td></p9<>		1			
		< \ \		~	\rightarrow			P9CR <p9< td=""><td>36></td><td>1</td></p9<>	36>	1			
		$\overline{}$	~					P95 SCLK	l output setti	ng			
	\sim (()							P9FC <p9< td=""><td></td><td>1</td></p9<>		1			
	$// \bigcirc$	ッ へ		γ_{\sim}				P9CR <p9< td=""><td></td><td>1</td></p9<>		1			
		((1/ N))									
		2		/									

			Ope	n Drain O	utput Setti	ng Registe	er					
		7	6	5	4	3	2	1	0			
ODE	bit Symbol		/			ODE62	ODE61	ODE93	ODE90			
(002FH)	Read/Write						R/	W				
	Reset State					0	0	0	0			
	Function					0: Tri-state	0: Tri-state	0: Tri-state	0: Tri-state			
						1: Open	1: Open	1: Open	1: Open			
						drain	drain	drain	drain			
	Note 2: A r	ead-modify-	write operati	on cannot be	performed i	n P9CR and	P9FC.					

Note 3: When setting TXD pin to open-drain output, write "1" to bit0 of ODE register (for TXD0 pin), or bit1 (for TXD1 pin). P91/RXD0 and P94/RXD1 pin do not have a register changing Port/Function.

For example, when it is also used as an input port, the input signal is input to SIO as serial receiving data. Note 4: Low frequency oscillation circuit

To connect a low frequency resonator to ports 96 and 97, it is necessary to set a following procedure to reduce the consumption power supply.

(Case of resonator connection)

P9CR<P96C, P97C> = "11", P9<P96:97> = "00"

(Case of oscillator connection)

P9CR<P96C, P97C> = "11", P9<P96:97> = "10"

Figure 3.6.28 Register for Port 9

3.7 Chip select/Wait Controller

On the TM91CU27/CP27/CK27, four user-specifiable address spaces (CS0 to CS3) can be set. The data bus width and the number of waits can be set independently for each address spaces (CS0 to CS3 and others).

The pins $\overline{\text{CS0}}$ to $\overline{\text{CS2}}$ (which can also function as port pins P40 to P42) are the respective output pins for the CS0 to CS2 spaces. When the CPU specifies an address in one of these spaces, the corresponding CS0 to CS2 pin outputs the chip select signal for the specified address space (in ROM or SRAM). However, in order for the chip select signal to be output, the port 4 control register P4CR and function register P4FC must be set.

The CS0 to CS3 spaces are defined by the values in the memory start address registers MSAR0 to MSAR3 and the memory address mask registers MAMR0 to MAMR3.

The chip select/wait control registers B0CS to B3CS and BEXCS should be used to specify the master enable status, the data bus width and the number of waits for each address space.

Since the TM91CU27/CP27/CK27 are not equipped with CS3 pin, CS signal that should be generated in CS3 space is not automatically generated. Generating CS signal is required (e.g. by decoding the address by the external circuit). Other functions (setting the bus width and WAIT value) are available.

3.7.1 Specifying an Address spaces

The CS0 to CS3 address spaces are specified using the start address registers (MSAR0 to MSAR3) and memory address mask registers (MAMR0 to MAMR3).

At each bus cycle, a compare operation is performed to determine if the address on the specified a location in the CS0 to CS3 spaces. If the result of the comparison is a match, this indicates an access to the corresponding CS space. In this case, the $\overline{CS0}$ to $\overline{CS2}$ pin outputs the chip select signal and the bus cycle operates in accordance with the settings in chip select/wait control register B0CS to B3CS. (See section 3.7.2, "Chip Select/Wait Control Registers".)

(1) Memory Start Address registers

Figure 3.7.1 shows the Memory Start Address registers. The MSAR0 to MSAR3 specify the start addresses for the CS0 to CS3 spaces. The bits <S23:S16> specify the upper 8 bits (A23 to A16) of the start address. The lower 16 bits of the start address (A15 to A0) are assumed to be "0". Accordingly, the start address can only be a multiple of 64-Kbytes ranging from 000000H. Figure 3.7.2 shows the relationship between the start addresses and the Memory Start Address register values.

	Memory Sta	art Addres	s Register	(CS0 to 0	CS3 spaces)		
	7	6	5	4	3 (2	1	0
MSAR0 / MSAR1 Bit symbol	S23	S22	S21	S20	S19 S18	S17	S16
(00C8H) / (00CAH) Read/Write	e			R			
MSAR2 / MSAR3 Reset Stat	e 1	1	1	1		1	1
(00CCH) / (00CEH) Function			Determin	es A23 to A	16 of the start address	\bigcirc	
Address 000000H 64 Kbytes	Start address 00 01 02	3.7.1 Mer 2000н 2000н 2000н 2000н	00H	dress regist	Specifies start add spaces Register er value (MSAR0 to MS/		50 to CS3
FFFFFFH	FF OG	оооон оооон ; оооон		T T	mory Start Address	Register Va	alues

(2) Memory Address Mask Registers

Figure 3.7.3 shows the Memory Address Mask registers. MAMR0 to MAMR3 are used to determine the sizes of the CS0 to CS3 spaces by setting particular bits in MAMR0 to MAMR3 to mask the corresponding start address bits. The address compare logic uses only the address bits that are not masked (i.e., mask bit cleared to "0") to detect an address match in the CS0 to CS3 spaces. \langle

Also, the address bits that can be masked by MAMR0 to MAMR3 differ between CS0 to CS3 spaces. Accordingly, the block size that can be assigned to each space is also different.

		7	6	5	4	((3))	2	1	0				
MAMR0	Bit symbol	V20	V19	V18	V17	V16	V15	V14 to 9	V8				
(00C9H)	Read/Write		R/W										
	Reset State	1	1	1	1	1	1 🗸		1				
	Function		CS0 block	k size. 0:	The address	compare logic	uses this a	address bit					

Memory Address Mask Register (CS1 space)	
7 6 5 4 3 2 1	0
MAMR1 Bit symbol V21 V20 V19 V18 V17 V16 V15 to 9	V8
(00CBH) Read/Write R/W	
Reset State 1 1 1 1 1 1 1	1
Function CS1 block size. 0: The address compare logic uses this address bit	

The CS1 block size can vary from 256 bytes to 4 Mbytes.

		1010	sinory / QQI	000 1000	ricgiotoi		000 3000	CO)					
			7	6	5 <	4	3	2	1	0			
MAMR2	/MAMR3	Bit symbol	N22	V21	V20	V19	V18	V17	V16	V15			
(00CDH)/	(00CFH)	Read/Write		R/W									
		Reset State) 1	1	(17/<	1	1	1	1	1			
		Function	Function CS2 or CS3 block size. 0: The address compare logic uses this address bit										

Memory Address Mask Register (CS2 and CS3 spaces)

The CS2 and CS3 block sizes can vary from 32 Kbytes to 8 Mbytes.

Figure 3,7,3 Memory Address Mask Register

(3) Setting the start address and address ranges

An example of specifying a 64-K byte address spaces starting from 010000H for the CS0 space:

Set "01H" in the MSAR0<S23:S16> bit that corresponds to the upper 8 bits of the start address. Then, calculate the difference between the start address and the anticipated end address (01FFFFH) based on the size of the CS0 space. Bits 20 to 8 of the calculation result correspond to the mask value to be set for the CS0 space. Setting this value in the MAMR0<V20:V8> bits specifies the block size. This example sets "07H" in MAMR0 to allocate a 64-Kbyte address space for the CS0 space.

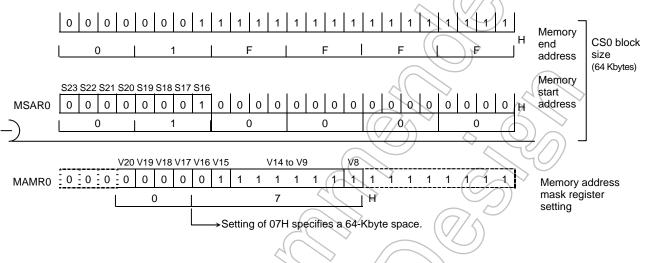


Figure 3.7.4 Example Showing How to Set the CS0 space

After a reset, MSAR0 to MSAR3 and MAMR0 to MAMR3 are set to "FFH". B0CS<B0E>, B1CS<B1E> and B3CS<B3E> are reset to "0". Therefore this is disabling the CS0, CS1 and CS3 spaces. However, set as B2CS<B2M> to "0" and B2CS<B2E> to "1", CS2 is enabled from 003800H to FE7FFFH in TMP91CU27, from 002000H to FF3FFFH in TMP91CP27 and from 001400H to FF9FFFH in TMP91CK27. Also, the bus width and number of waits specified in BEXCS are used for accessing addresses outside the specified CS0 to CS3 spaces. (See section 3.7.2, "Chip Select/Wait Control Registers".)

(4) Programming block sizes

Table 3.7.1 shows the relationship between CS spaces and their sizes. The " Δ " symbol indicates the size that might not be programmable depending on the combination of the values of the Memory Start Address and Memory Address Mask registers. When specifying a block size indicated as " Δ ", set the start address register to a multiple of the desired block size starting from 000000H.

If the 16 Mbytes range is defined as CS2 space or if two or more spaces overlap, the setting for the CS space with the smallest number overrides the setting for other spaces because of its highest priority.

Example: Defining 128 Kbytes area as the CS0 space: a. Valid start addresses

000000H) 128 Kbytes 020000H) 128 Kbytes 040000H) 128 Kbytes 060000H

The desired block size can be programmed with this configuration.

b. Invalid start addresses

000000H) 64 Kbytes 010000H) 128 Kbytes 030000H) 128 Kbytes 050000H

This start address is not a multiple of the desired block size. Hence, the desired block size cannot be programmed with this configuration.

Size (Byte) CS space	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0	0	Ø	0 <	0	$\rightarrow \Delta$	Δ	Δ	Δ	Δ		
CS1	0	0		0	Δ	Δ	Δ	Δ	Δ	Δ	
CS2	1		0	0	$\supset \Delta$	Δ	Δ	Δ	Δ	Δ	Δ
CS3 🗸	\sum	7	0	0	Δ	Δ	Δ	Δ	Δ	Δ	Δ

 Table 3.7.1
 Valid Block Sizes for Each CS Space

Note: The "\Delta" symbol indicates the sizes that may not be programmable depending on the combination of the values of the Memory Start Address and Memory Start Address mask register combinations.

3.7.2 Chip Select/Wait Control Registers

Figure 3.7.5 lists the chip select/wait control registers.

The master enable/disable, chip select output waveform, data bus width and number of wait states for each address area (CS0 to CS3 and others) are set in their respective chip select/wait control registers, B0CS to B3CS and BEXCS.

			Ch	ip Select/V	Vait Contro	ol Registe	r			
	\sim	7	6	5	4	3	2	1	0	
BOCS	Bit symbol	B0E	/	B0OM1	B0OM0	B0BUS	B0W2	B0W1	B0W0	
(00C0H)	Read/Write	W				\	N			
	Reset State	0	/	0	0	0	0	0	0	
	Function	0: Disable		Chip select	output	Data bus	Number of v	waits		
		1: Enable		waveform s		width	000: 2 waits		Reserved	
				00: For RO		0: 16 bits	001: 1 wait		3 waits	
				01: Don't ca 10: Don't ca		1: 8 bits	010: (1 + N) 011: 0 waits		4 waits 8 waits	
				11: Don't ca					o waits	
B1CS	Bit symbol	B1E	/	B1OM1	B1OM0	B1BUS	B1W2	B1W1	B1W0	
(00C1H)	Read/Write	W				Ì	\sim	フ		
	Reset State	0		0	0	0	0	0	0	
	Function	0: Disable		Chip select	output	Data bus	Number of v	waits		
		1: Enable		waveform s		width	000: 2 waits		Reserved	
				00: For RO		0: 16 bits	001: 1 wait		3 waits	
				01: Don't ca 10: Don't ca		1: 8 bits	010: (1 + N) 011: 0 waits		: 4 waits : 8 waits	
				11: Don't ca		$(\overline{\Omega})$	UTI. U Waits	,	o waits	
B2CS	Bit symbol	B2E	B2M	B2OM1	B2OM0	B2BUS	B2W2	B2W1	B2W0	
(00C2H)	Read/Write				(d)	V		<u> </u>	\mathcal{I}	
	Reset State	1	0	0	0	0	0		0	
	Function	0: Disable	CS2 area	Chip select	output	Data bus	Number of A	waits		
		1: Enable	selection	waveform s		width	000: 2 waits	\smile	: Reserved	
			0:16- Mbyte	00: For RO		0: 16 bits	001: 1 wait		: 3 waits	
			area	01: Don't ca 10: Don't ca		1: 8 bits	010: (1 + N) 011: 0 waits	/): 4 waits : 8 waits	
			1: CS area	11: Don't ca			OTT. O Wake	, , ,	. o waits	
B3CS	Bit symbol	B3E		B3OM1	B3OM0	B3BUS	B3W2	B3W1	B3W0	
(00C3H)	Read/Write	W		(())			N //			
	Reset State	0			0	0	0	0	0	
	Function	0: Disable		Chip select	•	Data bus	Number of v			
		1: Enable		waveform s		width	000: 2 waits		Reserved	
			\square	00: For ROI 01: Don't ca		0: 16 bits 1: 8 bits	001: 1 wait 010: (1 + N)		: 3 waits : 4 waits	
		\frown	(\vee)	10: Don't ca			010.(1 + N) 011: 0 waits		: 4 waits	
				11: Don't ca						
BEXCS	Bit symbol	\swarrow	1	Į	Ž	BEXBUS	BEXW2	BEXW1	BEXW0	
(00C7H)	Read/Write				X		V	V		
	Reset State			\mathbb{V}	$\frac{1}{1}$	0	0	0	0	
	Function	\geq				Data bus	Number of \	Naits		
		$\langle \rangle$		~	\supset	width	000: 2 waits		: Reserved	
	\sim			7		0: 16 bits 1: 8 bits	001: 1 wait 010: (1 + N)		: 3 waits): 4 waits	
		$\langle \rangle$				1. 0 010	011: 0 waits		: 8 waits	
<	217	リー .		$\langle \rangle$						
	Master enable bit 🔸				(Ni, mala an ai	Į.		
$\langle \langle \rangle$	0 Disable C			hip select ou	tput wavefor	oform Number of address space wa (See section 3.7.2, "(3) Wait Co				
	1 Enable C	s area 🗸		election 00 For RO	M/SRAM	ן רב		s width select		
	CS2 area sel	ection 🕳	\rightarrow	01 Don't ca		1	0 16-bi	t data bus		
	0 16-Mbyte area			10 Don't ca		1 8-bit data bus				
	1 Specified	address area	a	11 Don't ca					I	
L						1				

Chip Select/Wait Control Register

Note1: A read-modify-write operation cannot be performed in B0CS, B1CS, B2CS, B3CS and BEXCS.

Note2:TMP91CU27/CP27/CK27 are not equipped with WAIT pin. 1 WAIT is automatically selected when BxCS<BxW2:0>="010"(1+N)WAIT is set.

Note3: TMP91CU27/CP27/CK27 are not equipped with CS3 pin (P43). WAIT control is enabled when MSAR3 and MAMR3 are set and B3CS<B3E>="1".

Figure 3.7.5 Chip Select/Wait Control Register

(1) Master enable bits

Bit7 (<B0E>, <B1E>, <B2E> or <B3E>) of a chip select/wait control register is the master bit that is used to enable or disable settings for the corresponding address space. Writing "1" to this bit enables the settings. Reset disables (Sets to "0") <B0E>, <B1E> and <B3E>, and enables (sets to "1") <B2E>. This enables space CS2 only.

(2) Data bus width specification

Bit3 (<B0BUS>, <B1BUS>, <B2BUS>, <B3BUS> or <BEXBUS>) of a chip select/wait control register specifies the width of the data bus. This bit should be set to "0" when memory is to be accessed using a 16-bit data bus and to "1" when an 8-bit data bus is to be used.

This process of changing the data bus width according to the address being accessed is known as "dynamic bus sizing". For details of this bus operation see Table 3.7.2.

Operand Data	Operand Start	Memory Data	CPU Address	CPU	CPU Data			
Bus Width	Address	Bus Width	CI O Addless	D15 to D8	D7 to D0			
8 bits	2n + 0	8 bits	2n + 0	XXXXX	> b7 to b0			
	(Even number)	16 bits	2n + 0	XXXXX	b7 to b0			
	2n + 1	8 bits	2n + 1	XXXXX	b7 to b0			
	(Odd number)	16 bits	2n + 1	b7 to b0	xxxxx			
16 bits	2n + 0	8 þits	2n + 0	XXXXX	b7 to b0			
	(Even number)		2n + 1	xxxxx	b15 to b8			
		16 bits	2n + 0	b15 to b8	b7 to b0			
	2n + 1	8 bits	2n + 1	XXXXX	b7 to b0			
	(Odd number)		2n + 2	XXXXX	b15 to b8			
	(16 bits	2n + 1	b7 to b0	ххххх			
			2n + 2	xxxxx	b15 to b8			
32 bits	2n + 0	8 bits	2n + 0	xxxxx	b7 to b0			
	(Even number)	$) \qquad \qquad$	2n + 1	xxxxx	b15 to b8			
			2n + 2	xxxxx	b23 to b16			
<			2n + 3	xxxxx	b31 to b24			
		16 bits	2n + 0	b15 to b8	b7 to b0			
			2n + 2	b31 to b24	b23 to b16			
\sim	2n + 1	8 bits	2n + 1	XXXXX	b7 to b0			
	(Odd number)	\sim	2n + 2	ххххх	b15 to b8			
	\bigcirc	$ \downarrow ($	2n + 3	xxxxx	b23 to b16			
\sim (()			2n + 4	ххххх	b31 to b24			
		16 bits	2n + 1	b7 to b0	xxxxx			
))	2n + 2	b23 to b16	b15 to b8			
			2n + 4	XXXXX	b31 to b24			

Table 3.7.2	Dynamic Bus Sizing

*xxxxx": The input data placed on the data bus indicated by this symbol is ignored during a read operation. During a write operation, the bus is in the high-impedance state, and the write strobe signal remains inactive.

(3) Wait control

Bits 0 to 2 (<B0W0:2>, <B1W0:2>, <B2W0:2>, <B3W0:2>, <BEXW0:2>) of a chip select/wait control register specify the number of waits that are to be inserted when the corresponding memory area is accessed.

The following types of wait operation can be specified using these bits. Bit settings other than those listed in the table should not be made. These bits are set to "000" (2 waits) by resetting.

	Table	e 3.7.3 Wait Operation Setting
<bxw2:0></bxw2:0>	Number of Waits	Wait Operation
000	2	Inserts a wait of 2 states.
001	1	Inserts a wait of 1 state.
010	(1 + N)	Same operation with 1 wait because of nothing WAIT pin
011	0	Ends the bus cycle without a wait.
100	Reserved	Invalid setting
101	3	Inserts a wait of 3 states.
110	4	Inserts a wait of 4 states.
111	8	Inserts a wait of 8 states.

(4) Bus width and wait control for an area other than CS0 to CS3

The chip select/wait control register BEXCS controls the bus width and number of waits when memory locations that are not in one of the four user-specified address spaces (CS0 to CS3) are accessed. The BEXCS register settings are always enabled for areas other than CS0 to CS3.

(5) Selecting 16-Mbyte area/specified address area

Setting B2CS<B2M> (Bit6 of the chip select/wait control register for CS2) to "0" designates the 16-Mbyte areas (from 003800H to FE7FFFH in TMP91CU27, from 002000H to FF3FFFH in TMP91CP27 and from 001400H to FF9FFFH in TMP91CK27) as the CS2 space. Setting B2CS<B2M> to "1" designates the address area specified by the start address register MSAR2 and the address mask register MAMR2 as CS2 (e.g., if B2CS<B2M> = 1, CS2 is specified in the same manner as CS0, CS1 and CS3 are).

A Reset clears this bit to "0", specifying CS2 as a 16-Mbytes address area.

(6) Procedure for setting chip select/wait control

When using the chip select/wait control function, set the registers in the following order:

- a. Set the Memory Start Address Registers MSAR0 to MSAR3. Set the start addresses for CS0 to CS3.
- b. Set the Memory Address Mask Registers MAMR0 to MAMR3. Set the sizes of CS0 to CS3.
- c. Set the chip select/wait control registers B0CS to B3CS. Set the chip select output waveform, data bus width, number of waits and master enable/disable status for CS0 to CS3 spaces.

The $\overline{\text{CS0}}$ to $\overline{\text{CS2}}$ pins can also function as pins P40 to P42. To output a chip select signal using one of these pins, set the corresponding bit in the port 4 function register P4FC and port 4 control register P4CR to "1".

If a CS0 to CS3 address is specified which is actually an internal 100, RAM and ROM area address, the CPU accesses the internal address area and no chip select signal is output on any of the $\overline{\text{CS0}}$ to $\overline{\text{CS2}}$ pins.

Example:

In this example CS0 is set to be the 64-Kbyte space 010000H to 01FFFFH. The bus width is set to 16 bits and the number of waits is cleared to "0".

MSAR0 = 01H	Start address: 010000H	X

```
MAMR0 = 07H Address space: 64 Kbytes
```

B0CS = 83H ROM/SRAM, 16-bit data bus, zero waits, CS0 space settings enabled

3.7.3 Connecting External Memory

Figure 3.7.6 shows an example of how to connect external memory to the TMP91CU27/CP27/CK27.

In this example the ROM is connected using a 16-bit bus. The RAM and I/O are connected using an 8-bit bus.

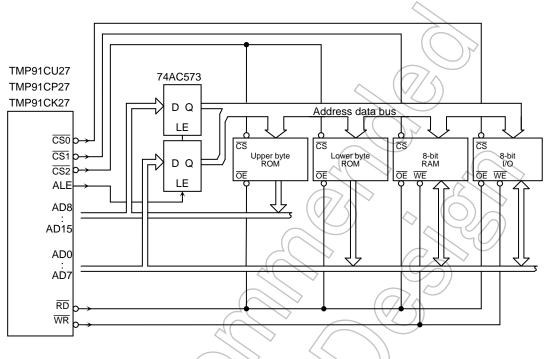


Figure 3.7.6 Example of External Memory Connection

(ROM uses 16-bit bus, RAM and I/Q uses 8-bit bus)

A reset clears all bits of the port 4 control register P4CR and the port 4 function register P4FC to "0" and disables output of the CS signal in TMP91CU27/CP27/CK27. To output the CS signal, the appropriate bit must be set P4CR to "1" after set P4FC to "1".

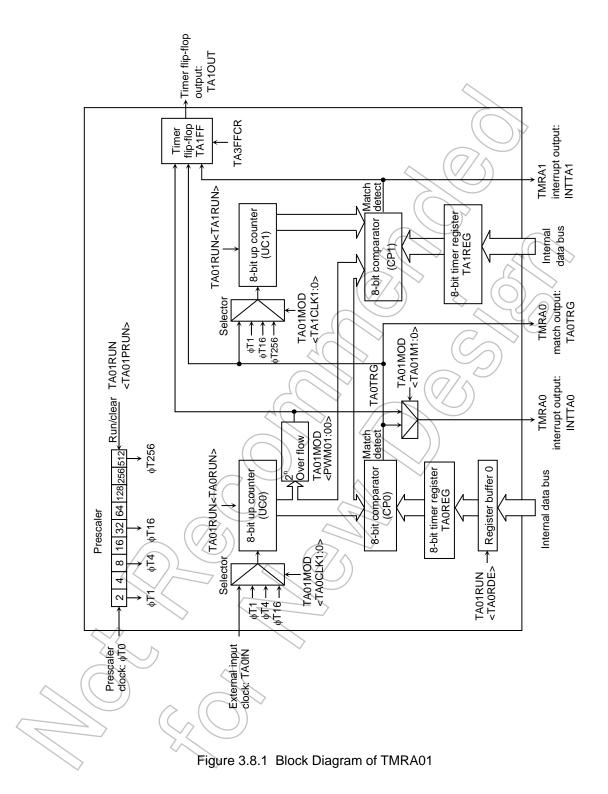
3.8 8-Bit Timers (TMRA)

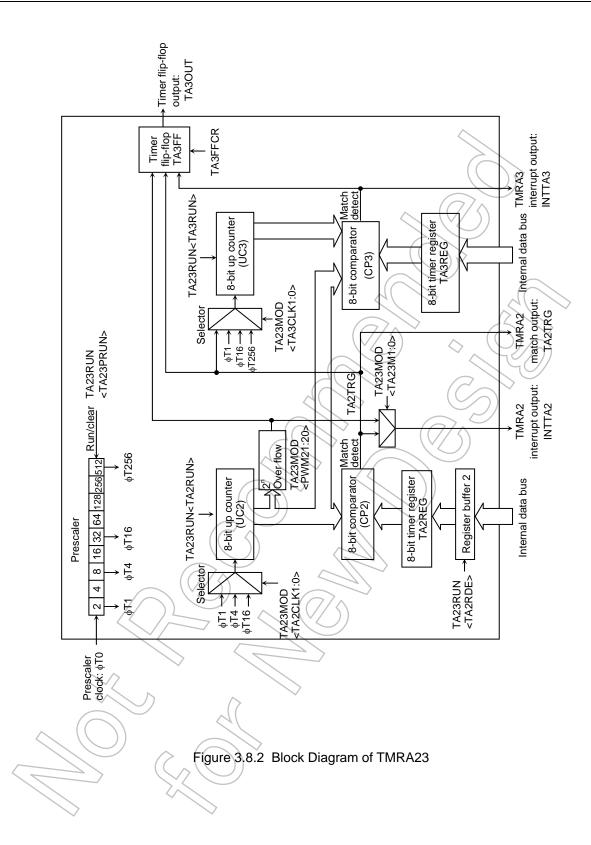
The TMP91CU27/CP27/CK27 feature 6 channels (TMRA0 to TMRA5) built-in 8-bit timers. These timers are paired into 3 modules: TMRA01, TMRA23 and TMRA45. Each module consists of 2 channels and can operate in any of the following 4 operating modes.

- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)
- 8-bit pulse width modulation output mode (PWM: Variable duty cycle with constant period)

Figure 3.8.1 to Figure 3.8.3 show block diagrams for TMRA01, TMRA23 and TMRA45.

Each channel consists of an 8-bit up counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.


The operation mode and timer flip-flops are controlled by a 5-byte registers (SFR: Special function registers).


Each of the three modules (TMRA01, TMRA23 and TMRA45) can be operated independently. All modules operate in the same manner except for the differences shown in Table 3.8.1; hence only the operation of TMRA01 is explained here.

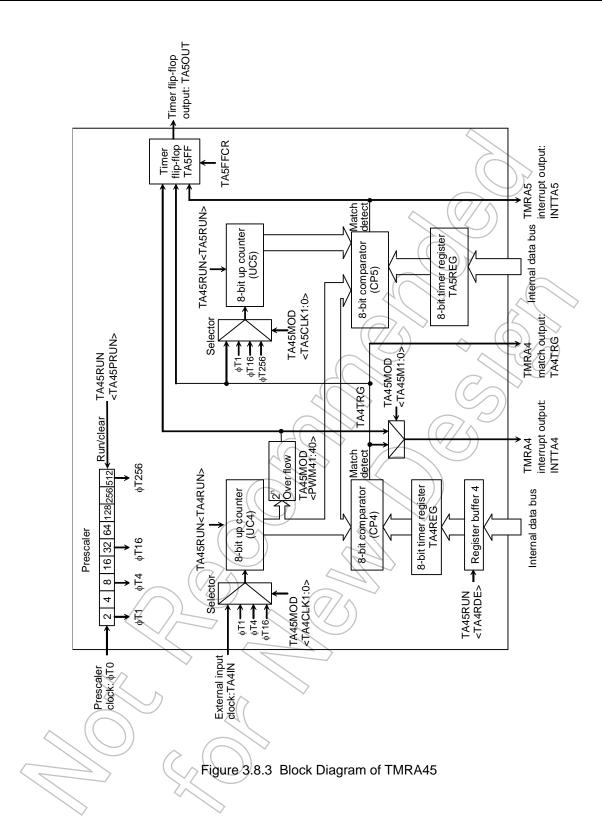

Specifica	Module	TMRA01	TMRA23	TMRA45	
External	Input pin for external	TAOIN	None	TA4IN	
	clock	(Shared with P70)	TAROUT	(Shared with P73)	
pins	Output pin for timer	TA1OUT	TA3OUT	TA5OUT	
	flip-flop	(Shared with P71)	(Shared with P72)	(Shared with P74)	
	Timer RUN register	TA01RUN (0100H)	TA23RUN (0108H)	TA45RUN (0110H)	
SFR	Timor register	TA0REG (0102H)	TA2REG (010AH)	TA4REG (0112H)	
	Timer register	TA1REG (0103H)	TA3REG (010BH)	TA5REG (0113H)	
name (Address)	Timer mode register	TA01MOD (0104H)	TA23MOD (010CH)	TA45MOD (0114H)	
(Address)	Timer flop-flop control register	TA1FFCR (0105H)	TA3FFCR (010DH)	TA5FFCR (0115H)	

Table 3.8.1 Registers and Pins for Each Module

3.8.1 Block Diagram

3.8.2 Operation of Each Circuit

(1) Prescalers

A 9-bit prescaler generates the input clock to TMRA01.

The prescaler clock (ϕ T0) is a divided clock (divided by 4) from selected clock by the register SYSCR0<PRCK1:0> of clock gear.

The prescaler operation can be controlled using TA01RUN<TA01PRUN> in the timer control register. Setting <TA01PRUN> to "1" starts the count; setting <TA01PRUN> to "0" clears the prescaler to zero and stops operation. Table 3.8.2 shows the various prescaler output clock resolutions.

System Clock Selection <sysck></sysck>	Prescaler Clock Selection SYSCR0	Clock Gear Value SYSCR1			TMRA	ter Input Cloc Prescaler <taxclk1:0></taxclk1:0>	
	<prck1:0></prck1:0>	<gear2:0></gear2:0>		φT1(1/2)	φT4(1/8)	φT16(1/32)	φT256(1/512)
1 (fs)		-	(fs/8	fs/32	fs/128	fs/2048
	00 (f _{FPH})	000(1/1)	(fc/8	fc/32	fc/128	fc/2048
		001(1/2)	\mathcal{A}	fc/16	fc/64	fc/256	fc/4096
		010(1/4)		fc/32	fc/128	fc/512	fc/8192
0 (fc)		011(1/8)		fc/64	fc/256	fc/1024	fc/16384
		100(1/16)		fc/128	fc/512	fc/2048	fc/32768
	10 (fc/16 clocks)		/>	fc/128	fc/512	fc/2048	fc/32768

Table 3.8.2 Prescaler Output Clock Resolution

(2) Up counters (UC0 and UC1)

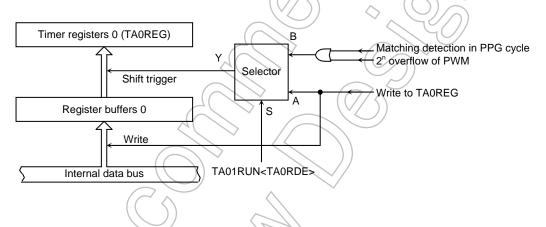
These are 8 bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

The input clock for UC0 is selectable and can be either the external clock input via the TAOIN pin or one of the three internal clocks ϕ T1, ϕ T4, and ϕ T16. The clock setting is specified by the value set in TAO1MOD<TA0CLK1:0>.

The input clock for UC1 depends on the operation mode. In 16-bit timer mode, the overflow output from UC0 is used as the input clock. In any mode other than 16-bit timer mode, the input clock is selectable and can either be one of the internal clocks ϕ T1, ϕ T16, and ϕ T256, or the comparator output (The match detection signal) from TMRA0 by setting TA01MOD<TA1CLK1:0>.

For each interval timer the timer operation control register bits TA01RUN<TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up counters and to control their count. A reset clears both up counters, stopping the timers.

(3) Timer registers (TA0REG and TA1REG)


These are 8-bit registers that can be used to set a time interval. When the value set in the timer register TA0REG or TA1REG matches the value in the corresponding up counter, the comparator match detect signal goes Active. If the value set in the timer register is 00H, the signal goes Active when the up counter overflows.

TAOREG has a double buffer structure, making a pair with the register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if <TA0RDE> = "0" and enabled if <TA0RDE> = "1".

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a 2^n overflow occurs in PWM mode, or at the start of the PPG cycle in PPG mode. Hence the double buffer cannot be used in timer mode.

A Reset initializes <TA0RDE> to "0", disabling the double buffer. To use the double buffer, write data to the timer register, set <TA0RDE> to "1", and write the following data to the register buffer. Figure 3.8.4 shows the configuration of TA0REG.

Figure 3.8.4 Configuration of Timer Register 0 (TA0REG)

Note: The same memory address is allocated to the timer register and the register buffer when write data to TAOREG. When <TAORDE> = "0", the same value is written to the register buffer and the timer register; when <TAORDE> = "1", only the register buffer is written to.

The address of each timer register is as follows.

TA0REG: 000102H TA1REG: 000103H

TA2REG: 00010AH TA3REG: 00010BH

TA4REG: 000112H TA5REG: 000113H

All these registers are write only and cannot be read.

(4) Comparator (CP0 and CP1)

The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to "0" and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

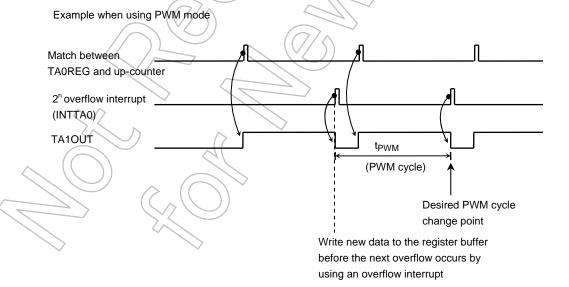
(5) Timer flip-flop (TA1FF)

The timer flip-flop (TA1FF) is a flip-flop inverted by the match detects signals (8-bit comparator output) of each interval timer.

Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the Timer Flip-Flop Control Register.

A reset clears the value of TA1FF to "0".

Programming "01" or "10" to TA1FFCR<TA1FFC1:0> sets TA1FF to "1" or "0". Programming "00" to these bits inverts the value of TA1FF (This is known as software inversion).

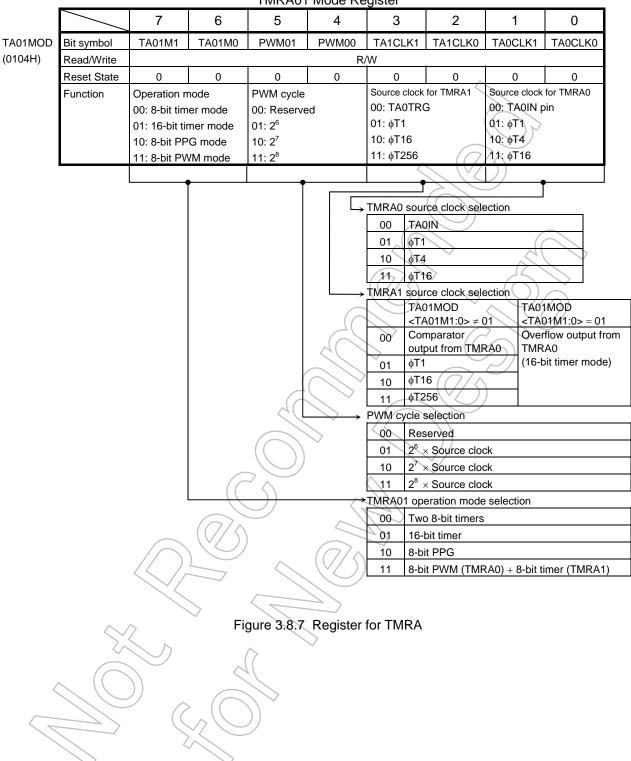

The TA1FF signal is output via the TA1OUT pin (Concurrent with P71). When this pin is used as the timer output, the timer flip flop should be set beforehand using the Port 7 relation registers P7CR and P7FC.

Note: When the double buffer is enabled for an 8-bit timer in PWM or PPG mode, caution is required as explained below.

If new data is written to the register buffer immediately before an overflow occurs by a match between the timer register value and the up-counter value, the timer flip-flop may output an unexpected value.

For this reason, make sure that in PWM mode new data is written to the register buffer by six cycles ($f_{SYS} \times 6$) before the next overflow occurs by using an overflow interrupt.

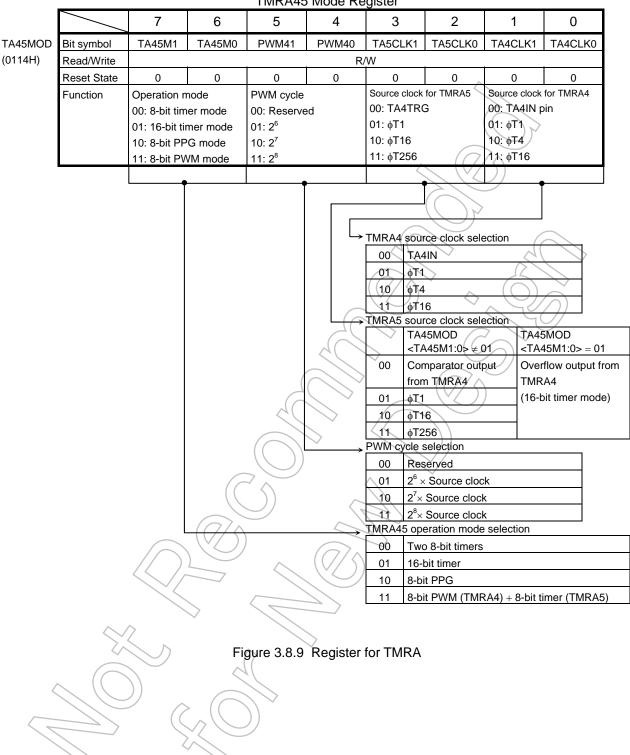
In the case of using PPG mode, make sure that new data is written to the register buffer by six cycles before the next cycle compare match occurs by using a cycle compare match interrupt.

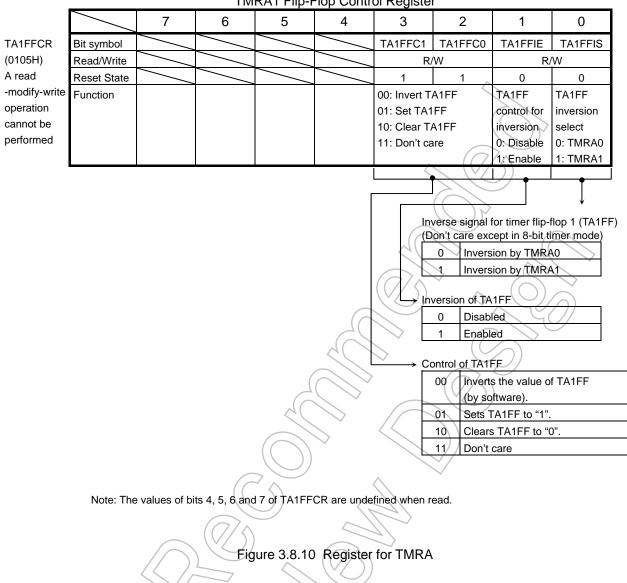


3.8.3 SFR

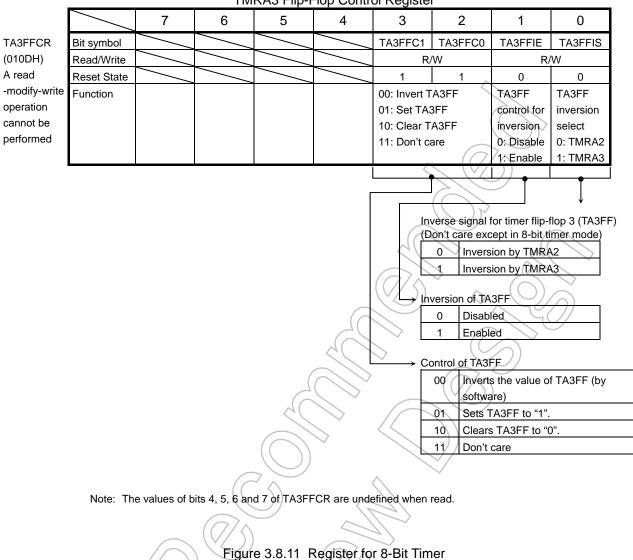
				TMRA0	1 Run Re	gister			
		7	6	5	4	3	2	1	0
01RUN	Bit symbol	TA0RDE				I2TA01	TA01PRUN	TA1RUN	TAORUN
00H)	Read/Write	R/W					R	W	
	Reset State	0				0	0	0	0
	Function	Double				IDLE2	TMRA01	Up-counter	Up-counter
		buffer				0: Stop	prescaler	(UC1)	(UC0)
		0: Disable				1: Operate	0: Stop and		
		1: Enable				<	1: Run (Cou	int up)	
		↓ TA0REG do	uble buffer (control			$> \sim$	→ Timer ru	n/stop contro
		0 Disa		Control			(())		Stop and clea
		1 Ena					\mathbf{i}		Run (Count up
			510			20			
	Note ⁻ 4	5 and 6 of TA	01RUN are	read as und	efined values			\sim	
	1000. 1,		lo mon alo			$\overline{\Omega}$	\rightarrow	6	\searrow
						(\vee)	\diamond	(\bigcirc)	\bigcirc
				TMRA2	3 Run Reg	gister		< Y	O
		7	6	5	4	3	2		0
23RUN	Bit symbol	TA2RDE			L.	I2TA23	TA23PRUN	TA3RUN	TA2RUN
08H)	Read/Write	R/W			\sim	2		W	
	Reset State	0			\sim	0		0	0
	Function	Double		4(\searrow	IDLE2	TMRA23	-	Up-counter
		buffer				0: Stop	prescaler	(UC3)	(UC2)
		0: Disable 1: Enable		(())	~	1: Operate	0: Stop and		
		1. Enable					1: Run (Cou	int up)	
		¥ TA2REG do	uble buffer	control		$\langle \rangle$		→ Timer ru	n/stop contro
		0 Disa	()		$\langle \cdot \rangle$				Stop and clea
		1 Ena				\mathbb{N}			Run (Count up
)		\rightarrow			
	Note: 4.	5 and 6 of TA	23RUN are	read as und	efined values	5.			
			Fi	gure 3.8.5	Register	for TMRA			
			$>$ \sim	guic 5.0.0	Register				
	\sim	2			>				
	4	\bigtriangledown		\wedge	\checkmark				
				4 1					
_		\mathcal{D}							
<									

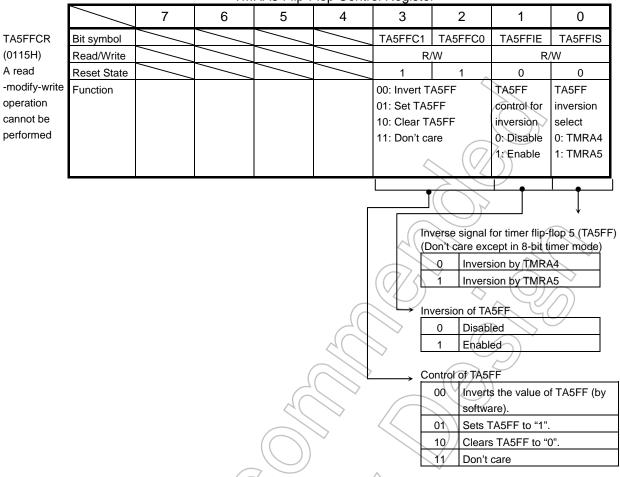
91CU27-99


				TMRA4	5 Run Reg	gister			
		7	6	5	4	3	2	1	0
TA45RUN	Bit symbol	TA4RDE	/	/	/	I2TA45	TA45PRUN	TA5RUN	TA4RUN
(0110H)	Read/Write	R/W			/			/W	
	Reset State	0				0	0	0	0
	Function	Double				IDLE2	TMRA23	Up-counter	Up-counter
		buffer				0: Stop	prescaler	(UC5)	(UC4)
		0: Disable				1: Operate	0: Stop and	clear	
		1: Enable					1: Run (Co	unt up)	
		\downarrow				_	-(0)	<u> </u>	
		TA4REG do	ouble buffer o	control			$\wedge \prec$		perate
		0 Disa	able				$\langle \rangle$	0 5	Stop and clear
		1 Ena	ble				$\left(\left(\right) \right)$	1 F	Run (Count up)
						6			\frown
						$\mathcal{A}(\mathcal{A})$		~((\sim
	Note: 4,	5 and 6 of TA	A45RUN are	read as unde	efined values			\sim	
						$(\overline{\Omega})$	\searrow	6	\searrow
						$(\vee \langle \rangle)$	\diamond	(\bigcirc)	\bigcirc
			Fi	gure 3.8.6	Register			$\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$	
			1 1	guie 0.0.0	Register		6	> > <	2
					20		((
					\sim	\sim		\mathcal{O}	
				(\sim		(7)		
				Ĝ	$\langle \ \rangle$)	
				40	\rightarrow		\sim		
					\geq	$\langle \langle \rangle$			
				()	\sim				
				(\bigcirc)			\leq		
			G	7		\land	~		
					\sim				
					/	$\langle \rangle$			
			$(7/\land$			1/			
			$\langle C \rangle$		\square	\sim			
				\sim	$(\sqrt{5})$				
					\geq				
			\rightarrow						
	\sim	$\overline{\gamma}$							
	Z	$\langle \rangle$		\sim	\checkmark				
			~	(
	\sim (C		\leq						
<	< < < < < < < < < < < < < < < < < < <)) .	\square	$\langle \rangle$					
		- 7	> ((``))					
$\langle \langle \langle \langle \rangle \rangle \rangle$		\mathcal{C}	$\sqrt{\mathbf{\nabla}}$	ノ					
	$\langle \rangle$	2							
	\rightarrow		\searrow						


TMRA01 Mode Register

				TMRA	23 Mode Re	egister			
		7	6	5	4	3	2	1	0
TA23MOD	Bit symbol	TA23M1	TA23M0	PWM21	PWM20	TA3CLK1	TA3CLK0	TA2CLK1	TA2CLK0
(010CH)	Read/Write		•		R	/W			
	Reset State	0	0	0	0	0	0	0	0
	Function	Operation r	•	PWM cyc	le	Source clock		Source clock	for TMRA2
		00: 8-bit tim		00: Reser		00: TA2TR	G	00: Reserve	ed
		01: 16-bit ti		01: 2 ⁶		01: φT1		01: ¢T1	
		10: 8-bit PF	'G mode	10: 2 ⁷		10:		10: T4	
		11: 8-bit PV	VM mode	11: 2 ⁸		11: φT256	$(\Omega$	11:	
						<	$\sum \nabla $))	
						•		\mathcal{D}	
							$\left(\longrightarrow \right)$		
						TMRA2 sou	rce clock sel	ection	
						00 Re:	served	(
						01 øT1	1 (Prescaler)	41	
						10	4 (Prescaler)	\mathcal{A}	
							16 (Prescaler		\sim
							rce clock sel		(Δ)
							23MOD		3MOD
							A23M1:0>≠		23M1:0> = 01
							mparator out		flow output fron
							m TMRA2	\sim	bit timer mode)
					7(>> ,	01 φT1		(10-1	bit timer mode)
				\bigwedge	\sim	10 ¢T*		/	
						11 oT2 PWM cycle			
					$\langle \rangle$ (served		
				(())			 Source cloc 		
				\sim			Source cloc		
			((Source cloc		
				\bigcirc	<u> </u>		eration mode		
		_					o 8-bit timers		
		\frown	$(\sqrt{5})$)			bit timer)	
					(7/		it PPG		
				\sim				2 A 2) . 0 hit t	mar (TMDA2)
					\sim	0-6 11	il PVVIVI (TIVIF	(AZ) + 0-DIL L	imer (TMRA3)
			>	$\langle \langle \langle \rangle$					
	~	~	\checkmark						
<	NC S		Fi	gure 3.8:	8 Register	for TMRA			
			XC	Ŋ					


TMRA23 Mode Register


TMRA45 Mode Register

TMRA1 Flip-Flop Control Register

TMRA3 Flip-Flop Control Register

TMRA5 Flip-Flop Control Register

Note: The values of bits 4, 5, 6 and 7 of TA5FFCR are undefined when read.

Figure 3.8.12 Register for TMRA

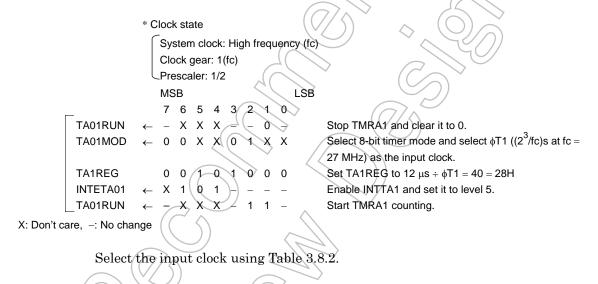
				Tim	er Registe	r			
		7	6	5	4	3	2	1	0
TA0REG	bit Symbol				-	_			
(0102H)	Read/Write				V	V			
	Reset State				Unde	efined			
TA1REG	bit Symbol				-	-			
(0103H)	Read/Write				V	V		$\langle \rangle$	
	Reset State				Unde	fined		$\left(\left(\right) \right)$	
TA2REG	bit Symbol				-	-	6		
(010AH)	Read/Write				V	V		$\langle \langle \rangle$	
	Reset State				Unde	fined	Y) //	\mathcal{I}	
TA3REG	bit Symbol				-	-	(\land)		
(010BH)	Read/Write				V	V	7	/	
	Reset State				Unde	efined		/	
TA4REG	bit Symbol				-	- 21	\searrow	7	
(0112H)	Read/Write				V	N			
	Reset State				Unde	fined	~	\bigcirc	\searrow
TA5REG	bit Symbol					-	\Diamond		$\langle \rangle$
(0113H)	Read/Write				$(\cap$	N V		19	O
	Reset State				Unde	fined	6	2	
								$\langle \cap \rangle$	

Note: A read-modify-write operation cannot be performed.

Figure 3.8.13 TMRA Register

3.8.4 Operation in Each Mode

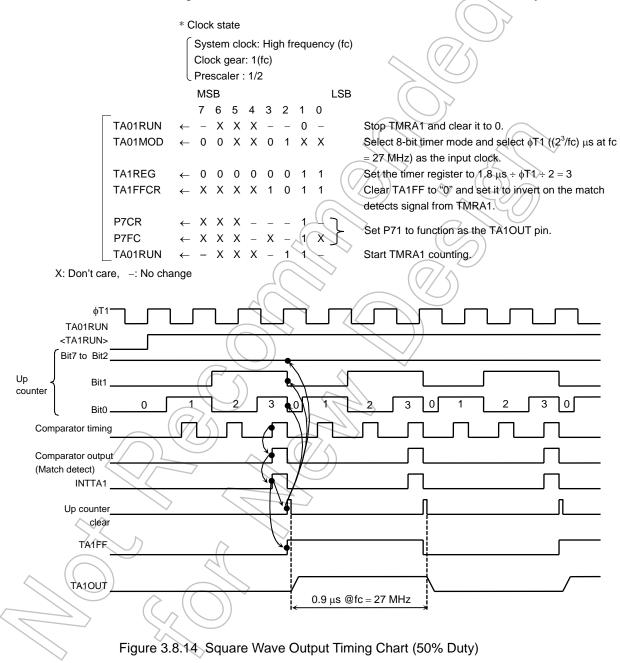
(1) 8-bit timer mode


Both TMRA0 and TMRA1 can be used independently as 8-bit interval timers.

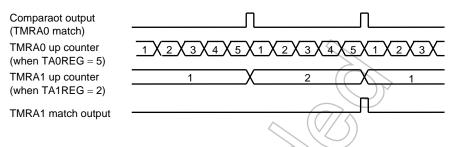
When set function and counter data, be stopped operation of TMRA0 and TMRA1 registers beforehand.

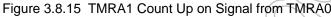
a. Generating interrupts at a fixed interval (using TMRA1)

To generate interrupts at constant intervals using TMRA1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register, respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.


Example: To generate an INTTA1 interrupt every 12 μs at fc = 27 MHz, set each register as follows:

Note: The input clocks for TMRA0 and TMRA1 are different from as follows. TMRA0: TA0IN input, ϕ T1, ϕ T4 or ϕ T16 TMRA1: Comparator output from TMRA0, ϕ T1, ϕ T16 and ϕ T256 b. Generating a 50% duty ratio square wave pulse


The state of the timer flip-flop (TA1FF) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).


Example: To output a 1.8 µs square wave pulse from the TA1OUT pin at fc = 27 MHz, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used.

c. Making TMRA1 count up on the match signal from the TMRA0 comparator

Select 8-bit timer mode and set the comparator output from TMRA0 to be the input clock to TMRA1.

(2) 16-bit timer mode

A 16-bit interval timer is configured by pairing the two 8-bit timers TMRA0 and TMRA1.

To make a 16-bit interval timer in which TMRA0 and TMRA1 are cascaded together, set TA01MOD<TA01M1:0> to "01".

In 16-bit timer mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA1CLK1:0>. Table 3.8.2 shows the relationship between the timer (Interrupt) cycle and the input clock selection.

Timer interrupt cycle set lower 8 bits to TAOREG and set upper 8 bits to TA1REG. Please keep setting TA0REG first because setting data for TA0REG inhibit its compare function and setting data for TA1REG permit it.

Setting example: To generate an INTTAL interrupt every 0.3 s at fc = 27MHz, set the timer registers TAOREG and TA1REG as follows:

* Clock state System clock: High frequency (fc) Clock gear: 1(fc) Prescaler: 1/2

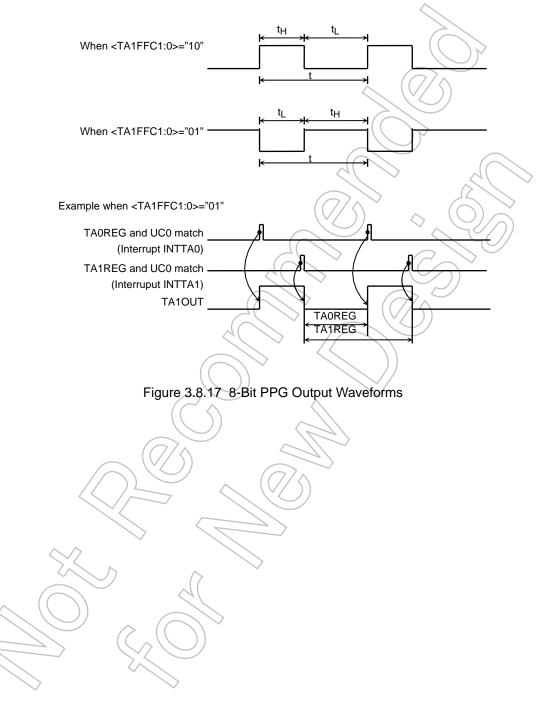
If ϕ T16 ((2⁷/fc) s @fc = 27 MHz) is used as the input clock for counting, set the following value in the registers:

 $0.3 \text{ s/}(2^{7}/\text{fc})\text{s} = 62500 = \text{F}424\text{H};$

i.e. set TA1REG to F4H and TA0REG to 24H.

The comparator match signal is output from TMRA0 each time the up counter UC0 matches TA0REG, though the up counter UC0 is not be cleared and also INTTA0 is not generated.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparators TMRA0 and TMRA1, the up counters UC0 and UC1 are cleared to "0" and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.


 $(\Omega \wedge$

Example: When TA1R	EG = 04H and TAOREG = 80H
Ĩ	
Value of up counter (UC1, UC0)	0080H 0180H 0280H 0380H 0480H 0080H
TMRA0 comparator match detect signal	
TMRA0 comparator match detect signal	
INTTA0	
INTTA1	
TA1OUT	Inversion
Figure 3.8.16	6 Timer Output by 16-Bit Timer Mode
(
~ 2	
	>
\bigcirc	
	/

(3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active low or active high. In this mode TMRA1 cannot be used.

TMRA0 outputs pulses on the TA1OUT pin (shared with P71).

In this mode, a programmable square wave is generated by inverting the timer output each time the 8-bit up counter (UC0) matches the value in one of the timer registers TA0REG or TA1REG.

The value set in TA0REG must be smaller than the value set in TA1REG.

Although the up counter for TMRA1 (UC1) is not used in this mode, TA01RUN<TA1RUN> should be set to "1", so that UC1 is set for counting.

Figure 3.8.18 shows a block diagram representing this mode.

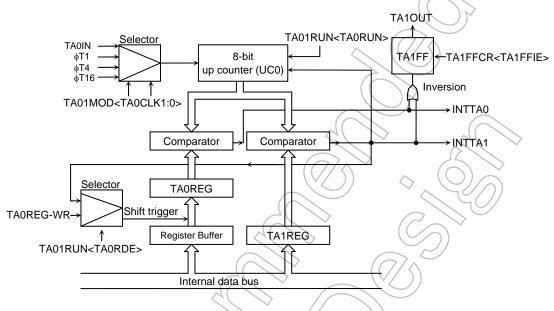
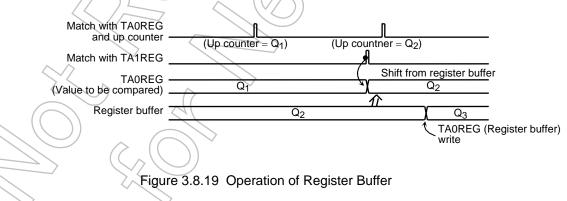
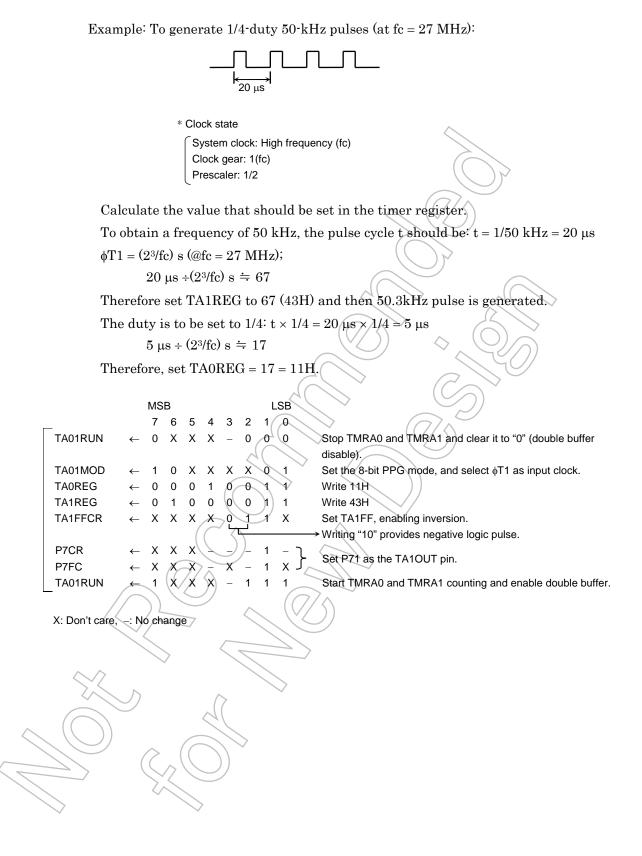




Figure 3.8.18 Block Diagram of 8-Bit PPG Output Mode

If the TAOREG double buffer is enabled in this mode, the value of the register buffer will be shifted into TAOREG each time TAIREG matches UCO.

Use of the double buffer facilitates the handling of low-duty waves (when duty is varied).

(4) 8-bit PWM output mode

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin (which is also used as P71). TMRA1 can also be used as an 8-bit timer.

The timer output is inverted when the up counter (UC0) matches the value set in the timer register TA0REG or when 2^n counter overflow occurs (n = 6, 7 or 8 as specified by TA01MOD<PWM01:00>). The up counter UC0 is cleared when 2^n counter overflow occurs.

The following conditions must be satisfied before this PWM mode can be used.

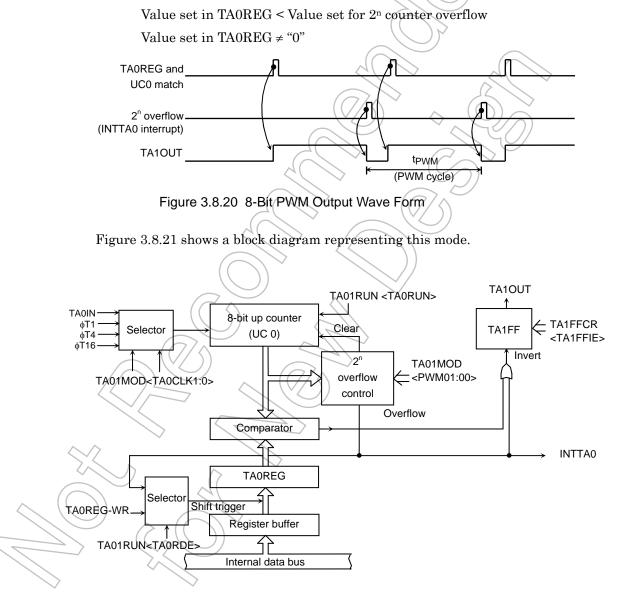
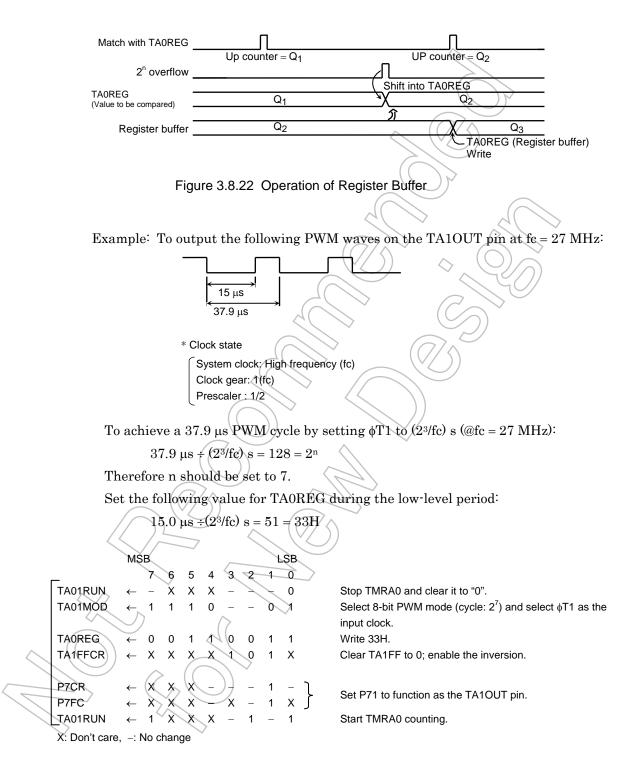



Figure 3.8.21 Block Diagram of 8-Bit PWM Output Mode

In this mode, the value of the register buffer will be shifted into TAOREG if 2^n overflow is detected when the TAOREG double buffer is enabled.

Use of the double buffer facilitates the handling of low duty ratio waves.

Select	Select				PWM Cycle									
system	prescaler	Gear value			2 ⁶ (x64)		2 ⁷ (x128)			2 ⁸ (x256	5)		
clock	clock	SYSCR1	—	TAxxM	OD <tax< td=""><td>CLK1:0></td><td>TAxxN</td><td>IOD<tax(< td=""><td>CLK1:0></td><td>TAxxM</td><td>IOD<tax< td=""><td>CLK1:0></td></tax<></td></tax(<></td></tax<>	CLK1:0>	TAxxN	IOD <tax(< td=""><td>CLK1:0></td><td>TAxxM</td><td>IOD<tax< td=""><td>CLK1:0></td></tax<></td></tax(<>	CLK1:0>	TAxxM	IOD <tax< td=""><td>CLK1:0></td></tax<>	CLK1:0>		
SYSCR1 <sysck></sysck>	SYSCR0 <prck1:0></prck1:0>	<gear2:0></gear2:0>		φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)		
1 (1/fs)		_		512/fs	2048/fs	8192/fs	1024/fs	4096/fs	16384/fs	2048/fs	8192/fs	32768/fs		
		000(x1)		512/fc	2048/fc	8192/fc	1024/fc	4096/fc	16384/fc	2048/fc	8192/fc	32768/fc		
	00 (f==:.)	001(x2)		1024/fc	4096/fc	16384/fc	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc		
	(f _{FPH})	010(x4)	x4	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc		
0 (1/fc)		011(x8)		4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc		
		100(x16)		8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc		
	10 (fcx16)	_		8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc		

Table 3.8.3 PWM Cycle

(5) Settings for each mode

Table 3.8.4 shows the SFR settings for each mode.

			5 5		
Register Name		TA01	MOD	(// s)	TA1FFCR
<bit symbol=""></bit>	<ta01m1:0></ta01m1:0>	<pwm01:00></pwm01:00>	<ta1clk1:0></ta1clk1:0>	<ta0clk1:0></ta0clk1:0>	<ta1ffis></ta1ffis>
Function	Timer Mode	PWM Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select
8-bit timer × 2 channels	00		Lower timer match,	External clock, φT1, φT4, φT16 (00, 01, 10, 11)	0: Lower timer output 1: Upper timer output
16-bit timer mode	01	- (External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PPG × 1 channel	10			External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PWM × 1 channel	11	2 ⁶ , 2 ⁷ , 2 ⁸ (01, 10, 11)	-	External clock, φT1, φT4, φT16 (00, 01, 10, 11)	-
8-bit timer × 1 channel	11	-	φT1, φT16 , φT256 (01, 10, 11)	-	Output disabled

Table 3.8.4 Timer Mode Setting Registers

-: Don't care

 (\bigcirc)

3.9 16-Bit Timer/Event Counters (TMRB)

The TMP91CU27/CP27/CK27 contains one multifunctional 16-bit timer/event counter (TMRB0) which have the following operation modes:

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)

Can be used following operation modes by capture function:

- Frequency measurement mode
- Pulse width measurement mode
- Time differential measurement mode

Figure 3.9.1 show block diagram of TMRB0. The timer/event counter consists of a 16-bit up counter, two 16-bit timer registers (one of them with a double-buffer structure), two 16-bit capture register, two comparators, a capture input controller, a timer flip-flop and a control circuit.

The timer/Event counter is controlled by 11-byte control register (SFR).

Spec	Channel	TMRB0
External pin	External clock/ capture trigger input pin Timer flip-flop output pin	TB0IN0 (Shared with P80) TB0IN1 (Shared with P81) TB0OUT0 (Shared with P82) TB0OUT1 (Shared with P83)
	Timer RUN register Timer mode register Timer flip-flop control register	TBORUN (0180H) TBOMOD (0182H) TBOFFCR (0183H)
SFR name (Address)	Timer register	TB0RG0L (0188H) TB0RG0H (0189H) TB0RG1L (018AH) TB0RG1H (018BH)
	Capture register	TB0CP0L (018CH) TB0CP0H (018DH) TB0CP1L (018EH) TB0CP1H (018FH)

Table 3.9.1 Registers and Pins for TMRB0

3.9.1 Block Diagram of TMRB0

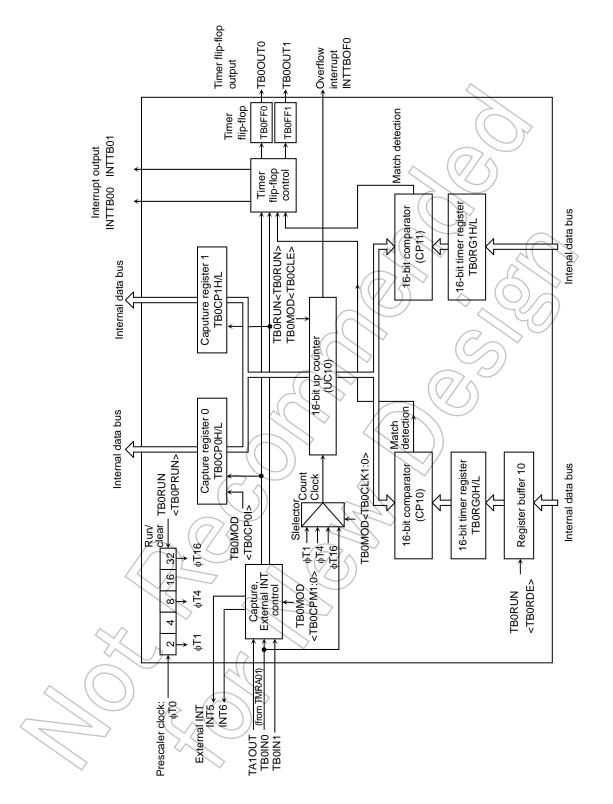


Figure 3.9.1 Block Diagram of TMRB0

3.9.2 Operation of Each Circuit

(1) Prescaler

The 5-bit prescaler generates the source clock for TMRB0. The prescaler clock (ϕ T0) is a divided clock (divided by 4) from selected clock by the register SYSCR0<PRCK1:0> of clock gear.

This prescaler can be started or stopped using TB0RUN<TB0PRUN>. Counting starts when <TB0PRUN> is set to "1"; the prescaler is cleared to "0" and stops operation when <TB0PRUN> is cleared to "0".

Table 3.9.2 show prescaler output clock resolution.

System Clock	Prescaler Clock	Clock Gear		Timer	Sounter Inpu	t Clock
Selection	Selection	Value		TT //	MRB Prescal	er <
SYSCR1	SYSCR0	SYSCR1	_ /	TBON	10D <tb0cl< td=""><td>K1:0></td></tb0cl<>	K1:0>
<sysck></sysck>	<prck1:0></prck1:0>	<gear2:0></gear2:0>		φT1(1/2)	φT4(1/8)	¢T16(1/32)
1 (fs)		_	$\langle \rangle$	fs/8	fs/32	fs/128
		000(1/1)	()	fc/8	fc/32	fc/128
	00	001(1/2)	\sim	fc/16	fc/64	fc/256
	(f _{FPH})	010(1/4)	1/4	fc/32	fc/128	fc/512
0 (fc)		011(1/8)		fc/64	fc/256	fc/1024
		100(1/16)	\checkmark	fc/128	fc/512	fc/2048
	10 (fc/16 clock)		<	fc/128	fc/512	fc/2048

Table 3.9.2 Prescaler Output Clock Resolution

(2) Up counter (UC10)

UC10 is a 16-bit binary counter which counts up according to input from the clock specified by TB0M0D<TB0CLK1:0> register.

As the input clock, one of the prescaler internal clocks ϕ T1, ϕ T4 and ϕ T16 or an external clock from TB0IN0 pin can be selected. Counting or stopping and clearing of the counter is controlled by timer operation control register TB0RUN<TB0RUN>.

When clearing is enabled, the up counter UC10 will be cleared to "0" each time its value matches the value in the timer register TB0RG1H/L. If clearing is disabled, the counter operates as a free-running counter. Clearing can be enabled or disabled using TB0MOD<TB0CLE>.

A timer overflow interrupt (INTTBOF0) is generated when UC10 overflow occurs.

(3) Timer registers (TB0RG0H/L and TB0RG1H/L)

These two 16-bit registers are used to set the interval time. When the value in the up counter UC10 matches set value of timer register, the comparator match detect signal will be active.

Setting data for both upper and lower timer registers are always needed. For example, either using a 2-byte data transfer instruction or using a 1-byte date transfer instruction twice for the lower 8 bits and upper 8 bits in order.

The TB0RG0H/L timer register has a double-buffer structure, which is paired with a register buffer 0. The timer control register TB0RUN<TB0RDE> control whether the double buffer structure should be enabled or disabled: it is disabled when <TB0RDE> = "0", and enabled when <TB0RDE> = "1".

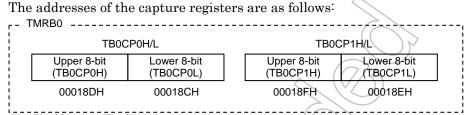
When the double buffer is enabled, data is transferred from the register buffer to the timer register when the values in the up counter (UC10) and the timer register TB0RG1H/L match.

After a Reset, TB0RG0H/L and TB0RG1H/L are undefined. To use the 16-bit timer after reset, data should be written beforehand.

When reset, <TB0RDE> is initialized to "0", whereby the double buffer is disabled. To use the double buffer, write data to the timer register, set <TB0RDE> to "1", then write following data to the register buffer.

TB0RG0H/L and the register buffer are allocated to the same memory address 0188H/0189H. When $\langle TB0RDE \rangle = "0"$, same value will be written to both the timer register and register buffer. When $\langle TB0RDE \rangle = "1"$, the value is written into only the register buffer.

Therefore, when write initial value to timer register, set register buffer to disable. The addresses of the timer registers are as follows:


TMRB0	\bigtriangleup			
	G0H/L	TBOR	G1H/L	
Upper 8-bit (TB0RG0H)	Lower 8-bit (TB0RG0L)	Upper 8-bit (TB0RG1H)	Lower 8-bit (TB0RG1L)	
000189H	000188H	00018BH	00018AH	İ

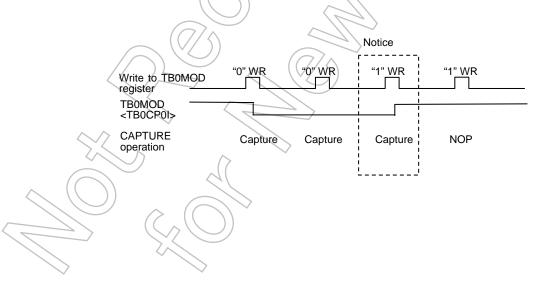
The TB0RG0H/L to TB0RG1H/L are write-only registers and thus cannot be read.

(4) Capture registers (TB0CP0H/L, TB0CP1H/L)

These 16-bit registers are used to latch the values of the up counters.

All 16 bits of data in the capture register should be read. For example, using 2-byte data load instruction or using 1-byte date load instruction twice for lower 8 bits and upper 8 bits in order.

The TB0CP0H/L to TB0CP1H/L are read-only registers and thus cannot be read.


(5) Capture, external interrupt control

This circuit controls the timing to latch the value of the up counter UC10 into TB0CP0H/L, TB0CP1H/L and control generation of external interrupt. The latch timing of capture register and selection of edge for external interrupt is set in TB0MOD<TB0CPM1:0>.

The edge of external interrupt INT6 is fixed to rising edge.

Besides, the value of up counter can be loaded into a capture registers by software. Whenever "0" is written to TB0MOD<TB0CP0I>, the current value in the up counter is loaded into capture register TB0CP0H/L. It is necessary to keep the prescaler in run mode (i.e., TB0RUN<TB0PRUN> must be held at a value of "1").

Note: As described above, whenever "0" is written to TB0MOD<TB0CP0I>, the current value in the up counter is loaded into capture register TB0CP0H/L. However, note that the current value in the up counter is also loaded into capture register TB0CP0H/L when "1" is written to TB0MOD<TB0CP0I> while this bit is holding "0".

(6) Comparators (CP10 and CP11)

CP10 and CP11 are 16-bit comparators which compare the value in the up counter UC10 value with the value set of TB0RG0H/L or TB0RG1H/L respectively, in order to detect a match. If a match is detected, the comparators generate an interrupt (INTTB00 or INTTB01 respectively).

(7) Timer flip-flops (TB0FF0 and TB0FF1)

These flip-flops are inverted by the match detect signals from the comparators and the latch signals to the capture registers. Inversion can be enabled and disabled for each element using TB0FFCR<TB0C1T1, TB0C0T1, TB0E1T1, TB0E0T1>.

After a reset, the value of TB0FF0 and TB0FF1 is undefined. If "00" is written to TB0FFCR<TB0FF0C1:0> or <TB0FF1C1:0>, TB0FF0 or TB0FF1 will be inverted. If "01" is written to the flip-flops control registers, the value of TB0FF0 and TB0FF1 will be set to "1". If "10" is written to the flip-flops control registers, the value of TB0FF0 and TB0FF0 and TB0FF1 will be cleared to "0".

The values of TB0FF0 and TB0FF1 can be output to the timer output pins TB0OUT0 (which is shared with P82), TB0OUT1 (which is shared with P83). Timer output should be specified by using the port 8 function register P8FC and port 8 control register P8CR.

3.9.3 SFR

1	0
	TBORUN
	R/W
	0
\mathcal{Y}	Up-counter
	(UC10)
ount up)	
	op and clear
	7
, YIN)
~~~	/
))	
	nd clear ount up) → Count ope

				TMRB0	Mode Reg	gister			
		7	6	5	4	3	2	1	0
TB0MOD	Bit symbol	TB0CT1	TB0ET1	TB0CP0I	TB0CPM1	TB0CPM0	TB0CLE	TB0CLK1	TB0CLK0
(0182H)	Read/Write	R/	W	W*		÷	R/W		
	Reset State	0	0	1	0	0	0	0	0
A read -modify-write operation cannot be performed			0 rersion isable nable	Software capture control 0:Software capture 1:Undefined	Capture timi 00:Disable INT5 is rising 01:TBOINO↑ INT5 is rising 10:TBOINO↑ INT5 is falling 11:TA1OUT1 INT5 is rising → TMRB0 sr 00 E 01 0 10 0	ng edge TB0IN1↑ edge TB0IN0↓ edge TA10UT↓ edge ource clock xternal input F1 F4 F16 p counter 10 isable clear of lear by matc nterrupt timir Capture apture disab 30CP0H/L by f 30CP0H/L by f 30CP1H/L by f 30CP1H/L by f	Up counter control 0:Clear disable 1:Clear enable clock (TB0IN clock (TB0IN of up counter h with TB0R( ng e control le tising TB0IN0 tising TB0IN0	TMRB0 sou select 00: TB0IN0 01: \u00f6T1 10: \u00f6T4 11: \u00f6T4 11: \u00f6T16 10: \u00f6T6 11: \u00f6T16 31H/L INT5 gene INT5 gene INT5 gene	Irce clock
		$\left( \right) $		$\langle$			of up counte	er to TB0CP0	)
						ndefined (No	ote)		
			$\geq$	$\langle \subset$	$\rightarrow$				

TMRB0 Mode Register

Note: Whenever programming "0" to TB0MOD<TB0CP0I> bit, present value of up counter is received to capture register TB0CP0H/L. But, write "1" to TB0MOD<TB0CP0I> in condition of written "0" to TB0MOD<TB0CP0I> bit, present value of up counter is received to capture register TB0CP0H/L. Therefore you must to regard.

Figure 3.9.3 Register for TMRB

			TM	RE	30 Flip-F	-lop Contr	ol Registe	r		
		7	6		5	4	3	2	1	0
<b>TB0FFCR</b>	Bit symbol	TB0FF1C1	TB0FF1C0	T	B0C1T1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FF0C1	TB0FF0C0
(0183H)	Read/Write	V	•			•	/W	•		V*
	Reset State	1	1		0	0	0	0	1	1
A read	Function	TB0FF1 cor	ntrol	тв	0FF0 inv	ersion trigge	r	$\langle$	TB0FF0 Co	ntrol
-modify-write		00: Invert			Trigger di				00: Invert	
operation		01: Set		1: '	Trigger ei	nable			01: Set	
cannot be		10: Clear					Invert when		10: Clear	
performed		11: Don't ca			e UC	the UC value is	the UC	the UC	11: Don't ca	ire
		* Always rea	ad as "11".		lue is ided into	loaded into	matches <	matches with	* Always rea	ad as "11".
					OCP1H/		TB0RG1H/			
				L.		L.	L			
								$\rightarrow$	((	
									$\sim$	
								B0FF0) contr		
						00		B0FF0 (Softy	ware inversio	<u>n).</u>
						01	Set TB0FI		$\overline{\langle \zeta \rangle}$	
						10		FF0 to "0".		<u> </u>
							Don't care			
						$\sim$	sion trigger o B0RG0H/L	f TB0FF0 wh		matches
								able (Disable	inversion)	
								able (Enable	/	
								f TB0FF0 wh		matches
				/			BORG1H/L			materies
					()	0		able (Disable	e inversion)	
			6	$\sum$		1		able (Enable		
				~ - (	$\cap$		sion trigger o	f TB0FF0 wh	en the UC10	value is
					$\mathcal{O}$	loade	d into TB0CF	P0H/L		
			(77)			0	Trigger dis	able (Disable	e inversion)	
				)		1	Trigger en	able (Enable	inversion)	
		// )			$\sim$	( Invers	sion trigger o	f TB0FF0 wh	en the UC10	value is
							d into TB0CF			
				[		0	Trigger dis	sable (Disable	e inversion)	
			$\rightarrow$			1	Trigger en	able (Enable	inversion)	
	$\leq$	Z J		$\sim$		>				
	$\bigcap$		\$			Desister				
<	$\mathcal{Y}$	))	FI	gur	e 3.9.4	Register	for TMRB			
			$\sim$	))	~					
	$\langle \rangle$	2								

TMRB0 Flip-Flop Control Register

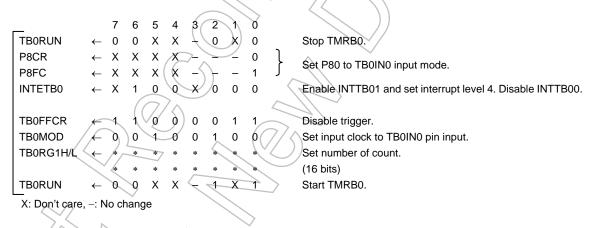
				TMI	RB0 regist	er			
		7	6	5	4	3	2	1	0
TB0RG0L	bit Symbol					_			
(0188H)	Read/Write				١	N			
	Reset State				Unde	efined	~		
TB0RG0H	bit Symbol					_			
(0189H)	Read/Write					N		$\langle \rangle$	
	Reset State				Unde	efined		4( ))	
TB0RG1L	bit Symbol					_	6		
(018AH)	Read/Write					N C		(	
	Reset State				Unde	efined		$\mathcal{I}$	
TB0RG1H	bit Symbol					_	$(\bigcirc)$		
(018BH)	Read/Write					N	$\bigcirc$		
	Reset State				Unde	efined		(	
	Note: A re	ead-modify-	write operatio	n cannot be	performed.			Z	$\langle \rangle$
						$\square$	$\geq$	4	$\langle \rangle$
						$(\sqrt{5})$	$\diamond$	$(\bigcirc)$	$\tilde{\Box}$
			I	Figure 3.9	.5 TMRB	Register	~		/))
					4		6	$\sim / / ($	9
					20		((		
						$\sim$		Ð	
					$( \land	7	(7/)		
				G				)	
				40			$\backslash \frown$		
					$\supset$	$\langle \langle \rangle$			
				(( ))	)				
				$\sim$	/		$\mathbf{V}$		
			((	$\sim$		$\langle \rangle$			
				$\bigcirc)$	$\langle \cdot \rangle$	$\rightarrow$			
			$\square$			$\sim$			
				)		$\rightarrow$			
				$\sim$	(7/				
						/			
			$\supset$	1					
	$\sim$	7							
	2/			$\wedge$	$\checkmark$				
			~						
	$\sim$ (( )								
	$\sim$	リー _~		$\langle \rangle$					
		((		))					
/			XV						
		4	$\sim$ //						
	$\checkmark$		$\sim$						

#### 3.9.4 Operation in Each Mode

(1) 16-bit interval timer mode

Generating interrupts at fixed intervals

In this example, the interval time is set the timer register TB0RG1H/L to generate the interrupt INTTB01.


_		7	6	5	4	3	2	1	0
TB0RUN	←	-	0	Х	Х	-	0	Х	0
INTETB0	←	Х	1	0	0	Х	0	0	0
TB0FFCR	←	1	1	0	0	0	0	1	1
TB0MOD	←	0	0	1	0	0	1	*	*
						(** =	01,	10,	11)
TB0RG1H/L	←	*	*	*	*	(** = *	= 01, *	10, *	11) *
TB0RG1H/L	←	*	*	*					,
TB0RG1H/L	← ←				*	*	*	*	*

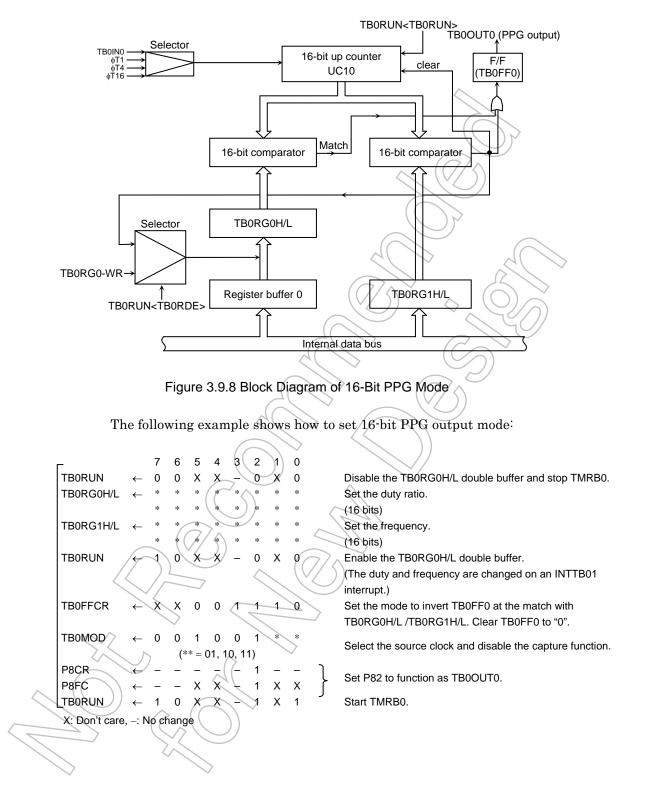
Stop TMRB0. Enable INTTB01 and set interrupt level 4. Disable INTTB00. Disable the trigger. Select source clock and Disable the capture function. Set the interval time. (16 bits) Start TMRB0.

(2) 16-bit event counter mode

In 16-bit timer mode as described in above, the timer can be used as an event counter by selecting the external clock (TB0IN0 pin input) as the input clock.

Up counter counting up by rising edge of TB0IN0 pin input. And execution software capture and reading capture value enable reading count value.




When used as an event counter, set the prescaler to "RUN". (TB0RUN<TB0PRUN> = "1") (3) 16-bit programmable pulse generation (PPG) output mode

Square wave pulses can be generated at any frequency and duty ratio. The output pulse may be either low active or high active.

The PPG mode is obtained by inversion of the timer flip-flop TB0FF0 that is enabled by the match of the up counter UC10 with timer register TB0RG0H/L or TB0RG1H/L and is output to TB0OUT0. In this mode, the following conditions must be satisfied.

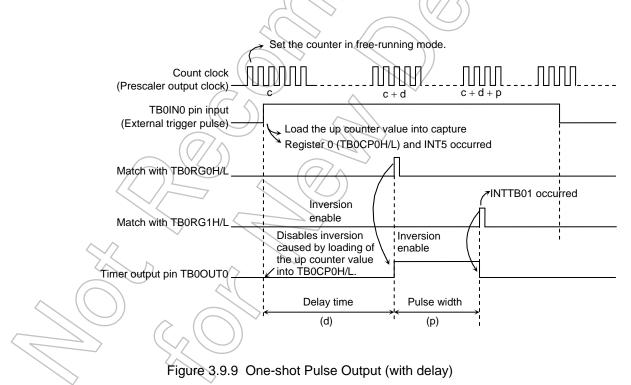
(Set value of TB0RG0H/L) < (Set value of TB0RG1H/L)

			$\bigcirc$		
Match with TB0RG0H/L (INTTB00 inerrupt)	<u>+</u>				
Match with TB0RG1H/L (INTTB01 interrupt) —					
TB0OUT0 pin			<u> </u>		$\rightarrow$
Figure 3.9.6 Pro	ogrammable Pulse	e Generation	(PPG) Output W	aveforms	
When the T	B0RG0H/L doubl	e buffer is e	nabled in this n	node, the valu	e of register
	be shifted into T				-
	e handling of low			9	THE TOUCHTO
manes easy the	e manuning of ion	auty waves.	$(// \uparrow)$		
	~				
		$\sim$ /			
Match with TB0RG0H/L		$\geq$			-
	Up counter = $Q_1$	<b>₽</b>	Up counter = $Q_2$		
Match with TB0RG1H/L		(] L	nift into TB0RG1H/L		-
TB0RG0H/L		- W			-
(Value to be compared)	Q1		Q ₂		-
Devision of the	77				-
Register buffer	·	Q ₂	/	Q3	
	-		Write	TB0RG0H/L	
	Figure 3.9.7 Oper	ration of Regi	ster Buffer		
		>			
	Figure 3.9.7 Oper	ration of Regi	ster Buffer		



The following block diagram illustrates this mode.

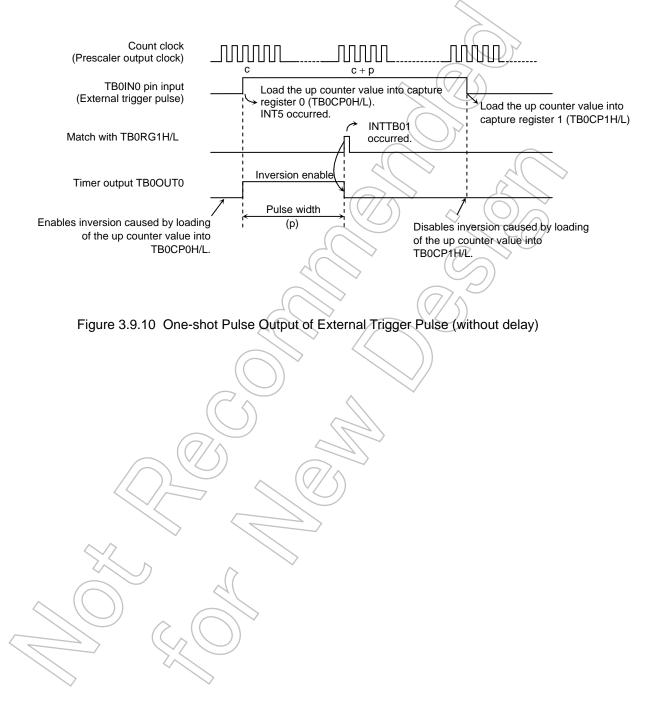
(4) Capture function examples


Used capture function, they can be applicable in many ways, for example:

- a. One-shot pulse output from external trigger pulse
- b. For frequency measurement
- c. For pulse width measurement
- d. For time difference measurement
- a. One-shot pulse output from external trigger pulse

Set the up counter UC10 in free-running mode with the internal input clock, input the external trigger pulse from TB0IN0 pin, and load the value of up-counter into capture register TB0CP0H/L at the rise edge of the TB0IN0 pin.

When the interrupt INT5 is generated at the rise edge of TB0IN0 input, set the TB0CP0H/L value (c) plus a delay time (d) to TB0RG0H/L (= c + d), and set the above set value (c + d) plus a one-shot width (p) to TB0RG1H/L (= c + d + p). And, set "11" to timer flip-flop control register TB0FFCR<TB0E1T1, TB0E0T1>. Set to trigger enable for be inverted timer flip-flop TB0FF0 by UC10 matching with TB0RG0H/L and with TB0RG1H/L. When interrupt INTTB01 occurs, this inversion will be disabled after one-shot pulse is output.


The (c), (d) and (p) correspond to c, d and p Figure 3.9.9.



# Example: To output a 2-ms one-shot pulse with a 3-ms delay to the external trigger pulse via the TB0IN0 pin.

							* Clo	ock :	state	;		
												High frequency (fc)
											r:1 (f	
	Main setting							ĹΡ	resc	aler	CIOCK	с Герн
-	Main Setting							_				→Set free running.
	_								_			$\rightarrow$ Count using $\phi$ T1.
Γ	TB0MOD	←	Х	Х	1	ò	1	ò	0	1		
						5						ightarrow Load the up counter value into TB0CP0H/L at the rising
												edge of TB0IN0 pin input.
	TB0FFCR	←	Х	Х	0	0	0	0	1	0 لـــ		
										· · · ·		→Clear TB0FF0 to 0. →Disable inversion of TB0FF0.
	P8CR	←	_	_	_	_	_	1	х	х	۱	Set P82 to function as the TB0OUT0 pin.
	P8FC	←	_	_	_	_	_	1	Х	Х	Ĵ	Set P80 to TB0IN0 input mode.
	INTE56	←	Х	-	-	-	Х	1	0	0	Ì	Enable INT5. Disable INTTB00 and INTTB01.
	INTETB0		Х	-			Х		0	0	J	
L	TB0RUN	←	-	0	Х	Х	-	1	Х	1	1	Start TMRB0.
										<	( ( (	
	Setting in INT	5								$\frown$	$\geq$	
-		<u> </u>								$\bigcap$		$\sim$ $(7/s)^{-}$
Γ	– TB0RG0H/L	←	тво	CP	0H/L	+ 3	ms/¢	T1	$( \cap$	$\langle \rangle$		
	TB0RG1H/L								Ľ		$\overline{}$	
	TB0FFCR	←	Х	Х	-	-	1	1	$\overline{7}$	$\rightarrow$		
							((t	_	$\rightarrow$			$\rightarrow$ Enable inversion of TB0FF0 when the up counter value
			v		~		7	$\sim$	)			match with value of TB0RG0H/L or TB0RG1H/L.
L	<u>I</u> NTETB0	←	Х	1	0	0	~×<	7	-	-		Énable INTTB01.
						$\langle \cdot \rangle$	$ \ge $	)				
	Setting in INT	тв0 [,]	1	((	7/	2					$\leq$	
-	<u></u>	1				]]				(		
Γ	- TB0FFCR	( <u> </u>	×	) X_	-	_	0	0	_	(		(
		$\bigcirc$	[[		/		Ч		$\sim$	$ \rightarrow $	$\geq$	$\rightarrow$ Disable inversion of TB0FF0 when the up counter value
			$\langle \rangle$				$\langle$			$\geq$	$\geq$	match with value of TB0RG0H/L or TB0RG1H/L.
L	INTETB0	←	X	Ø	0	0	X	-	-	_		Disable INTTB01.
	X: Don't care,	. –: N	lo cł	nang	e					$\geq$		
		J	7			(	7					
	( )					2	1					
$\langle \rangle$					6		$\sim$	$\geq$				
	$\bigvee$		$\widehat{\mathcal{O}}$	>								
$ \leq $			6	-7		$\leq$	ノ					
$\backslash$			<	$\sim$								
	$\checkmark$					7						

When delay time is unnecessary, invert timer flip-flop TB0FF0 when up-counter value is loaded into capture register (TB0CP0H/L), and set the TB0CP0H/L value (c) plus the one-shot pulse width (p) to TB0RG1H/L when the interrupt INT5 occurs. The TB0FF0 inversion should be enable when the up counter (UC10) value matches TB0RG1H/L, and disabled when generating the interrupt INTTB01.



b. Frequency measurement

The frequency of the external clock can be measured in this mode. The clock is input through the TB0IN0 pin, and its frequency is measured by the 8-bit timers TMRA01 and the 16-bit timer/event counter (TMRB0). (TMRA01 is used to setting of measurement time by inversion TA1FF.)

The TB0IN0 pin input should be for the input clock of TMRB0. Set to TB0MOD <TB0CPM1:0> = "11". The value of the up counter (UC10) is loaded into the capture register TB0CP0H/L at the rise edge of the timer flip-flop TA1FF of 8-bit timers (TMRA01), and into TB0CP1H/L at its fall edge.

The frequency is calculated by difference between the loaded values in TB0CP0H/L and TB0CP1H/L when the interrupt (INTTA0 or INTTA1) is generates by either 8-bit timer.

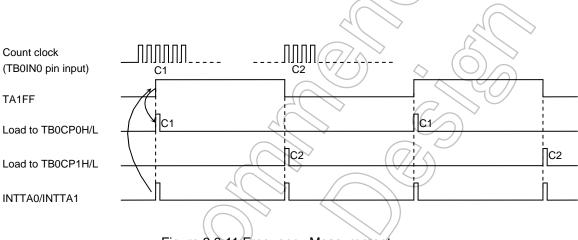



Figure 3.9.11 Frequency Measurement

For example, if the value for the level 1 width of TA1FF of the 8-bit timer is set to 0.5 s and the difference between the values in TB0CP0H/L and TB0CP1H/L is 100, the frequency is  $100 \div 0.5 \text{ s} = 200 \text{ Hz}.$ 

91CU27-134

c. Pulse width measurement

This mode allows to measure the high-level width of an external pulse. While keeping the 16-bit timer/event counter counting (Free running) with the internal clock input, external pulse is input through the TB0IN0 pin. Then the capture function is used to load the UC10 values into TB0CP0H/L and TB0CP1H/L at the rising edge and falling edge of the external trigger pulse respectively. The interrupt INT5 occurs at the falling edge of TB0IN0.

The pulse width is obtained from the difference between the values of TB0CP0H/L and TB0CP1H/L and the internal clock cycle.

For example, if the internal clock is  $0.8 \ \mu s$  and the difference between TB0CP0H/L and TB0CP1H/L is 100, the pulse width will be  $100 \times 0.8 \ \mu s = 80 \ \mu s$ .

Additionally, the pulse width which is over the UC10 maximum count time specified by the clock source, can be measured by changing software.

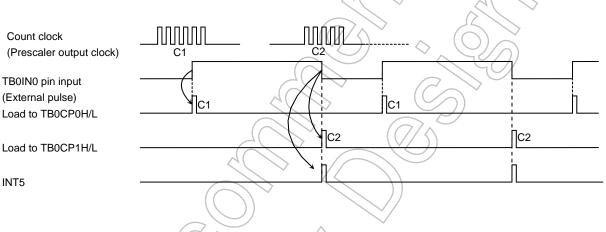
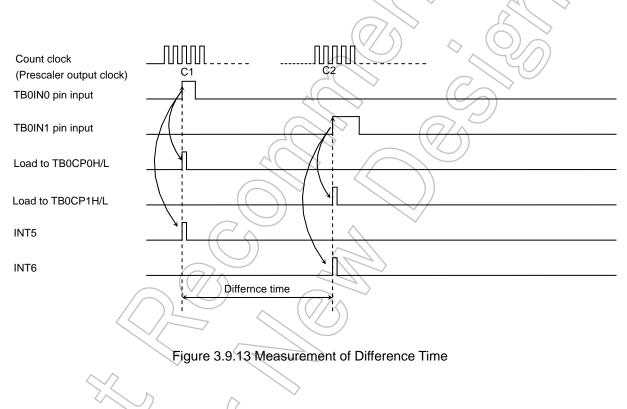



Figure 3.9.12 Pulse Width Measurement

Note: Pulse width measure by setting "10" to TB0MOD<TB0CPM1:0>. The external interrupt INT5 is generated in timing of falling edge of TB0IN0 input. In other modes, it is generated in timing of rising edge of TB0IN0 input.

The width of low-level can be measured from the difference between the first C2 and the second C1 at the second INT5 interrupt.


#### d. Measurement of difference time

This mode is used to measure the difference in time between the rising edges of external pulses input through TB0IN0 and TB0IN1.

Keep the 16-bit timer/event counter (TMRB0) counting (Free running) with the internal clock, and load the UC10 value into TB0CP0H/L at the rising edge of the input pulse to TB0IN0. Then the interrupt INT5 is generated.

Similarly, the UC10 value is loaded into TB0CP1H/L at the rising edge of the input pulse to TB0IN1, generating the interrupt INT6.

The time difference between these pulses can be obtained by multiplying the value subtracted TB0CP0H/L from TB0CP1H/L and the internal clock cycle together at which loading the up counter value into TB0CP0H/L and TB0CP1H/L has been done.



## 3.10 Serial Channels

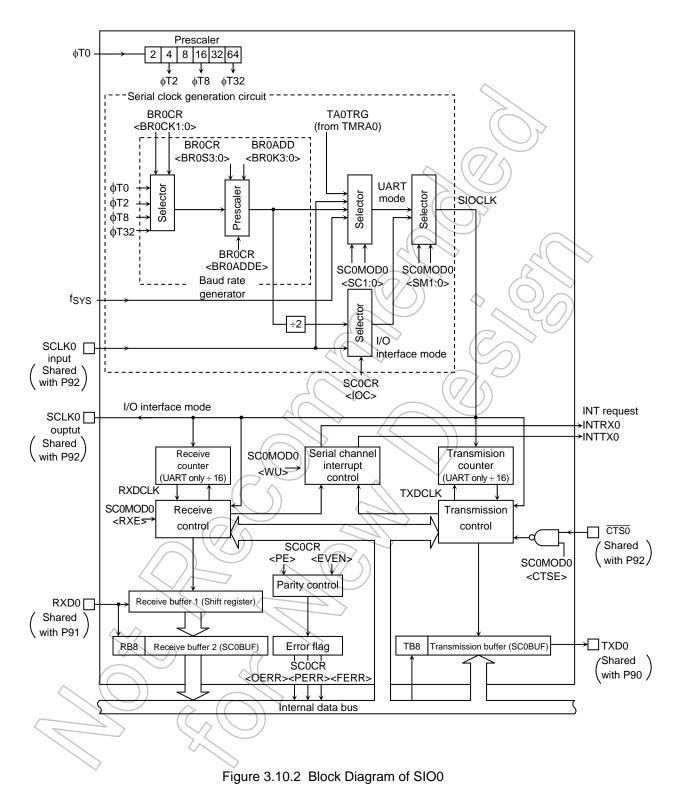
The TMP91CU27/CP27/CK27 includes 2 serial I/O channels. Each channel is called SIO0 and SIO1. For each channel, either UART mode (Asynchronous transmission) or I/O interface mode (Synchronous transmission) can be selected.

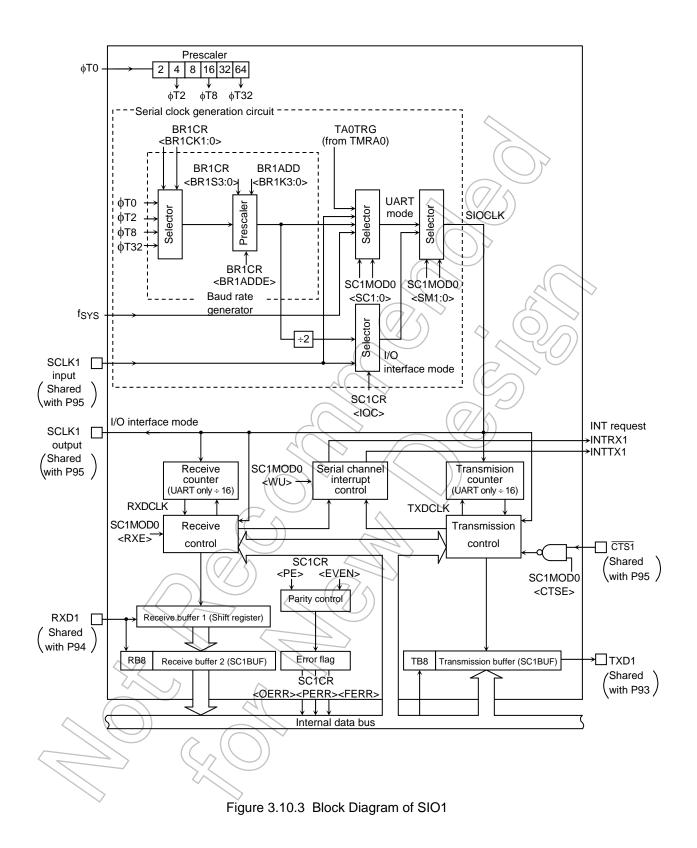
• I/O interface mode	——Mode 0:	For transmitting and receiving I/O data using the
		synchronizing signal SCLK for extending I/O.
	_Mode 1:	7-bit data
• UART mode	——Mode 2:	8-bit data
	└_Mode 3:	9-bit data

In mode 1 and mode 2 a parity bit can be added. Mode 3 has a wakeup function for making the master controller start slave controllers via a serial link (A multi-controller system).

Figure 3.10.2 and Figure 3.10.3 are block diagrams for each channel. Each channel is structured in prescaler, serial clock generation circuit, receiving buffer and control circuit, transfer buffer and control circuit.

Serial channels 0 and 1 can be used independently.


Both channels operate in the same fashion except for the following points; hence only the operation of channel 0 is explained below.


		SIO0	SIO1
Pin	name	TXD0 (P90)	TXD1 (P93)
		RXD0 (P91) CTS0 /SCLK0 (P92)	RXD1 (P94) CTS1/SCLK1 (P95)
IrD	A mode	Yes	No

#### Table 3.10.1 Differences Between Channels 0 to 1

• Mode 0 (I/O interface mode) Bit0 5 2 3 4 6 1 7 **Y** _Transfer direction Mode 1 (7-bit UART mode) 5 6 No parity Start Bit0 1 2 3 4 Stop Parity Bit0 2 5 6 ParityStop Start 3 4 1 • Mode 2 (8-bit UART mode) No parity Bit0 2 3 5 6 Stop Start 1 4 7 Stop Start Parity Parity Bit0 2 3 6 7 1 5 4 • Mode 3 (9-bit UART mode) Bit0 2 3 5 6 7 8 Stop Start 4 1 2 3 6 Bit8 Stop Wakeup Start Bit0 1 4 5 7 Figure 3.10.1 Data Format







### 3.10.2 Operation of Each Circuit

#### (1) Prescaler

There is a 6-bit prescaler for generating a clock to SIO0. The prescaler clock ( $\phi$ T0) is a divided clock (divided by 4) from selected clock by the register SYSCR0<PRCK1:0> of clock gear.

The prescaler can be run only case of selecting the baud rate generator as the serial transfer clock.

Table 3.10.2 shows prescaler clock resolution into the baud rate generator.

					2		
Select	Select Prescaler	Clock Gear		Bau	id Rate Gener	ator Input Cl	ock
System Clock	Clock	Value	/		SIO Pre	scaler	
SYSCR1	SYSCR0	SYSCR1	- <		BRxCR <bf< td=""><td>RXCK1:0&gt;</td><td></td></bf<>	RXCK1:0>	
<sysck></sysck>	<prck1:0></prck1:0>	<gear2:0></gear2:0>	$\overline{\Box}$	φT0(1/1)	φT2(1/4)	φT8(1/16)	φT32(1/64)
1 (fs)		Don't care		) fs/4		fs/64	fs/256
		000(1/1)		fc/4	fc/16	fc/64	fc/256
	00	001(1/2)		fc/8	fc/32	fc/128	fc/512
	(f _{FPH} )	010(1/4)	1/4	fc/16	fc/64	fc/256	fc/1024
0 (fc)		011(1/8)	104	fc/32	fc/128	fc/512	fc/2048
		100(1/16)	$\checkmark$	fc/64	fc/256	fc/1024	fc/4096
	10	Don't care			fc/256	fc/1024	fc/4096
	(fc/16 clock)						

Table 3.10.2 Prescaler Clock Resolution to Baud Rate Generator

-: Can not be used

The serial interface baud rate generator selects between 4 clock inputs:  $\phi T0$ ,  $\phi T2$ ,  $\phi T8$ , and  $\phi T32$  among the prescaler outputs.

(2) Baud rate generator

The baud rate generator is a circuit that generates transmission and receiving clocks that determine the transfer rate of the serial channels.

The input clock to the baud rate generator,  $\phi T0$ ,  $\phi T2$ ,  $\phi T8$  or  $\phi T32$ , is generated by the SIO 6-bit prescaler which is shared by the timers. One of these input clocks is selected using the BR0CR<BR0CK1:0> field in the baud rate generator control register. The baud rate generator includes a frequency divider, which divides the frequency by 1 or N + (16 - K)/16 to 16 values, thereby determining the transfer rate.

The transfer rate is determined by the settings of BR0CR<BR0ADDE, BR0S3:0> and BR0ADD<BR0K3:0>.

- In UART mode
- (1) When BROCR < BROADDE > = "0"

The settings BR0ADD<BR0K3:0> are ignored. The baud rate generator divides the selected prescaler clock by N, which is set in BR0CR<BR0S3:0>. (N = 1, 2, 3  $\cdots$  16)

(2) When BROCR < BROADDE > = "1"

The N + (16 – K)/16 division function is enabled. The baud rate generator divides the selected prescaler clock by N + (16 – K)/16 using the value of N set in BR0CR<BR0S3:0> and the value of K set in BR0ADD<BR0K3:0>. (N = 2, 3 … 15, K = 1, 2, 3 … 15)

Note: If N = 1 or N = 16, the N + (16 - K)/16 division function is disabled. Clear BR0CR<BR0ADDE> register to "0".

• In I/O interface mode

The N + (16 - K)/16 division function is not available in I/O Interface Mode. Set BR0CR<BR0ADDE> to "0" before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

In UART mode

```
Baud rate \neq Input clock of baud rate generator
Frequency divider for baud rate generator \div 16
```

• In I/O interface mode

Baud rate =  $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 2$ 

• Integer divider (N divider)

For example, when the source clock frequency (fc) = 12.288 MHz, the input clock frequency =  $\phi$ T2 (fc/16), the frequency divider N (BR0CR<BR0S3:0>) = 5, and BR0CR<BR0ADDE> = "0", the baud rate in UART Mode is as follows:

* Clock state System clock: High frequency (fc) Clock gear: 1(fc) Prescaler clock: f_{FPH}

Baud rate = 
$$\frac{\text{fc/16}}{5} \div 16$$

$$= 12.288 \times 10^6 \div 16 \div 5 \div 16 = 9600 \text{ (bps)}$$

Note: The N + (16 - K)/16 division function is disabled and setting BR0ADD<BR0K3:0> is invalid.

• N + (16 – K)/16 divider (UART mode only)

Accordingly, when the source clock frequency (fc) = 4.8 MHz, the input clock frequency =  $\phi$ T0, the frequency divider N (BR0CR<BR0S3:0>) = 7, K (BR0ADD<BR0K3:0>) = 3, and BR0CR<BR0ADDE> = "1", the baud rate in UART Mode is as follows:

* Clock state  
System clock: High frequency (fc)  
Clock gear: 1(fc)  
Prescaler clock: f_{FPH}  
Baud rate = 
$$\frac{fc/4}{7 + (16 - 3)/16} \div 16$$
  
=  $4.8 \times 10^6 \div 4 \div (7 + 13/16) \div 16 = 9600$  (bps)

Table 3.10.3 shows examples of UART mode transfer rates.

Additionally, the external clock input is available in the serial clock. (Serial channels 0 and 1). The method for calculating the baud rate is explained below:

• In UART mode

Baud rate = external clock input frequency ÷ 16

- It is necessary to satisfy (external clock input cycle)  $\geq 4/{\rm fc}$
- In I/O interface mode

Baud rate = External clock input frequency

It is necessary to satisfy (external clock input cycle)  $\geq 16/{\rm fc}$ 

			-	-	Un
fc [MHz]	Input Clock Divider N (Set to BR0CR <br0s3:0>)</br0s3:0>	φT0 (fc/4)	φT2 (fc/16)	фТ8 (fc/64)	φT32 (fc/256)
9.830400	2	76.800	19.200	4.800	1.200
$\uparrow$	4	38.400	9.600	2.400	0.600
$\uparrow$	8	19.200	4.800	1.200	0.300
$\uparrow$	0	9.600	2.400 ( /	0.600	0.150
12.288000	5	38.400	9.600	2.400	0.600
$\uparrow$	А	19.200	4.800	1.200	0.300
14.745600	2	115.200	28.800	7.200	1.800
$\uparrow$	3	76.800	19.200	4.800	1.200
$\uparrow$	6	38.400	9.600	2.400	0.600
$\uparrow$	С	19.200	4.800	1.200	0.300
19.6608	1	307.200	76.800	19.200	4.800
$\uparrow$	2	153.600	38.400 <	9.600	2.400
$\uparrow$	4	76.800	19.200	4.800	1.200
$\uparrow$	8	38.400	9.600	2.400	0.600
$\uparrow$	10	19.200	4.800	1.200	0.300
22.1184	3	115.200	28.800	7.200	1.800
24.576	1	384.000	96.000	24.000	6.000
$\uparrow$	2	192.000	48.000	12.000	3.000
$\uparrow$	4	96.000	24.000	6.000	1.500
$\uparrow$	5	76.800	19.200	4.800	1.200
$\uparrow$	8 (( ))	48.000	12.000	3.000	0.750
$\uparrow$	A	38.400	9.600	2.400	0.600
$\uparrow$		24.000	6.000	1.500	0.375

Table 3.10.3 Transfer Rate Selection

(when baud rate generator is used and BR0CR < BR0ADDE > = 0.)

Unit (kbps)

Note 1: Transfer rates in I/O interface mode are eight times faster than the values given above.

Note 2: The values in this table are calculated for when ic is selected as the system clock, fc/1 is selected as the clock gear and fFPH is selected as the clock for prescaler.

Timer out clock (TA0TRG) can be used for source clock of UART mode only. Calculation method the frequency of TA0TRG

Frequency of TA0TRG = Baud rate  $\times 16$ 

Note 3: The TMRA0 match detect signal cannot be used as the transfer clock in I/O interface mode.

- (3) Serial clock generation circuit
  - This circuit generates the basic clock for transmitting and receiving data.
  - In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = "0", the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK input mode with the setting SCOCR < IOC > = "1", the rising edge or falling edge will be detected according to the setting of the SCOCR < SCLKS > register to generate the basic clock.

• In UART mode

The SC0MOD0<SC1:0> setting determines whether the baud rate generator clocks, the internal system clock fsys, the trigger output signal from timer TMRA0 or the external clock (SCLK0) is used to generate the basic clock SIOCLK.

(4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART mode that counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1 bit of data; each data bit is sampled three times – on the 7th, 8th and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as 1, 0 and 1 on 7th, 8th and 9th clock cycles, the received data bit is taken to be 1. A data bit sampled as 0, 0 and 1 are taken to be 0.

#### (5) Receiving control

• In I/O interface mode

In SCLK output mode with the setting SCOCR<IOC> = "0", the RXD0 signal is sampled on the rising edge of the shift clock which is output on the SCLK0 pin.

In SCLK input mode with the setting SC0CR<IOC> = "1", the RXD0 signal is sampled on the rising or falling edge of the SCLK input, according to the SC0CR<SCLKS> setting.

•/> In UART mode

The receiving control block has a circuit that detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are 0, the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

(6) The receiving buffers

To prevent overrun errors, the receiving buffers are arranged in a double-buffer structure.

Received data is stored one bit at a time in receiving buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in receiving buffer 1, the stored data is transferred to receiving buffer 2 (SC0BUF); this causes an INTRX0 interrupt to be generated.

The CPU only reads receiving buffer 2 (SC0BUF). Even before the CPU reads receiving buffer 2 (SC0BUF), the received data can be stored in receiving buffer 1. However, unless receiving buffer 2 (SC0BUF) is read before all bits of the next data are received by receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of receiving buffer 1 will be lost, although the contents of receiving buffer 2 and SC0CR<RB8> will be preserved.

SCOCR<RB8> is used to store either the parity bit – added in 8-bit UART mode – or the most significant bit (MSB) – in 9-bit UART mode.

In 9-bit UART mode the wake-up function for the slave controller is enabled by setting SC0MOD0<WU> to "1"; in this mode INTRX0 interrupts occur only when the value of SC0CR<RB8> is "1".

#### (7) Transmission counter

The transmission counter is a 4-bit binary counter used in UART mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

SIOCLK 16 10 11 15 1 2 3 5 6 9 12 13 14 15 16 2 4 7 8 1 TXDCLK

Figure 3.10.4 Generation of Transmission Clock

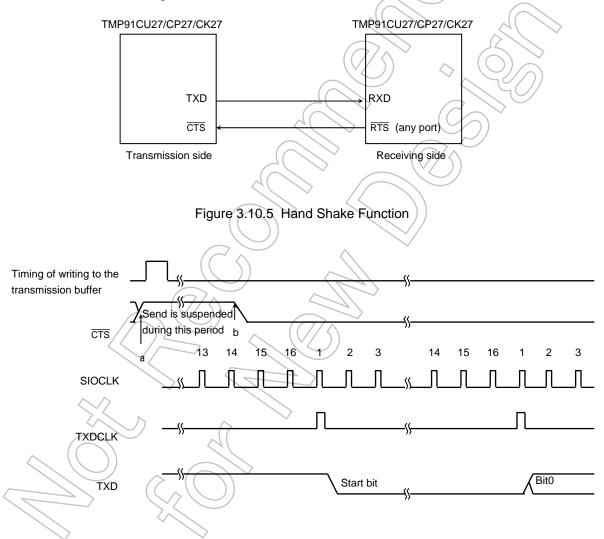
(8) Transmission controller

• In I/O interface mode

In SCLK output mode with the setting SCOCR<IOC> = "0", the data in the transmission buffer is output one bit at a time to the TXD0 pin on the rising or falling edge of the shift clock which is output on the SCLK0 pin, according to the SCOCR<SCLKS> setting.

In SCLK input mode with the setting SCOCR < IOC > = "1", the data in the transmission buffer is output one bit at a time on the TXD0 pin on the rising or falling edge of the SCLK0 input, according to the SCOCR <SCLKS> setting.

• In UART mode


When transmission data sent from the CPU is written to the transmission buffer, transmission starts on the rising edge of the next TXDCLK.

#### Handshake function

Use of this pin allows data to be sent in units of one data format; thus, overrun errors can be avoided. The handshake function is enabled or disabled by the SC0MOD0<CTSE> setting.

When the  $\overline{\text{CTS0}}$  pin goes High on completion of the current data send, data transmission is halted until the  $\overline{\text{CTS0}}$  pin goes low again. However, the INTTX0 Interrupt is generated, and it requests the next data send from the CPU. The next data is written in the transmission buffer and data sending is halted.

Though there is no  $\overline{\text{RTS}}$  pin, a handshake function can be easily configured by setting any port assigned to be the  $\overline{\text{RTS}}$  function. The  $\overline{\text{RTS}}$  should be output high to request send data halt after data receive is completed by software in the RXD interrupt routine.



# Note 1: If the CTS signal goes high during transmission, no more data will be sent after completion of the current transmission.

Note 2: Transmission starts on the first falling edge of the TXDCLK clock after the CTS signal has fallen.

Figure 3.10.6 CTS (Clear to send) Timing

(9) Transmission buffer

The transmission buffer (SC0BUF) shifts out and sends the transmission data written from the CPU in order from the least significant bit (LSB) in order. When all the bits are shifted out, the transmission buffer becomes empty and generates an INTTX0 interrupt.

#### (10) Parity control circuit



When SCOCR<PE> in the serial channel control register is set to "1", it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART mode or 8-bit UART mode. The SCOCR<EVEN> field in the serial channel control register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the transmission buffer SCOBUF. The data is transmitted after the parity bit has been stored in SCOBUF<TB7> in 7-bit UART mode or in SCOMODO<TB8> in 8-bit UART mode. SCOCR<PE> and SCOCR<EVEN> must be set before the transmission data is written to the transmission buffer.

In the case of receiving, data is shifted into receiving buffer 1, and the parity is added after the data has been transferred to receiving buffer 2 (SC0BUF), and then compared with SC0BUF<RB7> in 7-bit UART mode or with SC0CR<RB8> in 8-bit UART mode. If they are not equal, a parity error is generated and the SC0CR<PERR> flag is set.

#### (11) Error flags

Three error flags are provided to increase the reliability of data reception.

1. Overrun error<OERR>

If all the bits of the next data item have been received in receiving buffer 1 while valid data still remains stored in receiving buffer 2 (SC0BUF), an overrun error is generated.

The below is a recommended flow when the overrun error is generated.

(INTRX interrupt routine)

- 1) Read receiving buffer
- 2) Read error flag
- 3) If<OERR> = "1"
- ▶ then
  - a. Set to disable receiving (write "0" to SC0MOD0<RXE>)
  - b. Wait to terminate current frame
  - c. Read receiving buffer
  - d. Read error flag
    - e. Set to enable receiving (write "1" to SC0MOD0<RXE>)
    - f. Request to transmit again
- 4) Other

2. Parity error<PERR>

The parity generated for the data shifted into receiving buffer 2 (SC0BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a parity error is generated.

3. Framing error<FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are 0, a framing error is generated.

(12) Timing generation

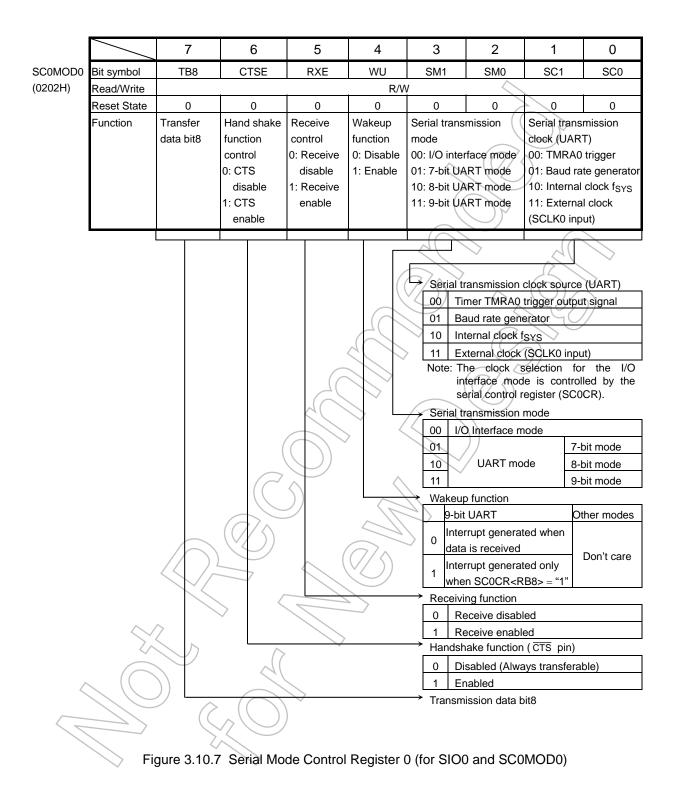
a. In UART mode

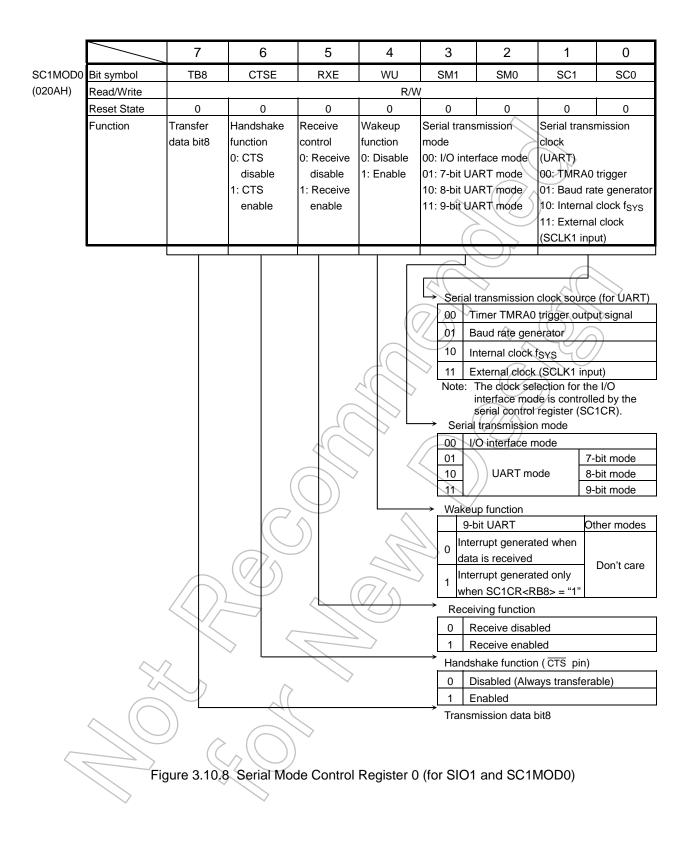
Receiving

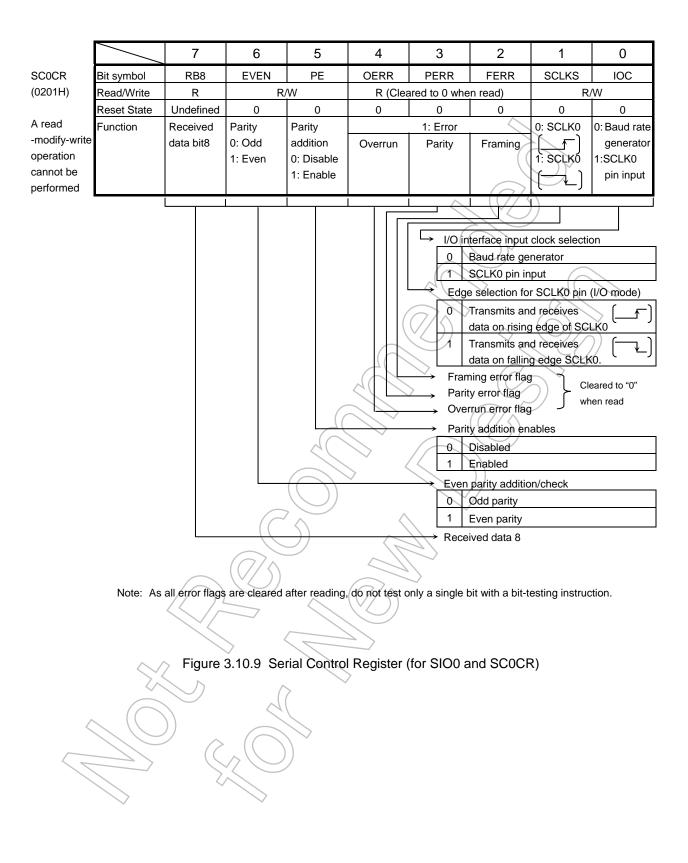
Mode	9 bits	8 bits + Parity	8 bits, 7 bits + Parity, 7 bits
Interrupt generation timing	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit
Framing error generation timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error generation timing	- ((	Center of last bit (Parity bit)	Center of last bit
Overrun error generation timing	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit

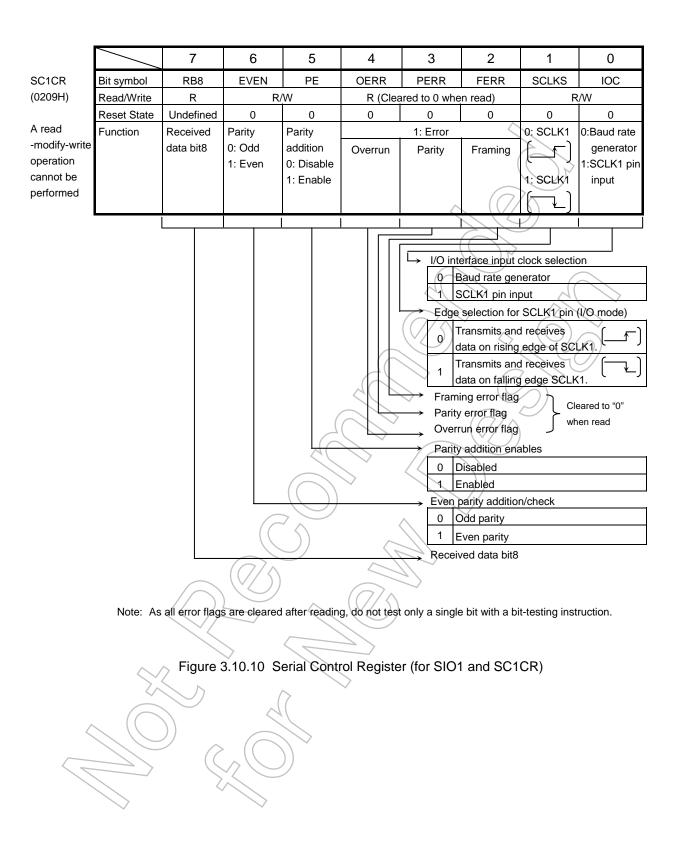
Note: In 9 bits and 8 bits + Parity modes, interrupts coincide with the ninth bit pulse.

Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.


#### Transmitting


e			
Mode	9 bits	8 bits + Parity	8 bits, 7 bits + Parity, 7 bits
Interrupt timing	Just before stop bit is transmitted	Just before stop bit is transmitted	Just before stop bit is transmitted
$\langle \bigcirc \rangle$			


## b. I/O interface


9.)					
Immediately after rise of last SCLK signal rising mode, or immediately					
buffer 2 (SC0BUF)					
3.10.21.)					
buffer 2 (SC0BUF)					
3.10.22.)					

# 3.10.3 SFR









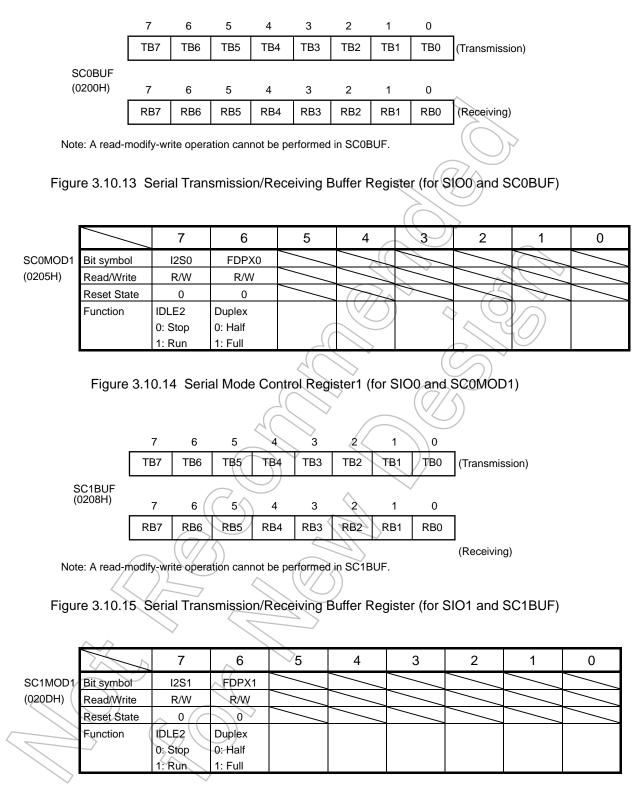
		7	6	Ę	5	4	3	2	1	0
0CR	Bit symbol	-	BR0ADDE	BR0	CK1 E	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0
203H)	Read/Write					R/	W			
	Reset State	0	0	(		0	0	0	0	0
	Function	Always write "0".	+(16 – K)/16 division 0: Disable 1: Enable	00: ∳ 01: ∳ 10: ∲ 11: ∲	Г2 Г8		Settin	g of the divid	ded frequenc	sy "N"
	+ (16 – K)/16 0 Disable 1 Enable		able	Sett 00 01 10 11	Internal Internal Internal	put clock clock φT clock φT clock φT clock φT	23	generator		
	$\sim$	7	6	Ę	5	4	(/3)	2	(1)	0
(0204H)	Dit er meh el	<u> </u>		/		<u> </u>		~~~~		
	Bit symbol						BR0K3	BR0K2	BR0K1	BROKO
	Read/Write Reset State	$\sim$		/				0 0 R/V		0
			+			4(	$\sim$		0	
	Function								cy divisor "K + (16 – K)/16	
		<u> </u>						X		
	Sets b	oaud rate ge	nerator freque BR0CR <br< th=""><th></th><th></th><th>-</th><th>R<br0adde< th=""><th>&gt;= "0"</th><th></th><th></th></br0adde<></th></br<>			-	R <br0adde< th=""><th>&gt;= "0"</th><th></th><th></th></br0adde<>	>= "0"		
		BR0CR	0000 (N = 16)	001	0 (N = 2)	0001	(N = 1) (UAR	T only)		
		<br0s3:0></br0s3:0>	or	))	to	6	to			
	BR0ADD		0001 (N = 1)	111	1 (N = 15		1111 (N = 15			
	<br0k3:0></br0k3:0>		-((// 5))	_			0000 (N = 16	)		
	000 0001 (K	( = 1)	Disable Disable	Di	Disable vided by 16 – K)/1	6	Divided by N	1		
	to 1111 (K	= 15)		4						
	1111 (K	$\sim$	$\searrow$							
	1111 (K	vailability of +	+(16-K)/16 divi		<					
	1111 (K	$\sim$	UART	mode	<	/O mode				
	1111 (K	vailability of + N 2 to 15	UART	mode	<	/O mode ×				
4	1111 (K	vailability of -	UART	mode	<					
	1111 (K Note1:Av	vailability of 4 N 2 to 15 1 , 16 ne baud rate	UART	mode		× ×	de only when	the +(16-K)/	16 division fu	Inction is no

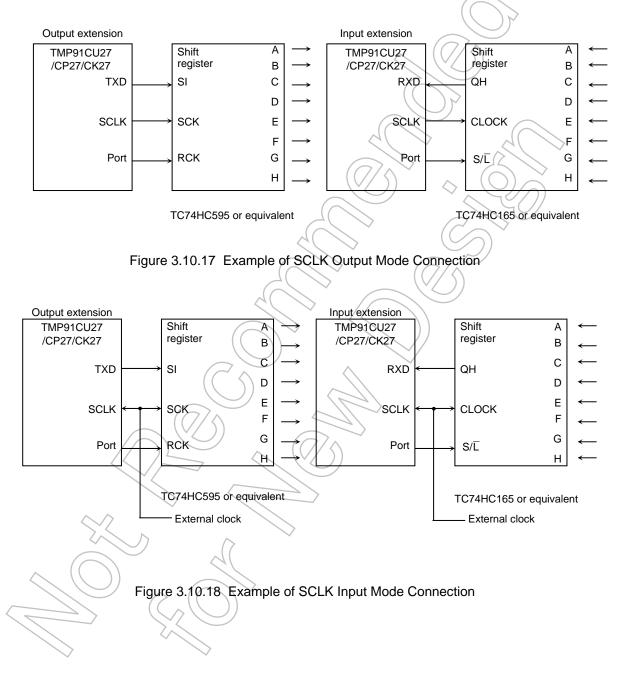
Figure 3.10.11 Baud Rate Generator Control (for SIO0, BR0CR and BR0ADD)

		7	6	5	4	3	2	1	0		
BR1CR	Bit symbol	_	BR1ADDE	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0		
(020BH)	Bit symbol Read/Write		DRIADDE	DRICKI	R/		DR132	DRIGI	DRIGU		
(02021)	Reset State	0	0	0	0	0	0	0	0		
	Function	Always	+(16 – K)/16								
		-	division	01:			Divided frequ				
			0: Disable	10:			Divided frequ	Jency Setting			
			1: Enable	11:∳T32				$\left( \right) \right>$			
	+ (16 – K)/16	divisions ena	ble	Input cloc	k selection fo	r baud rate g	enerator	3			
	0 Disabled			00 Inter	rnal clock _{\$} T	)	$\left( \right) \right\}$				
	1 Enabled			01 Inter	rnal clock _{\$T2}	2					
				10 Inter	rnal clock _{\$T8}	3 (			$\frown$		
				11 Inter	rnal clock φΤ	32	, Č	$\sim$	$\langle \rangle$		
		7	6	5	4	(3)	2		<b>O</b>		
BR1ADD	Bit symbol				$\langle \rangle$	BR1K3	BR1K2	BR1K1	BR1K0		
(020CH)	Read/Write				$\square$	$\langle \rangle$	R/	W	9		
	Reset State					0	0(C	0	0		
	Function					(I	Set frequency divisor K (Divided by $N + (16 - K)/16$ )				
	Baud	d rate genera	tor frequency	divisor setti							
		-		-BR1ADDE	~						
		BR1C	R			0001 (N - 1) (HART only)					
		<br1s3:0< td=""><td>&gt; 0000 (N =</td><td>76) 0010</td><td>0 (N = 2)</td><td></td><td>,,</td><td></td></br1s3:0<>	> 0000 (N =	76) 0010	0 (N = 2)		,,				
	BR1ADD		Or 0001 (N		to	1111	(N = 15)				
	<br1k3:0></br1k3:0>		0001 (N		(N = 15)	0000	(N = 16)				
		000	Disabl	e Di	isable	$\sim$					
		(K = 1)	Disable		ided by	Divid					
				N+(1	16 - K)/16						
	1111 (	K = 15)			$\overline{}$						
	NI-1-4-4-			$\langle -$							
	Note1:Av	vailability of +	<u>`</u>		n I/O mode						
	- Zr	2 to 15	UART		x						
					× ×						
		<u>1,16</u>					ha 1 (10 10) (1	C division for	nation is set		
		o not use in I/		$\sim$	n UAR I mode	e only when t	ne +(16-K)/1	6 division tu	nction is not u		
/	Noto2.64			"," offer e	etting K (K -	1 to 15) to		21K2.0~ wh	en the +(16-k		
		vision functio	n is used./Wr	ites to unuse	eu dits in the l	SKIADD reg	ister do not a	mect operati	on, and unde		

data is read from these unused bits.

Figure 3.10.12 Baud Rate Generator Control (for SIO1, BR1CR and BR1ADD)





Figure 3.10.16 Serial Mode Control Register1 (for SIO1 and SC1MOD1)

# 3.10.4 Operation of Each Mode

(1) Mode 0 (I/O interface mode)

This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK.



a. Transmission

In SCLK output mode 8-bit data and a synchronous clock are output on the TXD0 and SCLK0 pins respectively each time the CPU writes data to the transmission buffer. When all data is outputted, INTESO<ITX0C> will be set to generate the INTTX0 interrupt.

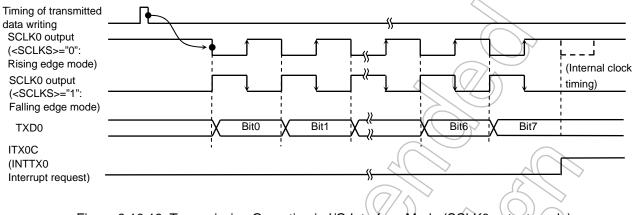



Figure 3.10.19 Transmission Operation in I/O Interface Mode (SCLK0 output mode)

In SCLK Input Mode, 8-bit data is output from the TXD0 pin when the SCLK0 input becomes active after the data has been written to the transmission buffer by the CPU.

When all data is outputted, INTESO<ITX0C> will be set to generate INTTX0 an interrupt.

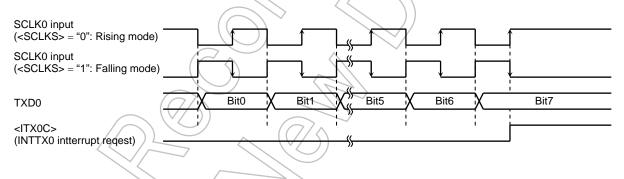



Figure 3.10.20 Transmission Operation in I/O Interface Mode (SCLK0 input mode)

#### b. Receiving

mode.

In SCLK output mode, the synchronous clock is outputted from SCLK0 pin and the data is shifted to receiving buffer 1. This starts when the receive interrupt flag INTESO<IRX0C> is cleared by reading the received data. When 8-bit data are received, the data will be transferred to receiving buffer 2 (SC0BUF according to the timing shown below) and INTESO<IRX0C> will be set to generate INTRX0 interrupt.

The outputting for the first SCLK0 starts by setting SC0MOD0<RXE> to "1".

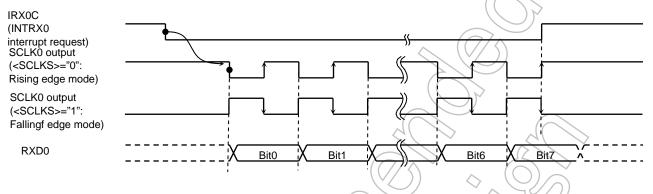



Figure 3.10.21 Receiving Operation in I/O Interface Mode (SCLK0 output mode)

In SCLK input mode, the data is shifted to receiving buffer 1 when the SCLK input becomes active after the receive interrupt flag INTESO<IRX0C> is cleared by reading the received data. When 8 bit data is received, the data will be shifted to receiving buffer 2 (SC0BUF according to the timing shown below) and INTESO<IRX0C> will be set again to be generate INTRX0 interrupt.

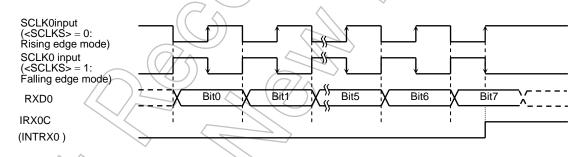
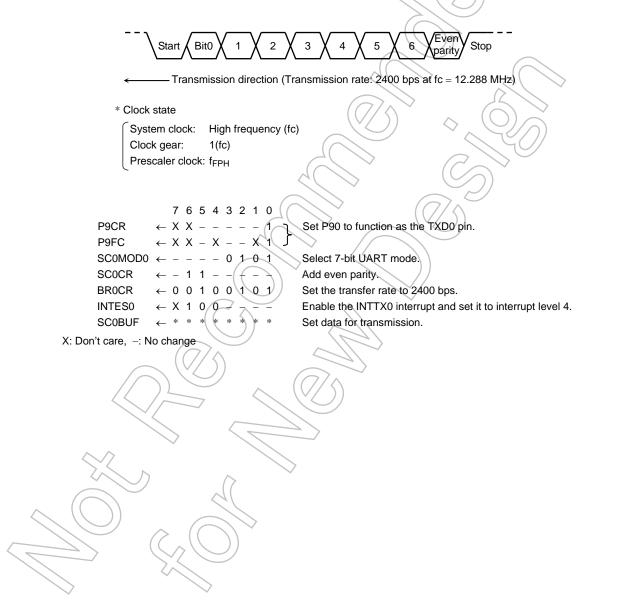



Figure 3.10,22 Receiving Operation in I/O Interface Mode (SCLK0 input mode)

Note: If receiving, set to the receive-enable state (SC0MOD0<RXE> = "1") in both SCLK input mode and output

c. Transmission and receiving (Full duplex mode)

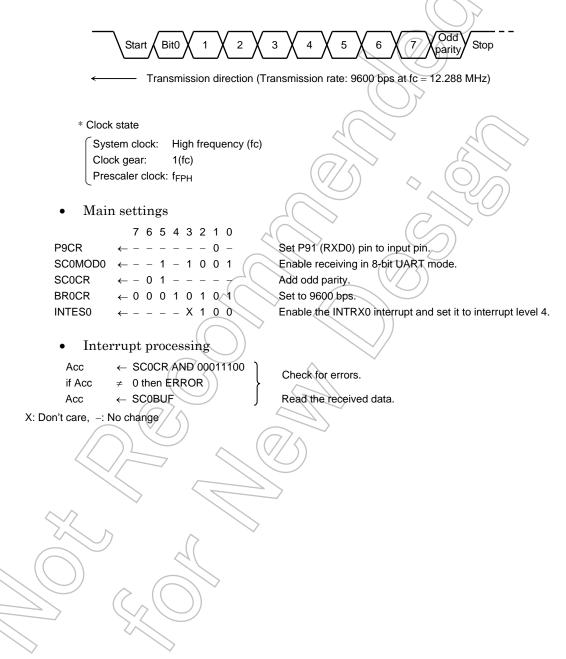
When the full duplex mode is used, set the level of receive interrupt to "0", and only set the interrupt level (from 1 to 6) of the transmit interrupt. In the transfer interrupt program, the receiving operation should be done like the below example before setting the next transmit data.


Example: Channel 0, SCLK output Baud rate = 9600 bps fc = 14.7456 MHz* Clock state System clock: High frequency (fs) Clock gear: 1 (fc) Prescaler clock: fFPH Main routine 7 6 5 3 2 0 4 1 INTES0 Set transmission interrupt level, and disable receiving 0 Х 0 0 Х 0 1 0 interrupt. P9CR 0 1 Set to P90 (TXD0), P91 (RXD0) and P92(SCLK0). P9FC х X 1 SC0MOD0 Set to I/O interface mode. 0 0 SC0MOD1 Х Х Set to full duplex mode. Х Х Х SCLK out, transmit on negative edge, receive on positive SC0CR 0 edge BR0CR 0 1 1 0 Set to 9600 bps. 0 0 SC0MOD0 Enable receiving. 1 **SCOBUF** Set the transfer data. INTTX0 interrupt routine Acc←SC0BUF Read the receiving data. **SCOBUF** Set the next transfer data. X: Don't care, -: No change

(2) Mode 1 (7-bit UART mode)

7-bit UART mode is selected by setting serial channel mode register SC0MOD0<SM1:0> to "01".

In this mode, a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the serial channel control register SCOCR<PE> bit; whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to "1" (Enabled).


Setting example: When transmitting data of the following format, the control registers should be set as described below. This explanation applies to channel 0.

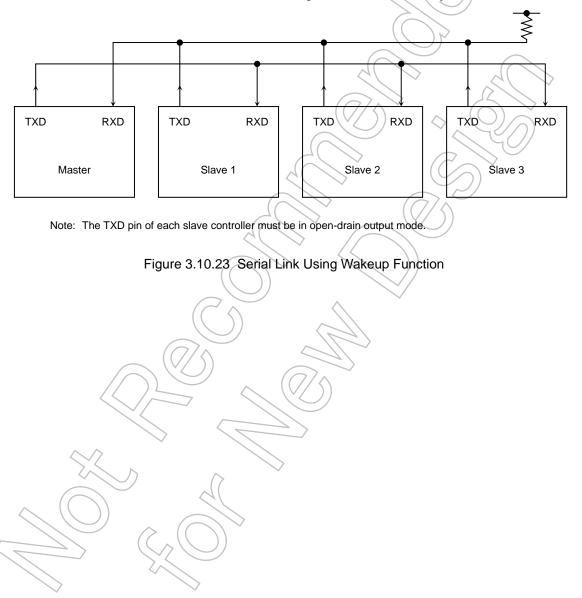


(3) Mode 2 (8-bit UART mode)

8-bit UART mode is selected by setting SC0MOD0<SM1:0> to "10". In this mode, a parity bit can be added (use of a parity bit is enabled or disabled by the setting of SC0CR<PE>); whether even parity or odd parity will be used is determined by the SC0CR<EVEN> setting when SC0CR<PE> is set to "1" (Enabled).

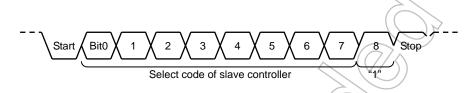
Setting example: When receiving data of the following format, the control registers should be set as described below.



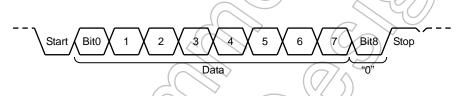

(4) Mode 3 (9-bit UART mode)

9-bit UART mode is selected by setting SC0MOD0<SM1:0> to "11". In this mode parity bit cannot be added.

In the case of transmission the MSB (9th bit) is written to SC0MOD0<TB8>. In the case of receiving it is stored in SC0CR<RB8>. When the buffer is written or read, the <TB8> or <RB8> is read or written first, before the rest of the SC0BUF data.

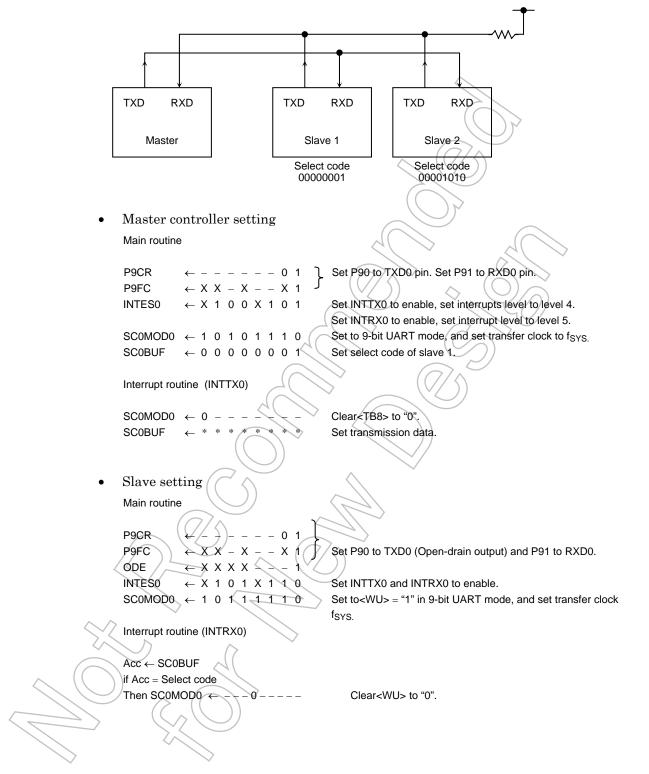

#### Wakeup function

In 9-bit UART mode, the wakeup function for slave controllers is enabled by setting SC0MOD0<WU> to "1". The interrupt INTRX0 occurs only when <RB8> = "1".



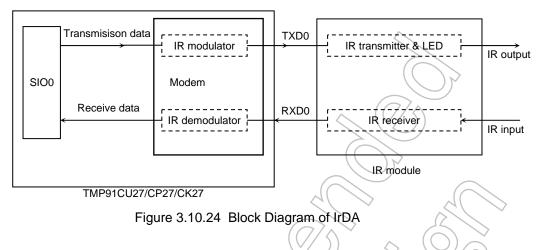

### Protocol

- a. Select 9-bit UART mode on the master and slave controllers.
- b. Set the SC0MOD0<WU> bit on each slave controller to "1" to enable data receiving.
- c. The master controller transmits one-frame data including the 8-bit select code for the slave controllers. The MSB (Bit8)<TB8> is set to "1".




- d. Each slave controller receives the above frame. If it matches with own select code, clears<WU> bit to "0".
- e. The master controller transmits data to the specified slave controller whose SC0MOD0<WU> bit is cleared to "0". The MSB (Bit8) <TB8> is cleared to "0".




f. The other slave controllers (whose<WU> bits remain at 1) ignore the received data because their MSB (Bit8 or <RB8>) are set to "0", disabling INTRX0 interrupts. The slave controller (<WU> bit = "0") can transmit data to the master controller, and it is possible to indicate the end of data receiving to the master controller by this transmission.

Example: To link two slave controllers serially with the master controller using the system clock fsys as the transfer clock.



#### 3.10.5 Support for IrDA

SIO0 includes support for the IrDA 1.0 infrared data communication specification. Figure 3.10.24 shows the block diagram.



(1) Modulation of transmission data

When the transmission data is "0", output "H" level with either 3/16 or 1/16 times for width of baud rate (Selectable in software). When data is "1", modem output "L" level.

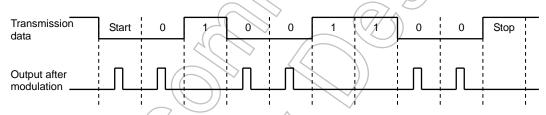



Figure 3.10.25 Example of Modulation of Transmission Data

(2) Modulation of receiving data

When the receive data has an effective high level pulse width (Software selectable), the modem outputs "0" to SIO0. Otherwise modem outputs "1" to SIO0. Receive pulse logic is selectable by SIRCR<RXSEL>.

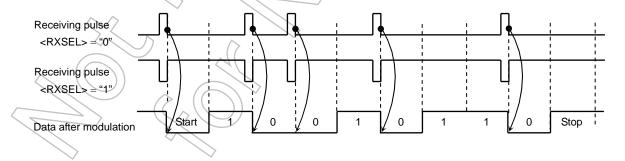



Figure 3.10.26 Example of Modulation of Receiving Data

(3) Data format

Format of transmission/receiving must set to data length 8 bits, without parity bit, 1-bit of stop bit.

Any other settings don't guarantee the normal operation.

#### (4) SFR

Figure 3.10.27 shows the control register SIRCR. If change setting this register, must set it after set operation of transmission/receiving to disable (Both <TXEN> and <RXEN> of this register should be cleared to "0").

Any changing for this register during transmission or receiving operation doesn't guarantee the normal operation.

The following example describes how to set this register:



- (5) Notes
  - 1. Baud rate for IrDA

When IrDA is operated, set "01" to SC0MOD0<SC1:0> to generate baud rate. Settings other than the above (TA0TRG, fSYS and SCLK0 input) cannot be used.

2. The pulse width for transmission The IrDA 1.0 specification is defined in Table 3.10.4.

Baud Rate	Modulation	Rate Tolerance (% of rate)	Pulse Width (min)	Pulse Width (typ.)	Pulse Width (max)
2.4 kbps	RZI	±0.87	1.41 μs	78.13 μs	88.55 μs
9.6 kbps	RZI	±0.87	1.41 μs	19.53 μs	22.13 μs
19.2 kbps	RZI	±0.87	1.41 μs	9.77 μs	11.07 μs
38.4 kbps	RZI	±0.87	1.41 μs	4.88 μs	<b>5.96</b> μs
57.6 kbps	RZI	±0.87	1.41 µs	3.26 μs	4.34 µs
115.2 kbps	RZI	±0.87	1.41 μs	1.63 μs	2.23 μs

Table 3.10.4 Baud Rate and Pulse Width Specifications	. \	
Table 5.10.4 Dada Male and Fulse Midth Opeenications	۶.	

The pulse width is defined as either baud rate T  $\times$  3/16 or 1.6 µs (1.6 µs is equal to T  $\times$ 3/16 pulse width when baud rate is 115.2 kbps).

The TMP91CU27/CP27CK27 has a function which can select the pulse width of transmission as either 3/16 or 1/16. However, 1/16 pulse width can only be selected when the baud rate is equal to or less than 38.4 kbps.

When 57.6 kbps and 115.2 kbps, the output pulse width should not be set to  $T \times 1/16$ .

For the same reason, +(16 - K)/16 division function in the baud rate generator of SIO0 cannot be used to generate a 115.2 kbps baud rate.

The + (16 - K)/16 division function can not be used also when the baud rate is 38.4 kbps and the pulse width is 1/16.

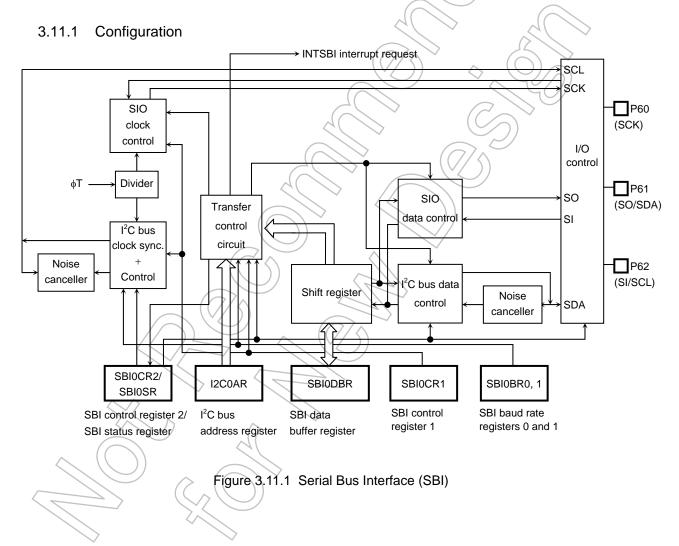
Table 3.10.5 shows baud rate and pulse width for (16 - K)/16 division function.

Pulse Width	Baud Rate										
	115.2 kbps	57.6 kbps	38.4 kbps	19.2 kbps	9.6 kbps	2.4 kbps					
T × 3/16	×	0	∕> o	0	0	0					
T × 1/16	2 -	.(7-	×	0	0	0					
	â (C			6 – K)/16 divis 6 – K)/16 divisi							

# Table 3.10.5 Baud Rate and Pulse Width for (16 - K)/16 Division Function

Cannot be set to T imes 1/16 pulse width.

# 3.11 Serial Bus Interface (SBI)


The TMP91CU27/CP27/CK27 has a 1-channel serial bus interface which employs a clocked-synchronous 8-bit SIO mode and an  $I^2C$  bus mode (Multi muster).

The serial bus interface is connected to an external device through P61 (SDA) and P62 (SCL) in the I²C bus mode; and through P60 (SCK), P61 (SO), and P62 (SI) in the clocked-synchronous 8-bit SIO mode.

Each pin is specified as follows.

	ODE <ode62, 61=""></ode62,>	P6CR <p62c, p60c="" p61c,=""> P6FC <p62f, p60f="" p61f,=""></p62f,></p62c,>
I ² C bus mode	11	11X (// 11X
Clock synchronous	XX	011 X11
8-bit SIO mode		010

X: Don't care

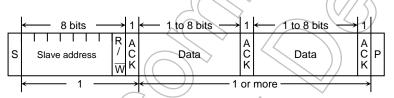


# TOSHIBA

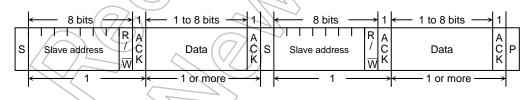
# 3.11.2 Control

The following registers are used to control the serial bus interface and monitor the operation status.

- Serial bus interface control register 1 (SBI0CR1)
- Serial bus interface control register 2 (SBI0CR2)
- Serial bus interface data buffer register (SBI0DBR)
- I²C bus address register (I2C0AR)
- Serial bus interface status register (SBI0SR)
- Serial bus interface baud rate register 0 (SBI0BR0)
- Serial bus interface baud rate register 1 (SBI0BR1)


The above registers differ depending on a mode to be used.

Refer to Section, "3.11.4 I²C Bus Mode Control Register" and "3.11.7 Clocked Synchronous 8-Bit SIO Mode Control."


## 3.11.3 Data Format in I²C Bus Mode

Data format in I²C bus mode is shown Figure 3.11.2.

(a) Addressing format



(b) Addressing format (With restart)



(c) Free data format (Transfer-format transfer from master device to slave device.)

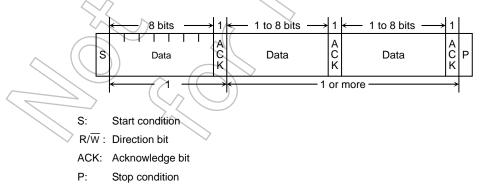



Figure 3.11.2 Data Format in I²C Bus Mode

# 3.11.4 I²C Bus Mode Control Register

The following registers are used to control and monitor the operation status when using the serial bus interface (SBI) in the  $I^{2}C$  bus mode.

	-		Ocnu			rtegister	1		
		7	6	5	4	3	2	1	0
SBI0CR1 (0240H)	Bit symbol	BC2	BC1	BC0	ACK		SCK2	SCK1 S	SCK0/ WRMON
(021011)	Read/Write		W		R/W		Ŵ	$\mathcal{I}$	R/W
А	Reset State	0	0	0	0		(07)		1 (Note3)
read-modify -write	Function	Select numl (Note 1)	per of transfe	erred bits	Acknowledge mode specification	(	Internal serial c software reset r (Note 2)		on and
operation					0: Not		$\bigvee$		
cannot be performed.					generate 1: Generate	$\bigcirc$		$\bigcirc$	
penonneu.						21		K	$\searrow$
					Interna	serial cloci	selection <sck< td=""><td>2:0&gt; @ wri</td><td>e</td></sck<>	2:0> @ wri	e
					000	n = 5	- Note4	$O)_{\mathcal{A}}$	
					001	n=6		tem clock:	
					010	n = 7		ck gear: fc/	1 \
					011	n = 8		27 MHz	
					100			tput to inter	
				(	101		26.2 kHz Fre	quency =2	$\frac{1}{1} + 8$ [HZ]
				G		Reserved (R			
							e monitor <swr< td=""><td>MON&gt; @ r</td><td>ead</td></swr<>	MON> @ r	ead
					0	During so	oftware reset		
				(())	1	(Default	(alue)		
				$\sim$		vledge mod	e selection		
					0	Not gene	rate clock pulse t	for acknowle	edge signal
				$\bigcirc$	1	Generate	clock pulse for a	acknowledg	e signal
					> Select	number of b	its transferred	i	1
			$(\mathbb{V})$	)		> <	ACK> = "0"		> = "1"
				$\sim$	<bc2< td=""><td>:0&gt; Num</td><td>Data</td><td>Number</td><td>Data</td></bc2<>	:0> Num	Data	Number	Data
		$\langle \langle \rangle / \rangle$				of cl	ock length	of clock	length
						puls	es	pulses	<u> </u>
			$\supset$	$\backslash$	000	-		9	8
	$\sim$	7			001			2 3	1 2
	27	$\langle \rangle$		$\wedge$	010			3	2
			~		100		_	5	4
		))			101			6	5
	// C	ノ へ		$\langle \rangle$	110			7	6
		((		))	111	7	7	8	7
/~			$\times$	)					

Serial Bus Interface Control Register 1

Note 1: Set the <BC2:0> to "000" before switching to a clock-synchronous 8-bit SIO mode.

Note 2: For the frequency of the SCL line clock, see section 3.11.5, (3) "Serial clock".

Note 3: After reset, default value of <SCK0> is cleared to "0". Also, default value of <SWRMON> is set to "1".

Note 4: This I²C bus circuit does not support fast mode, it supports standard mode only. Although the I²C bus circuit itself allows the setting of a baud rate over 100kbps, the compliance with the I²C specification is not guraranteed in that case.

Figure 3.11.3 Register for I²C Bus Mode

	SBIOCR2 (0243H)       Bit symbol       MST       TRX       BB       PIN       SBIM1       SBIM0       SWRST1       SWRST0         Read/Write       W       W (Note 1)       W (Note 1)       W (Note 1)       W (Note 1)         A read-modify -write operation       Master/       Transmitte slave       Start/stop tr/receiver       Cancel condition       Serial bus interface operation mode       Software reset control write '10' and '01'' in order, then an internal ode, then an internal ode (Serial bus interface output disable 01 SIO mode 11:(Reserved)         Serial bus interface operating mode selection (Note 11:(Reserved)       Serial bus interface output disable 01 Clocked synchronous 8-bit SIO mode 11:(Reserved)         WINTEL       Winterupt request       Interrupt request       Interrupt request         Don't care       Cancel interrupt request       Interrupt request       Interrupt request         I Cancel interrupt request       Interrupt request       Intrafismitter//cociver selection         I Cancel interrupt request       I Cancel interrupt request       Intrafismitter//cociver selection         I Cancel interrupt request       I Cancel interrupt request       I Trafismitter/						Sena	a Bus	sintei	nac	e Conti	OI R	egiste	er Z		
Read/Write       W       W (Note 1)       W (Note 1)         Reset State       0       0       1       0       0       0         Function       Master/ slave       Transmitte r/receiver       Start/stop condition       Cancel INTSBI generation       Serial bus interface operation mode       Software reset control operation mode         cannot be performed.       selection       selection       generation       O:Port mode       reset signal is 01:SIO mode         10:I ² C bus mode       10:I ² C bus mode       10:I ² C bus mode       10:I ² C bus mode       10:I ² C bus mode         11// (Reserved)       INTSBI interrupt request       0       Port mode (Serial bus interface output disable         10       I ² C bus mode       10       I ² C bus mode       10         11// (Reserved)       INTSBI interrupt request       0       Don't care         11       Cancel interrupt fequest       Start/stop condition       1         10       Generates the stop condition       1       Generates the stop condition         1       Generates the stop condition       1       Generates the stop condition         1       Generates the stop condition       1       Generates the stop condition         1       Generates the stop condition       1       Generates th	(0243H)       Read/Write       W       W (Note 1)       W (Note 1)         Reset State       0       0       1       0       0       0         Function       Master/ slave       Transmitte       Start/stop condition       Cancel INTSBI generation       Serial bus interface operation mode       Software reset control write "10" and "01" in write "10" and "01" in operation mode         cannot be performed.       selection       Serial bus interface 00:Port mode       Serial bus interface operating mode selection (Note 11:(Reserved)         serial bus interface output disable 01       OO Port mode (Serial bus interface output disable 01       Serial bus interface output disable 01         00       Port mode (Serial bus interface output disable 01       Ooked synchronous 8-bit SiO mode         10       If Casel interrupt request       Image: Star/stop condition generation         0       Generates the stop condition       Image: Star/stop condition denerates the star condition         1       Casel interrupt request       Image: Star/stop condition denerates the star condition         0       Generates the star condition       Image: Star/stop selection         0       Starve       Image: Star/stop selection		/	7		6		Ę	5		4		3	2	1	0
A read-modify write operation cannot be performed. Reset State 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A read-modify -write operation operation be performed. Reset State 0 0 0 1 0 0 0 0 0 Function Function Function Master/ save selection Save selection Function Master/ save selection Master/ selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Sel	SBI0CR2	Bit symbol	MST	Г	TR	Х	В	BB		PIN	S	BIM1	SBIM0	SWRST1	SWRST0
A read-modify -write operation cannot be performed. Function Master/ selection selection (Note 2) or mode selection (Note 2) or mo	A read-modify -write operation cannot be performed. Function Master/ selection selection selection selection for the performed selection (Note 2) output the selection (Note 2) output th	(0243H)	Read/Write					W					W (N	ote 1)	W (N	ote 1)
read-modify -write operation cannot be performed.	read-modify -write operation cannot be performed.		Reset State	0		0		(	)		1		0	0	0	0
cannot be performed.	cannot be performed.	read-modify -write	Function	slave		r/receiv	ver	condi	tion	INT inte	SBI errupt	ope sele	ration m ction (N	node lote 2)	write "10" ar order, then	nd "01" in an internal
Serial bus interface operating mode selection (Not 00 Port mode (Serial bus interface output disabl 01 Clocked synchronous 8-bit SiO mode 10 J ² C bus mode 11 (Reserved) INTSBL interrupt request 0 Don't care 1 Cancel interrupt request Start/stop condition 1 Generates the stop condition 1 Generates the start condition 0 Receiver 1 Transmitter/ Master/slave selection 0 Slave	Serial bus interface operating mode selection (Not 0 Port mode (Serial bus interface output disable 0 Clocked synchronous 8-bit SIO mode 10 I'C bus mode 11 (Reserved) INTSBI interrupt request 0 Don't care 1 Cancel interrupt request Start/stop condition 1 Generates the start condition 1 Generates the start condition 1 Generates the start condition 1 Generates the start condition 1 Transmitter/ 1 Transmitter Master/slave selection 0 Slave 1 Master	cannot be								req	uest	01:S 10:I	SIO moo ²C bus i	te mode		is
	Note 1. Deciding this register typetion on SDIOSD register											00 01 10 11 11 0 1 1 Star 0 1 Trar 0 1 1 Mas	Port m Clocke J ² C bu: (Resel SBI inte Don't o Cance t/stop c Gener Gener Gener smitter Receiv Transr ter/slav	iode (Serial t ed synchrono s mode rved) rrupt reques care il interrupt re ondition gen ates the stop ates the stop receiver sel ver mitter e selection	t condition	output disab

## Serial Bus Interface Control Register 2

Note 1: Reading this register function as SBI0SR register.

Note 2: Switch a mode to port mode after confirming that the bus is free.

Switch a mode between I²C bus mode and clock-synchronous 8-bit SIO mode after confirming that input signals via port are high level.

Figure 3.11.4 Register for I²C Bus Mode

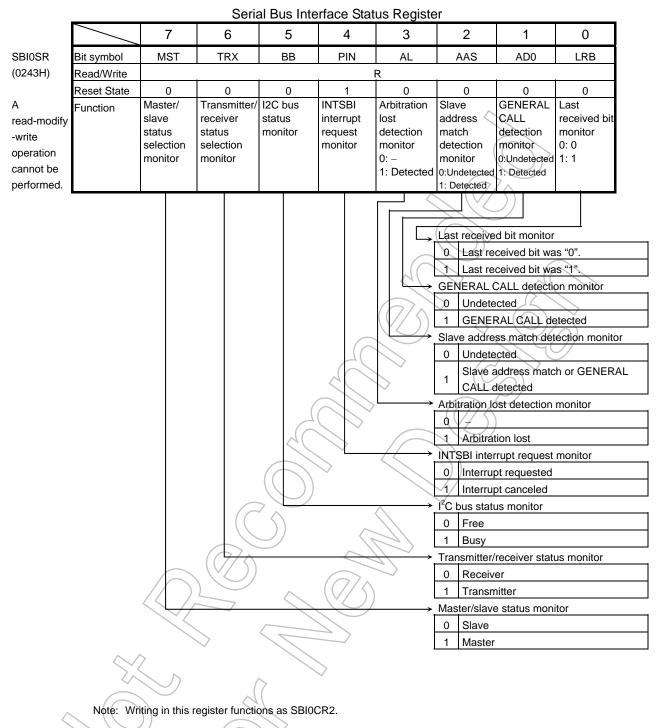



Figure 3.11.5 Register for I²C Bus Mode

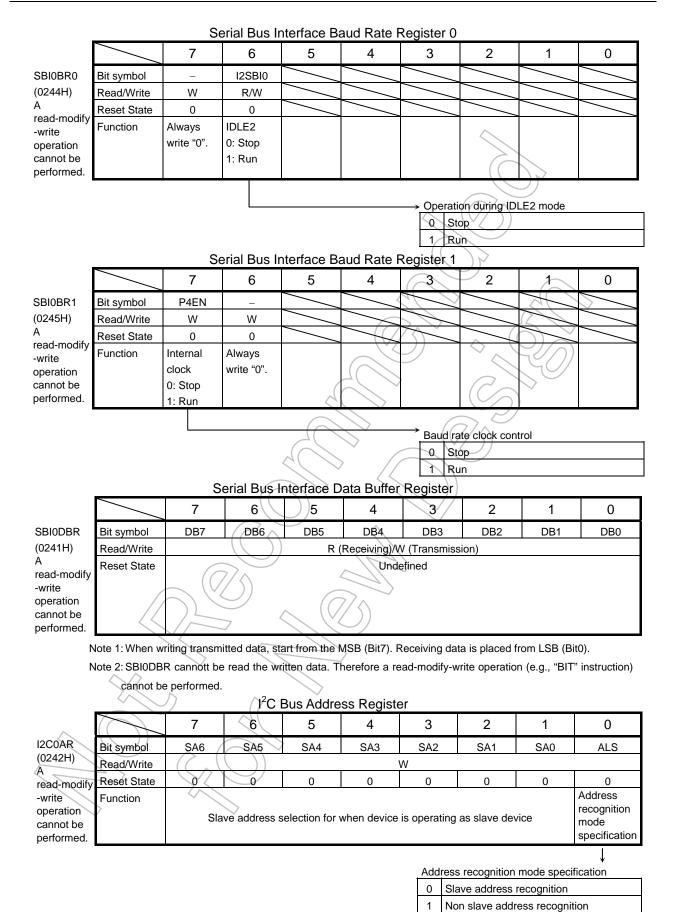
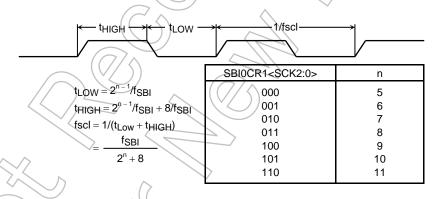



Figure 3.11.6 Register for I²C Bus Mode

- 3.11.5 Control in I²C Bus Mode
  - (1) Acknowledge mode specification

Set the SBI0CR1<ACK> to "1" for operation in the acknowledge mode. The TMP91CU27/CP27/CK27 generates an additional clock pulse for an acknowledge signal when operating in master mode. In the transmitter mode during the clock pulse cycle, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode during the clock pulse cycle, the SDA pin is set to the low in order to generate the acknowledge signal.

Clear the <ACK> to "0" for operation in the non-acknowledge mode, the TMP91CU27/CP27/CK27 does not generate a clock pulse for the acknowledge signal when operating in the master mode.


(2) Number of transfer bits

The SBI0CR1<BC2:0> is used to select a number of bits for next transmission and receiving data.

Since the <BC2:0> is cleared to "000" as a start condition, a slave address and direction bit transmission are executed in 8 bits. Other than these, the <BC2:0> retains a specified value.

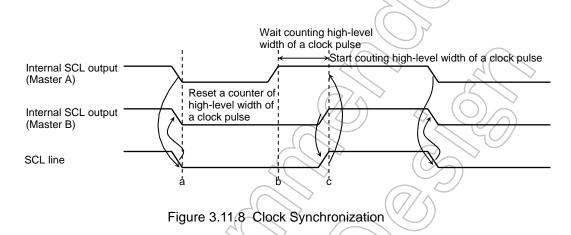
- (3) Serial clock
  - a. Clock source

The SBI0CR1<SCK2:0> is used to select a maximum transfer frequency outputted on the SCL pin in master mode. Set a communication baud rate that meets the I²C bus specification, such as the shortest pulse width of  $t_{LOW}$ , based on the equations shown below.



Note 1: fSBI shows fFPH.

Note 2: It's prohibit to use fc/16 prescaler clock (SYSCR0<PRCK1:0> = "10") when using SBI block.  $(l^2C \text{ bus and clocked synchronous})$ 


Figure 3.11.7 Clock Source

b. Clock synchronization

In the I²C bus mode, in order to wired-AND a bus, a master device which pulls down a clock line to low-level, in the first place, invalidate a clock pulse of another master device which generates a high-level clock pulse. The master device with a high-level clock pulse needs to detect the situation and implement the following procedure.

The TMP91CU27/CP27/CK27 has a clock synchronization function for normal data transfer even when more than one master exists on the bus.

The example explains the clock synchronization procedures when two masters simultaneously exist on a bus.



As master A pulls down the internal SCL output to the low level at point "a", the SCL line of the bus becomes the low level. After detecting this situation, Master B resets a counter of high-level width of an own clock pulse and sets the internal SCL output to the low level.

Master A finishes counting low-level width of an own clock pulse at point "b" and sets the internal SCL output to the high level. Since master B holds the SCL line of the bus at the low level, master A wait for counting high-level width of an own clock pulse. After master B finishes counting low-level width of an own clock pulse at point "c" and master A detects the SCL line of the bus at the high level, and starts counting high level of an own clock pulse. The clock pulse on the bus is determined by the master device with the shortest high-level width and the master device with the longest low-level width from among those master devices connected to the bus.

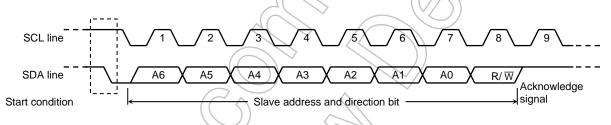
# (4) Slave address and address recognition mode specification

When the TMP91CU27/CP27/CK27 is used as a slave device, set the slave address <SA6:0> and <ALS> to the I2C0AR. Clear the <ALS> to "0" for the address recognition mode.

# (5) Master/slave selection

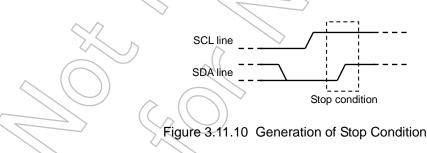
Set the SBI0CR2<MST> to "1" for operating the TMP91CU27/CP27/CK27 as a master device. Clear the SBI0CR2<MST> to "0" for operation as a slave device. The <MST> is cleared to "0" by the hardware after a stop condition on the bus is detected or arbitration is lost.

(6) Transmitter/receiver selection


Set the SBI0CR2<TRX> to "1" for operating the TMP91CU27/CP27/CK27 as a transmitter. Clear the <TRX> to "0" for operation as a receiver. When data with an addressing format is transferred in slave mode, when a slave address with the same value that an I2COAR or a GENERAL CALL is received (All 8-bit data are "0" after a start condition), the <TRX> is set to "1" by the hardware if the direction bit ( $\mathbb{R}/\overline{\mathbb{W}}$ ) sent from the master device is "1", and <TRX> is cleared to "0" by the hardware if the bit is "0".

In the Master Mode, after an Acknowledge signal is returned from the slave device, the <TRX> is cleared to "0" by the hardware if a transmitted direction bit is "1", and is set to "1" by the hardware if it is "0". When an acknowledge signal is not returned, the current condition is maintained.

The <TRX> is cleared to "0" by the hardware after a stop condition on the bus is detected or arbitration is lost.


#### (7) Start/stop condition generation

When the SBI0SR<BB> is "0", slave address and direction bit which are set to SBI0DBR are output on a bus after generating a start condition by writing "1" to the SBI0CR2<MST, TRX, BB, PIN>. It is necessary to set transmitted data to the data buffer register (SBI0DBR) and set "1" to <ACK> beforehand.





When the <BB> is "1", a sequence of generating a stop condition is started by writing "1" to the <MST, TRX, PIN>, and "0" to the <BB>. Do not modify the contents of <MST, TRX, BB, PIN> until a stop condition is generated on a bus.



The state of the bus can be ascertained by reading the contents of SBI0SR<BB>. SBI0SR<BB> will be set to "1" if a start condition has been detected on the bus, and will be cleared to "0" if a stop condition has been detected (Bus free status).

And about generation of stop condition in master mode, there are some limitation points. Please refer to section 3.11.6, (4) "Stop condition generation".

(8) Interrupt service requests and interrupt cancellation

When a serial bus interface interrupt request (INTSBI) occurs, the SBI0CR2<PIN> is cleared to "0". During the time that the SBI0CR2<PIN> is "0", the SCL line is pulled down to the low level.

The <PIN> is cleared to "0" when a 1 word of data is transmitted or received. Either writing/reading data to/from SBI0DBR sets the <PIN> to "1".

The time from the  $\langle PIN \rangle$  being set to "1" until the SCL line is released takes  $t_{LOW}$ .

In the address recognition mode (<ALS> = "0"), <PIN> is cleared to "0" when the received slave address is the same as the value set at the I2COAR or when a GENERAL CALL is received (All 8-bit data are "0" after a start condition). Although SBI0CR2 <PIN> can be set to "1" by the program, the <PIN> is not clear it to "0" when it is written "0".

(9) Serial bus interface operation mode selection

SBI0CR2 < SBIM1:0> is used to specify the serial bus interface operation mode. Set SBI0CR2 < SBIM1:0> to "10" when the device is to be used in  $I^2C$  bus mode after confirming pin condition of serial bus interface to "H".

Switch a mode to port after confirming a bus is free.

(10) Arbitration lost detection monitor

Since more than one master device can exist simultaneously on the bus in I²C bus mode, a bus arbitration procedure has been implemented in order to guarantee the integrity of transferred data.

Data on the SDA line is used for  $\mathrm{I}^{2}\mathrm{C}$  bus arbitration.

The following shows an example of a bus arbitration procedure when two master devices exist simultaneously on the bus. Master A and master B output the same data until point "a". After master A outputs "L" and master B, "H", the SDA line of the bus is wire-AND and the SDA line is pulled down to the low level by master A. When the SCL line of the bus is pulled up at point b, the slave device reads the data on the SDA line, that is, data in master A. A data transmitted from master B becomes invalid. The state in master B is called "ARBITRATION LOST". Master B device that loses arbitration releases the internal SDA output in order not to affect data transmitted from other masters with arbitration. When more than one master sends the same data at the first word, arbitration occurs continuously after the second word.

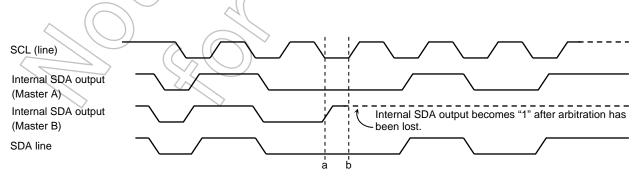



Figure 3.11.11 Arbitration Lost

The TMP91CU27/CP27/CK27 compares the levels on the bus's SDA line with those of the internal SDA output on the rising edge of the SCL line. If the levels do not match, arbitration is lost and SBI0SR<AL> is set to "1".

When SBI0SR<AL> is set to "1", SBI0SR<MST, TRX> are cleared to "0" and the mode is switched to slave receiver mode. Thus, clock output is stopped in data transfer after setting  $\langle AL \rangle =$  "1".

SBI0SR<AL> is cleared to "0" when data is written to or read from SBI0DBR or when data is written to SBI0CR2.

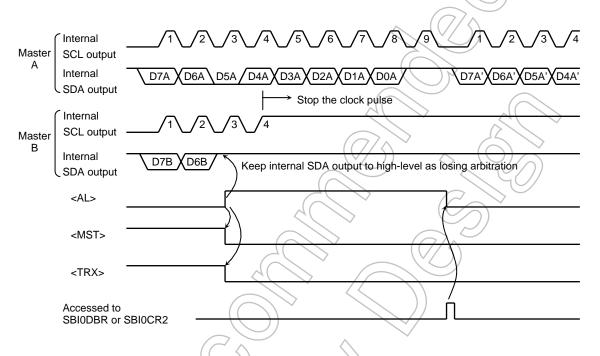



Figure 3.11.12 Example of When TMP91CU27/CP27/CK27 is a Master Device B (D7A = D7B, D6A = D6B)

(11) Slave address match detection monitor

SBI0SR<AAS> is set to "1" in slave mode, in address recognition mode (e.g., when I2C0AR<ALS> = "0"), when a GENERAL CALL is received, or when a slave address matches the value set in I2C0AR. When I2C0AR<ALS> = "1", SBI0SR<AAS> is set to "1" after the first word of data has been received. SBI0SR<AAS> is cleared to "0" when data is written to or read from the data buffer register SBI0DBR.

(12) General call detection monitor

SBI0SR<AD0> is set to "1" in slave mode, when a GENERAL CALL is received (All 8-bit received data is "0" after a start condition). SBI0SR<AD0> is cleared to "0" when a start condition or stop condition is detected on the bus.

(13) Last received bit monitor

The SDA line value stored at the rising edge of the SCL line is set to the SBI0SR<LRB>. In the acknowledge mode, immediately after an INTSBI interrupt request is generated, an acknowledge signal is read by reading the contents of the SBI0SR<LRB>.

(14) Software reset function

The software reset function is used to initialize the SBI circuit, when SBI is rocked by external noises, etc.

An internal reset signal pulse can be generated by setting SBI0CR2<SWRST1:0> to "10" and "01". This initializes the SBI circuit internally. All command (except SBI0CR2<SBIM1:0>) registers and status registers are initialized as well.

SBI0CR1<SWRMON> is automatically set to "1" after the SBI circuit has been initialized.

(15) Serial bus interface data buffer register (SBI0DBR)

The received data can to read and transmission data can to write by reading or writing SBI0DBR.

In the master mode, after the start condition is generated the slave address and the direction bit are set in this register.

(16) I²C bus address register (I2C0AR)

I2C0AR<SA6:0> is used to set the slave address when the TMP91CU27/CP27/CK27 functions as a slave device.

The slave address outputted from the master device is recognized by setting the I2COAR<ALS> to "0". The data format is the addressing format. When the slave address is not recognized at the  $\langle ALS \rangle = "1"$ , the data format is the free data format.

## (17) Baud rate register (SBI0BR1)

Write "1" to SBI0BR1<P4EN> before operation commences.

(18) Setting register for IDLE2 mode operation (SBI0BR0)

SBI0BR0<12SB10> is the register setting operation/stop during IDLE2 mode. Therefore, setting <I2SB10> is necessary before the HALT instruction is executed.

### 3.11.6 Data Transfer In I²C Bus Mode

(1) Device initialization

Set the SBI0BR1<P4EN>, SBI0CR1<ACK, SCK2:0>, set SBI0BR1 to "1" and clear bits 7 to 5 and 3 in the SBI0CR1 to "0".

Set a slave address  $\langle SA6:0 \rangle$  and the  $\langle ALS \rangle = "0"$  when an addressing format) to the I2C0AR.

For specifying the default setting to a slave receiver mode, clear "0" to the <MST, TRX, BB> and set "1" to the <PIN>, "10" to the <SBIM1:0>.

(2) Start condition and slave address generation

a. Master mode

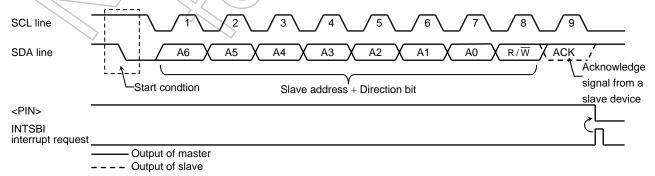
In the master mode, the start condition and the slave address are generated as follows.

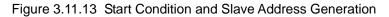
Check a bus free status (when  $\langle BB \rangle = "0"$ ).

Set the SBI0CR1<ACK> to "1" (Acknowledge mode) and specify a slave address and a direction bit to be transmitted to the SBI0DBR.

When SBIOCR2<BB> = "0", the start condition are generated by writing "1111" to SBIOCR2<MST, TRX, BB, PIN>. Subsequently to the start condition, nine clocks are output from the SCL pin. While eight clocks are output, the slave address and the direction bit which are set to the SBIODBR. At the 9th clock, the SDA line is released and the acknowledge signal is received from the slave device.

An INTSBI interrupt request occurs at the falling edge of the 9th clock. The <PIN> is cleared to "0". In the master mode, the SCL pin is pulled down to the low level while <PIN> is "0". When an interrupt request occurs, the <TRX> is changed according to the direction bit only when an acknowledge signal is returned from the slave device.


b. Slave mode


In the slave mode, the start condition and the slave address are received.

After the start condition is received from the master device, while eight clocks are output from the SCL pin, the slave address and the direction bit that are output from the master device are received.

When a GENERAL CALL or the same address as the slave address set in I2COAR is received, the SDA line is pulled down to the low level at the 9th clock, and the acknowledge signal is output.

An INTSBI interrupt request generate on the falling edge of the 9th clock. The  $\langle PIN \rangle$  is cleared to "0". In slave mode the SCL line is pulled down to the low level while the  $\langle PIN \rangle =$  "0".





#### (3) 1-word data transfer

Check the <MST> by the INTSBI interrupt process after the 1-word data transfer is completed, and determine whether the mode is a master or slave.

a. If <MST> = "1" (Master mode)

Check the <TRX> and determine whether the mode is a transmitter or receiver. When the <TRX> = "1" (Transmitter mode)

Check the <LRB>. When <LRB> is "1", a receiver does not request data. Implement the process to generate a stop condition (Refer to 3.11.6 (4)) and terminate data transfer.

When the <LRB> is "0", the receiver requests new data. When the next transmitted data is 8 bits, write the transmitted data to SBI0DBR. When the next transmitted data is other than 8 bits, set the <BC2:0> <ACK> and write the transmitted data to SBI0DBR. After written the data, <PIN> becomes "1", a serial clock pulse is generated for transferring a new 1 word of data from the SCL pin, and then the 1-word data is transmitted. After the data is transmitted, an INTSBI interrupt request generates. The <PIN> becomes "0" and the SCL line is pulled down to the low level. If the data to be transferred is more than one word in length, repeat the procedure from the <LRB> checking above.

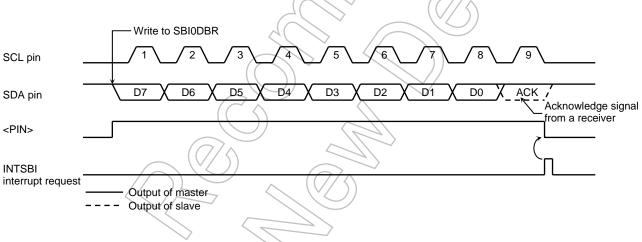



Figure 3.11.14 Example in Which <BC2:0> = "000" and <ACK> = "1" (Transmitter mode)

### When the <TRX> is "0" (Receiver mode)

When the next transmitted data is other than 8 bits, set <BC2:0> <ACK> and read the received data from SBI0DBR to release the SCL line (Data which is read immediately after a slave address is sent is undefined). After the data is read, <PIN> becomes "1". Serial clock pulse for transferring new 1 word of data is defined SCL and outputs "L" level from SDA pin with acknowledge timing.

An INTSBI interrupt request then generates and the <PIN> becomes "0", Then the TMP91CU27/CP27/CK27 pulls down the SCL pin to the low level. The TMP91CU27/CP27/CK27 outputs a clock pulse for 1-word of data transfer and the acknowledge signal each time that received data is read from the SBI0DBR.

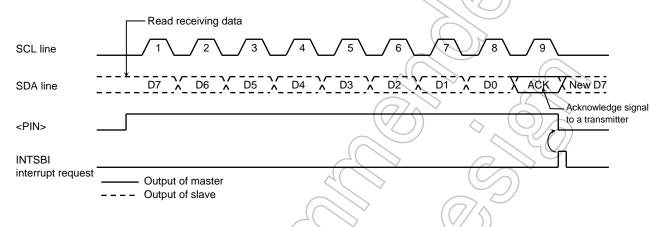
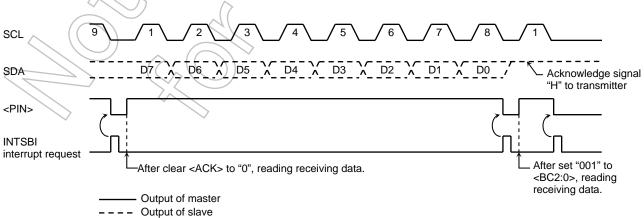
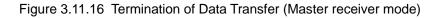





Figure 3.11.15 Example of When <BC2:0> = "000" and <ACK> = "1" (Receiver mode)

In order to terminate the transmission of data to a transmitter, clear  $\langle ACK \rangle$  to "0" before reading data which is 1-word before the last data to be received. The last data word does not generate a clock pulse as the acknowledge signal. After the data has been transmitted and an interrupt request has been generated, set  $\langle BC2:0 \rangle$  to "001" and read the data. The TMP91CU27/CP27/CK27 generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA line on the bus remains high. The transmitter receives the high signal as an ACK signal. The receiver indicates to the transmitter that data transfer is complete.

After the one data bit has been received and an interrupt request been generated, the TMP91CU27/CP27/CK27 generates a stop condition (See Section 3.11.6 (4)) and terminates data transfer.





b. If  $\langle MST \rangle = "0"$  (Slave mode)

In the slave mode the TMP91CU27/CP27/CK27 operates either in normal slave mode or in slave mode after losing arbitration.

In the slave mode, an INTSBI interrupt request occurs when the TMP91CU27/CP27/CK27 receives a slave address or a GENERAL CALL from the master device, or when a GENERAL CALL is received and data transfer is complete, or after matching received address. In the master mode, the TMP91CU27/CP27/CK27 operates in a slave mode if it losing arbitration. An INTSBI interrupt request generate when a word data transfer terminates after losing arbitration. When an INTSBI interrupt request generate the <PIN> is cleared to "0" and the SCL pin is pulled down to the low level. Either reading/writing from/to the SBI0DBR or setting the <PIN> to "1" will release the SCL pin after taking tLOW time.

Check the SBI0SR<AL>, <TRX>, <AAS>, and <AD0> and implements processes according to conditions listed in the next table.

<trx></trx>	<al></al>	<aas></aas>	<ad0></ad0>	Conditions	Process
1	1	1	0	The TMP91CU27/CP27/CK27 loses arbitration when transmitting a slave address, and receives a slave address for which the value of the direction bit sent from another master is "1".	Set the number of bits of single word to <bc2:0>, and write the transmit data to SBI0DBR</bc2:0>
	0	1	0	In slave receiver mode, the TMP91CU27/CP27/CK27 receives a slave address for which the value of the direction bit sent from the master is "1".	
		0	0	In slave transmitter mode, transmission of data of single word is terminated.	Check the <lrb> setting. If <lrb> is set to "1", set <pin> to "1" since the receiver win no request the data which follows. Then, clear <trx> to "0" to release the bus. If <lrb> is cleared to "0" of and write the transmitted data to SBI0DBR since the receiver requests next data.</lrb></trx></pin></lrb></lrb>
0	1		1/0	The TMP91CU27/CP27/CK27 loses arbitration when transmitting a slave address, and receives a slave address or GENERAL CALL for which the value of the direction bit sent from another master is "0". The TMP91CU27/CP27/CK27 loses	Read the SBI0DBR for setting the <pin> to "1" (reading dummy data) or set the <pin> to "1".</pin></pin>
$\langle$			0	arbitration when transmitting a slave address or data, and terminates word data transfer.	
		1	1/0	In slave receiver mode the TMP91CU27/CP27/CK27 receives a slave address or GENERAL CALL for which the value of the direction bit sent from the master is "0".	
		0	1/0	In slave receiver mode the TMP91CU27/CP27/CK27 terminates receiving word data.	Set <bc2:0> to the number of bits in a word and read the received data from SBI0DBR.</bc2:0>

Table 3 11 1	Operation in the Slave Mode	

(4) Stop condition generation

When SBI0SR < BB > = "1", the sequence for generating a stop condition can be initiated by writing "1" to SBI0CR2 < MST, TRX, PIN > and "0" to SBI0CR2 < BB >. Do not modify the contents of SBI0CR2 < MST, TRX, PIN, BB > until a stop condition has been generated on the bus. When the bus's SCL line has been pulled Low by another device, the TMP91CU27/CP27/CK27 generates a stop condition when the other device has released the SCL line and SDA pin rising.

When SBI0CR2<MST, TRX, PIN> are written "1" and <BB> is written "0" (Generate stop condition in master mode), <BB> changes to "0" by internal SCL changes to "1", without waiting stop condition. To check whether SCL and SDA pin are "1" by sensing their ports is needed to detect bus free condition.

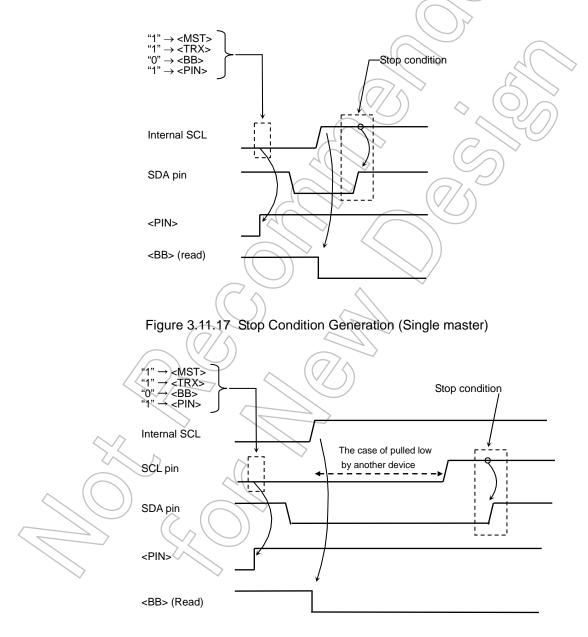
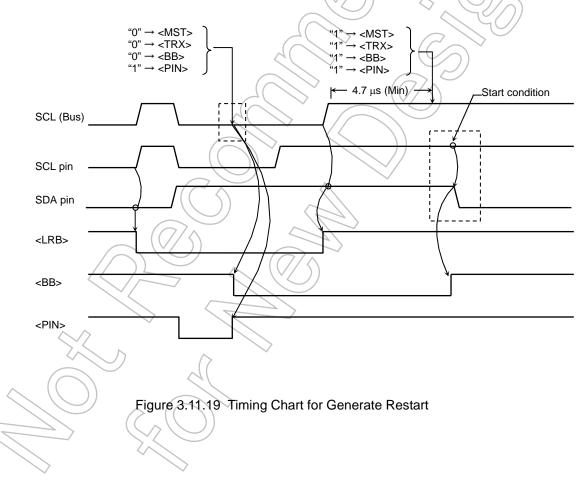



Figure 3.11.18 Stop Condition Generation (Multi master)

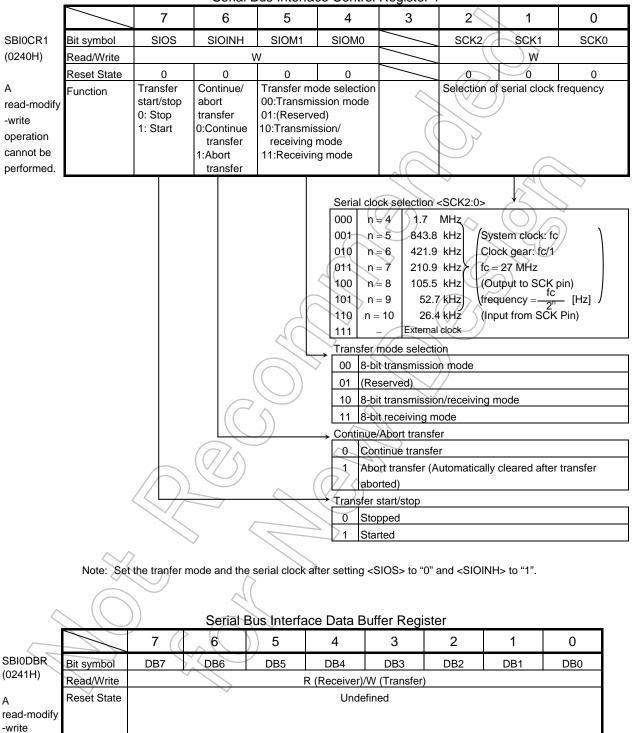
#### (5) Restart

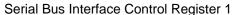

Restart is used during data transfer between a master device and a slave device to change the data transfer direction.

The following description explains how to restart when the TMP91CU27/CP27/CK27 is in master mode.

Clear SBI0CR2<MST, TRX, BB> to "0" and set SBI0CR2<PIN> to "1" to release the bus. The SDA line remains high and the SCL pin is released. Since a stop condition has not been generated on the bus, other devices assume the bus to be in busy state.

And confirm SCL pin, that SCL pin is released and become bus-free state by SBI0SR  $\langle BB \rangle = "0"$  or signal level "1" of SCL pin in port mode. Check the  $\langle LRB \rangle$  until it becomes "1" to check that the SCL line on a bus is not pulled down to the low level by other devices. After confirming that the bus remains in a free state, generate a start condition using the procedure described in 3.11.6 (2).

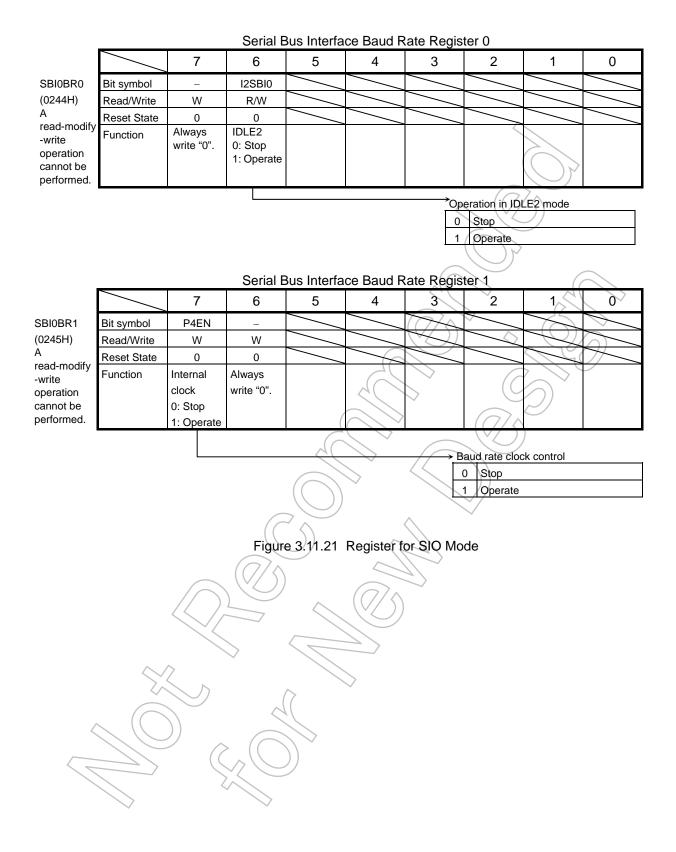

In order to satisfy the setup time requirements when restarting, take at least  $4.7 \,\mu s$  of waiting time by software from the time of restarting to confirm that the bus is free until the time to generate the start condition.




operation cannot be performed.

## 3.11.7 Clocked Synchronous 8-Bit SIO Mode Control

The following registers are used to control and monitor the operation status when the serial bus interface (SBI) is being operated in clocked synchronous 8-bit SIO mode.



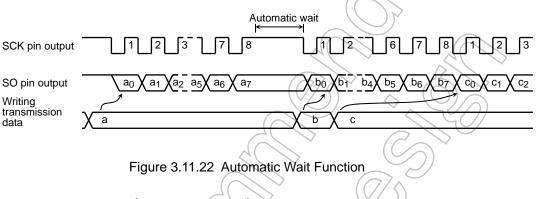





			Serial	Bus Interra	ice Contro	l Register	2		
	/	7	6	5	4	3	2	1	0
SBI0CR2	Bit symbol	/			/	SBIM1	SBIM0	_	_
(0243H)	Read/Write		$\sim$	$\sim$	/		V	W	W
	Reset State					0	0	0	0
	Function					Serial bus in	nterface		·
						operation m	iode		
						selection	(		
						00: Port mo	de	Always	write "0".
						01: SIO mo			
						10: I ² C bus		$\land$	
						11: (Reserv	ed)	)	
						+	$\sim$		
					T	erial bus inter			
					0				out disabled)
					0			8-bit SIO mo	ide
						0 I ² C bus m		-	
					-	1 (Reserved		-6	$\searrow$
			1 <bc2:0> to</bc2:0>		_	a clocked-s	ynchronous	8-bit SIO mo	de.
	Note 2: Plea	ase always v	write "00" to S	SBICR2<1:0>	·. (~	$\sim$	<	<u> </u>	
						$\searrow$	P		
	~		Seria	I Bus Inter	face Statu	s Register	· (C	()	
		7	6	5	4	3	2	1	0
SBI0SR	Bit symbol				Þ	SIOF	(SEF)	/	
(0243H)	Read/Write					F	$\mathbf{x}$		
	Reset State					0	0		
	Function			( )	7	Serial	Shift		
				$(\bigcirc)$		transfer	operation		
			$\square$			operation	status		
				()		status	monitor		
						monitor		_	
			(7/1)				↓		
			$\langle \bigcirc \rangle$		$\left(\overline{\Omega}\right)$			status monit eration termi	
		$\left( \right) \right)$		$\sim$	$(\vee / ))$			eration in pro	
					$\sim$			operating sta	
								terminated	
	~ ~							r in progress	
					>	L		in progrooo	
		$\supset$	0	>					
		$\overline{)}$	41						
<	( )	)		$\langle \rangle$					
				$\langle \rangle$					
	$ \longrightarrow $		$\wedge \bigcirc$	)					
		$\sim$	$\langle \rangle$						
			$\sim$						

## Serial Bus Interface Control Register 2




- (1) Serial clock
  - a. Clock source

SBI0CR1<SCK2:0> is used to select the following functions:

### Internal clock

In internal clock mode one of seven frequencies can be selected. The serial clock signal is output to the outside on the SCK pin.

When the device is writing (in transmit mode) or reading (in receive mode), data cannot follow the serial clock rate, so an automatic wait function is executed which automatically stops the serial clock and holds the next shift operation until reading or writing has been completed.



External clock (<SCK2:0> = "111")

An external clock input via the SCK pin is used as the serial clock. In order to ensure the integrity of shift operations, both the high and low-level serial clock pulse widths shown below must be maintained. The maximum data transfer frequency is 1.7 MHz (when fc = 27 MHz).

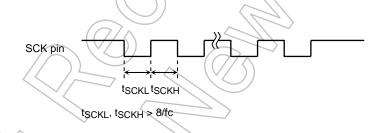
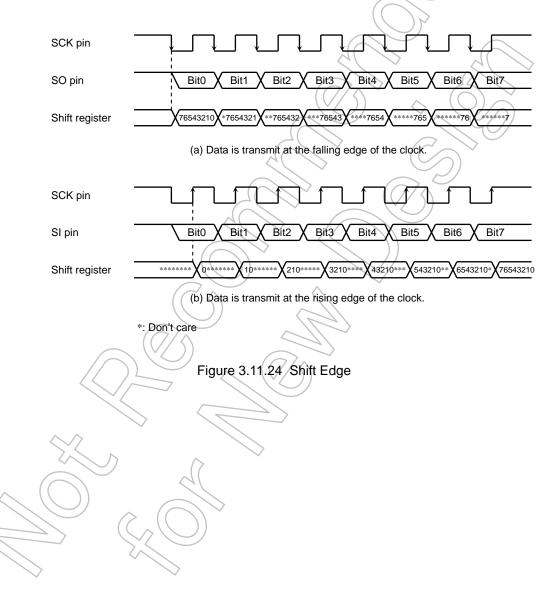



Figure 3.11.23 Maximum Data Transfer Frequency When External Clock Input Used

### b. Shift edge


Data is transmitted on the leading edge of the clock and received on the trailing edge.

#### Leading edge shift

Data is shifted on the leading edge of the serial clock (on the falling edge of the SCK pin input/output).

### Trailing edge shift

Data is shifted on the trailing edge of the serial clock (on the rising edge of the SCK pin input/output).



#### (2) Transfer modes

The SBI0CR1<SIOM1:0> is used to select a transmit, receive or transmit/receive mode.

a. 8-bit transmit mode

Set a control register to a transmit mode and write transmit data to the SBI0DBR.

After the transmit data is written, set the SBI0CR1<SIOS> to "1" to start data transfer. The transmitted data is transferred from SBI0DBR to the shift register and output to the SO pin in synchronized with the serial clock, starting from the least significant bit (LSB). When the transmission data is transferred to the shift register, the SBI0DBR becomes empty. An INTSBI (Buffer empty) interrupt request is generated to request new data.

When the internal clock is used, the serial clock will stop and automatic-wait function will be initiated if new data is not loaded to the data buffer register after the specified 8-bit data is transmitted. When new transmit data is written, automatic-wait function is canceled.

When the external clock is used, data should be written to SBI0DBR before new data is shifted. The transfer speed is determined by the maximum delay time between the time when an interrupt request is generated and the time when data is written to SBI0DBR by the interrupt service program.

When the transmit is started, after the SBI0SR<SIOF> goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Transmitting data is ended by clearing the <SIOS> to "0" by the buffer empty interrupt service program or setting the <SIOINH> to "1". When the <SIOS> is cleared, the transmitted mode ends when all data is output. In order to confirm if data is surely transmitted by the program, set the <SIOF> (Bit3 of SBI0SR) to be sensed. The SBI0SR<SIOF> is cleared to "0" when transmitting is complete.

When the <SIOINH> is set to "1", transmitting data stops. SBI0SR<SIOF> turns "0".

When an external clock is used, it is also necessary to clear SBI0CR1<SIOS> to "0" before new data is shifted; otherwise, dummy data is transmitted and operation ends.

# TOSHIBA

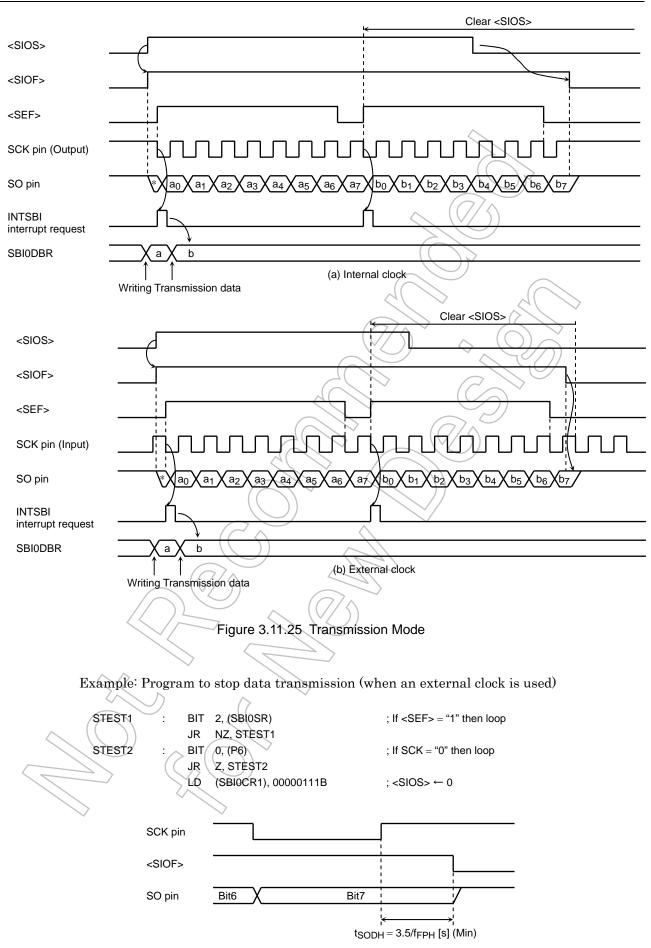



Figure 3.11.26 Transmission Data Hold Time at End Transmit

b. 8-bit receive mode

Set the control register to receive mode and set SBI0CR1<SIOS> to "1" for switching to receive mode. Data is received into the shift register via the SI pin and synchronized with the serial clock, starting from the least significant bit (LSB). When 8-bit data is received, the data is transferred from the shift register to SBI0DBR. An INTSBI (Buffer full) interrupt request is generated to request that the received data be read. The data is then read from SBI0DBR by the interrupt service program.

When an internal clock is used, the serial clock will stop and the automatic wait function will be in effect until the received data has been read from SBI0DBR.

When an external clock is used, since shift operation is synchronized with an external clock pulse, the received data should be read from SBI0DBR before the next serial clock pulse is input. If the received data is not read, any further data which is to be received is canceled. The maximum transfer speed when an external clock is used is determined by the delay time between the time when an interrupt request is generated and the time when the received data is read.

Receiving of data ends when <SIOS> is cleared to "0" by the buffer full interrupt service program or when <SIOINH> is set to "1". If <SIOS> is cleared to "0", received data is transferred to SBI0DBR in complete blocks. The received mode ends when the transfer is complete. In order to confirm whether data is being received properly by the program, set SBI0SR<SIOF> to be sensed. <SIOF> is cleared to "0" when receiving has been completed. When it is confirmed that receiving has been completed, the last data is read. When <SIOINH> is set to "1", data receiving stops. <SIOF> is cleared to "0" (The received data becomes invalid, therefore no need to read it).

Note: When the transfer mode is changed, the contents of SBI0DBR will be lost. If the mode must be changed, conclude data receiving by clearing <SIOS> to "0", read the last data, then change the mode.

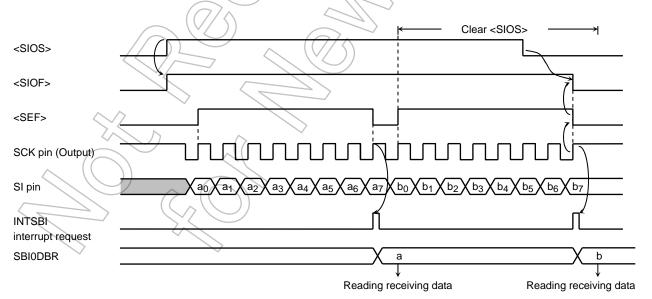



Figure 3.11.27 Receiving Mode (when an internal clock is used)

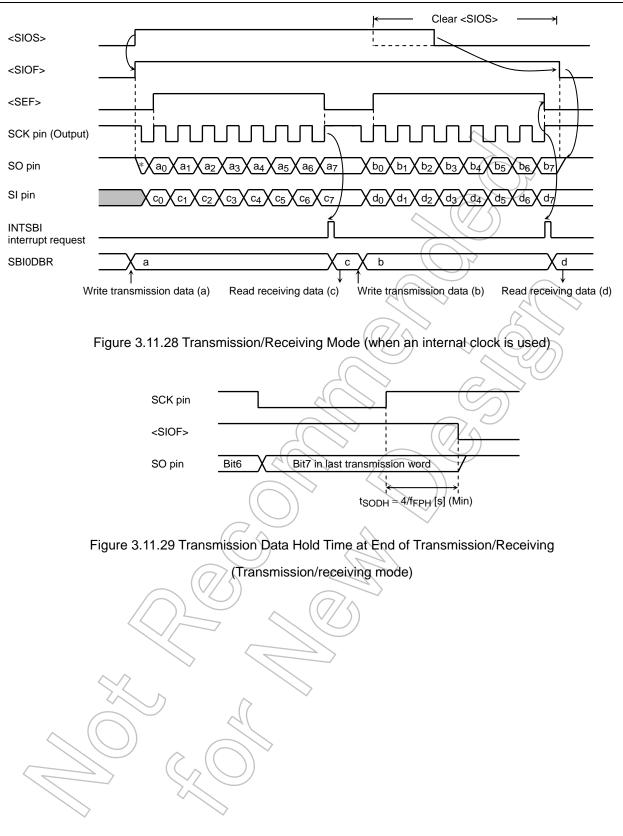
c. 8-bit transmit/receive mode

mode.

Set a control register to a transmit/receive mode and write data to SBI0DBR. After the data has been written, set SBI0CR1<SIOS> to "1" to start transmitting/receiving. When data is transmitted, the data is output via the SO pin, starting from the least significant bit (LSB) and synchronized with the leading edge of the serial clock signal. When data is received, the data is input via the SI pin on the trailing edge of the serial clock signal. 8 bit data is transferred from the shift register to SBI0DBR and an INTSBI interrupt request is generated. The interrupt service program reads the received data from the data buffer register and writes the data that is to be transmitted. SBI0DBR is used for both transmitting and receiving. Transmitted data should always be written after received data has been read.

When an internal clock is used, the automatic wait function will be in effect until the received data has been read and the next data has been written.

When an external clock is used, since the shift operation is synchronized with the external clock, received data is read and transmitted data is written before a new shift operation is executed. The maximum transfer speed when an external clock is used is determined by the delay time between the time when an interrupt request is generated and the time at which received data is read and transmitted data is written.


When transmission is started, after the SBI0SR<SIOF> goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Transmitting/receiving data ends when <SIOS> is cleared to "0" by the INTSBI interrupt service program or when SBI0CR1<SI0INH> is set to "1". When <SIOS> is cleared to "0", received data is transferred to SBI0DBR in complete blocks. The transmit/receive mode ends when the transfer is complete. In order to confirm whether data is being transmitted/received properly by the program, set SBI0SR<SIOF> to be sensed. <SIOF> is set to "0" when transmitting/receiving has been completed. When <SIOINH> is set to "1", data transmitting/receiving stops. SBI0SR<SIOF> is then cleared to "0".

Note: When the transfer mode is changed, the contents of SBI0DBR will be lost. If the mode must be changed, conclude data transmitting/receiving by clearing <SIOS> to "0", read the last data, then change the transfer



# TOSHIBA



# 3.12 Analog/Digital Converter

The TMP91CU27/CP27/CK27 incorporate a 10-bit successive approximation-type analog/digital converter (AD converter) with 4-channel analog input.

Figure 3.12.1 is a block diagram of the AD converter. The 4-channel analog input pins (AN0 to AN3) are shared with the input-only port 5 and can thus be used as an input port.

Note: When IDLE2, IDLE1 or STOP mode is selected, in order to reduce power consumption, the system may enter a stand-by mode with some timings even though the internal comparator is still enabled. Therefore be sure to check that AD converter operations are halted before a HALT instruction is executed.

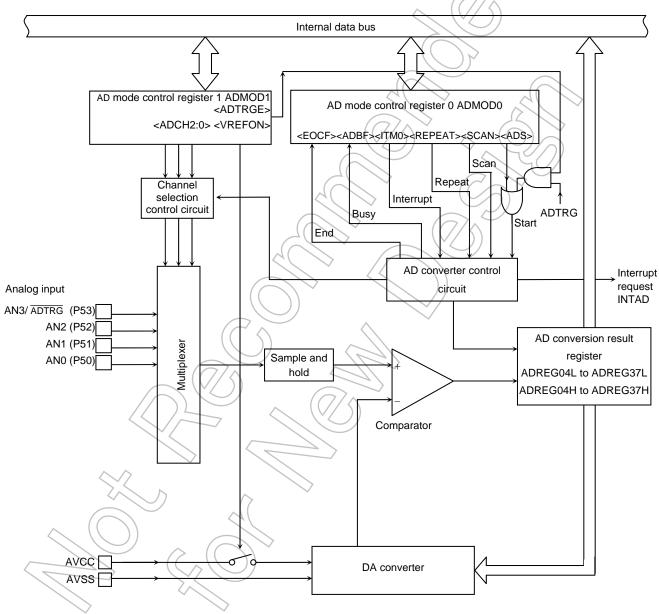
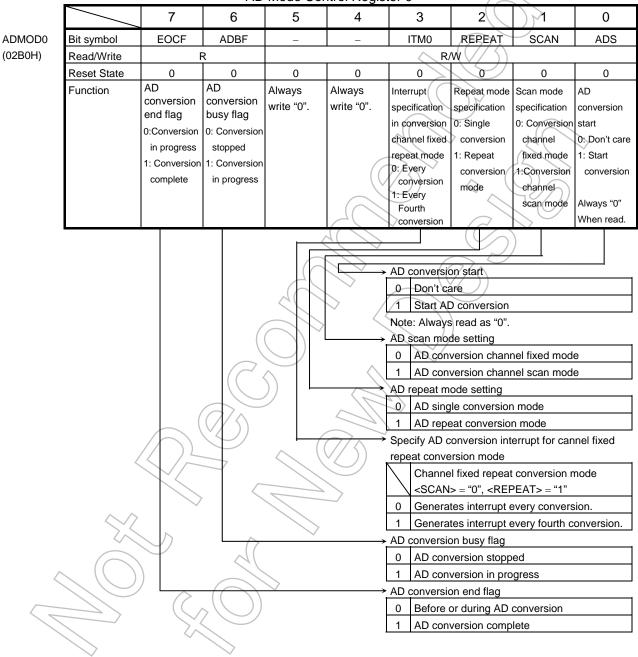
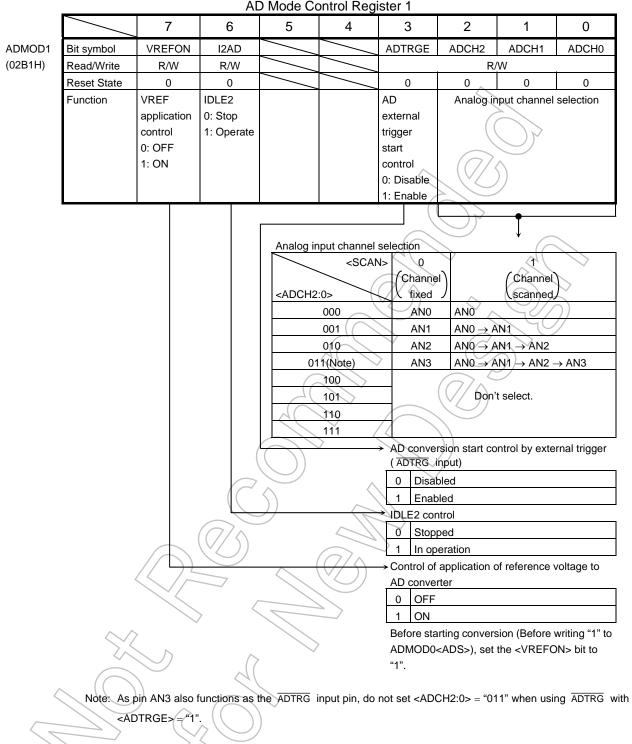




Figure 3.12.1 Block Diagram of AD Converter

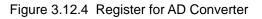

## 3.12.1 Control Register

The AD converter is controlled by the two AD mode control registers: ADMOD0 and ADMOD1. The AD conversion results are stored in 8 kinds of AD conversion data upper and lower registers: ADREG04H/L, ADREG15H/L, ADREG26H/L and ADREG37H/L. Figure 3.12.2 to Figure 3.12.5 shows the registers related to the AD converter.



AD Mode Control Register 0

Figure 3.12.2 Register for AD Converter




AD Mode Control Register 1

Figure 3.12.3 Register for AD Converter

			AD CON	iversion Da		Register t	//4		
		7	6	5	4	3	2	1	0
ADREG04L	Bit symbol	ADR01	ADR00		/				ADR0RF
02A0H)	Read/Write		۲	/		$\sim$	$\sim$	/	R
	Reset State	Unde	efined					/	0
	Function	Stores lowe	er 2 bits of				$\langle$		AD
		AD convers	ion result				(		conversion
							(		data storage flag
									1:Conversion
						~		$\land$	result
								/	stored
					- 4 - 1	Deviator		-	
	<u> </u>	_		version Da			S / I		_
		7	6	5	4	3	2	1	0
DREG04H	Bit symbol	ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
2A1H)	Read/Write						>		
	Reset State				l l	fined	~	$(\bigcirc)$	$\sim$
	Function			Stores u	upper 8 bits A	D conversio	n result.		$\gamma$
					$\square$			N C	/
	-		AD Con	version Da	ata Lower	Register 1	/5	$\sim$	
		7	6	5	4	3	2	())1	0
DREG15L	Bit symbol	ADR11	ADR10		$\swarrow$	/	177/A	$\sim$	ADR1RF
)2A2H)	Read/Write	R			$\mathbb{Z}$		$\forall \mathcal{A}$		R
	Reset State	Undefined		A		$\sum$	$\sim$		0
	Function	Stores lowe	r 2 bits of		\	$\langle \langle \rangle$			AD
		AD convers	ion result	( )	~		//		conversion
									result flag 1:Conversion
			(C)	$\sim$	$\langle$				result
									stored
	<u> </u>		( AD Con	version Da	ata Upper	$\sim$			
		$\langle 7 \rangle$	6	5	(74)	3	2	1	0
DREG15H	Bit symbol	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
)2A3H)	Read/Write		,		F	२			
	Reset State		>	$\sim$	🔔 Unde	efined			
	Function	>		Stores up	oper 8 bits of	AD conversi	on result.		
			~		>				
			9 8	7 6 5	4 3	2 1 0	)		
$\sim$	Channel x Conversion	result							
					4 4 4				
			ADREGxH	) ↓		$\downarrow$		ADF	REGxL
$\sim$		$\sim$	7 6	543	2 1 0	76	54	321	0
	$\langle \rangle$	$\sim$						$\sim$	
	$\sim$							$\nabla \nabla \nabla$	,
								$\gamma$	
					Bits 5 to 1 a				
									xRF>. When ". When eithe
									flag is cleare
					"0".	,		,	

# AD Conversion Data Lower Register 0/4



"0".

					Register									
	7	6	5	4	3	2	1	0						
Bit symbol	ADR21	ADR20						ADR2RF						
			$\sim$	/	/	$\sim$	$\sim$	R						
			$\sim$	$\backslash$	/	$\sim$	$\sim$	0						
								AD						
	AD convers	ion result.						conversion						
						(	$\langle \rangle \rangle$	data storage						
							$\bigcirc$	flag 1:Conversion						
						$( \cap )$	$\wedge$	result						
							))	stored						
		AD Con	version Da	ata Upper	Register 2	2/6								
	7	6	5	4		2	1	0						
Bit symbol							(7	ADR22						
	7.21.20	7121120	, , , , , , , , , , , , , , , , , , , ,											
								$\diamond$						
			Stores ur	(	V7 11	on result	$(\bigcirc)$							
1 dilotion							<u> </u>	//						
		AD Con	version Da	ata Lower	Register ?		Ne							
	7							0						
			5	4	× 3			0						
Bit symbol	ADR31 ADR30		$\rightarrow$	$\sim$		(7/A)		ADR3RF						
Read/Write	R					X H		R						
Reset State	Unde	fined	- Lat		$\square$	$\sim$		0						
Function	Stores lowe	r 2 bits of		>				AD conversion						
	Ad conversi	on result.	()					data storage						
		$\bigcirc$						flag						
			$\land$	$\langle \rangle$				1:Conversion						
			))	$\langle -$				result stored						
		$\overline{\Omega}$			$\overline{\mathbf{i}}$			Stored						
<		AD Conv	version Re	sult Upper	Register	3/7	T							
	({ 7 } }	6	<5	(/(4))	3	2	1	0						
Bit symbol	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32						
		R												
Read/Write		,			२			Undefined						
Read/Write Reset State			$\overline{\langle}$											
			Stores up		fined	on result.								
Reset State		. (7	Stores up	Unde	fined	on result.								
Reset State Function	)	9 8	Stores up	Unde	fined									
Reset State Function Channel x		9 8	>	Unde oper 8 bits of	fined AD conversi									
Reset State Function	esult	9 8	>	Unde oper 8 bits of	fined AD conversi									
Reset State Function Channel x			>	Unde oper 8 bits of	fined AD conversi			PEGVI						
Reset State Function Channel x		ADREGXH	7 6 5	Unde oper 8 bits of 4 3	fined AD conversi 2 1 C			REGxL						
Reset State Function Channel x			>	Unde oper 8 bits of	fined AD conversi		ADI 3 2 1	REGxL 0						
Reset State Function Channel x		ADREGXH	7 6 5	Unde oper 8 bits of 4 3	fined AD conversi 2 1 C									
Reset State Function Channel x		ADREGXH	7 6 5	Unde oper 8 bits of 4 3	fined AD conversi 2 1 C									
Reset State Function Channel x		ADREGXH	7 6 5 5 4 3	Unde oper 8 bits of 4 3	fined AD conversion 2 1 C 4 1 C 4 1 C 7 6 7 6									
Reset State Function Channel x		ADREGXH	7 6 5 5 4 3 • E	Unde per 8 bits of 4 3 2 1 0 Bits 5 to 1 are Bito is the AD	fined AD conversion 2 1 0 7 6 7 6 2 always rea 0 conversion	d as "1".	3 2 1 flag <adrx< td=""><td>0</td></adrx<>	0						
Reset State Function Channel x		ADREGXH	7 6 5 5 4 3 • E	Unde per 8 bits of 4 3 2 1 0 Bits 5 to 1 are	AD conversion 2 1 0 2 1 0 7 6 2 always rea 0 conversion on result is st	d as "1". data storage ored, the flag	3 2 1 flag <adrx g is set to "1"</adrx 	0 RF>. When t						
	Read/Write Reset State Function Bit symbol	Bit symbol     ADR21       Read/Write     R       Reset State     Under       Function     Stores lowe       AD conversi       AD conversi       AD conversi       AD conversi       Bit symbol       ADR29       Read/Write       Reset State       Function       7       Bit symbol       ADR31       Read/Write       Reset State       Function       ADR31       Reset State       Under       Function       Stores lowe       Ad conversi       Ad conversi       Ad conversi       Ad conversi	Bit symbol     ADR21     ADR20       Read/Write     R       Reset State     Undefined       Function     Stores lower 2 bits of       AD conversion result.     AD Conversion result.       AD Conversion     7       6     ADR29       Bit symbol     ADR29       ADR28     ADR28       Read/Write     ADR29       Reset State     ADR29       Function     ADR31       ADR30     ADR31       Reset State     Undefined       Function     Stores lower 2 bits of       Ad conversion result.     Ad conversion result.       AD Conversion     ADR31       ADR30     ADR31       ADR30     Ad conversion result.       AD Conversion     Ad conversion result.	Bit symbol       ADR21       ADR20         Read/Write       R         Reset State       Undefined         Function       Stores lower 2 bits of AD conversion result.         AD conversion result.         AD conversion result.         AD conversion result.         AD conversion Da         AD conversion Da         AD conversion result.         AD conversion Da         AD conversion Ca         AD conversion Ca         AD conversion Ca         AD conversion result.         AD conversion result.         AD conversion Re         AD conversion Re         AD conversion Re         AD conversion Re         AD conversion Re	Bit symbol       ADR21       ADR20         Read/Write       R         Reset State       Undefined         Function       Stores lower 2 bits of AD conversion result.         AD conversion result.         AD conversion Data Upper         AD conversion Data Lower         Function         Stores upper 8 bits of         AD conversion Data Lower         AD conversion result.         AD conversion result.         AD conversion result.         AD conversion result.         AD conversion Result Upper         AD conversion Result Upper	Bit symbol       ADR21       ADR20         Read/Write       R         Reset State       Undefined         Function       Stores lower 2 bits of AD conversion result.       AD         AD conversion result.       AD         AD conversion Data Upper Register 2       7         AD conversion Data Upper Register 2       7         Bit symbol       ADR29       ADR28         ADR27       ADR26       ADR25         Read/Write       R       R         Reset State       Undefined       Function         Stores upper 8 bits of AD conversion       AD conversion Data Lower Register 3         AD conversion Data Lower Register 3       7       6         AD conversion Data Lower Register 3       7       6       5         Bit symbol       ADR31       ADR30       A         Reset State       Undefined       Function       Stores lower 2 bits of Ad conversion result.         AD conversion Result Upper Register       7       6       5       4       3         Bit symbol       ADR39       ADR38       ADR37       ADR36       ADR35	Bit symbol       ADR21       ADR20         Read/Write       R         Reset State       Undefined         Function       Stores lower 2 bits of AD conversion result.       AD         AD Conversion Data Upper Register 2/6       7         6       5       4         Bit symbol       ADR29       ADR28         ADR29       ADR28       ADR27         AD Conversion Data Upper Register 2/6       7         8       Gamma Addition         Read/Write       R         Reset State       Undefined         Function       Stores upper 8 bits of AD conversion result.         AD Conversion Data Lower Register 3/7       7         AD Conversion Data Lower Register 3/7       7         AD ADR31       ADR30         Reset State       Undefined         Function       Stores lower 2 bits of Ad conversion result.         AD Conversion Result Upper Register 3/7         AD Conversion	Bit symbol       ADR21       ADR20         Read/Write       R         Reset State       Undefined         Function       Stores lower 2 bits of AD conversion result.       AD conversion result.         AD Conversion Data Upper Register 2/6       7         7       6       5       4       3       2       1         Bit symbol       ADR29       ADR28       ADR27       ADR26       ADR25       ADR24       ADR23         Read/Write       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R       R <td< td=""></td<>						

# AD Conversion Result Lower Register 2/6

"0".

## 3.12.2 Operation

(1) Analog reference voltage

A high-level analog reference voltage is applied to the AVCC pin; a low-level analog reference voltage is applied to the AVSS pin. To perform AD conversion, the reference voltage as the difference between AVCC and AVSS, is divided by 1024 using string resistance. The result of the division is then compared with the analog input voltage.

To turn off the switch between AVCC and AVSS, write "0" to ADMOD1<VREFON> in AD mode control register 1. To start AD conversion in the OFF state, first write "1" to ADMOD1<VREFON>, wait 3 µs until the internal reference voltage stabilizes (this is not related to fc), then set ADMOD0< ADS> to "1".

(2) Analog input channel selection

The analog input channel selection varies depending on the operation mode of the AD converter.

- In analog input channel fixed mode (ADMOD0<SCAN> = "0") Setting ADMOD1<ADCH2:0> selects one of the analog input pins AN0 to AN3 as the input channel.
- In analog input channel scan mode (ADMOD0<SCAN> = "1") Setting ADMOD1<ADCH2:0> selects one of the 4 scan modes.

Table 3.12.1 Illustrates analog input channel selection in each operation mode.

After Reset, ADMOD0<SCAN> = "0" and ADMOD1<ADCH2:0> = "000". Thus pin AN0 is selected as the fixed input channel. Pins not used as analog input channels can be used as standard input port pins.

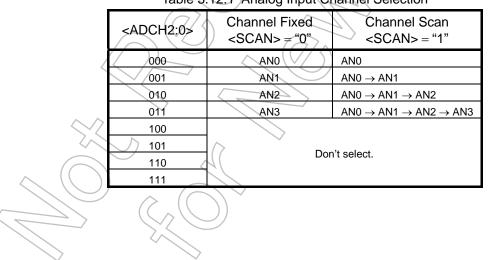



Table 3.12.1 Analog Input Channel Selection

(3) Starting AD conversion

To start AD conversion, write "1" to ADMOD0<ADS> in AD mode control register 0, or ADMOD1<ADTRGE> in AD mode control register 1 and input falling edge on ADTRG pin. When AD conversion starts, the AD conversion busy flag ADMOD0<ADBF> will be set to "1", indicating that AD conversion is in progress.

Writing "1" to ADMOD0<ADS> during AD conversion restarts conversion. At that time, to determine whether the AD conversion results have been preserved, check the value of the conversion data storage flag ADREGxL<ADRxRF>.

During AD conversion, a falling edge input on the ADTRG pin will be ignored.

(4) AD conversion modes and the AD conversion end interrupt

The 4 AD conversion modes are:

- Channel fixed single conversion mode
- Channel scan single conversion mode
- Channel fixed repeat conversion mode
- Channel scan repeat conversion mode

The ADMOD0<REPEAT> and ADMOD0<SCAN> settings in AD mode control register 0 determine the AD mode setting.

Completion of AD conversion triggers an AD conversion end interrupt request INTAD. Also, ADMOD0<EOCF> will be set to "1" to indicate that AD conversion has been completed.

a. Channel fixed single conversion mode

Setting ADMODO<REPEAT> and ADMODO<SCAN> to "00" selects channel fixed single conversion mode.

In this mode, data on one specified channel is converted once only. When the conversion has been completed, the ADMOD0<EOCF> flag is set to "1", ADMOD0<ADBF> is cleared to "0", and an INTAD interrupt request is generated.

b. Channel scan single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "01" selects channel scan single conversion mode.

In this mode, data on the specified scan channels is converted once only. When scan conversion has been completed, ADMOD0<EOCF> is set to "1", ADMOD0<ADBF> is cleared to "0", and an INTAD interrupt request is generated.

c. Channel fixed repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "10" selects channel fixed repeat conversion mode.

In this mode, data on one specified channel is converted repeatedly. When conversion has been completed, ADMOD0<EOCF> is set to "1" and ADMOD0<ADBF> is not cleared to "0" but held "1". INTAD interrupt request generation timing is determined by the setting of ADMOD0<ITM0>.

Clearing <ITM0> to "0" generates an interrupt request every time an AD conversion is completed.

Setting <ITM0> to "1" generates an interrupt request on completion of every fourth conversion.

d. Channel scan repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "11" selects channel scan repeat conversion mode.

In this mode, data on the specified scan channels is converted repeatedly. When each scan conversion has been completed, ADMOD0<EOCF> is set to "1" and an INTAD interrupt request is generated. ADMOD0<ADBF> is not cleared to "0" but held "1".

To stop conversion in a repeat conversion mode (e.g., in cases c. and d.), program a "0" to ADMOD0<REPEAT>. After the current conversion has been completed, the repeat conversion mode terminates and ADMOD0<ADBF> is cleared to "0".

Switching to a halt state (IDLE2 mode with ADMOD1<I2AD> cleared to "0", IDLE1 mode or STOP mode) immediately stops operation of the AD converter even when AD conversion is still in progress. In repeat conversion modes (e.g., in cases c. and d.), when the halt is released, conversion restarts from the beginning. In single conversion modes (e.g., in cases a. and b.), conversion does not restart when the halt is released (The converter remains stopped),

Table 3.12.2 shows the relationship between the AD conversion modes and interrupt requests.

	Mode	Generation of	ADMOD0				
	IVIOLE	Interrupt Request	<itm0></itm0>	<repeat></repeat>	<scan></scan>		
//	Channel fixed single conversion mode	After completion of conversion	х	0	0		
	Channel scan single conversion mode	After completion of scan conversion	х	0	1		
	Channel fixed repeat	Every conversion	0	1	0		
	conversion mode	Every fourth conversion	1	Ι	U		
	Cannel scan repeat conversion mode	After completion of every scan conversion	х	1	1		

Table 3.12.2 Relationship between the AD Conversion Modes and Interrupt Requests AD

X: Don't care

(5) AD conversion time

84 states (6.2  $\mu$ s@ f_{FPH} = 27 MHz) are required for the AD conversion for one channel.

(6) Storing and reading the results of AD conversion

The AD conversion data upper and lower registers (ADREG04H/L to ADREG37H/L) store the AD conversion results. (ADREG04H/L to ADREG37H/L are read-only registers.)

In channel fixed repeat conversion mode with ADMODO < ITMO > = "1", the conversion results are stored successively in registers ADREG04H/L to ADREG37H/L. In other modes, the ANO, AN1, AN2 and AN3 conversion results are stored in ADREG04H/L, ADREG15H/L, ADREG26H/L and ADREG37H/L respectively.

Table 3.12.3 shows the correspondence between the analog input channels and the registers that are used to hold the results of AD conversion.

Table 3.12.3 Correspondence between Analog Input Channel and AD Conversion Result Register

	AD Conversion Result Register				
Analog Input Channel (Port 5)	Conversion Mode Other	Channel Fixed Repeat Conversion Mode			
	Than Right	(ADMOD0 <itm0>= "1")</itm0>			
AN0	ADREG04H/L	ADREG04H/L ←			
AN1	ADREG15H/L	ADREG15H/L			
AN2	ADREG26H/L	ADREG26H/L			
AN3	ADREG37H/L	ADREG37H/L			

The AD conversion data storage flag <ADRxRF> indicates whether the AD conversion result register has been read or not. When a conversion result is stored in the AD conversion result register, the flag is set to "1". When either of the AD conversion result registers (ADREGxxH or ADREGxxL) is read, the flag is cleared to "0".

Reading the AD conversion result also clears the AD conversion end flag ADMOD0<EOCF> to "0".

Example:

a. Channel fixed repeat conversion mode

Convert the analog input voltage on the AN3 pin and write the result to memory address 1800H using the AD interrupt (INTAD) processing routine.

```
Setting of main routine
               7 6 5 4 3 2 1 0
INTE0AD
              X 1 0 0 - - - -
                                        Enable INTAD and set it to interrupt level 4.
            ←
ADMOD1
            \leftarrow 1 - X X 0 0 1 1
                                        Set pin AN3 to the analog input channel.
ADMOD0 ← X X 0 0 0 0 1
                                        Start conversion in channel fixed single conversion mode.
Interrupt routine processing example
-WA
            ← ADREG37
                                         Read value of ADREG37L, ADREG37H to general purpose
                                        register WA (16-bit).
WA
                                        Shift contents read into WA six times to right and zero-fill upper
            >>6
                                        bits.
                                        Write contents of WA to memory address 1800H.
(1800H)
            ← WA
```

b. Channel scan repeat conversion mode

Converts repeatedly the analog input voltages on the three pins AN0, AN1 and AN2, using channel scan repeat conversion mode.

INTEOAD	$\leftrightarrow$ X 0 0 0	Disable INTAD.
	$\mathbf{I} \leftarrow 1 - \mathbf{X} \mathbf{X} 0 0 1 0$	Set pins AN0 to AN2 to be the analog input channels.
	$0 \leftarrow \mathbf{X} \times 0 0 0 1 1 1$	Start conversion in channel scan repeat conversion mode.

X: Don't care, -: No change

# 3.13 Watchdog Timer (Runaway detection timer)

The TMP91CU27/CP27/CK27 contains a watchdog timer of runaway detecting.

The watchdog timer (WDT) is used to return the CPU to normal state when it detects that the CPU has started to malfunction (Runaway) due to causes such as noise.

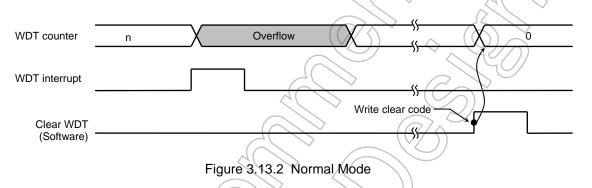
When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU. Connecting the watchdog timer out to the reset pin internally forces a reset. (The level of external RESET pin is not changed)

#### 3.13.1 Configuration

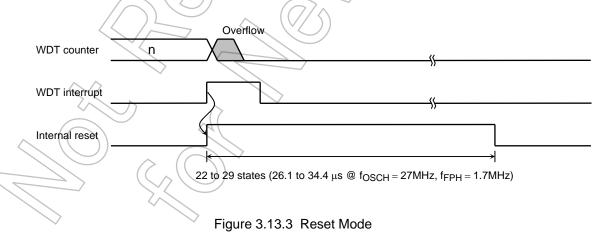
Figure 3.13.1 is a block diagram of watchdog timer. WDMOD<RESCR> RESET pin Internal reset Reset control Interrupt request INTWD WDMOD Selector <WDTP1:0> 2¹⁵ 2¹⁷ 219 fsys Binary counter ò (f_{FPH}/2) (22 stages) R S Reset Internal reset WDMOD<WDTE> Write Write B1H 4EH Watchdog timer control register WDCR Internal data bus



Note: Care must be exercised in the overall design of the apparatus since the watchdog timer may fail to function correctly due to external noise, etc.


## 3.13.2 Operation

The watch dog timer generates an INTWD interrupt specified at WDMOD<WDTP1:0> register. The binary counter for the watch dog timer must be cleared to "0" by an instruction issued from software before the INTWD interrupt is generated. If the binary counter is not cleared due to the CPU malfunction (runaway) such as noise, the binary counter overflows and the INTWD interrupt is generated. CPU can detect the malfunction by the INTWD interrupt and recover to the normal condition.


The watch dog timer starts operating immediately after releasing a reset. It does not operate in IDLE1 or STOP mode.

At IDLE2 mode, its operation conforms to the setting in WDMOD<I2WDT>. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 mode.

The watchdog timer consists of a 22-stage binary counter which uses the system clock ( $f_{SYS}$ ) as the input clock. The binary counter can output  $f_{SYS}/2^{15}$ ,  $f_{SYS}/2^{17}$ ,  $f_{SYS}/2^{19}$  and  $f_{SYS}/2^{21}$ .



In the overflow condition, resetting TMP91CU27/CP27/CK27 themselves is selectable. In this case, the reset time will be between 22 and 29 states (26.1 to  $34.4 \ \mu s @ fosch = 27 \ MHz$ , fFPH = 1.7 MHz) as shown in Figure 3.13.3. Also, system clock fSYS (1 cycle = 1 state) which generated clock by dividing it into 2, that clock fFPH divide clock fosch high-frequency oscillator into 16 is used to resetting.



## 3.13.3 Control Register

The watchdog timer WDT is controlled by two controls registers WDMOD and WDCR.

- (1) Watchdog timer mode register (WDMOD)
- a. Setting the detection time for the watchdog timer in <WDTP1:0>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway.

On a reset this register is initialized to WDMOD<WDTP1:0> = "00".

The detection times for WDT are shown in Figure 3.13.4

b. Watchdog timer enable/disable control register <WDTE>

At reset, the WDMOD<WDTE> is initialized to "1", enabling the watchdog timer.

To disable the watchdog timer, it is necessary to set this bit to "0" before writing the disable code (B1H) to the watchdog timer control register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to "1".

c. Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR>is initialized to "0" on Reset, a Reset by the watchdog timer will not be performed.

## (2) Watchdog timer control register (WDCR)

This register is used to disable and clear the binary counter for the watchdog timer.

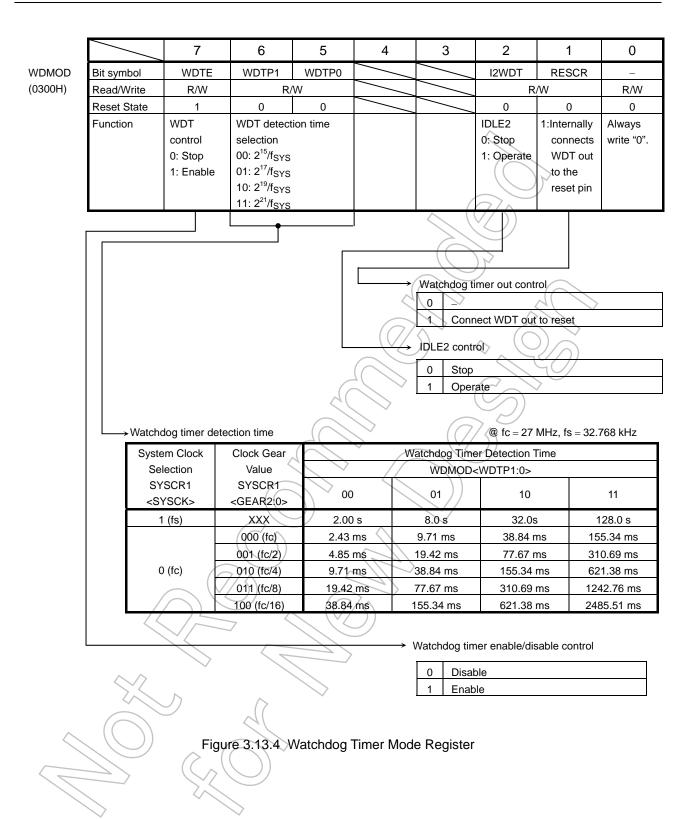
• Disable control

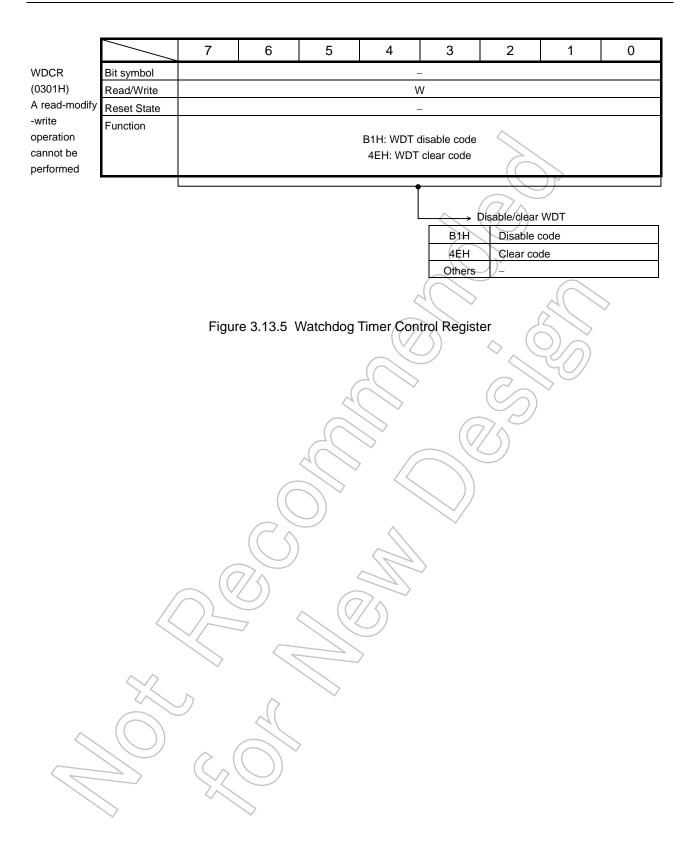
The watchdog timer can be disabled by clearing WDMOD<WDTE> to "0" and then writing the disable code (B1H) to the WDCR register.

WDCR $\leftarrow 0$ 100110WDMOD $\leftarrow 0$ --X-0Clear WDMODWDTE> to "0".WDCR $\leftarrow$ 1011001Write the disable code (B1H).

• Enable control

Set WDMOD<WDTE> to "1".


Watchdog timer clear control


To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.

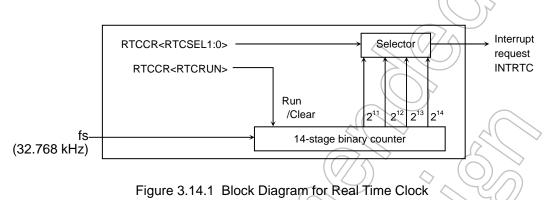
WDCR  $\leftarrow 0.1 \ 0.0 \ 1.1 \ 1.0$  Write the clear code (4EH).

Note1: If the disable control is used, set the disable code (B1H) to WDCR after write the clear code (4EH) once. (Please refer to setting example.)

Note2: If the watchdog timer setting is changed, change setting after setting to disabled condition once.






# 3.14 Special timer for CLOCK

The TMP91CU27/CP27/CK27 include a timer that is used for a clock operation.

An interrupt (INTRTC) can be generated each 0.0625 [s] or 0.125 [s] or 0.25 [s] or 0.50 [s] by using a low frequency clock of 32.768 kHz. A clock function can be easily used.

Special timer for CLOCK can operate in all modes in which a low-frequency oscillation is operated.

In addition,  $\ensuremath{\text{INTRTC}}$  can return from each standby mode except  $\ensuremath{\text{STOP}}$  mode.



The Special timer for CLOCK is controlled by the real time clock control register (RTCCR) as shown in Figure 3.14.2.

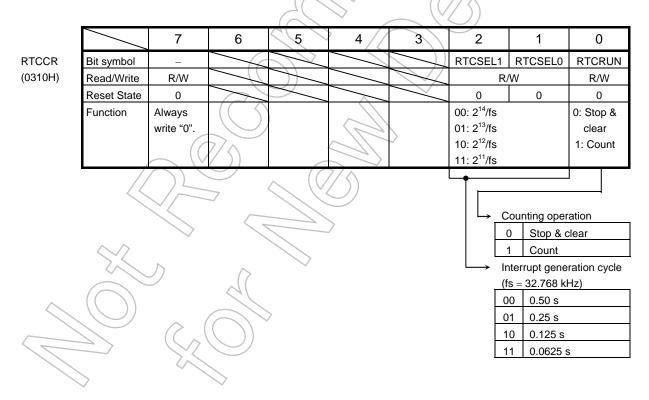



Figure 3.14.2 Real Time Clock Control Register

# 4. Electrical Characteristics

# 4.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Power supply voltage	V _{CC}	–0.5 to 4.0	v
Input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V V
Output current (1 pin)	I _{OL}	2	$\left( \bigcirc \right)$
Output current (1 pin)	I _{ОН}	-2	mA
Output current (Total)	$\Sigma I_{OL}$	80	
Output current (Total)	ΣΙΟΗ	-80	
Power dissipation (Ta = 85°C)	PD	600	mW
Soldering temperature (10 s)	T _{SOLDER}	260	
Storage temperature	T _{STG}	-65 to 150	°C
Operation temperature	T _{OPR}	-40 to 85	

Note: The absolute maximum ratings are rated values that must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, the device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products that include this device, ensure that no absolute maximum rating value will ever be exceeded.

#### Solderability of lead-free products

Test parameter	Test condition	Note
Solderability	Use of Sn-37Pb solder Bath Solder bath temperature = 230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature = 245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (use of lead-free)	Pass: solderability rate until forming ≥ 95%

# 4.2 DC Characteristics (1/2)

	Parameter	Symbol	Condit	ion	Min	Typ.(Note)	Max	Unit
	supply voltage		fc = 4 to 27 MHz	fs = 30 to	2.7			
	VCC = DVCC $VSS = DVSS = 0 V$	V _{CC}	fc = 2 to 10 MHz	34 kHz	1.8	$\langle$	3.6	V
	P00 to P17	VIL	$V_{CC} \ge 2.7 \text{ V}$			$\geq$	0.6	
	(AD0 to AD15)	۷IL	V _{CC} < 2.7 V				0.2 V _{CC}	
e	P20 to P97 (Except P63)	V _{IL1}	$V_{CC} \geq 2.7 \ V$				0.3 V _{CC}	
Itag		VIL1	V _{CC} < 2.7 V		~ (	$\overline{\Omega}$	0.2 V _{CC}	
Input low voltage	RESET, NMI	V _{IL2}	$V_{CC} \geq 2.7 \ V$		-0.3	$\leq $	0.25 V _{CC}	v
tlov	P63 (INT0)	♥ ILZ	V _{CC} < 2.7 V		0.0		0.15 V _{CC}	Ŷ
ndu	AM0 and AM1	V _{IL3}	$V_{CC} \geq 2.7 \ V$			$) \geq$	0.3	
_		VIL3	V _{CC} < 2.7 V			9	0.3	
	X1	V _{IL4}	$V_{CC} \geq 2.7 \ V$		$\langle \rangle \rangle$		0.2 V _{CC}	
		* IL4	V _{CC} < 2.7 V				0.1 V _{CC}	
	P00 to P17	VIH	$V_{CC} \geq 2.7 \ V$	6	2.0	24		
	(AD0 to AD15)	• 111	V _{CC} < 2.7 V		0.7 V _{CC}	$\diamond$ (O		
ge	P20 to P97 (Except P63)	V _{IH1}	$V_{CC} \geq 2.7 \ V$		0.7 V _{CC}		())	
oltaç		▼IH1	V _{CC} < 2.7 V	(	0.8 V _{CC}	$\bigcirc$		
input high voltage	RESET, NMI,	V _{IH2}	V _{CC} ≥ 2.7		0.75 V _{CC}	$(C \rightarrow )^{\vee}$	Vcc + 0.3	v
hig	P63 (INT0)	• 182	V _{CC} < 2.7 V	$\langle \rangle$	0.85 V _{CC}	$\bigcirc$	100 1 0.0	·
Iput	AM0 and AM1	V _{IH3}	$V_{CC} \ge 2.7 V$		V _{CC} – 0.3	7		
-		* IH3	V _{CC} < 2.7 V		V _{CC} – 0.3	())		
	X1	V _{IH4}	$V_{CC} \ge 2.7 V$		0.8 V _{CC}			
		* 1⊓4	V _{CC} < 2.7 V		0.9 V _{CC}			
Output	low voltage	V _{OL}		V _{CC} ≥ 2.7 V	$\langle \rangle$		0.45	
Sarbar		· 0L		V _{CC} < 2.7 V			0.15 V _{CC}	v
Output	high voltage	Vон		V _{CC} ≥ 2.7 V	V _{CC} – 0.3			
Samu		.01	I _{OH} = -200 μA	V _{CC} < 2.7 V	0.8 V _{CC}			

Note: Typical values are for when Ta =  $25^{\circ}$ C and V_{CC} = 3.0 V uncles otherwise noted.

## DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ. (Note1)	Max	Unit
Input leakage current	ILI	$0.0 \leq VIN \leq V_{CC}$		0.02	±5	A
Output leakage current	ILO	$0.2 \leq VIN \leq V_{CC} - 0.2$		0.05	±10	μΑ
Power down voltage (@STOP, RAM back up)	V _{STOP}	$\label{eq:VIL2} \begin{array}{l} VIL2 = 0.2 \ V_{CC}, \\ VIH2 = 0.8 \ V_{CC} \end{array}$	1.8		3.6	V
RESET pull-up resistor	Paga	$V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}$	100	(())	400	kΩ
RESET pull-up resistor	R _{RST}	$V_{CC} = 2 \text{ V} \pm 10\%$	200		1000	K22
Pin capacitance	C _{IO}	fc = 1 MHz		$\langle 0/ \rangle$	10	pF
Schmitt width	V	$V_{CC} \ge 2.7 \text{ V}$	0.4	1.0		V
RESET, NMI, INTO	V _{TH}	V _{CC} < 2.7 V	0.3	0.8		v
Programmable pull-up resistor	R _{KH}	$V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}$	100	),r	400	kΩ
Frogrammable pull-up resistor	r KH	$V_{CC} = 2 \text{ V} \pm 10\%$	200		1000	K52
NORMAL (Note 2), (Note 3)			$C \land$	11.5 (10.8)	19.0	
IDLE2 (Note 3)		$V_{CC} = 2.7 V \text{ to } 3.6 V$ fc = 27 MHz		5.5 (4.8)	8.0	mA
IDLE1 (Note 3)			$\langle \zeta \rangle$	2.5 (1.8)	4.0	
NORMAL (Note 2), (Note 3)		V _{CC} = 3 V ± 10%	$\mathcal{D}$	11.5 (10.8)	16.0	
IDLE2 (Note 3)		$f_{CC} = 27 \text{ MHz}$		5.5 (4.8)	7.5	mA
IDLE1 (Note 3)				2.5 (1.8)	3.5	
NORMAL (Note 2), (Note 3)		V _{CC} = 2 V ± 10 %		3.5 (3.0)	5.0	
IDLE2 (Note 3)		fc = 10 MHz	G	2.0 (1.5)	3.0	mA
IDLE1 (Note 3)	I _{CC}	(Typ. V _{CC} = 2.0 V)		0.9 (0.4)	1.8	
SLOW (Note 2)			$\langle \rangle$	14.5	30	
IDLE2		V _{CC} = 2.7 V to 3.6 V fs = 32.768 kHz		7.0	19	μA
IDLE1			$\langle \rangle \rangle$	5.0	15	
SLOW (Note 2)		$V_{CC} = 2 V \pm 10 \%$		10	20	
IDLE2		fs = 32.768 kHz		5.0	13	μA
IDLE1		(Typ. V _{CC} = 2.0 V)		3.0	10	
STOP		V _{CC} = 1.8 V to 3.6 V	$\geq$	0.1	10	μA

Note 1: Typical values are for when Ta = 25°C and  $V_{CC}$  = 3.0 V unless otherwise noted.

Note 2: Icc measurement conditions (NORMAL, SLOW):

All functions are operational; output pins are open and input pins are fixed.

Note 3: Power supply cuurent from AVCC pin is included in power supply current of V_{CC} pin. Also, AVCC pin share

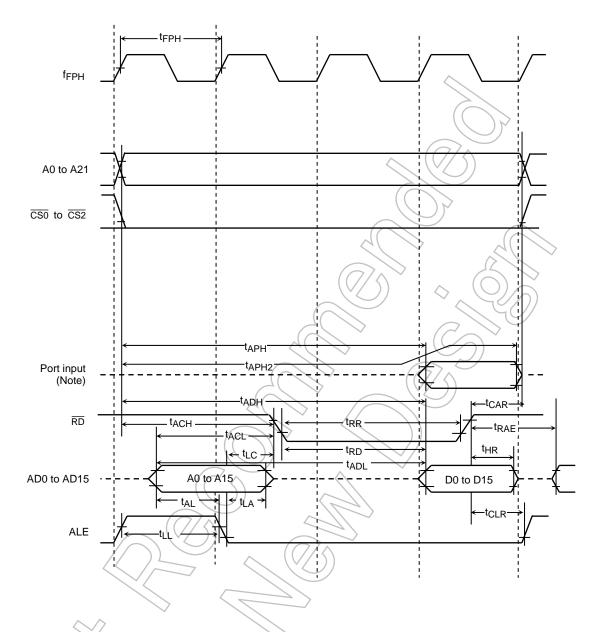
with AD reference power supply in TMP91CU27/CP27/CK27. Therefore, it is included in power supply current of  $V_{CC}$  pin that not only power supply current from AVCC pin but also current to ladder resitster. Insert of ( ) is current value when VREF is Off.

## 4.3 AC Characteristics

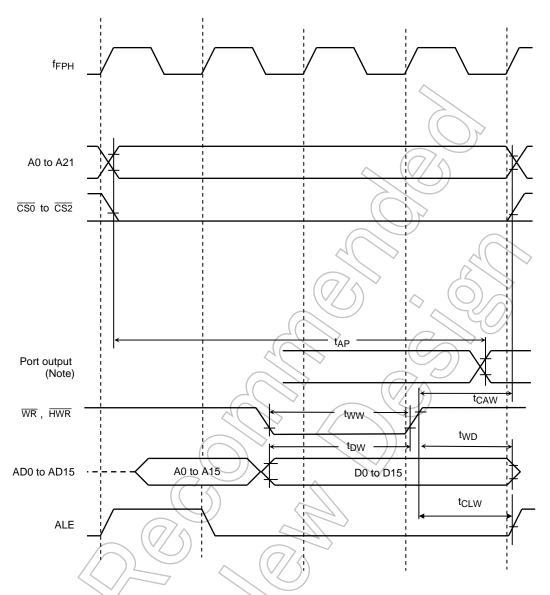
(1) Vcc = 2.7 V to 3.6 V

No.	Parameter	Symbol	Vari	able	f _{FPH} = 2	27 MHz	Unit
NO.	Falameter	Symbol	Min	Max	Min	Max	Unit
1	f _{FPH} period ( = x)	t _{FPH}	37.0	31250	37.0		ns
2	A0 to A15 valid $\rightarrow$ ALE falling	t _{AL}	0.5x - 6		12		ns
3	ALE falling $\rightarrow$ A0 to A15 hold	t _{LA}	0.5x – 16		2		ns
4	ALE high pulse width	t _{LL}	x -20		17	),	ns
5	ALE falling $\rightarrow \overline{RD} / \overline{WR}$ falling	t _{LC}	0.5x – 14		4	/	ns
6	$\overline{RD}$ rising $\rightarrow ALE$ rising	t _{CLR}	0.5x – 10	$\langle \rangle$	(/8))		ns
7	$\overline{WR}$ rising $\rightarrow ALE$ rising	t _{CLW}	x –10	$\geq$	27		ns
8	A0 to A15 valid $\rightarrow \overline{RD} / \overline{WR}$ falling	t _{ACL}	x – 23		14		ns
9	A0 to A21 valid $\rightarrow \overline{RD} / \overline{WR}$ falling	t _{ACH}	1.5x – 26		29		ns
10	$\overline{\text{RD}}$ rising $\rightarrow$ A0 to A21 hold	t _{CAR}	0.5x – 13		5		ns
11	$\overline{\rm WR}$ rising $\rightarrow$ A0 to A21 hold	t _{CAW}	x – 13	$\langle \langle \rangle$	24		ns
12	A0 to A15 valid $\rightarrow$ D0 to D15 input	t _{ADL}	(	3.0x - 38		73	ns
13	A0 to A21 valid $\rightarrow$ D0 to D15 input	t _{ADH}		3.5x – 41		88	ns
14	$\overline{\text{RD}}$ falling $\rightarrow$ D0 to D15 input	t _{RD}		2.0x - 30		× (44)	ns
15	RD low pulse width	t _{RR}	2.0x - 15		59		ns
16	$\overline{\text{RD}}$ rising $\rightarrow$ D0 to D15 hold	t _{HR}	0	$\overline{}$	0	2	ns
17	$\overline{\text{RD}}$ rising $\rightarrow$ A0 to A15 output	t _{RAE}	x – 15		22		ns
18	WR low pulse width	tww	1.5x - 15	(	40		ns
19	D0 to D15 valid $\rightarrow \overline{WR}$ rising	t _{DW}	1.5x – 35		20		ns
20	$\overline{\rm WR}$ rising $\rightarrow$ D0 to D15 hold	t _{WD}	x – 25		12		ns
21	A0 to A21 valid $\rightarrow$ Port input	taph		3.5x – 89		40	ns
22	A0 to A21 valid $\rightarrow$ Port hold	t _{APH2}	✓ 3.5x		129		ns
23	A0 to A21 valid $\rightarrow$ Port valid	(t _{AP} ))		3.5x + 80		209	ns

AC measurement conditions


• Output level: High 0.7 × V_{CC} /Low 0.3 × V_{CC}, C_L = 50 pF

- Input level: High 0.9  $\times$  V_{CC} /Low 0.1  $\times$  V_{CC}


Note: Symbol [x] in the above table means the period of clock f_{FPH}. It's half period the system clock f_{SYS} for CPU core.

The period of clock  $f_{FPH}$  depends on the clock gear setting or the selection of high/low oscillator frequency.

(2) Read cycle



Note: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as RD and CS are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative. (3) Write cycle



Note: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as  $\overline{WR}$  and  $\overline{CS}$  are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

## 4.4 AD Conversion Characteristics

					$AVCC = V_{CC},$	AVSS = V _S
Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Analog input voltage	V _{AIN}		AVSS		AVCC	V
Error	_	$V_{CC}$ = 2.7 V to 3.6 V		±1.0	±4.0	LSB
(Not including quantization errors)	_	$V_{CC}=2~V\pm10\%$		±1.0	±4.0	LOD

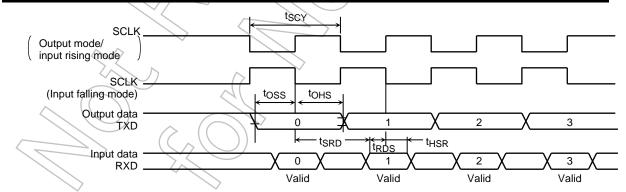
Note 1:1 LSB = (AVCC - AVSS)/1024 [V]

Note 2: Minimum operation frequency:

AD converter operation is guranteed only when using fc (High-frequency oscillator).

fs (Low-frequency oscillator) is not guranteed. However, operation is guaranteed if the clock frequency selected by the clock gear is over 4 MHz.

Note 3: The value for  $I_{CC}$  (Current of  $V_{CC}$  pin) includes the current which flows through the AVCC pin.


#### Serial Channel Timing (I/O interface mode) 4.5

#### (1) SCLK input mode

Symbol	Variat	10 MHz		27 MHz		Unit	
Symbol	Min	Max	Min	Max	Min	Max	Unit
t _{SCY}	16X		1.6	$\langle$	0.59		μS
toss	$t_{SCY}/2 - 4X - 110$ (V _{CC} = 2.7 V to 3.6 V)		290	$\mathcal{C}$	38		ns
·055	$t_{SCY}/2 - 4X - 180$ (V _{CC} = 2 V ± 10%)		220		$\sum_{i=1}^{n}$		113
t _{OHS}	$t_{SCY}/2 + 2X + 0$		1000	$\mathcal{O}$	370		ns
t _{HSR}	3X + 10		310	>	121		ns
t _{SRD}		tscy-0	$\square$	1600	2	592	> ns
t _{RDS}	0		0 (/		0	$\mathbb{Z}$	ns
t mode			((	2	20	J	
	toss tohs thsr tsrD trDs	Symbol         Min $t_{SCY}$ 16X $t_{SCY}$ 16X $t_{OSS}$ $t_{SCY}/2 - 4X - 110$ $V_{OC} = 2.7 V to 3.6 V$ $t_{SCY}/2 - 4X - 180$ $V_{CC} = 2 V \pm 10\%$ $t_{SCY}/2 - 4X - 180$ $t_{OHS}$ $t_{SCY}/2 + 2X + 0$ $t_{HSR}$ $3X + 10$ $t_{SRD}$ $0$	$\frac{\text{Min}}{\text{Max}} = \frac{\text{Max}}{\text{Max}}$ $\frac{\text{t}_{SCY}}{\text{t}_{SCY}/2 - 4X - 110} + \frac{\text{t}_{SCY}/2 - 4X - 110}{(\text{V}_{CC} = 2.7 \text{ V to } 3.6 \text{ V})} + \frac{\text{t}_{SCY}/2 - 4X - 180}{(\text{V}_{CC} = 2 \text{ V} \pm 10\%)} + \frac{\text{t}_{SCY}/2 - 4X - 180}{(\text{V}_{CC} = 2 \text{ V} \pm 10\%)} + \frac{\text{t}_{SCY}/2 + 2X + 0}{(\text{V}_{CC} = 2 \text{ V} \pm 10\%)} + \frac{\text{t}_{SCY}/2 + 2X + 0}{(\text{V}_{CC} = 2 \text{ V} \pm 10\%)} + \frac{\text{t}_{SRD}}{\text{t}_{SRD}} = \frac{3X + 10}{(\text{t}_{SCY} - 0)} + \frac{100}{(\text{t}_{SCY} - 0)} + \frac{100}{(\text{t}_{S$	Symbol         Min         Max         Min $t_{SCY}$ 16X         1.6 $t_{SCY}$ 16X         1.6 $t_{SCY}$ 24X - 110         290 $t_{OCC}$ 2.7 V to 3.6 V)         290 $t_{SCY}/2 - 4X - 180$ 220 $(V_{CC} = 2 V \pm 10\%)$ 220 $t_{OHS}$ $t_{SCY}/2 - 4X - 180$ 1000 $t_{HSR}$ $3X + 10$ 1000 $t_{HSR}$ $3X + 10$ 310 $t_{SRD}$ 0         0	Symbol         Min         Max         Min         Max $t_{SCY}$ 16X         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6 <td< td=""><td>Symbol         Min         Max         Min         Max         Min           $t_{SCY}$         16X         1.6         0.59           $t_{SCY}/2$         4X         110         290         38           $t_{OSS}$ $t_{SCY}/2$         4X         100         290         38           $t_{OSS}$ $t_{SCY}/2$         4X         180         220         -           $t_{OSS}$ $t_{SCY}/2$         4X         1000         370           $t_{OHS}$ $t_{SCY}/2$         4X         1000         370           $t_{HSR}$ $3X$         10         121           $t_{SRD}$         0         $t_{SCY} = 0$         1600</td><td>Symbol         Min         Max         Min         Max         Min         Max           $t_{SCY}$         16X         1.6         0.59         16X         1.6         0.59         16X         16X         1.6         0.59         16X         16X</td></td<>	Symbol         Min         Max         Min         Max         Min $t_{SCY}$ 16X         1.6         0.59 $t_{SCY}/2$ 4X         110         290         38 $t_{OSS}$ $t_{SCY}/2$ 4X         100         290         38 $t_{OSS}$ $t_{SCY}/2$ 4X         180         220         - $t_{OSS}$ $t_{SCY}/2$ 4X         1000         370 $t_{OHS}$ $t_{SCY}/2$ 4X         1000         370 $t_{HSR}$ $3X$ 10         121 $t_{SRD}$ 0 $t_{SCY} = 0$ 1600	Symbol         Min         Max         Min         Max         Min         Max $t_{SCY}$ 16X         1.6         0.59         16X         1.6         0.59         16X         16X         1.6         0.59         16X         16X

#### (2) SCLK output mode

Parameter	Symbol	Varia	Variable			27 MHz		Unit	
Falameter	Symbol	Min	Max (		Max	Min	Max	Unit	
SCLK period	t _{SCY}	16X	8192X	1.6	819	0.59	303	μS	
Output data $\rightarrow$ SCLK rising/falling *	toss	t _{SCY} /2 - 40		760		256		ns	
SCLK rising/falling * → Output data hold	tOHS	t _{SCY} /2 - 40		760		256		ns	
SCLK rising/falling * $\rightarrow$ Input data hold	tHSR	<b>)</b> 0		0		0		ns	
SCLK rising/falling * $\rightarrow$ Valid data input	tsrd		t _{SCY} – 1X – 180		1320		375	ns	
Valid data input $\rightarrow$ SCLK rising/falling *	t _{RDS}	1X + 180	$\hat{\mathbf{b}}$	280		217		ns	



Note 1: SCLK rising/falling: The rising edge is used in SCLK rising mode.

The falling edge is used in SCLK falling mode.

Note 2:27 MHz and 10 MHz values are calculated from  $t_{SCY}\,{=}\,16X$  case.

Note 3: Symbol [x] in the above table means the period of clock f_{FPH}. It's a half period of the system clock f_{SYS} for CPU core.

The period of clock f_{FPH} depends on the clock gear setting or the selection of high/low oscillator frequency.

## 4.6 Event Counter (TA0IN, TA4IN, TB0IN0 and TB0IN1)

Parameter	Symbol	Varia	10 MHz		27 MHz		Unit	
Falanetei	Symbol	Min	Max	Min	Max	Min	Max	Offic
Clock period	t _{VCK}	8X + 100		900	$\sim$	396		ns
Clock low level pulse width	t _{VCKL}	4X + 40		440	/	188		ns
Clock high level pulse width	t _{VCKH}	4X + 40		440	(	188		ns

#### 4.7 Interrupt and Capture

(1)  $\overline{\text{NMI}}$  and INT0 Interrupts

Parameter	Symbol	Vari	10 MHz 27			ЛНz	Unit	
i didineter	Cymbol	Min	Max	Min	Max	Min	Max	Unit
NMI and INT0 low level pulse width	t _{INTAL}	4X + 40		440		188		ns
NMI and INT0 high level pulse width	t _{INTAH}	4X + 40		440	$\Diamond$	188	)	ns

(2) INT5 and INT6 interrupts, capture

INT5 and INT6 input pulse width depend on the system clock selection and clock selection for prescaler. Below table show pulse width of each operation clock.

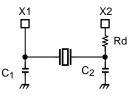
		A		$\langle \frown \rangle$	_	
System Clock	Clock Selection	tint	BL	tı tı	NTBH	
Selection	for Prescaler	(INT5 and INT6 low	level pulse width)	(INT5 and INT6 h	igh level pulse width)	Unit
SYSCR1	SYSCR0	Variable	f _{FPH} = 27 MHz	Variable	f _{FPH} = 27MHz	Unit
<sysck></sysck>	<prck1:0></prck1:0>	Min	Min 🔨	Min	Min	
0 (fc)	00 (f _{FPH} )	8X + 100	396	8X + 100	396	ns
0 (10)	10 (fc/16)	128Xc + 0.1	4.8	128Xc + 0.1	4.8	
1 (fs)	00 (f _{FPH} )	8X + 0.1	244.3	8X + 0.1	244.3	μs

Note 1: "Xc" shows period of clock fc in high frequency oscillator.

Note 2: Symbol [x] in the above table means the period of clock f_{FPH}. It's half period the system clock f_{SYS} for CPU core.

The period of clock f_{FPH} depends on the clock gear setting or the selection of high/low oscillator frequency.

### 4.8 Recommended Oscillation Circuit


The TMP91CU27/CP27/CK27 have been evaluated the by the oscillator vender below. Use this information when selecting external parts.

Note :The total load value of the oscillator is the sum of external loads (C1 and C2) and the floating load of the actual assembled board. There is a possibility of operating error when using C1 and C2 values in the table below. When designing the board, design the minimum length pattern around the oscillator. We also recommend that oscillator evaluation be carried out using the actual board.

XT1

 $C_1$ 

(1) Connection example



High-frequency oscillation connection



 $C_2$ 

Rd

### (2) TMP91CU27/CP27/CK27 Recommended ceramic oscillator

TMP91CU27/CP27/CK27 recommends the high-frequency oscillator by Murata Manufacturing Co., Ltd.

Please refer to the following URL http://www.murata.co.jp

## 5. Table of SFRs

The SFRs (Special function registers) include the I/O ports and peripheral control registers allocated to the 4-Kbyte address space from 000000H to 000FFFH.

- (1) I/O port
- (2) I/O port control
- (3) Interrupt control
- (4) Chip select/wait control
- (5) Clock control
- (6) 8-bit timer control
- (7) 16-bit timer control
- (8) UART/serial channel control
- (9) I²C bus/serial channel control
- (10) AD converter control
- (11) Watchdog timer control
- (12) Special timer for CLOCK

#### Table layout

Symbol	Name	Address	76	$\geq$ (	1 0	O
			$\square$	$\langle \rangle$	$(\mathcal{O} \land \land)$	$\rightarrow$ Bit symbol
			$\sim$		$-\langle \rangle$	$\rightarrow$ Read/Write
						$\rightarrow$ Initial value after reset
			$\bigcirc$		$\lambda$ D)	$\rightarrow$ Remarks

Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these registers.

Example: When setting only bit0 of the register PxCR to "1", the instruction "SET 0, (PxCR)" cannot be used. The LD (Transfer) instruction must be used to write all eight bits.

#### Read/Write

R/W: Both read and write are possible.

- R: Only read is possible
- W: Only write is possible

W*: Both read and write are possible (when this bit is read as 1.)

Prohibit RMW: A read-modify-write operation cannot be performed. (The EX, ADD, ADC, BUS, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET, RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD and RRD instruction are read-modify-write instructions.)

R/W*: A read-modify-write operation cannot be performed. when controlling the pull-up resistor.

[1] Port

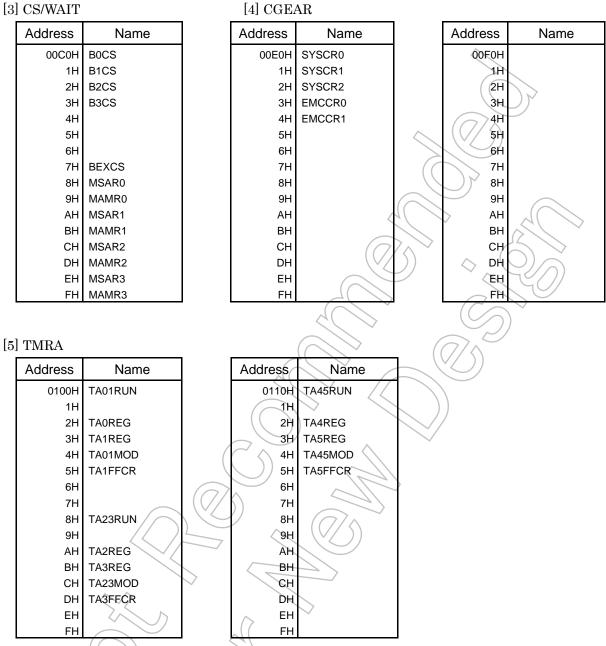
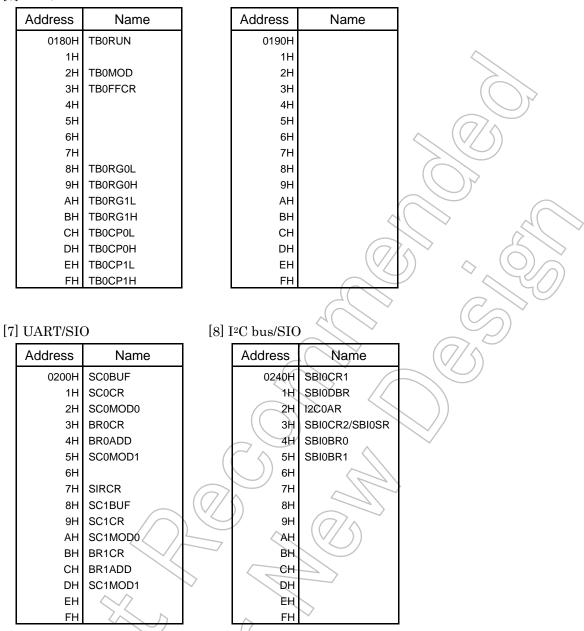

	Address	Name		Address	Name		Address	Name
Γ	0000H	P0		0010H			0020H	
	1H	P1		1H			<u>(1</u> H	
	2H	P0CR		2H	P6		2H	
	3H			3H	P7		(3H	
	4H	P1CR		4H	P6CR		4મ.	$\mathcal{I}$
	5H	P1FC		5H	P6FC		5H	
	6H	P2		6H	P7CR	$\sim$	( / 6H	
	7H	P3		7H	P7FC		7H	
	8H	P2CR		8H	P8	((	8H	
	9H	P2FC		9H	P9		_)У эн	
	AH	P3CR		AH	P8CR	$\bigcirc$	AH	
	BH	P3FC		BH	P8FC	$1( \sim$	> BH	
	СН	P4		CH	P9CR	$\geq$	CH	
	DH	P5		DH	P9FC	7~~	DH	$\sim$
	EH	P4CR		EH		))	C EH	
Ĺ	FH	P4FC		FH			<pre><fh< pre=""></fh<></pre>	ODE
[2]	INTC							)
	Address	Name		Address	Name	( (	Address	Name
	0080H	DMA0V		0090H	INTEOAD	$\sim$	00A0H	INTETC01
	1H	DMA1V		TH			1H	INTETC23
	2H	DMA2V		2H			) 2H	
	3H	DMA3V		( 3H)	INTE56		3H	
	4H			4H	/	$\sim$	4H	
	5H		(	○ 5H	INTETA01		5H	
	6H			6H	INTETA23		6H	
	7H		$\overline{\Omega}$	7H	INTETA45	>	7H	
	8H	INTCLR		5) 8H			8H	
	9H	DMAR		9H	INTETBO		9H	
	AH	DMAB		(AH	$(\vee \bigcirc)$		AH	
	BH				INTETB01V		BH	
		ІІМС			INTESO		CH	
	DH		$\sim$	DH	INTES1		DH	
	EH FH	$\langle \rangle$		EH. FH	INTES2RTC		EH FH	

Table 5.1 Address Map for SFRs

Note: Do not access to the unnamed addresses, e.g., addresses to which no register has been allocated.

#### [3] CS/WAIT


#### Table 5.2 Address Map for SFRs



Note: Do not access to the unnamed addresses, e.g., addresses to which no register has been allocated.

#### [6] TMRB

Table 5.3 Address Map for SFRs



Note: Do not access to the unnamed addresses, e.g., addresses to which no register has been allocated.

## [9] 10-bit ADC

Table 5.4 Address Map for SFRs

10-bit AD	0			
Address	Name		Address	Name
02A0H	ADREG04L		02B0H	ADMOD0
1H	ADREG04H		1H	ADMOD1
2H	ADREG15L		2H	
3H	ADREG15H		3H	
4H	ADREG26L		4H	
5H	ADREG26H		5H	
6H	ADREG37L		6H	
7H	ADREG37H		7H	
8H			8H	
9Н			9H	
AH			AH	
вн			BH	5
СН			СН	
DH			DH	$(\alpha)$
EH			EH	
FH			FH	
0] WDT Address	Name	[11	] Special ti Address	mer for CLOCK Name
0300H	WDMOD		0310H	RTCCR
1H 2H	WDCR		1H 2H	
2H 3H			3H	
3H 4H				
5H			7 5H	$\land$
6H		()	)) 6Н	
7H		$\frown$	7H	
8H		(7/)	8н	
9H			9Н	
AH			(AH	$(\langle / \rangle \langle \rangle)$
BH			BH	
			CH	
СН				
CH DH		$\geq$		
DH		$\rightarrow$	DH	
		$\searrow$		

(1) I/O port

(1)	1/0 poi	0	1				1	1	1	
Symbol	Name	Address	7	6	5	4	3	2	1	0
			P07	P06	P05	P04	P03	P02	P01	P00
P0	Port 0	00H				R/	/W			
				Data	a from extern	al port (Outp	out latch regi	ster is undefi	ned)	
			P17	P16	P15	P14	P13	<b>P12</b>	P11	P10
P1	Port 1	01H				R/				
				Data from external port (Output latch register is cleared to "0")						
					P25	P24	P23	R22	P21	P20
P2	Port 2	06H	$\backslash$	$\sim$	1 20					1 20
				$\sim$	Dat	a from extern			ister is set to	"1")
								P32	P31	P30
									R/W*	F30
			$\sim$	$\sim$			$\left( \bigcirc \right)$	Data from	N/ VV *	
						$\left  \right\rangle$		external		
						$\sim$		port		1
		07H						(Note1)		
						(7)	$\sim$	0 (output	$\sim \sim$	
P3	Port 3						)) (	latch register):	20	
FЭ	FUILS	(Prohibit			(			Pull-up	<i>G()</i>	
		RMW)						resistor		
					20		(	OFF	_	_
								1 (output latch		
						$\rightarrow$	$(\mathcal{O})$	(register):		
				(		7		Pull-up		
				4				resistor		
								ON		
				$\sim$		$\mathcal{N}$	$\rightarrow$	P42	P41	P40
									R/W*	
		0CH		$\sim$					n external po	rt Note1
P4	Port 4	(Prohibit	(	( )		$\sim$		0(output late		
		RMW)				$\langle \langle \rangle \rangle$			: Pull-up re	sistor OFF
			$(\mathcal{O}/\mathcal{O})$	$\land$	$\leq$	$\sim$		1(output late		
		6				$\geq$			: Pull-up res	sistor ON
					$\uparrow \downarrow	$\sum$	P53	P52	P51	P50
P5	Port 5	ODH			$\sim$	$\sum$		F	7	
								Data from e	external port	
			$\checkmark$	N	$\sim$		P63	P62	P61	P60
P6	Port 6	<b>12H</b>			$\sim$			R	/W	
FΟ		N N	$\sim$		$\sim$	$\overline{}$		Data from e	external port	
				$ \langle \rangle$			(Out	tput latch reg	ister is set to	"1")
~		)		$\checkmark$		P74	P73	P72	P71	P70
~~~~	Dourt			$\sim$				R/W		
P7	Port 7	13H	$\times 10$	\mathcal{N}			Data	from externa	al port	
$\langle \langle \langle \rangle \rangle$			$\langle \mathcal{N} \rangle$	\leq				tch register is		
			A)	\sim	\sim	/	P83	P82	P81	P80
_	\rightarrow			\sim	\sim	\sim			/W	
P8	Port 8	18H							external port	
							(Out		jister is set to	"1")
			P97	P96	P95	P94	P93	P92	P91	P90
P9	Port 9	19H	R/W	R/W	195	1 34		/W	1.91	1 30
		1011	13/99	11/11						
-			1	1	D-+	o from outom	nal port (Out	nut latah ra-	intor in ant to	"1")

Note: Output latch is set to "1".

- Symbol Name Address 7 6 5 4 3 2 1 0 P03C P00C P07C P06C P05C P04C P02C P01C 02H W Port 0 P0CR (Prohibit 0 0 0 0 0 0 0 0 control RMW) 0: Input 1: Output (When access to external, become AD7 to AD0 and this register is cleared to "0".) P17C P16C P15C P14C P13C P12C P11C P10C 04H Port 1 W P1CR (Prohibit control 0 0 0 0 0 0 0 0 RMW) <<Refer to column of P1FC>> P17F P16F P15F P14F P13F P12F P11F P10F 05H Port 1 W P1FC (Prohibit function 0 0 0 0 0 0 0 0 RMW) P1FC/P1CR = 00: Input port, 01: Output port, 10: AD8 to AD15, 11; A8 to A15 P20C P25C P24C P23C P22C P21C 08H Port 2 W P2CR (Prohibit control 0 0 0 0 0 0 RMW) <<Refer to column of P2FC>> **P21F** P25F P24F P20F P23F P22F 09H Port 2 W P2FC (Prohibit function 0 0 0 0 0 0 RMW) P2FC/P2CR = 00: Input port, 01: Output port, 10: A0 to A5, 11: A16 to A21 P32C 0AH w Port 3 P3CR (Prohibit 0 control RMW) 0: Input 1: Output P32F P31F P30F 0BH W W Port 3 P3FC (Prohibit 0 0 0 0 function RMW) Always 0: Port 0: Port 0: Port 1: HWR 1: WR 1: RD write "0" P42C P41C P40C 0EH Port 4 W P4CR (Prohibit control 0 0 0 RMW) 0: Input 1: Output P42F P41F P40F OFH. W Port 4 P4FC (Prohibit 0 0 0 function RMW) 0: Port 0: Port 0: Port 1: CS1 1: CS0 1: CS2
- (2) I/O port control (1/2)

Note 1: When port 2 is used as address bus A21 to A16 or A5 to A0, set P2FC after set P2CR.

Note 2: "L" level is outputted from P30 pin also during reading internal area by setting P3<P30> to "0", set P3FC<P30F> to "1".

Note 3: When port 4 is used as chip select signal $\overline{CS0}$ to $\overline{CS2}$ set P4CR to "1" after set P4FC to "1".

Symbol	Name	Address	7	6	5	4	3	2	1	0
							P63C	P62C	P61C	P60C
	Port 6	14H			\sim	//		V		
P6CR	control	(Prohibit	\mathbb{N}	/	\sim	\sim	0	0	0	0
		RMW)						0: Input 1		
			/	/	/		P63F	P62F	P61F	P60F
	De ré C	15H		/					K	
P6FC	Port 6 function	(Prohibit					0		0	0
	Turicuori	RMW)					0: Port	0: Port	0: Port	0: Port
			-	-			1/INTO	1: SCL	1: SDA/SO	1: SCK out
		16H				P74C	P73C	P72C	P71C	P70C
P7CR	Port 7	(Prohibit						V W	t	i
1700	control	RMW)				0	0	0	0	0
		,					0:1	nput 1: Outp	put	~
						P74F		P72F <	P71F	
	Port 7	17H				W		w sz	W	
P7FC	function	(Prohibit				0//		0()	0	
		RMW)				0: Port	2	0: Port	0: Port	
						1: TA5OUT		1: TA3OUT	1: TA1OUT	
		1AH				\sim	P83C	P82C	P81C	P80C
P8CR	Port 8	(Prohibit				×		<u> </u>	/	
	control	RMW)					0	0	0	0
		,	/		Δ			0: Input	1: Output	
				4	\square	\rightarrow	P83F	P82F	P81F	P80F
		1BH				\sim		W	/	
P8FC	Port 8	(Prohibit		40			0	0	0	0
	function	RMW)			\mathcal{D}		0: Port	0: Port	0: Port	0: Port
		,		\bigcirc		\frown	1:TB0OUT1	1:TB0OUT0		1: INT5/
				())					/TB0IN1	TB0IN0
	_	1CH	P97C	P96C	P95C	P946	P93C	P92C	P91C	P90C
P9CR	Port 9	(Prohibit	W	∕_ w			<u>۷</u>	1	i	r
	control	RMW)		<u>)</u> 1	0	0	0	0	0	0
						0: Input	1: Output			
					P95F		P93F	P92F		P90F
	Port 9	1DH			W		W	W		W
P9FC	function	(Prohibit	\checkmark	\mathcal{N}	0		0	0		0
		RMW)			0: Port		0: Port	0: Port		0: Port
	4	\sim			1: SCLK1		1: TXD1	1: SCLK0		1: TXD0
	G	\sim		$\downarrow \downarrow$			ODE62	ODE61	ODE93	ODE90
ODE <	Open-drain	2FH	\rightarrow	$ \land $			R/W	R/W	R/W	R/W
<u>, , , , , , , , , , , , , , , , , , , </u>	enable	\mathcal{D}	\rightarrow	\mathcal{A}			0	0	0	0
			$\left(\left(\right) \right)$.)]			1: P62ODE	1: P610DE	1: P93ODE	1: P90ODE

I/O port control (2/2)

Note 1: External interrupt INT0:

Input enable is controlled by P6FC<P63F>. Level/edge selection and rising/falling selection is controlled by IIMC<I0LE, I0EDGE>.

Note 2: External interrupts INT5 and INT6:

Input enable is set by P8FC<P81F, P80F>. The setting of edge is controlled by TB0MOD.

Note 3: When P70 and P73 is used as an input port, the input signal is inputted to 8bit-timer

(TMRA0 and TMRA4) as TA0IN and TA4IN inputs.

Note 4: When P91 and P94 is used as an input port, the input signal is inputted to SIO as serial receiving data RXD0 and RXD1.

(3)	Interruj	pt control	(110)				1			
Symbol	Name	Address	7	6	5	4	3	2	1	0
				INT	AD			IN	Т0	
	INT0		IADC	IADM2	IADM1	IADM0	10C	10M2	I0M1	I0M0
INTE0AD	& INTAD	90H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INTAD	Inter	rupt request	level	1: INT0	Inter	rupt request	level
				IN	T6				τ5	
	Interrupt		I6C	I6M2	I6M1	16M0	I5C	15M2	I5M1	I5M0
INTE56	enable	93H	R		R/W		R	27	R/W	
	INT6/5		0	0	0	0	< 0 (V	0	0	0
			1: INT6	Interru	uput requese	et level	1:3NT5	Inter	rupt request	level
				INTTA1 ((TMRA1)				(TMRA0)	
	INTTA0 &		ITA1C	ITA1M2	ITA1M1	ITA1M0	ITAOC	ITA0M2	ITA0M1	ITA0M0
INTETA01	INTTA1	95H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0 <	0	0
			1: INTTA1	Inter	rupt request	level	1: INTTAO	Inter	rupt request	level
				INTTA3 ((TMRA3)			INTTA2	(TMRA2)	
	INTTA2 &		ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0
INTETA23	INTTA3	96H	R		R/W	$\overline{)}$	R	\sim	R/W	
	enable		0	0	0	0	0	0	0	0
			1: INTTA3	Inter	rupt request	level	1: INTTA2	/ Inter	rupt request	level
				INTTA5 ((TMRA5)	>	\square		(TMRA4)	
	INTTA4 &		ITA5C	ITA5M2	ITA5M1	ITA5M0	ITA4C	TA4M2	ITA4M1	ITA4M0
INTETA45	INTTA5	97H	R	20	R/W		R	/	R/W	
	enable		0	0	0 O	6	0	0	0	0
			1: INTTA5	Inter	rupt request	level	1: INTTA4	Inter	rupt request	level

(3) Interrupt control (1/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
				INTTB01	(TMRB0)			INTTB00	(TMRB0)	
	INTTB00 &		ITB01C	ITB01M2	ITB01M1	ITB01M0	ITB00C	ITB00M2	ITB00M1	ITB00M0
INTETB0	INTTB01	99H	R		R/W	•	R		R/W	•
	enable		0	0	0	0	0	0	0	0
			1: INTTB01	Inter	rupt request	level	1: INTTB00	Inter	rupt request	level
				-	-		IN	TTBOF0 (TM	IRB0 over flo	ow)
	INTTBOF1		-	-	-	-	ITF0C	ITF0M2	TTF0M1	ITF0M0
INTETB01V	(over-flow)	9BH	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
				Always	write "0".		1: INTTBOF0	Inter	rupt request	level
				INT	TX0		$\left(\bigcirc \right)$		RX0	
	INTRX0 &		ITX0C	ITX0M2	ITX0M1	ITX0M0	IRXOC	IRX0M2	IRX0M1	IRX0M0
INTES0	INTTX0	9CH	R		R/W		R		R/W	
	enable		0	0	0	0	0	0 <		0
			1: INTTX0	Inter	rupt request	level	1: INTRX0	Inter	rupt request	level
				INT	TX1			((INT)	RX1	
	INTRX1 &		ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	INTTX1	9DH	R		R/W		R		R/W	
	enable		0	0	0	0	0 ((6	0	0
			1: INTTX1	Inter	rupt request	level	1: INTRX1	Inter	rupt request	level
				INT	RTG	\rangle	$\left(\overline{\Omega} \right)$		SBI	
	INTSBI &		IRTCC	IRTCM2	IRTCM1	IRTCM0	ISBIC) ISBIM2	ISBIM1	ISBIM0
INTES2RTC	INTRTC	9EH	R	20	R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INTRTC	Inter	rupt request	level	1: INTSBI	Inter	rupt request	level
				TML	TC1		\sim	INT	TC0	1
	INTTC0 &		ITC1C	ITC1M2	ITC1M1	(ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTETC01	INTTC1	A0H	R		R/W		R		R/W	1
	enable		0		0		0	0	0	0
			1: (NTTC1	Inter	rupt request	level	1: INTTC0	Inter	rupt request	level
					тсз	~			TC2	1
	INTTC2 &	((),	ITC3C	ITC3M2	ITC3M1) ІТСЗМО	ITC2C	ITC2M2	ITC2M1	ITC2M0
INTETC23	INTTC3	A1H	R		R/W	r	R		R/W	1
	enable		0	0	>0	0	0	0	0	0
			1: INTTC3	Inter	rupt request	level	1: INTTC2	Inter	rupt request	level

Interrupt control (2/3)

/

Symbol	Name	Address	7	6	5	4	3	2	1	0
			/		DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA OV	DMA0	0011	/				R	/W		•
DMA0V	start	80H			0	0	0	0	0	0
	vector						DMA0 s	tart vector		
	DMAA		/		DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	DMA1 start	81H	/	/			R			-
DIVIATV	vector	0111			0	0	0	0) o	0
	VECIOI						DMA1 s	tart vector		
	DMAG		/	/	DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	DMA2 start	82H					R	W		
DIVIAZV	vector	0211	/		0	0	0	0	0	0
	VCCIO						DMA2 s	tart vector		
	DMA3				DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	start	83H				<		/W	$\langle \rangle$	\geq
DIVIASV	vector	0311			0	0	0	0	0	0
	VEOLOI						🕥 DMA3 s	tart vector		-
	Interrupt	88H			CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
INTCLR	clear	(Prohibit				()	i .	W		ł
INTOLIX	control	RMW)			0	0	0	0	0	0
		,			CI	ear interrupt	request flag	by writing D	MA start ve	ctor
	DMA	89H					DMAR3	DMAR2	DMAR1	DMAR0
DMAR	software	(Prohibit					R/W) R/W	R/W	R/W
Dimit	request	RMW)		4	\frown	\rightarrow	0	0	0	0
	register	,	_					1: DMA requ	est in softwa	re
	DMA			\square			DMAB3	DMAB2	DMAB1	DMAB0
DMAB	burst	8AH		\mathcal{H}			R/W	R/W	R/W	R/W
Billing	request	0, 11	\rightarrow		\square		0	0	0	0
	register		($\left(\right)$		\sim	1:	DMA reques	st on burst n	node
					-	$\langle \langle \rangle \rangle$	-	I0EDGE	IOLE	NMIREE
			(w//	w	w	Ŵ	W	W	W	W
	Interrupt	8CH	<u> </u>	0	0	0	0	0	0	0
IIMC	input	(Prohibit		\sim))		INT0	INT0	1:Operation
	mode	RMW)			\langle / \rangle			edge	0: Edge	even on
	control			A	ways write "	0".		0: Rising	1: Level	NMI
	A.	~	\checkmark					1: Falling		rising
		V2								edge

Interrupt control (3/3)

Note: Only one channel can be set once for DMAR register. (Don't write "1" to plural bits.)

Note: TMP91CU27/CP27/CK27 don't include WAIT pin. Therefore, when select "(1 + N) waits", operation is same with "1 wait".

Symbol Name Address 6 5 4 3 2 7 1 0 B0OM1 B0W2 B0E B0OM0 **B0BUS** B0W1 B0W0 W W W W W W W Block 0 COH 0 0 0 0 0 0 0 CS/WAIT Data bus BOCS Set number of wait (Prohibit 0: Disable 00: ROM/SRAM control width 000: 2 waits 100: Reserved RMW) 1: Enable 01:1 register selection 001: 1 wait 101: 3 waits 10: Don't care 0:16 bits 010: (1+N) waits 110: 4 waits 11:-1: 8 bits 011: 0 waits 111: 8 waits B1OM1 B1OM0 B1BUS B1W1 B1E B1W2 B1W0 W W W W W W W Block 1 0 0 0 0 0 Ó 0 C1H CS/WAIT Data bus Set number of wait 0: Disable 00: ROM/SRAM B1CS (Prohibit control width 000: 2 waits 100: Reserved 01: 1: Enable RMW) selection register 001: 1 wait 101: 3 waits 10: Don't care 0: 16 bits 010: (1+N) waits 110: 4 waits 11: 1: 8 bits 011: 0 waits 111:8 waits B2E B2M B2OM1 B2OM0 B2BUS B2W2 B2W1 B2W0 W W W W W W W W Block 2 C2H 0 Ø 1 0 0 0 0 0 CS/WAIT Data bus Set number of wait B2CS (Prohibit 0: 16-MB 00: ROM/SRAM 0: Disable control width 000: 2 waits 100: Reserved RMW) 1: Enable area 01: register selection 001: 1 wait 101: 3 waits Don't care 1:Area 10: 0: 16 bits 010: (1+N) waits 110: 4 waits setting 11: 111: 8 waits 1: 8 bits 011: 0 waits B3E B3OM1 B30M0 **B3BUS** B3W2 B3W1 B3W0 W W Ŵ W W W W Block 3 СЗН Ô 0 0 0 0 0 0 CS/WAIT Data bus Set number of wait B3CS (Prohibit 0: Disable 00: ROM/SRAM control width 000: 2 waits 100: Reserved RMW) 1: Enable 01: register selection 001: 1 wait 101: 3 waits 10: Don't care 0: 16 bits 010: (1+N) waits 110: 4 waits 11: 1:8 bits 011: 0 waits 111: 8 waits BEXBUS BEXW2 BEXW1 BEXW0 W W W W External C7H 0 0 0 0 CS/WAIT Data bus Set number of wait BEXCS Prohibit control width 000: 2 waits 100: Reserved RMW) register selection 101: 3 waits 001: 1 wait 0: 16 bits 010: (1+N) waits 110: 4 waits 1: 8 bits 011: 0 waits 111: 8 waits S23 S22 S21 S20 S19 S18 S17 S16 Memory R/W start MSAR0 C8H address 1 1 1 1 1 1 1 1 register 0 Start address A23 to A16 setting V18 Memory V20 V19 V17 V16 V15 V14~9 V8 address R/W MAMR0 C9H mask 1 1 1 1 1 1 1 1 register 0 CS0 block size. 0: The address compare logic uses this address bit Memory S23 S22 S21 S20 S19 S18 S17 S16 R/W start MSAR1 CAH address 1 1 1 1 1 1 1 1 register 1 Start address A23 to A16 setting V21 V20 V19 V18 V17 V16 V15~9 V8 Memory address R/W MAMR1 CBH mask 1 1 register 1 CS1 block size. 0: The address compare logic uses this address bit

⁽⁴⁾ Chip select/wait control (1/2)

Chip select/wait control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0				
	Memory		S23	S22	S21	S20	S19	S18	S17	S16				
MSAR2	start	ССН				R/	W							
MOARZ	address	ССП	1	1	1	1	1	1	1	1				
	register 2		Start address A23 to A16 setting											
	Memory		V22	V21	V20	V19	V18	V17	V16	V15				
MAMR2	address	СДН				R/	W							
WAWRZ	mask	CDH	1	1	1	1	1	\sum) 1	1				
	register 2			CS2 block size. 0: The address compare logic uses this address bit										
	Memory		S23	S22	S21	S20	S19	S18	S17	S16				
MSAR3	start	СЕН		R/W										
MOARO	address	CER	1	1	1	1) 1	1	1				
	register 3				Star	t address A	23 to A16 se	tting						
	Memory		V22	V21	V20	V19	V18	V17	¥16	V15				
MAMR3	address mask					R	w V		$\langle \rangle$	>				
		CFH	1	1	1	(\overline{b})		1 1		1				
	register 3			CS3 block	size. 0: T	he address	compare log	ic uses this a	address bit					

91CU27-235

(5) Clock control

Symbol	Name	Address	7	6	5	4	3	2	1	0
			XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF	PRCK1	PRCK0
						R/	W			
			1	0	1	0	0	0	0	0
			High-	Low-	High-	Low-	Clock after	Warm-up	Select pres	caler clock
	Sustam		frequency	frequency	frequency	frequency	release of	(WUP)	00: f _{FPH}	
	System clock		oscillator	oscillator	oscillator	oscillator	STOP	0 write:	01: Reserve	ed
SYSCR0	control	E0H	(fc)	(fs)	(fc) after	(fs) after	mode	Don't care 1 write:	10: fc/16	
	register 0		0:Stopped	0:Stopped	release of	release of	0: fc	Warm-up	11: Reserve	ed
	register o		1:Oscillation	1:Oscillation	-	stop mode	1: fs ((start		
					0:Stopped	0:Stopped		0 read: End		
					1:Oscillation	1:Oscillation	(\bigcirc)	of WUP 1 read:		
								Don't end		
			-	_		G	\sim	WUP	\bigcirc	
						4	SYSCK	GEAR2	GEAR1	GEAR0
							$\langle \rangle$	(R/	W	1
						1644	0		0	0
	System						Clock		of high frequ	uency clock
SYSCR1	clock	E1H			((\sim	selection	000: fc	70/	
	control register 1	2			G		0: fc	001: fc/2		
					40	\searrow	1: fs	010: fc/4		
						>	$\overline{\Omega}$	01/1: fc/8		
				($\langle \rangle \rangle$	w.		100: fc/16 Others : Se	tting is prohi	hitod
				A	WUPTM1	WUPTM0	HALTM1	HALTM0		DRVE
				 R/W	R/W	R/W	R/W	R/W		R/W
	System		\backslash	0	1	0	1	1	\sim	0
	clock			Always	· ·		HALT mode			1: Drive the
SYSCR2	control	E2H	6	write "0".			00: Setting			pin in the
	register 2			\sum			01: STOP r			stop
				\sum	10: 2 ¹⁴ /inpt	it frequency	10: IDLE1 r	node		mode
			(7/		11: 2 ¹⁶ /inpu	It frequency	11: IDLE2 r	node		
			PROTECT	/ _	$\overline{\Omega}$		ALEEN	EXTIN	DRVOSCH	DRVOSCL
			R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	EMC		0	0		0	0	0	1	1
EMCCR0		E3H	Protect flag	Always	Always	Always	ALE Output	1: fc	fc oscillator	fs oscillator
	register 0		0: OFF	write "0".	write "1".	write "0".	0: Disable	external	drive ability	drive ability
	\langle	2	1: ON				1: Enable	clock	1: Normal	1: Normal
	L Z	$\langle \rangle \rangle$		\wedge	\checkmark				0: Weak	0: Weak
	EMC		5	7(Write "1FH"·	Protect OFF	-		
EMCCR1	control	E4H		$\langle \rangle$			FH": Protect			
	register 1	<u>)</u> ,		$\gamma \sim$	••••	in oneopt 1		-··		

Note 1: If protection is on by writing except "1FH" code to EMCCR1 register, write operations to the following SFRs

are not possible.

- (1) CS/WAIT controller B0CS, B1CS, B2CS, B3CS, BEXCS, MSAR0, MSAR1, MSAR2, MSAR3, MAMR0, MAMR1, MAMR2, MAMR3
- (2) Clock gear (EMCCR1 can be written to) SYSCR0, SYSCR1, SYSCR2, EMCCR0

Note 2: When using internal SBI, set SYSCR0<PRCK1:0> to "00".

(6) 8-bit timer control (1/2)

(6 –1	TMRA01

Symbol										
Symbol	Name	Address	7	6	5	4	3	2	1	0
			TAORDE				I2TA01	TA01PRUN	TA1RUN	TAORUN
			R/W				R/W	R/W	R/W	R/W
	8-bit timer		0	\sim	\sim	\sim	0	0	0	0
TA01RUN	8-bit timer RUN	100H	Double				IDLE2	TMRA01	Up- counter	Up-counte
	RUN		buffer				0: Stopped	prescaler	(UC1)	(UC0)
			0: Disable				1:Operation	0: Stop and		
			1: Enable					1: Run (Cou	int up)	
	8-bit timer	102H				=	- 6	\sim		
TA0REG		(Prohibit				V	V_ ((
	register	RMW)				Unde	fined	\bigcirc		
	8-bit timer	103H				-	-			
TA1REG		(Prohibit				V	v (()	\geq		
	register	RMW)				Unde	fined)		
			TA01M1	TA01M0	PWM01	PWM00	TA1CLK1	TA1CLK0	TA0CLK1	TA0CLK0
						R		5	1 >	
	8-bit timer		0	0	0	0	0	0	0	0
TA01MOD	source	104H	Operation m	ode	PWM cycle	((7))			Source cloc	
	CLK &		00: 8-bit time		00: Reserve	d (V/)	00: TAOTRO		00: TA0IN p	in input
	mode		01: 16-bit tin		01: 2 ⁶	\sim	01: φT1	570	01: ∳T1	
			10: 8-bit PP		10: 2 ⁷		10: ¢T16	\sim	10: ¢T4	
			11: 8-bit PW		11: 2 ⁸	\sim	11: φT256		11: φT16	TA 4 1
				\rightarrow	-tt		TA1FFC1	TA1FFC0	TA1FFIE	TA1FFIS
	8-bit timer	10511		\rightarrow			(6)	w Z	R/	1
		105H (Prohibit			$\downarrow(\rightarrow \rightarrow) \downarrow$				0	0
TA1FFCR	flip-flop	(Prohibit RMW)		~	$\sim \sim$		00: Invert T 01: SET TA		1: TA1FF	Invertion by 0: TMRA0
	control	(()())		\leq	$\langle \rangle$		10: Clear T		invert enable	0: TMRA0 1: TMRA1
							11: Don't ca		enable	
(6–2) TMRA	123				<i>)</i>		\sim			
Symbol	Name	Address	7	6	5	4	3	2	1	0
- j			TA2RDE	\searrow				TA23PRUN	TA3RUN	
			TAZRUE		/					TAODUN
					7	\rightarrow	I2TA23			TA2RUN
			R/W		4		R/W	R/W	R/W	R/W
TA23RUN	8-bit timer	108H	R/W				R/W 0	R/W 0	R/W 0	R/W 0
TA23RUN	8-bit timer RUN	108H	R/W 0 Double				R/W 0 IDLE2	R/W 0 TMRA23	R/W 0 Up-counter	R/W 0 Up-counter
TA23RUN		108H	R/W				R/W 0 IDLE2 0: Stopped	R/W 0 TMRA23 prescaler	R/W 0 Up-counter (UC3)	R/W 0
TA23RUN		108H	R/W 0 Double buffer				R/W 0 IDLE2 0: Stopped	R/W 0 TMRA23	R/W 0 Up-counter (UC3) clear	R/W 0 Up-counter
TA23RUN	RUN	108H 10AH	R/W 0 Double buffer 0: Disable				R/W 0 IDLE2 0: Stopped	R/W 0 TMRA23 prescaler 0: Stop and	R/W 0 Up-counter (UC3) clear	R/W 0 Up-counter
TA23RUN	RUN 8-bit timer		R/W 0 Double buffer 0: Disable 1: Enable				R/W 0 IDLE2 0: Stopped 1:Operation	R/W 0 TMRA23 prescaler 0: Stop and	R/W 0 Up-counter (UC3) clear	R/W 0 Up-counter
	RUN	10AH	R/W 0 Double buffer 0: Disable 1: Enable			V	R/W 0 IDLE2 0: Stopped 1:Operation	R/W 0 TMRA23 prescaler 0: Stop and	R/W 0 Up-counter (UC3) clear	R/W 0 Up-counter
	RUN 8-bit timer register	10AH (Prohibit	R/W 0 Double buffer 0: Disable 1: Enable			V	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and	R/W 0 Up-counter (UC3) clear	R/W 0 Up-counter
	RUN 8-bit timer register 8-bit timer	10AH (Prohibit RMW) 10BH (Prohibit	R/W 0 Double buffer 0: Disable 1: Enable			V Unde	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and	R/W 0 Up-counter (UC3) clear	R/W 0 Up-counter
TA2REG	RUN 8-bit timer register	10AH (Prohibit RMW) 10BH	R/W 0 Double buffer 0: Disable 1: Enable			V Unde - V	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and	R/W 0 Up-counter (UC3) clear	R/W 0 Up-counter
TA2REG	RUN 8-bit timer register 8-bit timer	10AH (Prohibit RMW) 10BH (Prohibit	R/W 0 Double buffer 0: Disable 1: Enable		PWM21	V Unde - V	R/W 0 IDLE2 0: Stopped 1:Operation - w efined - W	R/W 0 TMRA23 prescaler 0: Stop and	R/W 0 Up-counter (UC3) clear	R/W 0 Up-counter (UC2)
TA2REG	RUN 8-bit timer register 8-bit timer	10AH (Prohibit RMW) 10BH (Prohibit	R/W 0 Double buffer 0: Disable 1: Enable	TA23M0	PWM21	V Unde V Unde PWM20	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou	R/W 0 Up-counter (UC3) clear int up)	R/W 0 Up-counter
TA2REG	RUN 8-bit timer register 8-bit timer	10AH (Prohibit RMW) 10BH (Prohibit	R/W 0 Double buffer 0: Disable 1: Enable	$\bigcirc)$	ı	V Unde V Unde PWM20 R/	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou TA3CLK0	R/W 0 Up-counter (UC3) clear int up) TA2CLK1	R/W 0 Up-counter (UC2) TA2CLK0
TA2REG	RUN 8-bit timer register 8-bit timer register 8-bit timer source	10AH (Prohibit RMW) 10BH (Prohibit RMW)	R/W 0 Double buffer 0: Disable 1: Enable TA23M1	0	0	V Unde V Unde PWM20	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou TA3CLK0 0	R/W 0 Up-counter (UC3) clear int up) TA2CLK1	R/W 0 Up-counter (UC2) TA2CLK0
TA2REG	RUN 8-bit timer register 8-bit timer register 8-bit timer source CLK &	10AH (Prohibit RMW) 10BH (Prohibit	R/W 0 Double buffer 0: Disable 1: Enable	0 node	ı	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0 0 k for TMRA3	R/W 0 Up-counter (UC3) clear int up) TA2CLK1	R/W 0 Up-counter (UC2) TA2CLK0 0 < for TMRA2
TA2REG	RUN 8-bit timer register 8-bit timer register 8-bit timer source	10AH (Prohibit RMW) 10BH (Prohibit RMW)	R/W 0 Double buffer 0: Disable 1: Enable TA23M1	0 node ner	0 PWM cycle	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0 0 k for TMRA3	R/W 0 Up-counter (UC3) clear int up) TA2CLK1 0 Source clock	R/W 0 Up-counter (UC2) TA2CLK0 0 < for TMRA2
TA2REG	RUN 8-bit timer register 8-bit timer register 8-bit timer source CLK &	10AH (Prohibit RMW) 10BH (Prohibit RMW)	R/W 0 Double buffer 0: Disable 1: Enable TA23M1 0 Operation n 00: 8-bit tim	0 node ner mer	0 PWM cycle 00: Reserve 01: 2 ⁶ 10: 2 ⁷	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0 0 k for TMRA3	R/W 0 Up-counter (UC3) clear int up) TA2CLK1 0 Source clocl 00: Reserve	R/W 0 Up-counter (UC2) TA2CLK0 0 < for TMRA2
TA2REG	RUN 8-bit timer register 8-bit timer register 8-bit timer source CLK &	10AH (Prohibit RMW) 10BH (Prohibit RMW)	R/W 0 Double buffer 0: Disable 1: Enable 1: Enable 1: Enable 0 TA23M1 0 Operation n 00: 8-bit tim 01: 16-bit tim	0 node ner mer 2G	0 PWM cycle 00: Reserve 01: 2 ⁶	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation - W efined - W 0 Source cloc 00: TA2TRC 01: 01: 01: 01: 01:	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0 0 k for TMRA3	R/W 0 Up-counter (UC3) clear int up) TA2CLK1 0 Source clocl 00: Reserve 01: \u03c6T1	R/W 0 Up-counter (UC2) TA2CLK0 0 < for TMRA2
TA2REG	RUN 8-bit timer register 8-bit timer register 8-bit timer source CLK &	10AH (Prohibit RMW) 10BH (Prohibit RMW)	R/W 0 Double buffer 0: Disable 1: Enable 1: Enable 1: Enable 0 TA23M1 0 Operation r 00: 8-bit tim 01: 16-bit tim 10: 8-bit PF	0 node ner mer 2G	0 PWM cycle 00: Reserve 01: 2 ⁶ 10: 2 ⁷	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation - W efined - W 0 Source cloc 00: TA2TRC 01: φT1 10: φT16	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0 0 k for TMRA3	R/W 0 Up-counter (UC3) clear int up) TA2CLK1 0 Source clock 00: Reserve 01: \u03c6T1 10: \u03c6T4	R/W 0 Up-counter (UC2) TA2CLK0 0 < for TMRA2
TA2REG	RUN 8-bit timer register 8-bit timer register 8-bit timer source CLK &	10AH (Prohibit RMW) 10BH (Prohibit RMW)	R/W 0 Double buffer 0: Disable 1: Enable 1: Enable 1: Enable 0 TA23M1 0 Operation r 00: 8-bit tim 01: 16-bit tim 10: 8-bit PF	0 node ner mer 2G	0 PWM cycle 00: Reserve 01: 2 ⁶ 10: 2 ⁷	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0	R/W 0 Up-counter (UC3) clear int up) TA2CLK1 0 Source clock 00: Reserve 01: ϕ T1 10: ϕ T4 11: ϕ T16	R/W 0 Up-counte (UC2) TA2CLK0 0 < for TMRA2 d TA3FFIS
TA2REG TA3REG TA23MOD	RUN 8-bit timer register 8-bit timer source CLK & mode 8-bit timer	10AH (Prohibit RMW) 10BH (Prohibit RMW)	R/W 0 Double buffer 0: Disable 1: Enable 1: Enable 1: Enable 0 TA23M1 0 Operation r 00: 8-bit tim 01: 16-bit tim 10: 8-bit PF	0 node ner mer 2G	0 PWM cycle 00: Reserve 01: 2 ⁶ 10: 2 ⁷	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation 	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0 0 k for TMRA3	R/W 0 Up-counter (UC3) clear int up) TA2CLK1 0 Source clock 00: Reserve 01: ϕ T1 10: ϕ T4 11: ϕ T16 TA3FFIE	R/W 0 Up-counter (UC2) TA2CLK0 0 < for TMRA2 d TA3FFIS
TA2REG TA3REG TA23MOD	RUN 8-bit timer register 8-bit timer source CLK & mode 8-bit timer flip-flop	10AH (Prohibit RMW) 10BH (Prohibit RMW) 10CH 10CH	R/W 0 Double buffer 0: Disable 1: Enable 1: Enable 1: Enable 0 TA23M1 0 Operation r 00: 8-bit tim 01: 16-bit tim 10: 8-bit PF	0 node ner mer 2G	0 PWM cycle 00: Reserve 01: 2 ⁶ 10: 2 ⁷	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0	R/W 0 Up-counter (UC3) clear int up) TA2CLK1 0 Source clock 00: Reserve 01: \u03c6 T1 10: \u03c6 T4 11: \u03c6 TA3FFIE R/	R/W 0 Up-counter (UC2) TA2CLK0 0 < for TMRA2 d TA3FFIS W
TA2REG TA3REG TA23MOD	RUN 8-bit timer register 8-bit timer source CLK & mode 8-bit timer	10AH (Prohibit RMW) 10BH (Prohibit RMW) 10CH	R/W 0 Double buffer 0: Disable 1: Enable 1: Enable 1: Enable 0 TA23M1 0 Operation r 00: 8-bit tim 01: 16-bit tim 10: 8-bit PF	0 node ner mer 2G	0 PWM cycle 00: Reserve 01: 2 ⁶ 10: 2 ⁷	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0 0 k for TMRA3 S TA3FFC0 W 1 A3FF	R/W 0 Up-counter (UC3) clear int up) TA2CLK1 0 Source clocl 00: Reserve 01: ∳T1 10: ∲T4 11: ∲T16 TA3FFIE R/ 0	R/W 0 Up-counter (UC2) TA2CLK0 0 < for TMRA2 d TA3FFIS W 0
TA2REG TA3REG FA23MOD	RUN 8-bit timer register 8-bit timer source CLK & mode 8-bit timer flip-flop	10AH (Prohibit RMW) 10BH (Prohibit RMW) 10CH 10CH	R/W 0 Double buffer 0: Disable 1: Enable 1: Enable 1: Enable 0 TA23M1 0 Operation r 00: 8-bit tim 01: 16-bit tim 10: 8-bit PF	0 node ner mer 2G	0 PWM cycle 00: Reserve 01: 2 ⁶ 10: 2 ⁷	V Unde V Unde PWM20 R/ 0	R/W 0 IDLE2 0: Stopped 1:Operation	R/W 0 TMRA23 prescaler 0: Stop and 1: Run (Cou 1: Run (Cou TA3CLK0 0 k for TMRA3 C TA3FF 0 W 1 A3FF 3FF	R/W 0 Up-counter (UC3) clear int up) TA2CLK1 0 Source clocl 00: Reserve 01: \phiT1 10: \phiT4 11: \phiT16 TA3FFIE R/ 0 1: TA3FF	R/W 0 Up-counter (UC2) TA2CLK0 0 <for tmra2<br="">d TA3FFIS W 0 Invert by</for>

8-bit timer control (2/2)

(6 – 3) TMRA45

Symbol	Name	Address	7	6	5	4	3	2	1	0				
			TA4RDE				I2TA45	TA45PRUN	TA5RUN	TA4RUN				
			R/W	/		/	R/W	R/W	R/W	R/W				
	8-bit timer		0	/			0	∧ 0	0	0				
TA45RUN	RUN	110H	Double				IDLE2	TMRA45	Up-counter	Up-counter				
			buffer				0: Stopped	prescaler	(UC5)	(UC4)				
			0: Disable				1: Operation	0: Stop and	clear					
			1: Enable					1: Run (Cou	nt up)					
	8-bit timer	112H		- ((// 5))										
TA4REG	register	(Prohibit		W										
		RMW)		Undefined										
	8-bit timer	113H												
TA5REG	register	(Prohibit				(N		\bigcirc					
	0	RMW)		Undefined										
			TA45M1	TA45M0	PWM41	PWM40	TA5CLK1	TA5CLK0	TA4CLK1	TA4CLK0				
				i	i	((//R	<u>M</u>	\sim		.				
	8-bit timer		0	0	0	<u> </u>	0	0	0	0				
TA45MOD	source CLK &	114H	Operation m	ode	PWM cycle	\frown	Source cloc	k for TMRA5	Source cloc	k for TMRA4				
	mode		00: 8-bit time	er	00 : Reserve	iq 🔪	00: TA4TR		00: TA4IN F	Pin input				
	mode		01: 16-bit tin		01: 2 ⁶	\rightarrow	01:	$\leq)$	01:					
			10: 8-bit PP	-	10: 2 ⁷	\geq	10: ♦T16		10:					
			11: 8-bit PW	/M	11: 28	-	11:	$\langle \rangle$	11:	1				
							TA5FFC1	TA5FFC0	TA5FFIE	TA5FFIS				
						\mathcal{A}	R	/W	R	Ŵ				
	8-bit timer	115H		\rightarrow			1)	1	0	0				
TA5FFCR	flip-flop control	(Prohibit))		00: Invert T		1: TA5FF	Invert by				
control	0011101	RMW)			\mathcal{D}	~	01: SET TA	-	Invert	0: TMRA4				
			(\Box			10: Clear T	-	enable	1: TMRA5				
				$\langle \rangle$		$\langle \rangle \rangle$	11: Don't ca	are						

(7) 16-bit timer control

(7 – 1) TMRB0

(7 – 1) TMR										
Symbol	Name	Address	7	6	5	4	3	2	1	0
			TB0RDE	-			I2TB0	TB0PRUN		TBORUN
			R/W	R/W			R/W	R/W		R/W
	16 hit timer		0	0		/	0 🔨	0	/	0
TBORUN	16-bit timer Run	180H	Double	Always			IDLE2	TMRB		Up-counter
	i tuit		buffer	write "0".			0: Stopped	prescaler		(UC10)
			0: Disable					0: Stop and	clear	
			1: Enable					1: Run (Cou		
			TB0CT1	TB0ET1	TB0CP0I	TB0CPM1	твосрмо	TBOCLE	TB0CLK1	TB0CLK0
			R/	W	W*		UC	R/W	•	•
	16-bit timer	182H	0	0	1	0 (0	0	0	0
TB0MOD	source		TB0FF1 Inve	ersion trigger	0: Software	Capture timi	ng	1:UC0 clear	Source cloc	k
IDUNIOD	CLK &	(Prohibit	0: Disable		capture	00: Disable	\sim	enable	00: TB0IN0	input
	mode	RMW)	1: Enable		1:Undefined	01: 1, 1 (TB0I	NO, TBOIN1)		01: øT1	-
			Capture to	TB0RG1	Always	10: ↑, ↓ (TB0I	N0)		10:	
			TB0CP1	matching	read as "1"	11: Ŷ, ↓ (TA10	OUT)	$\langle \rangle$	11: φT16	
			TB0FF1C1	TB0FF1C0	TB0C1T1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FF0C1	TB0FF0C0
			W	/*		R	w	<u> </u>	/ v	/*
			1	1	0	> 0	0	0	1	1
	16-bit timer	183H	00: Invert TE	0FF1	TB0FF0 inve	ert trigger		2	00: Invert TI	B0FF0
TB0FFCR	flip-flop	(Dechibit	01: Set TB0	F1	0: Disable 1	: Enable		\mathcal{I}	01: Set TB0	FF0
	control	(Prohibit	10: Clear TB	0FF1	Invert when	Invert when	Invert when	Invert when	10: Clear TE	B0FF0
		RMW)	11: Don't cai		the UC10	the UC10	the UC10	the UC10	11: Don't ca	re
			Always read	as "11"	value is loaded into	value is loaded into	matches with	matches with	Always read	d as "11".
					TB0CP1H/L	TB0CP0H/L	TB0RG1H/L	TB0RG0H/L		
	16-bit timer	188H		$\left(\left(\right) \right)$			_//			
TB0RG0L	register 0	(Prohibit				Y	v			
	Low	RMW)		\sim	<	Unde	fined			
	16-bit timer	189H		\bigcirc	$\langle \cdot \rangle$	<u> </u>	-			
TB0RG0H	register 0	(Prohibit				\sim v	V			
	High	RMW)	$(\sqrt{5})$			💙 Unde	fined			
	16-bit timer	18AH			$\left(\frac{1}{2} \right)$	=	-			
TB0RG1L	register 1	(Prohibit		\sim	(\bigcirc)	V	V			
	Low	RMW)			\sim	Unde	fined			
	16-bit timer	18BH		$\langle -$		_	_			
TB0RG1H	register 1	(Prohibit	\sim			V	V			
	High	RMW)			\geq	Unde				
	16-bit timer	\checkmark	(7			_			
TB0CP0L	capture	18CH	4			F	2			
	register 0))		\nearrow		Unde				
	Low 16-bit timer	<u> </u>	$-(\bigcirc$			Unde	lineu			
TRADEL	capture)			-			
TB0CP0H	register 0	18DH				F				
	High					Unde	fined			
	16-bit timer		*			-	-			
TB0CP1L	capture register 1	18EH				F	R			
	Low					Unde	fined			
	16-bit timer					=	=			
TB0CP1H	capture	18FH				F				
	register 1 High					Unde				
	riigii					Unde				

Note: When programming "1" to TB0MOD<TB0CP0I> in condition of programmed "0", present value of up-counter is captured to TB0CP0 register.

(8) UART/serial channel control (1/2)

(8 – 1) UART/SIO channel 0

Serial scoBUF 200H channel 0 buffer 200H (Prohibit RMW) RB7/TB7 RB6/TB6 RB5/TB5 RB4/TB4 RB3/TB3 RB2/TB2 RB1/TB1 RB0/TB0 Serial channel 0 control RMW) RB8 EVEN PE OERR PERR FERR SCLKS IOC Serial channel 0 control 201H RB8 EVEN PE OERR PERR FERR SCLKS IOC Serial channel 0 control 201H RB8 EVEN PE OERR PERR FERR SCLKS IOC Serial channel 0 mode0 201H 201H RB8 EVEN PE OERR PERR FERR SCLKS IOC Serial channel 0 mode0 201H 202H TB8 CTSE RXE WU SM1 SM0 SC1 SCLK0 I: SCLK0<	Symbol	r/SIO chanr Name	Address	7	6	5	4	3	2	1	0
SCOBUF channel 0 buffer (Prohibit RMW) R (Receiving)/W (Transmission) Score RMW REB EVEN PE OERR PERR SCIAS IOC Serial control 201H RBB EVEN PE OERR PERR SCIAS IOC Serial control 201H RBB EVEN PE OERR PERR Scias IOC 0	- ,									RB1/TB1	
buffer RMW) Undefined Undefined FERR SCLKS IOC Serial channel 0 control 201H RB8 EVEN PE OERR PERR FERR SCLKS IOC 0 <td>SC0BUF</td> <td></td> <td></td> <td>NBI/TBI</td> <td>1100/100</td> <td></td> <td></td> <td></td> <td></td> <td>ILD I/ I D I</td> <td>1100/100</td>	SC0BUF			NBI/TBI	1100/100					ILD I/ I D I	1100/100
Serial channel 0 control RB8 EVEN PE OERR PERR FERR SCLKS IOC SCOCR R R/W R R/W R R/W Sciencin Selection Sci SCLKO		buffer	•								
Score R R/W R (cleared to 0 by reading) R/W Score channel 0 control 201H Receiving Parity 1: Parity Overrun Parity Selection Selecti				RB8	EVEN	PE			FERR	SCLKS	IOC
Serial channel 0 control 201H Image: Control 201H											
Serial channel 0 control 201H Receiving data bit8 Parity 0: Odd 1: Parity enable Overrun error Parity error Framing ferror Edge ferror Input clock selection Scororol control 201H Receiving data bit8 0: Odd 1: Parity enable Overrun error Parity error Framing ferror Edge ferror Input clock selection Serial channel 0 mode0 202H TB8 CTSE RXE WU SM1 SM1 SC1 SC2 ScomOD0 Serial channel 0 mode0 202H TB8 CTSE RXE WU SM1 SM1 SC1 SC2 ScomOD0 Parity mode0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td></t<>						1					1
SCOCR channel 0 control 201H data bit8 0: Odd 1: Even emable error 0: Not detected error 0: Not detected o: Not detected error 0: SCLK0 10: Baud rate generator Serial channel 0 mode0 Z02H TB8 CTSE RXE WU SM1 SM0 Sci SCLK0 10: detected Sci SCLK0 10: SCLK0 10: Baud rate generator Serial channel 0 mode0 202H TB8 CTSE RXE WU SM1 SM0 Sci SC 0: Sci SC 0: Serial channel 0 baud rate control 202H Transmission data bit8 1: Receive enable 1: Receive enable 1: Wakeup enable 00: // 0 // 0 0 <td< td=""><td></td><td>Serial</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Framing</td><td></td><td></td></td<>		Serial							Framing		
Serial channel 0 baud rate control Serial channel 0 baud rate control ZOZH Fransmission ata bit8 - BROADDE BROCK0 BROS2 (SCIMODI BROS2 (SCIMODI BROS2 (SCIMODI BROS2 (SCIMODI BROADDE BROADDE BROCK1 BROCK0 BROS2 (SCIMODI BROS2 (SCIMODI BROS2 (SCIMODI BROS2 (SCIMODI BROS2 (SCIMODI BROADDE BROADDE BROCK1 BROCK0 BROS3 (SCIMODI BROS2 (SCIMODI BROS1 (SCIMODI BROS1 (SCIMODI BROS2 (SCIMODI BROS1 (SCIMODI BROS2 (SCIMODI BROK1 BROK0 (SCIMODI BROS2 (SCIMODI BROK1 BROK0 (SCIMODI BROK1 BROK0 (SCIMODI BROK1 BROK0 (SCIMODI BROK1 BROK0 (SCIMODI BROK1 BROK0 (SCIMODI BROK1 BROK0 (SCIMODI Serial (stating register South interface (SCIMODI South inte	SC0CR	channel 0	201H	0	-	-				-	
Serial channel 0 mode0 TB8 CTSE RXE WU SM1 SM0 Sc1 SCLK0 pin input Serial channel 0 mode0 202H TB8 CTSE RXE WU SM1 SM0 Sc1 Sc2 Serial channel 0 mode0 202H Transmission data bit8 1: CTS enable 1: Receive enable 1: Wakeup enable 00: I/O interface enable 00: TAOTRG 01: 7-bit UART 10: 8-bit UART Of Bid rate generator 10: 8-bit UART Of Enternal clock (SCLK0 input) Serial channel 0 baud rate control 203H - BROADDE BROCK1 BROCK0 BROS2 BROS1 BROS0 Serial channel 0 baud rate control 203H - BROADDE Set Ta Set Ta Set Ta BROADD Serial channel 0 baud rate control 204H 204H - - BROK3 BROK3 BROK2 BROK1 BROK0 BROADD Ketting register 204H - - - - - - - - - - - - - - -		control			1: Even		0: Not	detected	0: Not	0: SCLK0 ↑	0: Baud rate
Serial channel 0 mode0 ZO2H TB8 CTSE RXE WU SM1 SM0 SC1 SC0 3C0MODD Channel 0 mode0 202H TB8 CTSE RXE WU SM1 SM0 SC1 SC0 3C0MODD Channel 0 mode0 202H TB8 CTSE RXE WU SM1 SM0 SC1 SC0 3C0MODD Channel 0 mode0 202H TB8 CTSE RXE WU SM4 SM0 SC1 SC0 BRORR Serial channel 0 baud rate control 203H TCS 1: Receive enable BR0K0 BR0S3 BR0S2 BR0S1 BR0S0 BROADD Serial channel 0 baud rate control 203H - BR0K1 BR0K0 BR0K3 BR0K2 BR0K1 BR0K0 BR0ADD Serial channel 0 K setting register 204H - - Set the value of "K" (1 to F). Serial channel 0 Mode1 205H 12S0 FDPX0 - - Set the value of "K" (1 to F).							detected	1: Detected	detected	1: SCLK0 ↓	generator
Serial channel 0 mode0 202H TB8 CTSE RXE WU SM1 SM0 SC1 SC0 0							1: Detected	(())	1. Detected		1: SCLK0
Serial channel 0 mode0 202H Transmission data bit8 1: CTS enable 1: Receive enable 1: Wakeup enable 00: //O interface enable 00: //O interface 01: 7-bit UART 10: 8-bit UART 00: TAOTRG 01: 8-bit UART BROCR Serial channel 0 baud rate control 203H - BROADDE BROCK1 BROCK0 BROS3 BROS2 BROS1 BROS0 BROADD Serial channel 0 baud rate control 203H - BROADDE BROCK1 BROCK0 BROS3 BROS2 BROS1 BROS0 BROADD Serial channel 0 baud rate control 203H - BROADDE BROCK1 BROCK0 BROS3 BROS2 BROS1 BROS0 BROADD Serial channel 0 K setting 204H 0											pin input
Serial channel 0 mode0 202H Image: constraint of the second data bits 0<				TB8	CTSE	RXE	wu (SM1	SM0	SC1	SC0
Serial mode0 202H Transmission data bit8 1: CTS enable 1: Receive enable 1: Wakeup enable 00: I/O interface 01: 7-bit UART 00: TA0TRG BRORR Serial channel 0 baud rate control - BR0ADDE BR0CK1 BR0CK0 BR0S2 BR0S1 BR0S0 BROADDE Serial channel 0 baud rate control - BR0ADDE BR0CK1 BR0CK0 BR0S2 BR0S1 BR0S0 Serial channel 0 baud rate control 203H - BR0ADDE BR0CK1 BR0K3 BR0K2 BR0K1 BR0K0 Serial channel 0 K setting register 204H 204H - - 11: \$1''' Serial channel 0 K setting 204H - - 12S0 FDPX0 -					i	i	R/	W			
ACOMODD mode0 channel o mode0 202H Transmission data bit8 1: CTS enable 1: Receive enable 1: Wakeup enable 00: I/O inteiface IOT TAOTRG 0 0 0 0: J/O inteiface 00: TAOTRG 01: 7-bit UART 01: Baud rate generator 10: 8-bit UART 11: 9-bit UART 11: 9-bit UART 11: 9-bit UART 11: External clock (SCLK0 input) BROCR Serial channel 0 baud rate control 203H - BR0ADDE BR0CK1 BR0CK0 BR0S3 BR0S2 BR0S1 BR0S0 BROADD 0 0 0 0 0 0 0 0 Serial channel 0 K setting register 204H 204H 204H 204H Setthe dividing value "N" (0 to F) of baud rate generator. Set the value of "K" (1 to F). Serial channel 0 M de1 205H 205H 205H IDE2 V/O Set the value of "K" (1 to F). Serial channel 0 205H 0 0 0 0 0 0 Serial channel 0 205H 10: U2S FDPX0. Set the value of "		Serial		0	0	0	(07)	V O	0	0	0
mode0 data bit8 enable enable enable enable 01: 7-bit UART 01: 8-bit UART 10: 8-bit UART 11: 9-bit UART 11: External clock (fsys) 12:03H 0 0 0 Always 1:(16-K)/16 00: \$T0 write "0". 1:(16-K)/16 01: \$T2 enable 10: \$T3 90 0 BROADD 204H 204H R/W Ketting 204H R/W 0 0 V 12S0 FDPX0 V V V 0 0 0 0 Serial Channel 0 <td>SC0MOD0</td> <td></td> <td>202H</td> <td>Transmission</td> <td>1: CTS</td> <td>1: Receive</td> <td>1: Wakeup</td> <td>00: I/O inter</td> <td><</td> <td><i>K / / </i>) </td> <td></td>	SC0MOD0		202H	Transmission	1: CTS	1: Receive	1: Wakeup	00: I/O inter	<	<i>K / / </i>)	
Serial channel 0 baud rate control 203H - BROADDE BROCK1 BROCK0 BROS2 BROS1 BROS0 BROCR Serial channel 0 baud rate control 203H - BROADDE BROCK1 BROCK0 BROS2 BROS1 BROS0 BROADD 0 <td></td> <td>mode0</td> <td>-</td> <td>data bit8</td> <td>enable</td> <td>enable</td> <td>enable</td> <td>01: 7-bit UA</td> <td>RT</td> <td></td> <td></td>		mode0	-	data bit8	enable	enable	enable	01: 7-bit UA	RT		
BROCR Serial channel 0 baud rate control - BROADDE (BROCK1 BROS3 BROS2 BROS1 BROS0 8ROCR Serial channel 0 baud rate control 203H 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>20</td><td></td><td></td><td>\sim</td><td></td><td></td></td<>						20			\sim		
Serial channel 0 baud rate control 203H - BR0ADDE BR0CK1 BR0CK0 BR0S3 BR0S2 BR0S1 BR0S0 8R0cr baud rate control 203H - 0						$\mathcal{A}($		11: 9-bit UA	RT		
Serial channel 0 baud rate control 203H 0							~				
BROCR channel 0 baud rate control 203H 0				-	BR0ADDE	BR0CK1			BR0S2	BR0S1	BR0S0
BROCR channel 0 baud rate control 203H Always 1:(16-K)/16 00: ϕ T0 divided enable Set the dividing value "N" (0 to F) of baud rate generator. BROADD Serial channel 0 K setting register 204H 204H 204H Set the value of "K" (1 to F). BROADD Serial channel 0 K setting register 204H 204H Image: Comparison of the comparison		Serial		_					<u>/</u>	i _	
baud rate control Initiage Initiage Initiage Initiage Initiage Initiage write "0". divided 01: \ph72 Set the dividing value "N" (0 to F) of baud rate generator. BROADD Serial channel 0 K setting register 204H 204H BROK3 BROK3 BROK2 BROK1 BROK0 Scrial channel 0 K setting register 204H Imit of the setting register Scrial channel 0 mode1 205H Imit of the setting register Imit of the setting register Imit of the setting register Imit of the setting register Scrial channel 0 mode1 205H Imit of the setting register Imit of the setting register Imit of the setting register Imit of the setting register Serial channel 0 mode1 205H Imit of the setting register Imit of the setting register Imit of the setting register Imit of the setting register	DDOCD	channel 0	20211				Ø	0	0	0	0
Serial channel 0 register 204H enable 11: \overlap{0}T32 BR0K3 BR0K2 BR0K1 BR0K0 BR0ADD Channel 0 K setting register 204H 204H 0 0 0 0 Serial channel 0 K setial register 204H 204H 12S0 FDPX0 FDPX0 0 0 Serial channel 0 rode1 205H IDLE2 I/O IDLE2 I/O 0 0 0 SCOMOD1 Serial channel 0 mode1 205H IDLE2 I/O Interface Interface Interface Interface SCOMOD1 1: Operation 0: Half duplex 1: Full Interface Interface Interface Interface	DRUCK	baud rate	203⊓	-		~ 7					
Serial channel 0 204H 204H 204H 204H 204H 204H 204H 20		control		write "0".				Set the div	-		f baud rate
Serial channel 0 register 204H 204H BROK3 BROK3 BROK2 BROK1 BROK0 R/W 0 0 0 0 0 0 0 register 0 0 0 0 0 0 Serial channel 0 R/W R/W Serial R/W R/W Serial channel 0 205H IDLE2 I/O IDLE2 I/O SCOMOD1 Stop interface 1 Interface 1 Interface 1: Operation 0: Half duplex 1: Full Interface Interface Interface					enable				gene	erator.	
BROADD channel 0 K setting register 204H 204H R/W 3COMOD1 Serial channel 0 mode1 205H 12S0 FDPX0 Set the value of "K" (1 to F). Scomod1 Serial channel 0 mode1 1DLE2 I/O I/O I/O Scomod1 205H 10 to peration 0: Half duplex I/O I/O		Quintal			\leq	11: 0132		DDOKO	DDOKO	DD0K4	DDOKO
BR0ADD K setting register 204H 0 </td <td></td> <td></td> <td></td> <td>\uparrow</td> <td></td> <td></td> <td></td> <td>BRUK3</td> <td></td> <td></td> <td>BRUKU</td>				\uparrow				BRUK3			BRUKU
register Set the value of "K" (1 to F). I2S0 FDPX0 R/W R/W 0 0 IDLE2 I/O interface 0: Stop 1: Operation 0: Half duplex 1: Full	BR0ADD		204H	$\sqrt{2}$			\rightarrow	0	1	1	0
SecomOD1 Serial mode1 L2S0 FDPX0 IDLE2 I/O 0 0 IDLE2 I/O 0: Stop interface 1: Operation 0: Half duplex 1: Full		-			$) \rightarrow$		\rightarrow				
SCOMOD1 Serial have been been been been been been been be		regiotoi			FDDVA	$\sqrt{7}$).
SCOMOD1 Serial mode1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
SCOMOD1 Serial (channel 0 205H mode1 205H 1: Operation 0: Half duplex 1: Full											
SCOMOD1 channel 0 205H 0: Stop interface mode1 1: Operation 0: Half duplex 1: Full		Serial									
mode1 1: Operation 1: Full			∕_205H								
duplex 1: Full						\searrow					
11: Full			\sum	1. Operation	(>						
		$(\subset$	$\overline{)}$	4							
	\langle	$\sum \left(\int_{-\infty} \int_$))								
			5	7 (C	Johner.	1	1	1	1	1	1
	(8 – 2) JrDA	$ \rightarrow $	($\mathcal{A}\mathcal{A}$	\mathcal{I}						

(8 – 2) IrDA			\bigtriangledown							
Symbol	Name	Address	X	6	5	4	3	2	1	0
	\sim		PLSEL	RXSEL	TXEN	RXEN	SIRWD3	SIRWD2	SIRWD1	SIRWD0
						R/	W			
	IrDA		0	0	0	0	0	0	0	0
SIRCR	control	207H	Transmission	Receiving	Transmission	Receiving	Select effect	tive pulse wie	dth	
Onton	register	-	pulse width	data logic	operation	operation	Pulse width	of more than	and equal	
	regiotor		0: 3/16	0: "H" pulse	0: Disable	0: Disable	" $2x \times (Settin$	g value + 1)'	'+100ns	
			1: 1/16	1: "L" pulse	1: Enable	1: Enable	Possible: 1 t	to 14		
							Not possible	e: 0, 15		

UART/serial channel control(2/2)

(8 – 3) UART/SIO channel 1

(8 – 3) UAF Symbol	Name	Address	7	6	5	4	3	2	1	0	
	Serial	208H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0	
SC1BUF	channel 1	(Prohibit			R	(Receiving)/V	V (Transmiss	ion)			
	buffer	RMW)				Und	efined	\land			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC	
			R	R	/W	R (Clea	ared to 0 by r	eading)	R	W	
			Undefined	0	0	0	0	0) o	0	
l	Serial		Receiving	Parity	1: Parity	Overrun	Parity error	Framing	Edge	Input clock	
SC1CR	channel 1	209H	data bit 8	0: Odd	enable	error	0: Not	error	selection	selection	
	control			1: Even		0: Not	detected	0: Not	0: SCLK1 ↑	0: Baud rate	
						detected	1: Detected	detected	1: SCLK1 ↓	generator	
						1: Detected		1: Detected		1:SCLK1	
										pin input	
			TB8	CTSE	RXE	WU 🖉	SM1	SM0	SC1	SC0	
			_	i _	i _		/W				
	Serial		0	0	0	0	Ŏ	0 (0	0	
SC1MOD0	channel 1	20AH	Transmission		1: Receive	1: Wakeup	00: I/O inter	~ ~	00: TAOTRO		
	mode 0		data bit8	enable	enable	enable	01: 7-bit UA 10: 8-bit UA		01: Baud rat 10: Internal	-	
						\sim	10: 8-bit UA 11: 9-bit UA		\sim		
				11: 9-bit UART 11: External c (SCLK1 input							
			_	BR1ADDE	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0	
				R/W							
	Serial		0	0 <		0	0	0	0	0	
BR1CR	channel 1	20BH	Always	1:(16–K)/16	00: ¢T0						
	baud rate		write "0".	divided	01:		Set the div	viding value '	'N" (0 to F) of	baud rate	
	control			enable	10: ¢T8			-	rator.		
				\mathcal{C}	11: φT32	\wedge	~				
	Serial			Ł		Å	BR1K3	BR1K2	BR1K1	BR1K0	
BR1ADD	channel 1	ig 20CH	\searrow	\sim		TH		R	/W		
DIVIADD	K setting		-4	$\overline{\mathcal{A}}$		\rightarrow	0	0	0	0	
	register			\mathcal{I}	\cap	7.	9	Set the value	of "K" (1 to F).	
			/I2S1	FDPX1 <		\rightarrow					
			R/W	R/W							
			0	0							
	Serial		IDLE2	I/O							
SC1MOD1	channel 1	20DH		interface	\searrow						
	mode1	\sim	1:Operation	0: Half	*						
	6	\sim		duplex							
<	$\mathcal{N} \mathcal{A}$			1: Full							
			\sim (duplex							

Note 1: As all error flags SCxCR<OERR, PERR, FERR> are cleared after reading, do not test only a single bit with a bit-testing instruction.

Note 2: The baud rate genetrator can be set N = "1" when UART mode and disable + (16 – K)/16 division function. Don't use in I/O interface mode.

Note 3: Set BRxCR<BRxADDE> to "0" and disable + (16 - K)/16 division function in I/O interface mode.

(9) I^2C bus/serial channel control (1/2)

Symbol Name Address 7 6 5 4 3 2 1 0 Serial buse Berial buse serial buse Berial buse serial buse Berial buse serial buse Berial buse interface Berial buse Berial buse interface Berial buse interface	(9)			channel c				,					
SBIOR Sch2 240H BC0 ALX SCR2 SCR2 <ths< td=""><td>Symbol</td><td>Name</td><td>Address</td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td><td>1</td><td>0</td></ths<>	Symbol	Name	Address	7	6	5	4	3	2	1	0		
SBIORN Incide (Prohibit control register 0			-	BC2	BC1	BC0	ACK		SCK2	SCK1			
SBIOR1 Serial bus interface control register 1 Serial bus Side Serial bus interface RMW0 Serial bus interface sites Serial bus interface register Serial bus interface sites Serial bus interface sites Serial bus interface sites Serial bus interface Master interface Serial bus interface Master interface Serial bus interface Serial bus interface Serial bus interface Serial bus interface Serial bus interface Master interface Transfer interface Serial bus interface Master interface Serial bus interface Serial bus interface Serial bus interface Serial bus interface Serial bus interface Serial bus interface Master interface Transfer interface BB PIN Absplitti interface Address interface Serial bus interface 242H 0			-		W		R/W		W	W	R/W		
Serial bus interface control register Prohibit RMW OID: 3 10: 6 111: 7 10: 6 10: 7 10: 7 10: 6 10: 7 10: 7 10: 6 10: 7 10: 6 10: 7 10: 6 10: 7 10: 6 10: 7 10: 6 10: 7 10: 6 10: 7 10: 7 10: 7 10: 6 10: 7 10: 7 10: 6 10: 7 10: 6 10: 7 10: 6 10: 7 10: 6 10: 7 10: 7 10: 6 10: 7 10: 7 10			mode)	0	0	0	-		0	0	0/1		
register 1 240H (SO mode) Output W W W W W W W Output W Out	SBI0CR1	interface	•	000: 8 011: 3	001: 1 100: 4	010: 2	mode 0: Disable		000: 5 011: 8	001: 6 100: 9	010: 7 101: 10		
Nglick 1 (SIO mode) W			2400	SIOS	SIOINH	SIOM1	SIOM0		SCK2	SCK1	SCK0		
Selicit frequency of serial clock control (Prohibit (Prohibit Bilder Buffer register DB7 DB6 DB5 DB4 OB3 DB2 DB1 DD0 SBIODRR buffer register 241H (Prohibit register DB7 DB6 DB5 DB4 DB2 DB1 DD0 0 <td></td> <td>register 1</td> <td></td> <td>W</td> <td>W</td> <td>W</td> <td>W</td> <td></td> <td>\vee</td> <td>W</td> <td>·</td>		register 1		W	W	W	W		\vee	W	·		
Serial bus SBIOSR Zerial bus register Serial bus Serial bus SBIOSR Zerial bus register Serial bus RMW MST TRX BB PIN ALSBM1 ALSBM1 ADD/ SWRST Control (D1: 5: 0) DEC DD1: 6 (D1: 7: 0) OD1: 5: 0) OD2: 5: 0) OD2: 6 (D1: 7: 0) OD1: 7 (D1: 0)				-	-		-		<u> </u>		-		
SBIODBR data buffer register 241H (Prohibit RMW) R (Receiving)/W (Transmission) I2C0AR i ² C bus address register 242H (Prohibit RMW) SA6 SA5 SA4 SA3 SA2 SA4 SA0 ALS I2C0AR i ² C bus address register 242H (Prohibit RMW) 0			(Prohibit	control 0: Stop	of transfer 0: Continue	00: 8-bit trans 01: Reserved 10: 8-bit trans	smit smit/receiving		000: 4 011: 7	001: 5 100: 8	010: 6 101: 9		
SBIODER data buffer register (Prohibit RMW) R (Receiving)/W (Transmission) Undefined I2COAR register SA6 SA5 SA4 SA3 SA2 SA4 SA0 ALS I2COAR récister (Prohibit RMW) Setial bus Setial bus Setial bus Setial bus Setial bus AS/SBIM AS/SBIM AS/SBIM AD0' O <td></td> <td>SBI</td> <td>2411</td> <td>DB7</td> <td>DB6</td> <td>DB5</td> <td>DB4</td> <td>DB3</td> <td>DB2</td> <td>DB1</td> <td>DB0</td>		SBI	2411	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
buffer register RMW Undefined Undefined Notice of the second of the secon	SBIODBR	data				ł	R (Receiving)	/W (Transmis	sion) (
I2COAR IC bus address register 242H (Prohibit RMW) 0 <t< td=""><td>OBIODBIC</td><td></td><td>•</td><td></td><td></td><td></td><td>Ur</td><td>defined</td><td></td><td>$\langle O \rangle$</td><td></td></t<>	OBIODBIC		•				Ur	defined		$\langle O \rangle$			
I2COAR				SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS		
I2COAR address register (Prohibit RMW) 0		1 ² O have	0.401.1		1	<	$\langle \rangle$	W	()		1		
register RMW) MST TRX BB PIN AL/SBIM/I AAS/SBIMO AD/I SWRST1 Strate When read SBIOSR Serial bus interface status register MST TRX BB PIN AL/SBIM/I AAS/SBIMO AD/I SWRST1 SWRST0 243H (PC bus mode) 243H (PC bus mode) 0 0 0 1 0	1200AB			0	0	0	0	0	0	0			
Men read Interface status register MST TRX BB PIN ALSBIMI AAS/SBIMO AD0/ SWRST1 LRB/ SWRST0 243H SBIOSR 243H (r ² c bus register 243H (r ² c bus mode) 0 0 0 1 0	IZCUAR	`			Setting slave address recogn 0: Ena								
MS1 IRX BB PIN ADSBIMI AAS/SBIMU SWRST1 SWRST0 When read SBIOSR interface status register 243H (1° C bus mode 250F/SBIM 260E										AD0/	1		
Serial bus interface SBIOSR Serial bus segister 0 0 0 1 0 <th< td=""><td></td><td></td><td></td><td>MST</td><td>IRX</td><td>BB</td><td>PIN</td><td>AL/SBIM1</td><td>AAS/SBIM0</td><td>SWRST1</td><td></td></th<>				MST	IRX	BB	PIN	AL/SBIM1	AAS/SBIM0	SWRST1			
When read SBIOSR interface status register 0 <td></td> <td>Carial hus</td> <td></td> <td></td> <td></td> <td>\mathcal{D}</td> <td></td> <td>R/W</td> <td></td> <td></td> <td></td>		Carial hus				\mathcal{D}		R/W					
SBIOSR status register 223H (l°C bus mode) 0: Sieve 1: Master 20: Receiver post mode) Bus status register IN SET (l°C bus mode) Anomator precision Status monitor CALL detection monitor Generation match detection monitor CALL detection monitor CALL detection monitor CALL detection monitor Monitor 0: monitor When write SBIOCR2 Serial bus register 2 RMW) Stat/stop condition generation 0: Free Stat/stop condition generation Serial bus interface operating mode selection 00: Port mode 01: SIO mode 11: (Reserved) Software reset generation: write "10" and "01", then an internal reset signal is generated. When read SBIOSR Serial bus control register 243H (SIO mode) 243H (SIO mode) 243H (SIO mode) V V V V V V V Serial bus when write SBIOSR Serial bus interface control register 243H (SIO mode) RMWV) Serial bus interface Serial bus interface control register Always write 0: Finished 1: In operation 0: Fort mode Always write 0''.	When read				((0 \$)	-	1		-		-		
register (I ⁺ C bus mode) 1: Transmit Inclusion 1: Gree monitor Inclusion			-		0: Receiver								
mode 1: Busy D: Request 1: Cancel monitor 1: Detect 0: "0" 1: "1" When write SBIOCR2 Serial bus interface control register 2 RMW) Start/stop condition generation Start/stop condition generation Serial bus interface operating mode selection 00: Port mode 01: SIO mode 10: I ² C bus mode 11: (Reserved) Software reset generation: write "10" and "01", then an intermal reset signal is generated. When read SBIOSR Serial bus control register 243H (SIO mode) SIOF Shift status monitor Shift status 0: Finished 1: In operation Mways write "0". Always write "0". When write SBIORR Serial bus write interface control register 243H (SIO mode) Control RMW) Always write 0: Finished 1: In operation 0: Finished 1: In operation 0: Fort mode 01: SIO mode Always write "0". Always write "0".	SDIOSIX		(I ² C bus	1: Master	1: Transmit								
Image: serial bus when write interface SBIOR2 (Prohibit RNW) Start/stop condition generation 1: Detect 1: Detect 1: Detect 1: Detect 1: Detect 1: "1" When write interface SBIOR2 control register 2 control generation 0: Port mode 0: Port mode 0: Port mode on d "0", then an internal reset signal is generated. When read interface SBIOSR Serial bus write for an "0", then an internal reset signal is generated. SIOF/SBIM1 SEF/SBIM0 - - Serial bus write for an ode Interface 243H With write for an ode Not write		register	mode)	\sim \sim))								
Serial bus interface control register 2 RMW) Start/stop condition generation Serial bus interface operating mode selection 00: Port mode 01: SIO mode 10: I ² C bus mode 11: (Reserved) Software reset generation: write "10" and "01", then an internal reset signal is generated. When write SBI0CR2 Serial bus interface control register Serial bus 243H (SIO mode) SIOF/SBIM1 SEF/SBIM0 - - Vene write SBI0SR Serial bus interface control register 243H (SIO mode) 243H (SIO mode) 243H (SIO mode) 0 0 0 0 Vene write SBI0SR Serial bus interface control register 243H (SIO mode) 243H (SIO mode) 243H (SIO mode) 0 0 0 0 Vene write interface SBI0CR2 Serial bus interface control register 2 RMW) Serial bus interface control register 2 Always write always write control trol Always write "0". Always write "0".) > >		$\sim (0)$							
Serial bus 7 condition operating mode selection 00: Port mode 01: SIO mode 10: I ² C bus mode 11: (Reserved) write "10" and "01", then an internal reset signal is generated. When write SBIOSR Serial bus control register 243H (SIO mode) SIOF/SBIM1 SEF/SBIM0 - - Vene read SBIOSR 243H (SIO mode) 243H (SIO mode) 243H (SIO mode) Control register 243H (SIO mode) Control register 243H (SIO mode) Always write 0: Finished 1: In operation 0: Finished 1: In operation					7		\bigcirc						
Integrate 2 11: (Reserved) Image: Serial bus when read interface SBIOSR 243H (SIO mode) Vene write interface SBIOCR2 control register Serial bus RMW) Serial bus RMW) Serial bus New write Always write Always write Always write OV mode O1: SIO mode O1: SI		Serial bus rite interface				condition	>	operating mo 00: Port mod 01: SIO mod	ode selection e e	write "10" and internal reset s	"01", then an		
When read interface Serial bus SBI0SR 243H (SIO register 243H (SIO mode) Transfer (SIO mode) 0 (Prohibit RMW) Serial bus When write interface SBIOSR control register (Prohibit RMW) Serial bus When write interface SBIOCR2 control register 2		register 2	\sim	>	\land	\sim				generateu.			
Serial bus R/W W SBIOSR interface control register 243H (SIO mode) 0 0 0 0 0 0 SBIOSR control register 243H (SIO mode) 243H (SIO mode) 7 <td></td> <td colspan="2"></td> <td></td> <td>\mathcal{M}</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td>					\mathcal{M}					_	_		
Serial bus 243H SBIOSR 243H (SIO monitor register 243H (SIO monitor status operation monitor status 0: Finished 0: Finished 1: In operation 0: Finished 1: In operation 0: Portion RMW) Serial bus When write interface SBIOCR2 control register 2 register 2						\sim	\sim				N		
Serial bus Z43H SBIOSR control register 243H (SIO mode) (Prohibit RMW) Serial bus When write interface SBIOCR2 control register 243H (SIO mode) (Prohibit RMW) Serial bus When write interface SBIOCR2 control register 2		\langle / \rangle		\sim	\mathcal{A}	\sim	\sim		1		1		
SBI0SR control register 243H (SIO mode) monitor status (SIO mode) (Prohibit 0: Finished 0: Finished (Prohibit (Prohibit 0: Finished 1: In operation Serial bus RMW) Serial bus interface Always write SBI0CR2 control register 2				$\int \langle \rangle \langle \rangle$	\bigcirc								
SBIOSR control register (SIO mode) (SIO mode) Imonitor status Imonitor status Prohibit MWW Prohibit Imonitor Imo			243H	\sum									
register mode) mode) 0: Finished 1: In operation (Prohibit (Prohibit 0: Finished 1: In operation Serial bus RMW) Serial bus interface Always write SBI0CR2 control 0: Finished "0". register 2	SBI0SR			\sim									
I: In operation 0. Finished (Prohibit RMW) Serial bus RMW) When write interface SBI0CR2 control register 2 register 2		register	•		\sim								
Image: When write (Prohibit RMW) Serial bus RMW) When write interface Always write Always write SBI0CR2 control register 2 Image: Control 01: SIO mode 10: I ² C bus mode 10: I ² C bus mode Image: Control Image: Control			mode					1: In operation					
RMW) Serial bus Always write Serial bus Always write Always write When write interface 00: Port mode SBI0CR2 control 01: SIO mode register 2 10: I ² C bus mode			(Prohibit										
Serial bus operating mode selection "0". "0". When write interface 00: Port mode 01: SIO mode SBI0CR2 control 10: I ² C bus mode 10: I ² C bus mode			RMW)					Serial bus int		Always write	Always write		
SBI0CR2 control 01: SIO mode 10: I ² C bus mode								operating mo	de selection	-			
10: I ² C bus mode													
Leoisiel Z	SBI0CR2												
		register 2											

I²C bus/serial channel control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
SBI0BR0	Serial bus Interface baud rate register 0	(FIUIIDIL	,	I2SBI0 R/W 0 IDLE2 0: Stop 1: Operating						\mathbb{N}
SBI0BR1	Serial bus interface baud rate register 1	245H (Prohibit RMW)	P4EN 0 Clock control 0: Stop 1:Operating	– N Always write "0"						

Note 1: When use built-in SBI, set SYSCR0<PRCK1:0> to f_{FPH}.

Note 2: Set the SBI0CR1<BC2:0> to "000" before switching to a clock-synchronous 8-bit SIO mode.

- Note 3: Switch a mode to Port mode after confirming that the bus is free. And, switch from port mode to J²C bus mode or SIO mode after confirming port conditon = "H".
- Note 4: Set the transfer mode and the serial clock in SIO mode after clearing SBI0CR1<SIOS> to "0" and <SIOINH> to "1".

Note 5: After reset, default value of SBI0CR1<SCK0> is cleared "0", and default value of <SWRMON> is set "1".

(10) AD converter control

Symbol	Name	Address	7	6	5	4	3	2	1	0
			EOCF	ADBF	_	_	ITM0	REPEAT	SCAN	ADS
				۲	R/W	R/W	R/W	R/W	R/W	R/W
	ļ		0	0	0	0	0	0	0	0
	ļ		AD	AD	Always	Always	Interrupt 🗸	Q: Single	0: Channel	AD
	ļ		conversion	conversion	write "0".	write "0".	specification		fixed mode	conversion
	AD		end flag	busy flag			channel	1: Repeat	1:Channel	0: Don't care
ADMOD0	mode	2B0H	0:Conversion	1:Conversion			fixed repeat	conversion	scan mode	1: Start
	register 0		in progress 1:Conversion	in progress			mode			conversion
			complete			<	0: Every	$\langle \gamma \rangle$		
			complete				conversion	J		
							1: Every			
							fourth			
			VEEDAN	10.1 5			conversion			
			VREFON	I2AD			ADTRGE	ADCH2	ADCH1	ADCH0
			R/W	R/W			R/W		R/W	
	ļ					$(// \uparrow$	0		~~	0
			0: VREF off 1: VREF on				External trigger	Fixed/Scan	nel selection	
	AD			1: Operation			start	000: ANO/AN	\bigcirc	
ADMOD1	mode	2B1H		1. Operation			0: Disable	000: AN0/AN		
	register 1					\supset	1: Enable	$(\langle \rangle)$	$10 \rightarrow AN1 \rightarrow A$	N2
	ļ			($\langle \rangle$			27	$10 \rightarrow AN1 \rightarrow A$	
							(//)	100:)		
				AC				101: Don	i't select	
						[[110:		
					\geq			111: 7	<hr/>	
	AD result	2A0H	ADR01	ADR00			\sim			ADR0RF
ADREG04L	register 0/4 low			₹ <u>></u>			~			R
	0/4 10 W			efined						0
	AD result		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
ADREG04H	register 0/4 high	2A1H	-(7/5)	}		R				
	0/4 High			/		V Undefi	ned	<		
ADREG15L	AD result	gister 2A2H 5 low	ADR11	ADR10	$\mathcal{V}\mathcal{H}$					ADR1RF
	register 1/5 low			२						R
				efined						0
	AD result	A 04011	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
ADREG15H	register 1/5 high	2A3H			>	R				
	- <	\rightarrow		<u> </u>		Undefi	ned			
	AD result		ADR21	ADR20						ADR2RF
ADREG26L	register 2/6 low	2A4H		2						R
				efined						0
ADREG26H	AD result	24511	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
	register 2/6 high	2A5H		/		R				
	-				\sim	Undefi	nea		\sim	
	AD result register	2A6H	ADR31	ADR30	\sim		\sim			ADR3RF
ADREG37L	3/7 low	27011		R	\sim		\sim			R
				efined						0
	AD result	2A7H	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
ADREG37H	register 3/7 high	2810				R				
	on nigh					Undefi	nea			

Note 1: ADMOD0<ADS> is always read as "0".

Note 2: When using $\overline{\text{ADTRG}}$ with ADMOD1 < ADTRGE > = "1", do not set ADMOD1 < ADCH2:0 > = "011.

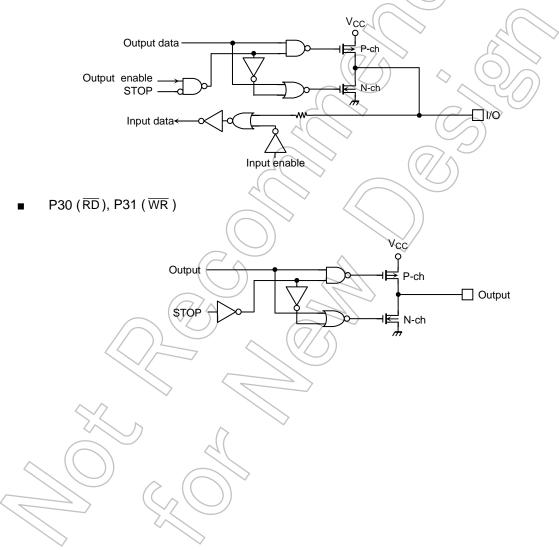
Note 3: When set ADMOD1<I2AD> to "0", operation is different by AD conversion mode after released HALT mode.

Symbol Address Name 7 6 5 4 3 2 1 0 WDTE WDTP1 WDTP0 I2WDT RESCR R/W R/W R/W R/W R/W R/W 1 0 0 0 0 0 WDT 00: 2¹⁵/f_{SYS} 01: 2¹⁷/f_{SYS} 10: 2¹⁹/f_{SYS} 1: WDT IDLE2 1:Internaly Always WDMOD mode 300H enable 0: Stop connects write "0". register WDT out 1:Operation 11: 2²¹/f_{SYS} to the reset pin 301H WDT W WDCR (Prohibit control _ RMW) B1H: WDT disable 4EH: WDT clear

(11) Watchdog timer control

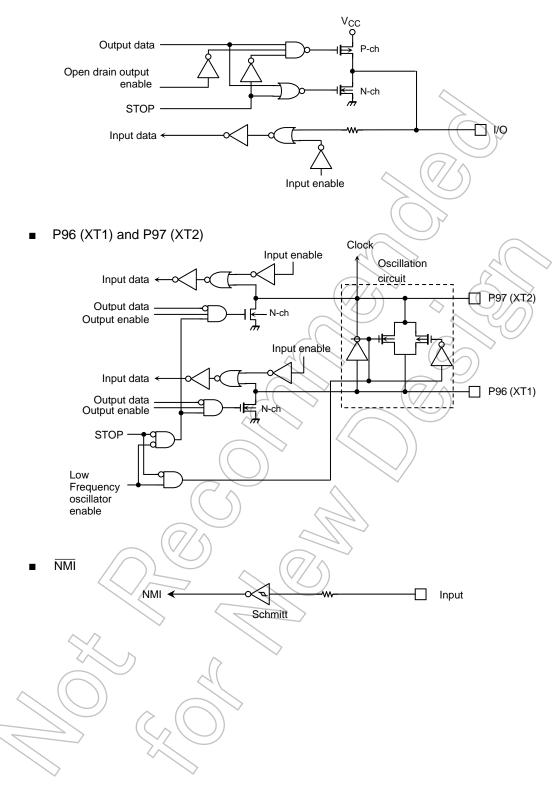
(12) Special timer for CLOCK

(+-	, speera	i unner ror	010011							
Symbol	Name	Address	7	6	5	4	3	2		0
			-	/	\searrow	Ł		RTCSEL	RTCSEL0	RTCRUN
	Special		R/W		1			R	/W	R/W
	timer for		0						0	0
RTCCR	CLOCK	310H	Always		$\square \square$	\sim	(7/	00: 2 ¹⁴ /fs		0:Stop and
	control		write "0".	.(\sim \lor $<$	01: 2 ¹³ /fs		clear
	register			\sim	$\langle \rangle$		\frown	10: 2 ¹² /fs		1:RUN
								11: 2 ¹¹ /fs		

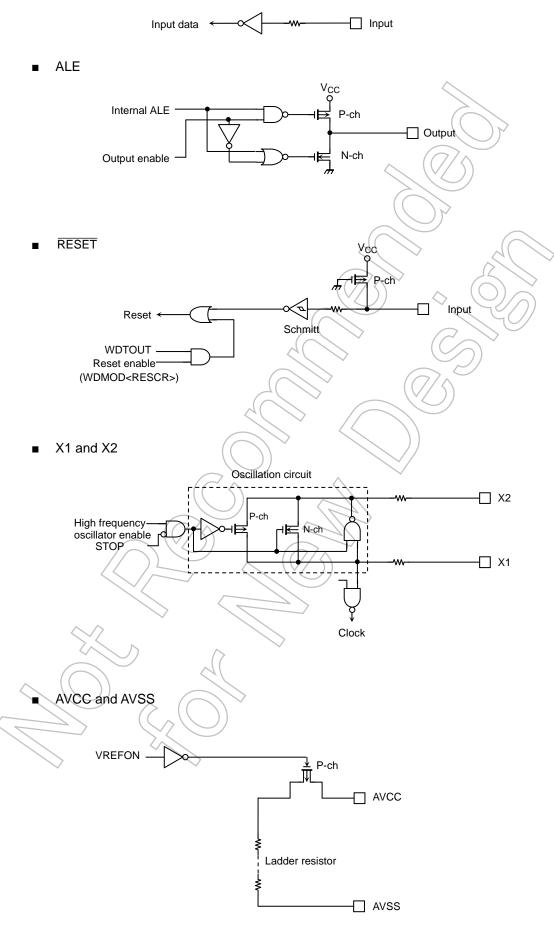

6. Port Section Equivalent Circuit Diagram

• Reading the circuit diagram

Basically, the gate symbols written are the same as those used for the standard CMOS logic IC " $74HC \times \times$ " series.


The dedicated signal is described below.

- STOP: This signal becomes active "1" when the halt mode setting register is set to the STOP mode (SYSCR2<HALTM1:0> = "0", "1") and the CPU executes the HALT instruction. When the drive enable bit SYSCR2<DRVE> is set to "1", stop remains at "0".
 - The input protection resistance ranges from several tens of ohms to several hundreds of ohms.
- P0 (AD0 to AD7), P1 (AD8 to AD15, A8 to A15), P2 (A16 to A21, A0 to A5), P60, P70 to P74, P80 to P83, P91 to P92 and P94 to P95



P32, P40 to P42 V_{CC} Output data P-ch Vcc Programmable pull-up resistor Q Output enable STOP N-ch 7] //Q w Input data Input enable P5 (AN0 to AN3) Analog input Channel select Ш Analog input Input data Input eable P63 (INT0) Vcc Output data P-ch Output enable STOP N-ch ٣ Ð - 1/0 Input data Schmitt

■ P61 (SO/SDA), P62 (SI/SCL), P90 (TXD0) and P93 (TXD1)

AM0 and AM1

7. Notes and Restrictions

- (1) Notation
 - 1. The notation for built-in I/O registers is as follows: Register symbol<Bit symbol> Example: TA01RUN<TA0RUN> denotes bit TA01RUN of register TA01RUN.
 - 2. Read-modify-write instructions

An instruction in which the CPU reads data from memory and writes the data to the same memory location in one instruction.

Example 1:SET 3, (TA01RUN)Set bit 3 of TA01RUN.Example 2:INC 1, (100H)Increment the data at 100H.

• Examples of read-modify-write instructions on the TLCS-900:

Exchange instruction

EX (mem), R

Arithmetic operations

ADD	(mem), R/#
	(mem), R/#
INC	#3, (mem)

ADC (mem), R/# SBC (mem), R/# DEC #3, (mem)

Logic operations

3.

AND (mem), R/# XOR (mem), R/# OR (mem), R/#

RES #3, (mem)

CHG #3, (mem)

Bit manipulation operations

STCF #3/A, (mem) SET #3, (mem) TSET #3, (mem)

Rotate and shift operations

RLC (me	em)	RRC	(mem)
RL (me	em)	RR-	(mem)
SLA (me	em)		(mem)
SLL> (me	em)	SRL	(mem)
RLD (m	em)	RRD	(mem)
		(7	

fOSCH, fc, fs, fFPH, fSYS and one state

The clock frequency input from X1 and X2 is referred to as fOSCH.

TMP91CU27/CP27/CK27 are not equipped with DFM. Therefore, fc equals fOSCH. The clock frequency input from XT1/XT2 pin is referred to as fc.

The clock selected by SYSCR1<SYSCK> is referred to as fFPH. The clock frequency given by fFPH divided by 2 is referred to as fSYS. One cycle of fSYS is referred to as one state.

(2) Notes

a. AM0 and AM1 pins

This pin is connected to the DVCC pin. Do not alter the level when the pin is active.

b. Warm-up counter

The warm-up counter operates when STOP Mode is released, even if the system is using an external oscillator. As a result a time equivalent to the warm up time elapses between input of the release request and output of the system clock.

c. Programmable pull-up/pull-down resistor

The programmable pull-up/pull-down resistor can be turned ON/OFF by a program when the ports are set for use as input ports. When the ports are set for use as output ports, they cannot be turned ON/OFF by a program.

The data registers (e.g., P4 register) are used to turn the pull-up resistors ON/OFF. Consequently read-modify-write instructions are prohibited. Therefore, use Transfer instruction.

d. Watchdog timer

The watchdog timer is enabled immediately after a reset is released. Disable the watchdog timer when it is not to be used.

e. AD converter

The string resistor between the AVCC to AVSS pins can be cut by program so as to reduce power consumption.

When STOP mode is used as reduce consumption power supply, disable the resistor using the program before the HALT instruction is executed.

f. CPU (Micro DMA)

Only the LDC cr, r and LDC r, cr instructions can be used to access the control registers in the CPU (e.g., the transfer source address register (DMASn)).

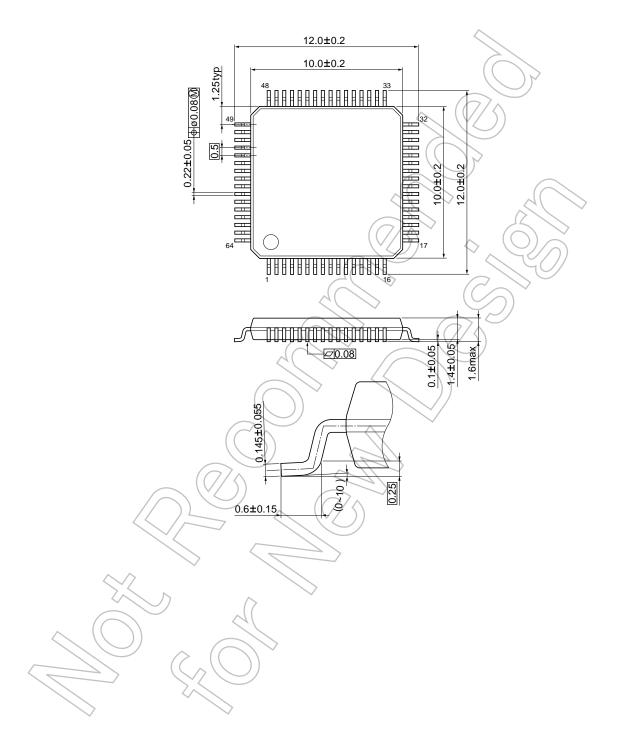
g. Undefined SFR

The value of an undefined bit in an SFR (Special function register) is undefined when read.

h. POP SR instruction

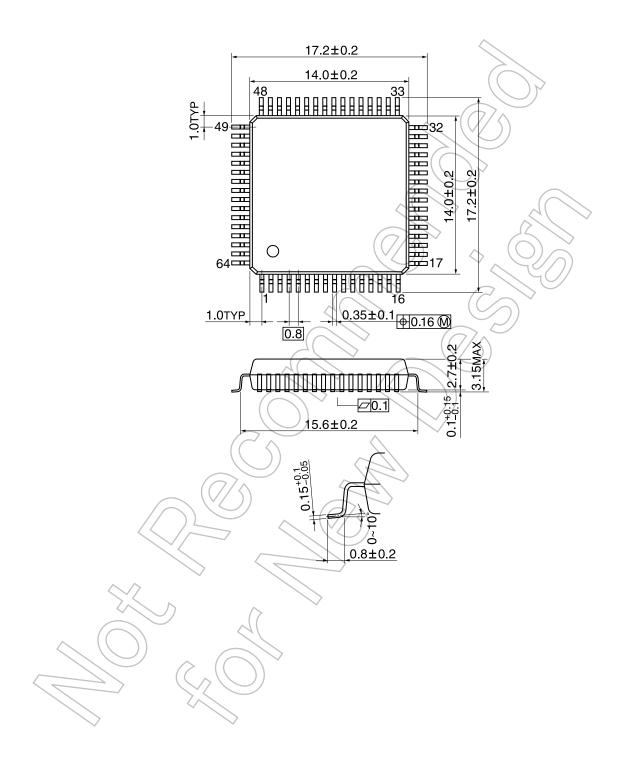
Please execute the POP SR instruction during DI condition.

i. Releasing the HALT mode by requesting an interruption


Usually, interrupts can release all halts status. However, the interrupts ($\overline{\rm NMI}$, INTO, INTRTC) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally)

If another interrupts is generated after it has shifted to HALT mode completely, halt status can be released without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

8. Package Dimensions


LQFP64-P-1010-0.50D

Unit: mm

QFP64-P-1414-0.80A

Unit: mm

