CMOS 16-Bit Microcontroller TMP93CF76/CF77/CW76/CU76/CT76

1. Outline and Feature

TMP93CF76/CF77/CW76/CU76/CT76 are a high-speed advanced 16-bit microcontroller developed for application with VCR system control, software servo motor control, VFT driver and timer control.

In addition to basics such as I/O ports, the TMP93CF76/CF77/CW76/CU76/CU76 have highspeed/high-precision signal measuring circuit, PWM (Pulse-Width-Modulator) and high-precision real timing pulse generator.

The device characteristics are as follows:

- (1) Original 16-bit CPU (900/L CPU)
 - TLCS-90 instruction mnemonic upward compatible
 - 16 Mbyte linear address space •
 - General-purpose registers and register bank system
 - 16-bit multiplication/division and bit transfer/arithmetic instructions .
 - High-speed micro DMA: 4 channels (2 µs/2 byte at 16 MHz)
- (2) Minimum instruction execution time: 250 ns at 16 MHz
- (3) Internal ROM:

TMP93CF76	192 KB
TMP93CF77	160 KB
TMP93CW76	128 KB
TMP93CU76	96 KB
TMP93CT76	72 KB

(4) Internal RAM:

TMP93CF76	4.0 KB
TMP93CF77	4.0 KB
TMP93CW76	2.5 KB
TMP93CU76	2.5 KB
TMP93CT76	2.0 KB

000707EBP1

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended for varianted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document

- shall be made at the customer's own risk. The products described in this document are subject to the foreign exchange and foreign trade laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

- (5) 20-bit time-base-counter (TBC)
 - Free running counter
 - Accuracy: 125 ns (at fc = 16 MHz)
 - Overflow: 131 ms (at fc = 16 MHz)
- (6) 8-bit timer (TC0): 1 channel
 - For CTL linear time counter
- (7) 16-bit timer (TC1 to 5): 5 channels
 - C.sync count, capstan FG count, general: 3 channels
- (8) Timing pulse generator (TPG): 2 channels
 - (16-bit timing data + 6-bit output data) with 8-stages FIFO : 1 channel
 - (16-bit timing data + 4-bit output data) :1 channel
 - Accuracy: 500 ns (at 16 MHz)
- (9) Pulse width modulation outputs (PWM)
 - 14-bit PWM: 3 channels (for controlling capstan, drum and tuner)
 - 8-bit PWM: 1 channel (for controlling volume)
 - Carrier frequency: 31.25 kHz (at 16 MHz)
- (10) 24-bit time base counter capture circuit (Capture 0)
 - (18-bit timing data + 6 bit trigger data) with 8-stages FIFO: 1 channel
 - Capture input sources: Remote-control-input (RMTIN), V.sync, CTL, Drum-PG, general (1 channel)
 - Accuracy: 500 ns (at 16 MHz)
- (11) 17-bit time base counter capture circuit (Capture 1/2)
 - (16-bit timing data + 1-bit trigger data): 2 channels
 - Capture input sources: Drum-FG, Capstan-FG
 - Accuracy: 125 ns (at 16 MHz)
- (12) VISS/VASS detection circuit (VISS/VASS)
 - CTL duty detection
 - VASS data 16-bit latch
- (13) Composite-sync-signal (C.sync) input
 - Vertical-sync-signal (V.sync) separation
 - Horizontal-sync-signal (H.sync) separation
- (14) Head Amp switch/Color Rotary control (HA/CR)
- (15) Pseudo-V/H generator (PV/PH)
- (16) 8-bit AD converter (ADC): 10 channels
 - Conversion speed: 95 states (11.8 µs at 16 MHz)
- (17) Serial Channel (SIO): 1channel
- (18) Serial bus I/F
 - I²C bus with 8-stages FIFO: 1 channel/2 ports
- (19) Watch dog timer (WDT)

(20) Interrupt controller (INTC)

- CPU: 8 sources \rightarrow SWI instruction and illegal instruction
- Internal: 17 sources 7-level priority can be set.
- External: 5 sources
- (21) I/O ports
 - 67 I/O ports (multiplexed functional pins.) High Break Down Voltage PortE, F are Included: 14 I/O ports
 - 8 input ports (P40/AIN2 to P47/AIN9)
 - 10 output ports PC0/G0 to PC7/G7, PD0/G8 to PD1/G9: High Break Down Voltage

(22) Standby function: 4 halt modes (RUN, IDLE2, IDLE1, STOP)

(23) System clock function

Dual clock operation 16 MHz (High-speed: normal)/32 kHz (Low-speed:slow)
 … 17-bit Real Time Counter built in

(24) Operating Voltage

- Vcc = 2.7 to 5.5 V (at 32 kHz)
- Vcc = 4.5 to 5.5 V (at 16 MHz)

(25) Package

- 100 pin QFP 14 mm × 20 mm (Pin pitch: 0.65 mm)
- Product name: P-QFP100-1420-0.65A

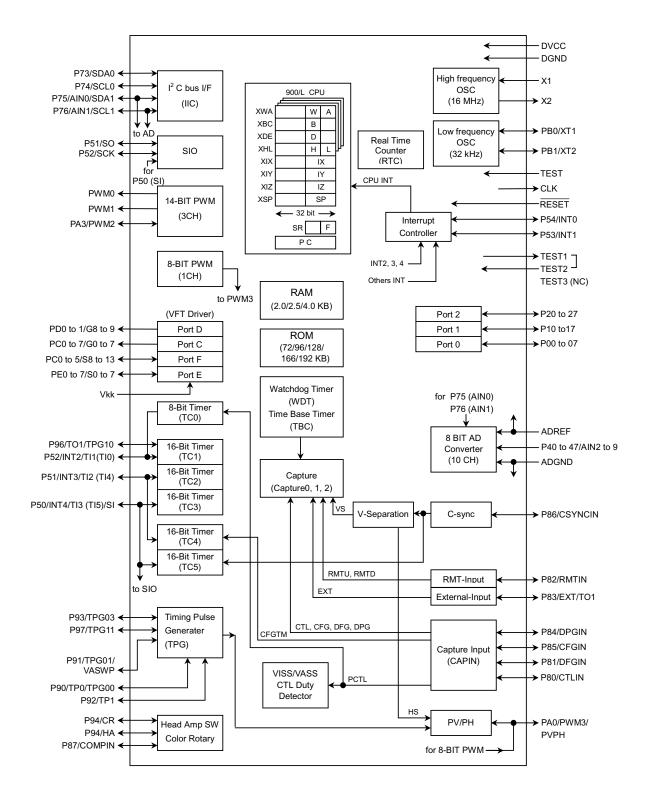


Figure 1.1 TMP93CF76/CF77/CW76/CU76/CT76 block diagram

2. Pin Assignment and Functions

The assignment of input and output pins for the TMP93CF76/CF77/CW76/CU76/CT76, their names and functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of the TMP93CF76/CF77/CW76/CU76/CT76.

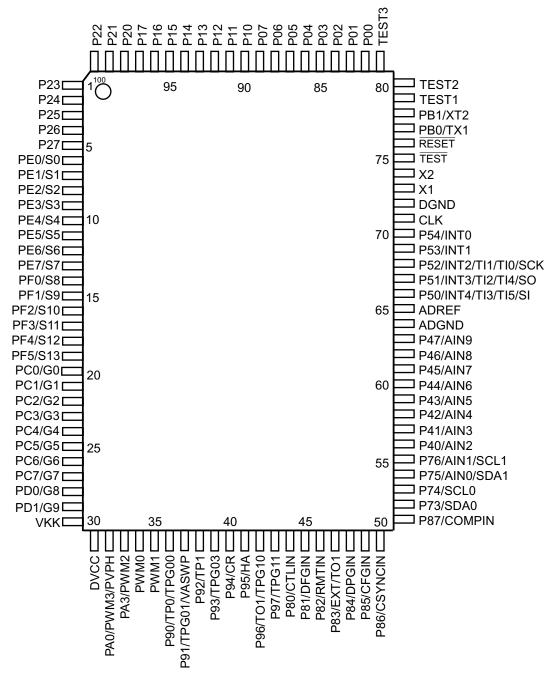


Figure 2.1.1 Pin assignment (100-pin QFP)

2.2 Pin Names and Functions

The names of input/output pins and their functions are described below.

Pin name	Number of pins	I/O	Functions
P00 to P07	8	I/O	port0: I/O ports
P10 to P17	8	I/O	port1: I/O ports
P20 to P27	8	I/O	port2: I/O ports
P40 to P47	8	Input	port4: Input ports
AIN2 to AIN9		Input	Analog input: Input to AD converter
P50	1	I/O	Port50: I/O port (schmitt input)
INT4		Input	External Interrupt request input 4: Rising edge/Falling edge programable
TI3		Input	16-bit timer3 (TC3) Input 3
TI5		Input	16-bit timer5 (TC5) input 5
SI		Input	SIO received data
P51	1	I/O	Port51: I/O port (schmitt input)
INT3		Input	External Interrupt request input 3: Rising edge/Falling edge programable
TI2		Input	16-bit timer2 (TC2): Input 2
TI4		Input	16-bit timer4 (TC4): input 4
SO		Output	SIO sending data
P52	1	I/O	Port52: I/O port (schmitt input)
INT2		Input	External Interrupt request input 2: Rising edge/Falling edge programable
TI1		Input	16-bit timer1 (TC1) Input 1
TIO		Input	8-bit Timer0 (TC0) Input 0
SCK		I/O	SIO clock line
P53	1	I/O	Port53: I/O port (schmitt input)
INT1		Input	External Interrupt request pin1: Rising edge/Level programable
P54	1	I/O	Port54: I/O port (schmitt input)
INTO		Input	External Interrupt request pin0: Rising edge/Falling edge programable
P73	1	I/O	Port73: I/O port (schmitt input, Push-pull or open-drain output selectable)
SDA0		I/O	I ² C bus SDA0 line
P74	1	I/O	Port74: I/O port (schmitt input, Push-pull or open-drain output selectable)
SCL0		I/O	I ² C bus SCL0 line
P75	1	I/O	Port75: I/O port (schmitt input, Push-pull or open-drain output selectable)
SDA1		I/O	I ² C bus SDA1 line
AIN0		Input	Analog input 0: Analog input signal for AD converter
P76	1	I/O	Port76: Input port (schmitt input, Push-pull or open-drain output selectable)
SCL1		I/O	I ² C bus SCL1 line
AIN1		Input	Analog input 1: Analog input signal for AD converter
P80	1	I/O	Port80: I/O port (schmitt input)
CTLIN		Input	CTL Capture input (Capture 0)
P81	1	I/O	Port81: I/O port (schmitt input)
DFGIN		Input	DFG Capture input (Capture 1)

Table 2.2.1 Pin names and funct

	Number		
Pin name	of pins	I/O	Functions
P82	. 1	I/O	Port82: I/O port (schmitt input)
RMTIN		Input	Remote Control Signal Capture input
P83	1	I/O	Port83: I/O port (schmitt input)
EXT		Input	External Capture input (Capture 0)
TO1		Output	Timer Out 1
P84	1	1/O	Port84: I/O port (schmitt input)
DPGIN		Input	DPG Capture input (Capture 0)
P85	1	I/O	Port85: I/O port (schmitt input)
CFGIN		Input	CFG Capture input (Capture 2)
P86	1	I/O	Port86: I/O port (schmitt input)
CSYNCIN		Input	C.sync Capture input
P87	1	I/O	Port87: I/O port (schmitt input)
COMPIN		Input	Envelope Comparate Input (to HA/CR)
P90	1	I/O	Port90: I/O port (Push-pull or open-drain output selectable)
TP0		Output	Timing Pulse output 0
TPG00		Output	TPG00: TPG0 output
P91	1	I/O	Port91: I/O port (Push-pull or open-drain output selectable)
VASWP		Output	Video/Audio head switching control signal output
TPG01		Output	TPG01: TPG0 output
P92	1	I/O	Port92: I/O port (Push-pull or open-drain output selectable)
TP1		Output	Timing Pulse output 1
P93	1	I/O	Port93: I/O port (Push-pull or open-drain output selectable)
TPG03		Output	TPG03: TPG0 output
P94	1	I/O	Port94: I/O port (Push-pull or open-drain output selectable)
CR		Output	Color Rotary Output
P95	1	I/O	Port95: I/O port (Push-pull or open-drain output selectable)
НА		Output	Head Amp Switching Control Output
P96	1	I/O	Port96: I/O port (Push-pull or open-drain output selectable)
TO1		Output	Timer Out 1
TPG10		Output	TPG10: TPG1 output
P97	1	I/O	Port97: I/O port (Push-pull or open-drain output selectable)
TPG11		Output	TPG11: TPG1 output
PA0	1	I/O	PortA0: I/O port
PVPH		Output	PVPH 3-state Output
PWM3		Output	PWM(8 bits) output 3
PA3	1	I/O	PortA3: I/O port (Push-pull or open-drain output selectable)
PWM2		Output	PWM(14 bits) output 2

Table 2.2.1	Pin	names a	and	function	(2/3)
		mannoo c	anna	lanouoli	$(-, \circ)$

Pin name	Number of pins	I/O	Functions
PWM0	1	Output	PWM(14 bits) output 0 (Push-pull or open-drain output selectable)
PWM1	1	Output	PWM(14 bits) output 1 (Push-pull or open-drain output selectable)
PB0	1	I/O	PortB0: I/O port (Open-drain Output)
XT1		Input	Low Frequency Oscillator connecting pin
PB1	1	I/O	PortB1: I/O port (Open-drain Output)
XT2		Output	Low Frequency Oscillator connecting pin
PC0 to PC7	8	Output	PortC: Output (High break down voltage outputs with pull-down resistor)
G0 to G7		Output	Grid Drivers
PD0,1	2	Output	PortD: Output (High break down voltage outputs with pull-down resistor)
G8, 9		Output	Grid Drivers
PE0 to PE7	8	I/O	PortE: I/O ports (High break down voltage outputs with pull-down resistor)
S0 to S7		Output	Segment Drivers
PF0 to PF5	6	I/O	PortF: I/O ports (High break down voltage outputs with pull-down resistor)
S8 to S13		Output	Segment Drivers
TEST1	1	Output	TECT4 should be connected with TECT2 pin
TEST2	1	Input	TEST1 should be connected with TEST2 pin.
TEST3(NC)	1	Output	TEST3 should be open connection.
CLK	1	Output	Clock output: Output (System Clock ÷ 2) clock.
			Pulled-up during reset.
			Can be set to output disable for reducing noise. (Initial Disable)
TEST	1	Input	Test pin: Always set to "Vcc" level
RESET	1	Input	Reset: Initializes LSI. (with pull-up resistor)
X1	1	Input	High Frequency Oscillator connecting pins (16 MHz)
X2	1	Output	High Frequency Oscillator connecting pins (16 MHz)
VKK	1		VFT Driver power supply pin
DVCC	1		Power supply pin
DGND	1		GND pin (0 V)
ADREF	1		Reference voltage input for AD converter
ADGND	1		GND pin for AD converter

Table 2.2.1 Pin names and function (3/3)

3. Operation

This section describes the functions and basic operational blocks of TMP93CF76/CF77/CW76/CU76/CT76 devices.

See the "7. Points of Concern and Restrictions" for the using notice and restrictions for each block.

3.1 CPU

TMP93CF76/CF77/CW76/CU76/CT76 devices have a built-in high-performance 16-bit CPU (900/L CPU). (For CPU operation, see TLCS-900/L CPU in the previous section).

This section describes CPU functions unique to the TMP93CF76/CF77/CW76/CU76/CT76 that are not described in the previous section.

3.1.1 Reset

To reset the TMP93CF76/CF77/CW76/CU76/CT76, the RESET input must be kept at 0 for at least 10 system clocks. (1.25 μs at 16 MHz) within the operating voltage range and with a stable oscillation.

When reset is accepted, the CPU sets as follows:

• Program Counter (PC) according to Reset Vector that is stored FFFF00H to FFFF02H.

PC (7:0)	\leftarrow stored data in location FFFF00H
PC (15:8)	\leftarrow stored data in location FFFF01H
PC (23:16)	\leftarrow stored data in location FFFF02H

- Stack pointer (XSP) for system mode to 100H.
- IFF2 to 0 bits of status register to 111. (Sets mask register to interrupt level 7.)
- MAX bit of status register to 1. (Sets to maximum mode)
- Bits RFP2 to 0 of status register to 000. (Sets register banks to 0.)

When reset is released, instruction execution starts from PC (reset vector). CPU internal registers other than the above are not changed.

When reset is accepted, processing for built-in I/Os, ports, and other pins is as follows

- Initializes built-in I/O registers as per specifications.
- Sets port pins (including pins also used as built-in I/Os) to general-purpose input/output port mode.
- Note: By resetting, register in the CPU except program counter (PC), status register (SR) and stack pointer (XSP) and the data in internal RAM are not changed.

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP93CF76/CF77/CW76/CU76/CT76.

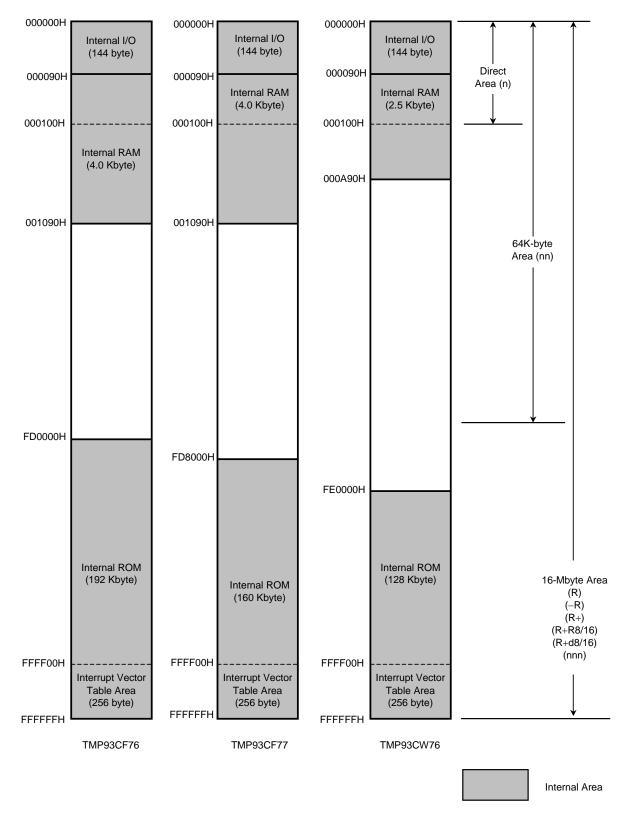


Figure 3.2.1 Memory map (1/2)

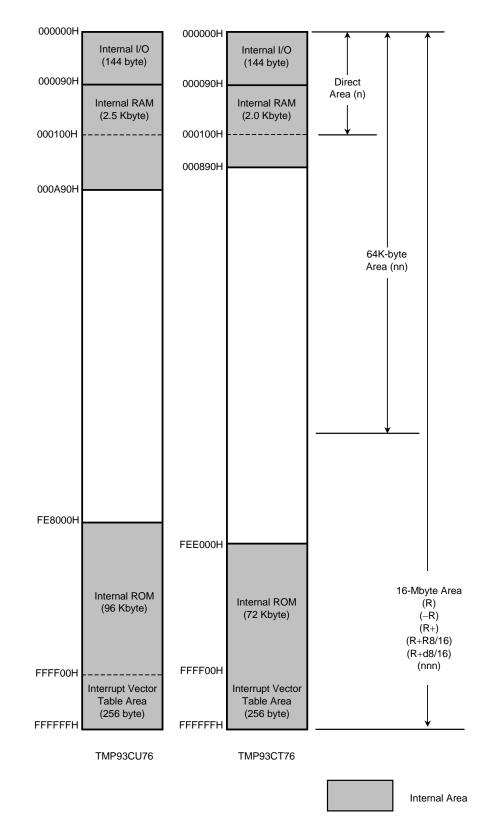
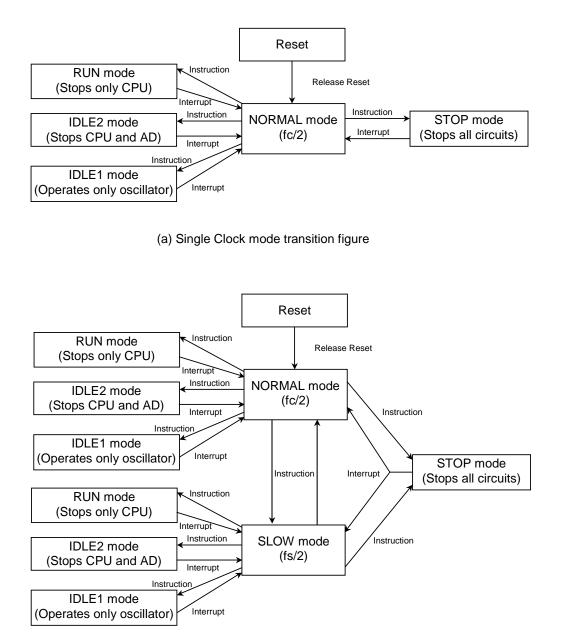


Figure 3.2.1 Memory map (2/2)


3.3 Dual Clock, Standby Function

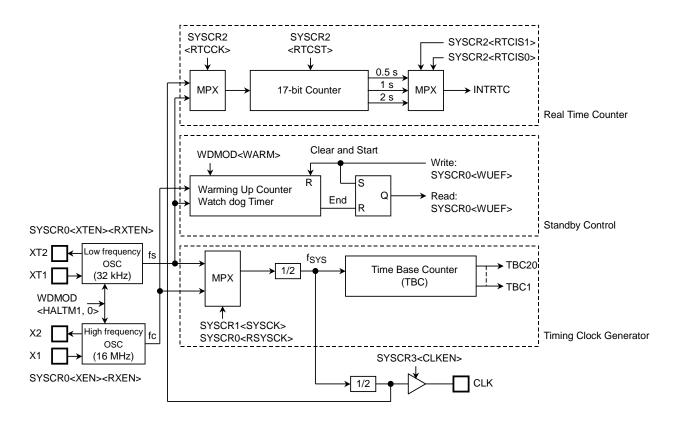
Dual Clock, Stand by Control Circuits consist of System clock Controller, Timing clock Generator for I/O Block, Real Time Clock Generator, and Standby Controller.

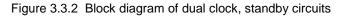
The Oscillator operating mode is classified to Single Clock mode (only X1, X2 pin) and Dual Clock mode (X1, X2, XT1, XT2 pin).

Figure 3.3.1 shows a transition figure. Figure 3.3.2 shows the block diagram.

Figure 3.3.3 shows I/O registers. Table 3.3.1 shows the internal operation and system clock.

(b) Dual Clock mode transition figure


Figure 3.3.1 Transition figure


The clock frequency input from X1, X2 pin is called fc, and the clock frequency input from XT1, XT2 pin is called fs. The clock frequency selected by SYSCR1<SYSCK> is called system clock f_{FPH} . The devided clock of f_{FPH} is called system clock f_{SYS} , and the 1 cycle of f_{SYS} is called 1 state.

Operating		Oscillator				System clock
•	/lode	High	Low	CPU	Internal I/O	-
	NOUE	Frequency (fc)	Frequency (fs)			fsys
	RESET			Reset	Reset	
	NORMAL			Operate	Operate	
Single Clock	RUN	Oscillation	Stop		Operate	fc/2
	IDLE2			Stop	Stop only AD	
	IDLE1				Stop	
	STOP	Stop				Stop
	RESET	Oscillation	Stop	Reset	Reset	fc/2
	NORMAL	Oscillation	Progamable	Operate		IC/Z
Dual	SLOW	Programable	Oscillation	Operate	Operate	fs/2
Dual Clock	RUN	Oscillator being used as system clock: oscillation				
	IDLE2			Stop	Stop only AD	Programable (fc/2, fs/2)
	IDLE1	Other oscillator: pre	r oscillator: programmable		Stop	(10/2, 15/2)
	STOP	Stop			Stop	Stop

Table 3.3.1	Internal	operation	and system	clock
-------------	----------	-----------	------------	-------

Note: The TMP93CF76/CF77/CW76/CU76/CT76 does not have a clock gear circuit.

System Clock Control Register 0

SYSCR0	7	6	5	4	3	2	1	0	_
(006EH)	XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF			(Initial Value: 1010 00**)

XEN	High Frequency oscillator (fc)	0: Stop	
		1: Oscillation	
XTEN	Low Frequency oscillator (fs)	0: Stop	
		1: Oscillation	
RXEN	High Frequency oscillator (fc) after	0: Stop	
	released STOP mode	1: Oscillation	
RXTEN	Low Frequency oscillator (fs) after	0: Stop	
	released STOP mode	1: Oscillation	R/W
RSYSCK	Clock selection after released	0: fc	10,00
	STOP mode	1: fs	
WUEF	Warm-Up Timer	(READ)	
		0: End warmming-up	
		1: Under warmming-up	
		(WRITE)	
		0: Don't care	
		1: Timer start	

Note: The bit 1 to 0 are always read out as 1.

System Clock Control Register 1

 SYSCR1
 7
 6
 5
 4
 3
 2
 1
 0

 (006FH)
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t

SYSCK	System clock selection	0: fc	R/W
		1: fs	

Note 1: The bit 7 should be cleared to 0.

Note 2: The bit 6 to 4 are always read out as 1.

Note 3: Writing 0 to SYSCR1<SYSCK> enables the high-frequency oscillator regardless of the value of SYSCR0<XEN>. Additionally, writing 1 to SYSCR1<SYSCK> enables the low-frequency oscillator regardless of the value of SYSCR0<XTEN>.

System Clock Control Register 2

SYSCR2	7	6	5	4	3	2	1	0
(006CH)	0	0		RTCCK	RTCST	RTCIS1	RTCIS0	(Initial Value: 00*0 000*)

RTCCK	RTC input clock select	0: fs (32 kHz)	
		1: f _{SYS} /2	
RTCST	RTC count control	0: Stop & Clear	Ī
		1: Start	DAA
RTCIS1	Interval time control of RTC	00: f _{SYS} /2 ¹⁶ or fs/2 ¹⁵	R/W
	interrupt	01: f _{SYS} /2 ¹⁷ or fs/2 ¹⁶	
RTCIS0		10: f _{SYS} /2 ¹⁵ or fs/2 ¹⁴	
		11: Reserved	

Note 1: The bit 7 and 6 should be cleared to 0.

Note 2: When SYSCR2<RTCCK> is 1, RTC input clock is fc/4 or fs/4 depending on operation mode.

Watchdog Tir	mer Control	Register									
WDMOD	7	6	5	4	3	2	1	0			
(005CH)	WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTM0	RESCR	DRVE	(Initial Value:	1000 0000)	
	WDTE	WDT	control		-	Disable Enable					
	WDTP1	WDT	detection tir	ne		2 ¹⁵ /f _{SYS}	4				
						2 ¹⁷ /f _{SYS}					
	WDTP0					10: 2 ¹⁹ /fsys					
					11	2 ²¹ /f _{SYS}					
	WARM		ing-up time	r source clo		0: 2 ¹⁴ / selected clock frequency 1: 2 ¹⁶ / selected clock frequency					
		select	ion		1:3	R/W					
	HALTM1	HALT	mode selec	ction	00	00: RUN mode					
					01	STOP mod					
	HALTM0				10	10: IDLE1 mode					
					11	IDLE2 mo	4				
	RESCR	WDT	WDT internal reset control			_					
					1:	Connects W	4				
	DRVE	Pin co	ontrol of ST	OP mode	0:	I/O off					
					1:	Remains the					

Figure 3.3.3 I/O registers about dual clock, standby

TOSHIBA

3.3.1 System Clock Controller

The system clock controller generates system clock (f_{SYS}) for CPU core and internal I/O. It contains two oscillation circuits. The register SYSCR1<SYSCK> changes system clock to either fc or fs, SYSCR0<XEN>, <XTEN> controls enable/disable each oscillator.

The system clock (fsys) is set to fc/2 because of $\langle XEN \rangle = 1$, $\langle XTEN \rangle = 0$, $\langle SYSCK \rangle = 0$ by resetting.

For example, fSYS is set to 8 MHz by resetting the case of 16-MHz oscillator is connected to X1, X2 pins.

The high frequency (fc) and low frequency (fs) clocks can be easily obtained by connecting a resonator to the X1/X2, XT1/XT2 pins, respectively. Clock input from an external oscillator is also possible.

The XT1, XT2 pins have also Port PB0, PB1 function. Therefore the case of single clock mode, the XT1, XT2 pins can be used as I/O port pins.

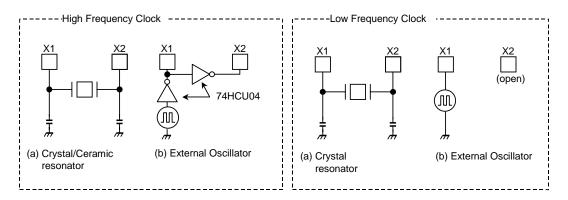


Figure 3.3.4 Examples of resonator connection

Note: In connecting the low frequency resonator to ports PB0 and PB1, it is necessary to make the following settings to reduce the power consumption. Connecting with resonators PBCR<PB0C, PB1C> = 11, PB<PB0, PB1> = 00 Connecting with oscillators PBCR<PB0C, PB1C> = 11, PB<PB0, PB1> = 10 (1) Switching from NORMAL to SLOW mode or from SLOW to NORMAL mode

When the resonator is connected to X1, X2, or XT1, XT2 pin, the warm-up timer is used to change the operation frequency after getting stabilized oscillation.

The warm-up time can be selected by WDMOD<WARM>.

This starting and ending of warm-up timer are performed like the following example 1, 2 by program.

- Note 1: The warm-up timer is also used as a watchdog timer. So, when it is used as a warm-up timer, the watchdog timer must be disabled.
- Note 2: The case of using oscillator (not resonator) with stabilized oscillation, a warmup timer is not need.
- Note 3: The warm-up timer is operated by a oscillation clock. Therefore, warm-up time has an error.

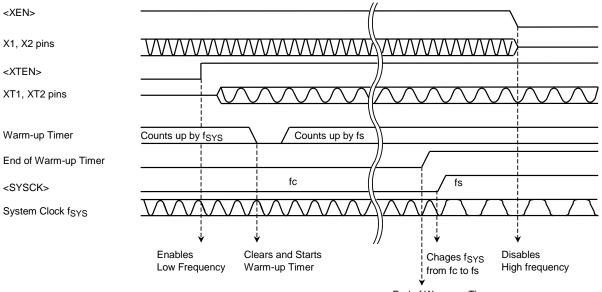
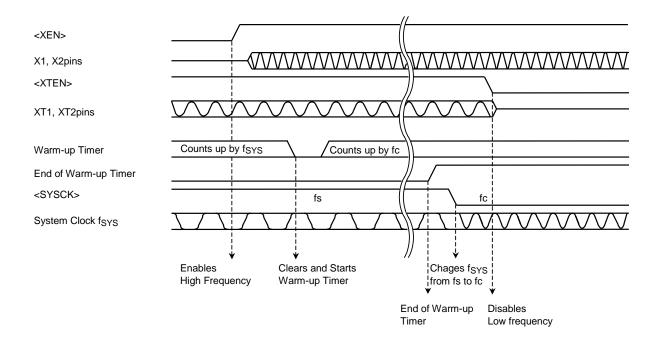

Warm-up Time WDMOD <warm></warm>	Change to NORMAL	Change to SLOW		
0 (2 ¹⁴ /frequency)	1.024 ms	500 ms		
1 (2 ¹⁶ /frequency)	4.096 ms	2000 ms		

Table 3.3.2 Warm-up time (at fc = 16 MHz, fs = 32.768 kHz)

Clock Setting Example 1:

Changing from the high frequency (fc) to the low frequency (fs).

SYSCR0	EQU	006EH	
SYSCR1	EQU	006FH	
WDCR	EQU	005DH	
WDMOD	EQU	005CH	
	RES	7,(WDMOD)	;]
	LD	(WDCR),0B1H	' } Disables Watchdog Timer.
	SET	4,(WDMOD)	; Sets Warm-up Time to 2 ¹⁶ /fs.
	SET	6,(SYSCR0)	; Enables Low Frequency (fs).
	SET	2,(SYSCR0)	; Clears and stars Warm-up Timer.
WUP:	BIT	2,(SYSCR0)	;] , , , , , , , , , , , , , , , , , ,
	JR	NZ,WUP	<pre> Detects End of Warm-up Timer. </pre>
	SET	3,(SYSCR1)	; Changes f _{SYS} from fc to fs.
	RES	7,(SYSCR0)	; Disables High Frequency Oscillation.
	SET	7,(WDMOD)	; Enables Watchdog Timer.



End of Warm-up Timer

Clock Setting Example 2:

Changing from the low frequency (fs) to the high frequency (fc).

SYSCR0 SYSCR1	EQU EQU	006EH 006FH	
WDCR	EQU	005DH	
WDMOD	EQU	005CH	
	RES	7,(WDMOD)	;]
	LD	(WDCR),0B1H	<pre> Disables Watchdog Timer. </pre>
	RES	4,(WDMOD)	; Sets Warm-up Time to 2 ¹⁴ /fc.
	SET	7,(SYSCR0)	; Enables High Frequency (fc).
	SET	2,(SYSCR0)	; Clears and stars Warm-up Timer.
WUP:	BIT	2,(SYSCR0)	
	JR	NZ,WUP	' } Detects End of Warm-up Timer.
	RES	3,(SYSCR1)	; Changes f _{SYS} from fs to fc.
	RES	6,(SYSCR0)	; Disables Low Frequency Oscillation.
	SET	7,(WDMOD)	; Enables Watchdog Timer.

3.3.2 Timing Clock Generator

The timing clock generator generates sorts of system clock from the basic clock (fc or fs), providing for CPU core and peripheral hardwares.

(1) Architecture

The timing clock generator consists of the system clock generator and the Time Base Counter (TBC) which generates system clock for peripheral hardwares. After resetting, the system clock is generated from high frequency clock (fc) (NORMAL mode). Both executing the instruction and operating the internal hardwares are synchronized by this system clock.

(2) Time Base Counter (TBC)

The time base counter consists of a 20-bit up-counter counted by a basic clock fSYS, 16-bit data register and control register.

Figure 3.3.5 Shows the composition of the time base counter.

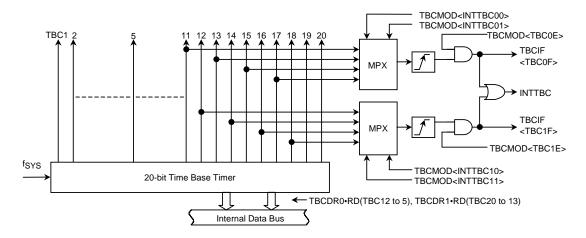


Figure 3.3.5 Composition of time base counter (TBC)

Time Base Counter mode Register

TBCMOD	7	6	5	4	3	2	1	0	_	
(0023H)	0	0	TBC1E	TBC0E	INTTBO	C11 INTTBC10	INTTBC01	INTTBC00	(Initial Value: **	00 0000)
	TBC1E	INTTE	BC Interrupt	Enable/Dis	able	00: INTTBC0/	ble			
						01: INTTBC0				
	TBC0E					10: INTTBC1				
						11: INTTBC0/	ble			
	INTTBC11	INTTE	BC1 Interru	pt Source	Clock	00: TBC12				
		Select	ion			01: TBC14				
	INTTBC10					10: TBC16		10,00		
						11: TBC18				
	INTTBC01	NTTBC01 INTTBC0 Interrupt Source Clock			Clock	00: TBC11				
		Select	ion			01: TBC13				
	INTTBC00					10: TBC15				
						11: TBC17				

Note 1: The bit 7 and 6 should be cleared to 0.

Note 2: The bit 7 and 6 are always read out as 1.

Note 3: Prohibt read-modify-write.

Time Base Counter Data Register 0

TBCDR0	7	6	5	4	3	2	1	0	_
(0024H)	TBC12	TBC11	TBC10	TBC9	TBC8	TBC7	TBC6	TBC5	(Initial Value: 0000 0000) Read only

Time Base Counter Data Register 1

TBCDR1	7	6	5	4	3	2	1	0	_
(0025H)	TBC20	TBC19	TBC18	TBC17	TBC16	TBC15	TBC14	TBC13	(Initial Value: 0000 0000) Read only

Note: A value of TBC20 to 13 is latched to TBCDR1 at reading out TBCDR0. TBCDR1 must be read out after reading TBCDR0.

Time Base Counter Interrupt Flag Register 0

TBCIF (0026H)	7	6 5 4 3 0 TBC1F TBC0F	2 1 0 0 (Initial Value: 000	00 *0**)
	TBC1F	TBC1 interrupt request flag	(write) 0: Clear request flag 1: Don't set to 1	
			(read) 0: — 1: Interrupt request	
	TBC0F	TBC0 interrupt request flag	(write) 0: Clear request flag 1: Don't set to 1	R/W
			(read) 0: —	
			1: Interrupt request	

Note 1: The bit 7, 6 and 2 should be cleared to 0.

Note 2: The bit 7, 6 and 2 are always read as 1.

Note 3: Prohibit read-midify-write.

a. Operation

Time base counter outputs (TBC1 to TBC20) are used as clock source or timing data for Timer/Counter, Capture (CAP0/CAP1/CAP2), timing pulse generator (TPG) and other peripheral I/O blocks. The contents of time base counter outputs TBC5 to TBC20 can be read by reading the time base counter data registers, TBCDR0 and TBCDR1. Note that the data registers must be read in order of TBCDR0 and then TBCDR1.

Time base counter interrupt requests (INTTBC) can be generated on the rising edges of counter outputs TBC11 to TBC18. The interrupt source is selected by the time base counter mode register TBCMOD <INTTBC11, INTTBC10, INTTBC01 and INTTBC00>. The INTTBC interrupt requests are comprised of two interrupt request signals INTTBC0 and INTTBC1 that are logical OR' ed to generate an interrupt request. Which interrupt is requested can be identified by reading the time base counter interrupt request flag register TBCIF <TBC0F> and <TBC1F>.

The INTTBC0 flag <TBC0F> and INTTBC1 flag <TBC1F> can be cleared by writing 0 in the register.

Table 3.3.3 lists the interval time of time base counter outputs.

	Table 3.3.3 The value of time base counter												
	TBC1	TBC2	TBC3	TBC4	TBC5	TBC6	TBC7	TBC8	TBC9	TBC10			
Interval Time [s]	2/f _{SYS}	2 ² /f _{SYS}	2 ³ /f _{SYS}	2 ⁴ /f _{SYS}	2⁵/f _{SYS}	2 ⁶ /f _{SYS}	2 ⁷ /f _{SYS}	2 ⁸ /f _{SYS}	2 ⁹ /f _{SYS}	2 ¹⁰ /f _{SYS}			
at fc = 16 MHz [µs]	0.25	0.5	1.0	2.0	4.0	8.0	16.0	32.0	64.0	128.0			

Table 3.3.3 Interval time of time base counter

ĺ	TBC11	TBC12	TBC13	TBC14	TBC15	TBC16	TBC7	TBC18	TBC19	TBC20
	2 ¹¹ /f _{SYS}	2 ¹² /f _{SYS}	2 ¹³ /f _{SYS}	2 ¹⁴ /f _{SYS}	2 ¹⁵ /f _{SYS}	2 ¹⁶ /f _{SYS}	2 ¹⁷ /f _{SYS}	2 ¹⁸ /f _{SYS}	2 ¹⁹ /f _{SYS}	2 ²⁰ /f _{SYS}
ĺ	256	512	1024	2048	4096	8192	16384	32768	65536	131072

3.3.3 Real Time Counter (RTC)

The TMP93CF76/CF77/CW76/CU76/CT76 have the real time counter (RTC) which generates a periodic interrupt request. The RTC is controlled by System Control Register2 (SYSCR2).

The RTC is a 17bit binary counter and its clock source is selected either low frequency clock (fs) or system clock (fSYS/2) by <RTCCK>. To start/stop the counter is controlled by <RTCST>.

The period of interrupt request INTRTC is selected from 3 types by setting <RTCIS1, RTCIS0>.

Table 3.3.4 shows the period of interrupt request INTRTC.

System Clock Control Register 2

```
        SYSCR2
        7
        6
        5
        4
        3
        2
        1
        0

        (006CH)
        0
        0
        RTCCK
        RTCST
        RTCIS1
        RTCIS0
        (Initial Value: 00*0 0000)
```

RTCCK	RTC input clock select	0: fs	
		1: f _{SYS} /2	
RTCST	RTC count control	0: Stop & Clear	
		1: Start	5.44
RTCIS1	Interval time control of RTC	00: f _{SYS} /2 ¹⁶ or fs/2 ¹⁵	R/W
DTOIOO	interrupt	01: f _{SYS} /2 ¹⁷ or fs/2 ¹⁶	
RTCIS0		00: f _{SYS} /2 ¹⁶ or fs/2 ¹⁵ 01: f _{SYS} /2 ¹⁷ or fs/2 ¹⁶ 10: f _{SYS} /2 ¹⁵ or fs/2 ¹⁴	
		11: Reserved	

Note 1: When SYSCR2<RTCCK> is set to 1, RTC input clock is assigned to fc/4 or fs/4 depending on the peration mode.

Note 2: The bit 7 and 6 must be cleared to 0.

<rtcck></rtcck>	<rtcis></rtcis>	INTRTC interrupt interval
0 (fs = 32.768 kHz)	00 01 10	1 s 2 s 0.5 s
$\begin{bmatrix} 1 \\ f_{SYS} = fc/2 \\ f_{c} = 16 \text{ MHz} \end{bmatrix}$	00 01 10	8.192 ms 16.384 ms 4.096 ms
$f_{SYS} = fs/2$ $f_{s} = 32.768 \text{ kHz}$	00 01 10	4 s 8 s 2 s

Table 3.3.4 INTRTC interrupt interval

3.3.4 Standby Controller

(1) Halt mode

When the HALT instruction is executed, the operating mode changes into RUN, IDLE2, IDLE1 or STOP mode depending on the contents of watchdog timer mode register WDMOD<HALTM1,0>. Figure 3.3.6 shows the alternative states of watchdog timer mode registers.

Watchdog Timer Mode Register

WDMOD	7	6	5	4	3	2	1	0	_
(005CH)	WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTM0	RESCR	DRVE	(Initial Value: 1000 0000)

WDTE	WDT timer enable/disable control	0: Disable	
		1: Enable	
WDTP1	WDT detection time	00: 2 ¹⁵ /f _{SYS}	
		01: 2 ¹⁷ /f _{SYS}	
WDTP0		10: 2 ¹⁹ /f _{SYS}	
		11: 2 ²¹ /f _{SYS}	
WARM	Warming-up timer source clock	0: 2 ¹⁴ / selected clock frequency	
	selection	1: 2 ¹⁶ / selected clock frequency	R/W
HALTM1	HALTM1 HALT mode selection 00: RUN mode		10,00
		01: STOP mode	
HALTM0		10: IDLE1 mode	
		11: IDLE2 mode	
RESCR	WDT internal reset control	0: —	
		1: Connects WDT output to RESET internaly	ļ
DRVE	Pin control of STOP mode	0: I/O off	
		1: Remains the state before HALT	

Figure 3.3.6 Watchdog timer mode register

The features of RUN, IDLE2, IDLE1 and STOP modes are as follows.

- a. RUN: Only the CPU halts; power consumption remains unchanged.
- b. IDLE2: The built-in oscillator and the specified I/O operates.
 - The Power Consumption is redced to 1/2 than that during NORMAL operation.
- c. IDLE1: Only the built-in oscillator operates, while all other built-in circuits stop. The Power Consumption is reduced to 1/5 or less than that during NORMAL operation.
- d. STOP: All internal circuits including the built-in oscillator stop. This greatly reduces power consumption.

The operations in the halt state is described in Table 3.3.5.

Note: CAPCR<TPRS0> must be set to 1 before setting HALT mode such as STOP, IDLE1, IDLE2. Otherwise Icc may be increased.

Halt mode	RUN	IDLE2	IDLE1	STOP		
WDMOD <haltm1,0></haltm1,0>	00	11	10	01		
CPU	Stop					
I/O port	Keep the state when	the "HALT" instruction	was executed.	Refer to Table 3.3.8		
8-bit Timer(TC0)						
16-bit Timer (TC1,2,3,4,5)						
Dual Clock						
Watchdog Timer						
Interrupt controller	Ope	rate	St	юр		
SIO						
I ² C bus						
8-bit PWM						
14-bit PWM						
Timing Pulse Generator (TPG 0,1)						
Color Rotary						
VISS/VASS						
CSYNC						
PV/PH						
Capture input (Capture1/2)						
Capture 0						
Remote Control Input (RMTIN)						
Time Base Counter (TBC)						
AD Converter						
Real Time Counter (RTC)						

Table 3.3.5 I/O operation during Halt mode

(2) How to Release the Halt mode

These HALT states can be released by resetting or requesting an interrupt. The HALT release sources are determined by the combinations between the states of interrupt mask register $\langle IFF2:0 \rangle$ and the halt modes. The details for releasing the HALT status are shown in Table 3.3.6.

• Released by requesting an interrupt

The operating released from the HALT mode depends on the interrupt enabled status. When the interrupt request level set before executing the HALT instruction exceeds the value of the interrupt mask register, the interrupt due to the source is processed after releasing the halt mode, and CPU starts executing an instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the halt mode is not executed. (in non-maskable interrupts, interrupt processing is processed after releasing the halt mode so the value of the mask register.)

However only for INT0 and INT1 interrupts, even if the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the halt mode is executed. In this case, interrupt processing is not processed, and CPU starts executing the instruction next to the HALT instruction, but the interrupt request flag is held at 1.

Note: Usually, interrupts can release all halts status. However, the interrupts = (INT0, INT1), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of fc or fs) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

• Release by resetting

Releasing all halt status is executed by resetting.

When the STOP mode is released by RESET, it is necessary enough resetting time (3 ms or more) to set the operation of the oscillator to be stable.

When releasing the halt mode by resetting, the internal RAM data keeps the state before the "HALT" instruction is executed. However the other setting contents are initialized. (Releasing due to interrupts keep the state before the "HALT" instruction is executed.)

Inte	Interrupt Receiving Status		Interrupt Enable			Interrupt Disable				
			(Interru	(Interrupt level)≥(Interrupt mask)			(Interrupt level)<(Interrupt mask)			
	Halt m	node	RUN	IDLE2	IDLE1	STOP	RUN	IDLE2	IDLE1	STOP
		INTWD	•	×	×	×	_	_		
		INT0,1	•	•	•	♦*1	0	0	0	O*1
Halt	Interrupt	INTCAP0, 1	•	•	×	×	×	×	×	×
releasing		INTTTG0, 1	•	•	×	×	×	×	×	×
source		INTI2CB	•	•	×	×	×	×	×	×
		INTTBC	•	•	×	×	×	×	×	×
		INTSIO	•	•	×	×	×	×	×	×
		INTVA	•	•	×	×	×	×	×	×
		INT2, 3, 4	•	•	×	×	×	×	×	×
		INTT0 to 5	•	•	×	×	×	×	×	×
		INTAD	•	×	×	×	×	×	×	×
		INTRTC	•	•	×	×	×	×	×	×
	F	Reset Input	•	•	•	•	•	•	•	•

Table 3.3.6 Halt releasing source and Halt releasing operation

• : After releasing the halt mode, CPU starts interrupt processing (RESET initalizes LSI)

 $\ensuremath{\mathsf{O}}$: After releasing the halt mode, CPU starts executing an instruction that follows the HALT instruction.

 \times : It can not be used to release the halt mode.

---: This combination type does not exist because the priority level (interrupt request level) of non-maskable interrupts is fixed to highest priority level 7.

*1: Releasing the halt mode is executed after passing the warming-up time.

Note: When releasing the halt mode is executed by INT1 interrupt of the level mode in the interrupt enabled status, hold level "H" until starting interrupt processing. If level "L" is set before starting interrupt processing, interrupt processing is incorrently started.

(Example releasing "IDLE1" mode)

INTO interrupt releases HALT state when the IDLE mode is on.

Address	ł		
8200H	LD	(IIMC0),01H	; INT0 interrupt input enable
8203H	LD	(IIMC1),00H	; Selects interrupt rising edge for INT0
8206H	LD	(INT0CP1),06H	; Sets interrupt level to 6 for INT0
8209H	EI	5	; Sets interrupt level to 5 for CPU
820BH	LD	(WDMOD),08H	; Sets HALT mode to 'IDLE1'
820EH	HALT ¦		;halts CPU
INT0 _			INT0 Interrupt routine
820FH		XX	RETI

- (3) Operation
 - a. RUN mode

In the RUN mode, the system clock continues to operate even after a HALT instruction is executed. Only the CPU stops executing the instruction. In the HALT state, an interrupt request is sampled with the falling edge of the internal "CLK" signal.

Releasing the RUN mode is executed by the external/internal interrupts. (See Table 3.3.6 Halt releasing source and Halt releasing operation.)

Figure 3.3.7 shows the interrupt timing for releasing the HALT state by interrupts in the RUN/IDLE2 mode.

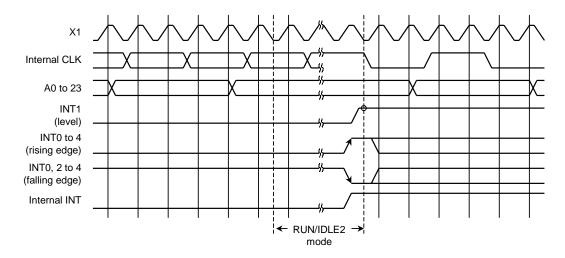


Figure 3.3.7 Timing chart for releasing the HALT state by Interrupt in RUN/IDLE2 modes

b. IDLE2 mode

In the IDLE2 mode, the system clock is supplied to only specific internal I/O devices, and the CPU stops executing the current instruction.

In the IDLE2 mode, the HALT state is released by an interrupt with the same timing as in the RUN mode. The IDLE2 mode is released by external/internal interrupt, except INTWD/INTAD interrupts. (See table 3.3.6 Halt releasing source and Halt releasing operation.)

In the IDLE2 mode, the watchdog timer should be disabled before entering the halt status to prevent the watchdog timer interrupt occurring just after releasing the halt mode.

c. IDLE1 mode

In the IDLE1 mode, only the internal oscillator operates. The system clock in the MCU stops.

In the HALT state, and interrupt request is sampled aynchronunsly with the system clock, however the HALT release (restart of operation) is performed synchronously with it.

IDLE1 mode is released by external interrupts (INT0, INT1). (See table 3.3.6 Halt releasing source and Halt releasing operation.)

Figure 3.3.8 illustrates the timing for releasing the HALT state by interrupts in the IDLE1 mode.

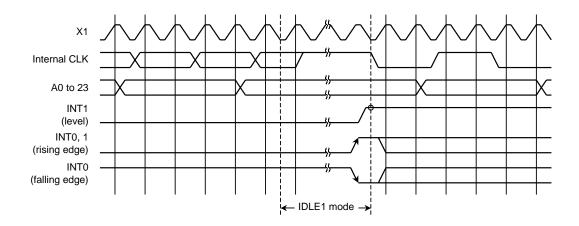


Figure 3.3.8 Timing chart of HALT released by interrupts in IDLE1 mode

d. STOP mode

The STOP mode is selected to stop all internal circuits including the internal oscillator. The pin status in the STOP mode depends on setting of a bit in the watchdog timer mode register WDMOD<DRVE>. (See Figure 3.3.6 for setting of WDMOD <DRVE>.) Table 3.3.8 summarizes the state of these pins in the STOP mode.

The STOP mode is released by external interrupts (INT0, INT1). When the STOP mode is released, the system clock output starts after warm-up time required to attain stable oscillation. The warm-up time can be set using WDMOD<WARM>. See the example of warm-up time (Table 3.3.7).

Figure 3.3.9 illustrates the timing for releasing the HALT state by interrupts during the STOP mode.

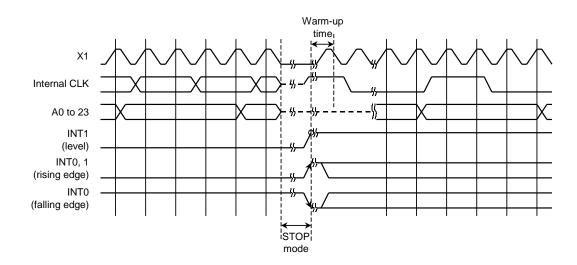


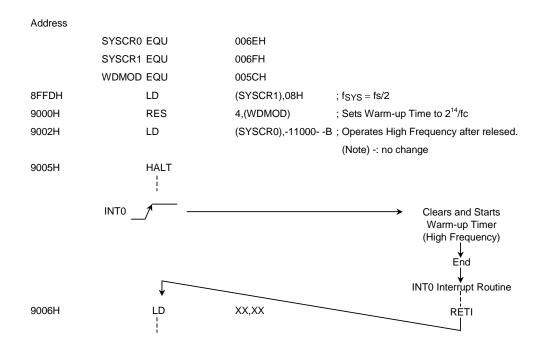
Figure 3.3.9 Timing chart of HALT state release by interrupts in STOP mode

Clock Operation Frequency	Warm-up	Clock Frequency	
after the Stop Mode	WDMOD <warm> $= 0$</warm>	WDMOD <warm> = 1</warm>	
fc	1.024	4.096	fc = 16 MHz
fs	500	2000	fs = 32.768 kHz

Table 3.3.7 The example of warm-up time after releasing the stop mode

How to calculate the warm-up time

WDMOD<WARM> = 0: 2^{14} /selected clock frequency


WDMOD<WARM> = 1: 2^{16} /selected clock frequency

The NORMAL/SLOW mode selection is possible after released STOP mode.

This is selected by SYSCR0 <RSYSCK>. Therefore, Setting to <RSYSCK>, <RXEN>, <RXTEN> is necessary before "HALT" instruction is executed.

Example:

The STOP mode is entered when the low frequency (fs) operates, and after that high frequency (fc) operates after releasing by INTO.

Note: When different modes are used before and after STOP mode as the above mentioned, there is possible to release the HALT mode without changing the operation mode by acceptance of the halt release interrupt request during execution of "HALT" instruction (during 8 states). In the system which accepts the interrupts during execution "HALT" instruction, set the same operation mode before and after the STOP mode.

		TMP93CF76/CF77	/CW76/CU76/CT76	
Pin Name	I/O	WDMOD	WDMOD	
		<drve> = 0</drve>	<drve> = 1</drve>	
CLK	Output	High-Z	"H" Level Output	
X1	Input			
X2	Output	"H" Level Output	"H" Level Output	
PB0/PB1	Input/Output	— /High-Z	—/Output	
XT1	Input	—	—	
XT2	Output	"H" Level Output	"H" Level Output	
P40 to P47/AIN2 to AIN9	Input	_	—	
P00 to P07, P10 to P17, P20 to P27,	Input		—	
P50 to P54, P73 to P76, P80 to P87,	Output	High-Z	Output	
P90 to P97, PA0, PA3				
PWM0, 1	Output	High-Z	Output	
PE0 to PE7, PF0 to PF5	Input			
	Output	High-Z	Output	
PD0, PD1,PC0 to PC7	Output	High-Z	Output	
P53/INT1, P54/INT0	Input	Input	Input	
	Output	High-Z	Output	
TEST	Input	"H" Level fixed	"H" Level fixed	
RESET	Input	Input	Input	
ADREF	Input	Open state is available	Open state is available	

Table 3.3.8 Pin states in STOP mode

— : Inputs are not accepted.

Input : Input gate in operation. Fix input voltage level to "L" or "H" so that the input pin stays constant.

Output: Output state

High-Z: High-Impedance

3.4 Interrupts

The interrupts are controlled by the CPU interrupt mask flip-flop <IFF2 to 0> and the built-in interrupt controller.

Altogether the TMP93CF76/CF77/CW76/CU76/CT76 have the following 30 interrupt sources:

- Interrupts from the CPU: 8 sources (software interrupt and illegal instrction execution interrupt)
- Interrupts from the internal peripheral function blocks: 17 sources
- External interrupts (INT0 to INT4): 5 sources

A fixed individual interrupt vector number is assigned to each interrupt source; six levels of priority can also be assigned to each maskable interrupt. Non-maskable interrupts have a fixed priority of 7.

When an interrupt is generated, the interrupt controller sends the value of the priority of the interrupt source to the CPU. When more than one interrupt is generated simultaneously, the interrupt controller sends the value of the highest priority (7 for non-maskable interrupts is the highest) to the CPU.

The CPU compares the value of the priority with the value in the CPU interrupt mask register (IFF2 to 0). If the value is greater than the value in the mask register, the interrupt is accepted. The value in the mask register (IFF2 to 0) can be changed by EI instruction (Executing EI n changes the contents of \langle IFF2 to 0> to n). For example, programming EI 3 enables acceptance of maskable interrupts with a priority of 3 or more, which are set in the interrupt controller, and non-maskable interrupts. However, if programmed as "EI" or "EI 0," maskable interrupts with priority levels 1 or more and nonmaskable interrupts are accepted (same as for "EI 1"). The DI instruction (\langle IFF2 to 0> = 7) operates in the same way as the EI 7 instruction. Since the priority values for maskable interrupts are 0 to 6, the DI instruction is used to disable acceptance of maskable interrupts. The EI instruction becomes effective immediately after execution (With the TLCS-90, the EI instruction becomes effective after execution of the subsequent instruction).

In addition to the general-purpose interrupt processing mode described above, there is also a Micro DMA processing mode . Micro DMA is a mode used by the CPU to automatically transfer byte or word data. It enables the CPU to process interrupts such as data saves to built-in I/Os at high speed.

Figure 3.4.1 shows a general flow of interrupt handling.

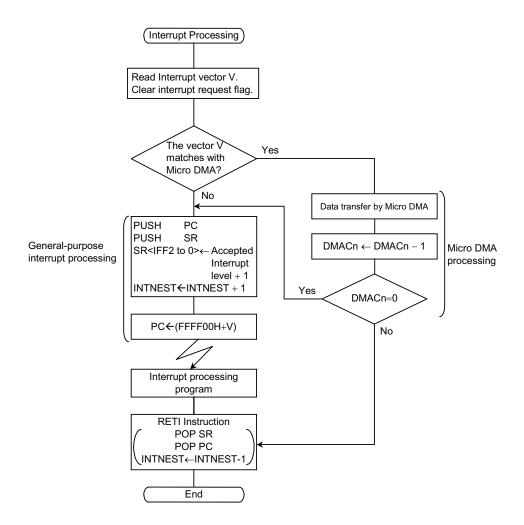


Figure 3.4.1 Interrupt processing flowchart

3.4.1 General-Purpose Interrupt Processing

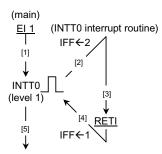
When accepting an interrupt, the CPU operates as follows. Software interrupt and illegal instruction execution interrupt execute (2), (4) and (5) except (1) and (3).

- (1) The CPU reads the interrupt vector from the interrupt controller. When more than one interrupt with the same level is generated simultaneously, the interrupt controller generates interrupt vectors in accordance with the default priority (which is fixed as follows: the smaller the vector value, the higher the priority), then clears the interrupt request.
- (2) The CPU pushes the program counter (PC) and the status register (SR) to the system stack area indicated by the system mode stack pointer (XSP).
- (3) The CPU sets a value in the CPU interrupt mask register <IFF2 to 0> that is higher by 1 than the value of the accepted interrupt level. However, if the value is 7, 7 is set without an increment.
- (4) The CPU increments the INTNEST (Interrupt Nesting Counter).
- (5) The CPU jumps to address indicated by data at FFFF00H + interrupt vector, then starts the interrupt processing routine.

The following diagram shows all the above processing state number.

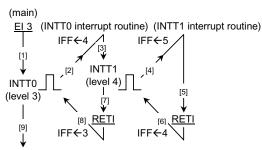
Bus Width	Bus Width	Interrupt processing
of Stack Area	of Interrupt Vector Area	state number
16 bits	16 bits	25

To return to the main routine after completion of the interrupt processing, the RETI instruction is usually used. Executing this instruction restores the contents of the program counter (PC) and the status register (SR) and decrements INTNEST (Interrupt Nesting Counter).

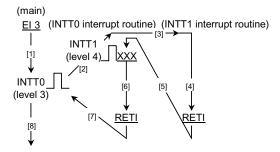

Though acceptance of non-maskable interrupts cannot be disabled by program, acceptance of maskable interrupts can. A priority can be set for each source of maskable interrupts. The CPU accepts an interrupt request with a priority higher than the value in the mask register <IFF2 to 0>. The mask register <IFF2 to 0> is set to a value higher by 1 than the priority of the accepted interrupt. Thus, if an interrupt with a level higher than the interrupt being processed is generated, the CPU accepts the interrupt with the higher level, causing interrupt processing to nest.

The interrupt request with a priority higher than the now accepted interrupt during processing above (1) to (5) is accepted before the 1'st instruction in the interrupt processing routine, causing interrupt processing to nest. (This is the same case of over lapped each Non-Maskable interrupt (level 7).) The CPU does not accept an interrupt request of the same level as that of the interrupt being processed.

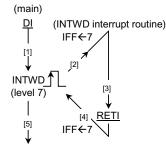
The mask register <IFF2 to 0> is initialized 7 after reset. It disables maskable interrupt.


The following (1) to (5) show a flowchart of interrupt processing.

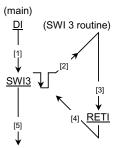
(1) Maskable interrupt


During execution of the main program, the CPU accepts an interrupt request. The CPU increments the IFF so that the interrupts of level 1 are not accepted during processing the interrupt routine.

(3) Interrupt nesting


During processing the interrupts of level 3, the IFF is set to 4. When an interrupt with a level higher than level 4 is generated, the CPU accepts the interrupt processing to nest.

(5) Interrupt sampling timing


If an interrupt with a level higher than the interrupt being processed is generated, the CPU accepts the interrupt with the higher level. The program counter which returns at (5) is the start address of INTT0 interrupt routine.

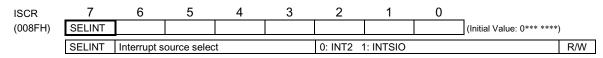
(2) Non-maskable interrupt

DI instruction is excuted in the main program, so that the interrupts of only level 7 are accepted. The CPU does not increment the IFF even if the CPU accepts an interrupt request of level 7.

(4) Software interrupt

The CPU accepts the software interrupt request during DI status(IFF = 7) because of the level 7. The IFF is not changed by the software interrupts.

___(underline) [1], [2],… : Instruction : Execution flow

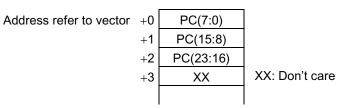

The address FFFF00H to FFFFFFH (256 bytes) of the TMP93CF76/CF77/CW76/CU76/CT76 are assigned for interrupt vector area.

Default priority	Туре	Interrupt source	Vector value "V"	Address refer to vector	Micro DMA start vector	Interrupt Input (Level/Edge)
1		Reset or SWI0 instruction	0000H	FFFF00H	_	
2		SWI1 instruction	0004H	FFFF04H	—	
3		INTUNDEF: illegal instruction or SWI2 instruction	0008H	FFFF08H		
4		SWI3 instruction	000CH	FFFF0CH	—	
5	Non-	SWI4 instruction	0010H	FFFF10H	—	
6	maskable	SWI5 instruction	0014H	FFFF14H		
7		SWI6 instruction	0018H	FFFF18H		
8		SWI7 instruction	001CH	FFFF1CH		
9		(Reserved)	0020H	FFFF20H	—	
10		INTWD: watchdog timer	0024H	FFFF24H	09H	Edge
11		INT0: External interrupt input 0	0028H	FFFF28H	0AH	Edge
12		INTCAP1: Capture 1 interrupt	002CH	FFFF2CH	0BH	Level
13		INTCAP0: Capture 0 interrupt	0030H	FFFF30H	0CH	Level
14		INTTPG0: Timing Pulse Generator 0 interrupt	0034H	FFFF34H	0DH	Edge/Level (Note1)
15		INTTPG1: Timing Pulse Generator1 interrupt	0038H	FFFF38H	0EH	Edge
16		INTI2CB: I ² C bus interrupt	003CH	FFFF3CH	0FH	Edge
17		INTTBC: Time Base Counter interrupt	0040H	FFFF40H	10H	Edge
18		INTVA: VISS/VASS detection	0044H	FFFF44H	11H	Edge
19		INT1: External interrupt input 1	0048H	FFFF48H	12H	Edge/Level
20	Maskable	INT2/INTSIO: External input 2/SIO interrupt	004CH	FFFF4CH	13H	Edge/Level (Note2)
21	waskable	INT3: External interrupt input 3	0050H	FFFF50H	14H	Edge
22		INT4: External interrupt input 4	0054H	FFFF54H	15H	Edge
23		INTT0: 8-bit Timer 0 (TC0)	0058H	FFFF58H	16H	Edge
24		INTT1: 16-bit Timer 1 (TC1)	005CH	FFFF5CH	17H	Edge
25		INTT2: 16-bit Timer 2 (TC2)	0060H	FFFF60H	18H	Edge
26		INTT3: 16-bit Timer 3 (TC3)	0064H	FFFF64H	19H	Edge
27		INTT4: 16-bit Timer 4 (TC4)	0068H	FFFF68H	1AH	Edge
28		INTT5: 16-bit Timer 5 (TC5)	006CH	FFFF6CH	1BH	Edge
29		INTAD: AD conversion completion	0070H	FFFF70H	1CH	Level
30		INTRTC: Real Time Counter (RTC)	0074H	FFFF74H	1DH	Edge
—		(Reserved)	0078H	FFFF78H	1EH	
to		to	to	to	to	
		(Reserved)	00FCH	FFFFFCH	3FH	

Table 3.4.1 TMP93CF76/CF77/CW76/CU76/CT76 Interrupt table

- Note 1: When the INTTPG0 is used for a FIFO empty interrupt (a level signal), the interrupt request itself is cleared by setting next TPG0 data in the interrupt routine but the request flag (Flip/Flop). Therefore, in this case, the INTTPG0 request flag has to be cleared by an instruction before executing RETI instruction.
- Note 2: The serial channel interrupt (INTSIO) and external interrupt 2 (INT2) share one interrupt request flag. Use the Interrupt Source Control Register (ISCR)'s <SELINT> bit to specify which interrupt is requested.

Interrupt Source Control Register


Setting to Reset/Interrupt Vector

a. Reset Vector

FFFF00H	PC(7:0)	
FFFF01H	PC(15:8)	
FFFF02H	PC(23:16)	
FFFF03H	XX	XX: Don't care

Vector base address	PC setting sequence after reset				
FFFF00H	PC(7:0) PC(15:8) PC(23:16)	 ← stored data in location FFFF00H ← stored data in location FFFF01H ← stored data in location FFFF02H 			

b. Interrupt Vector (except Reset Vector)

Setting Example

Sets the Reset Vector: 0FF0000H, INTWD Vector: 0FF9ABCH, INTAD Vector: 0FE3456H.

ORG DL	0FFFF00H 0FF0000H	; Reset = FF0000H
ORG DL	0FFFF24H 0FF9ABCH	; INTWD = FF9ABCH
ORG DL	0FFFF84H 0FE3456H	; INTAD = FE3456H
ORG LD ORG LD	0FE0000H A,B : 0FF9ABCH B,C	Note: ORG, DL are Assembler Directives. ORG: control location counter DL: defines long word (32 bits) data
ORG LD	0FE3456H C,A :	

3.4.2 Micro DMA

In addition to the conventional interrupt processing, the TMP93CF76/CF77/CW76/CU76/CT76 also has a Micro DMA function. When an interrupt is accepted, in addition to an interrupt vector, the CPU receives data indicating whether processing is Micro DMA mode or general-purpose interrupt. If Micro DMA mode is requested, the CPU performs Micro DMA processing.

(1) Micro DMA operation

Micro DMA operation starts when the accepted interrupt vector value matches the Micro DMA start vector value set in the interrupt controller. The Micro DMA has four channels so that it can be set for up to four types of interrupt source.

When a Micro DMA interrupt is accepted, data is automatically transferred from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented. If the value in the counter after decrementing is other than 0, Micro DMA processing is completed; if the value in the counter after decrementing is 0, general-purpose interrupt processing is performed.

There are two data transfer modes: one-byte mode and one-word mode. Incrementing, decrementing, and fixing the transfer source/destination address after transfer can be done in both modes. Therefore data can easily be transferred between I/O and memory and between I/Os. For details of transfer modes, see the description of transfer mode registers.

The transfer counter has 16 bits, so up to 65536 transfers (the maximum when the initial value of the transfer counter is 0000H) can be performed for one interrupt source by Micro DMA processing.

When the transfer counter is decremented to 0 after data is transferred with micro DMA, general-purpose interrupt processing is performed. After processing the general-purpose interrupt, starting interrupt of the same channel restarts the transfer counter from 65536. Reset the count times to the transfer counter.

Interrupt sources processed by Micro DMA are those with the Micro DMA start vectors listed in Table 3.4.1.

The following timing chart is a Micro DMA cycle of the Transfer Address INC rement mode.

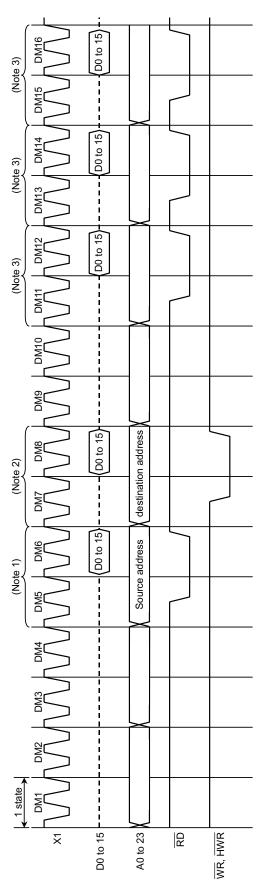
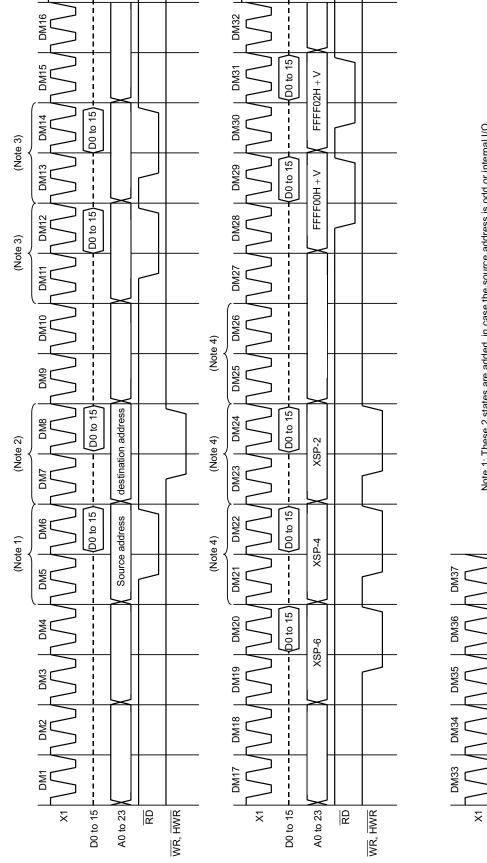
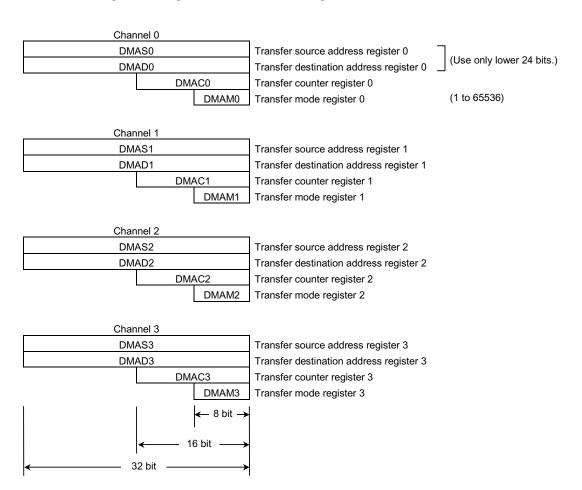



Figure 3.4.2 Micro DMA cycle (COUNT \neq 0)

D0 to 15

D0 to 15)


D0 to 15

A0 to 23

RD

Figure 3.4.3 Micro DMA cycle (COUNT = 0) 93CF76-41

<u>WR, HWR</u>

(2) Register configuration (CPU control register)

These Control Registers can be set only "LDC cr, r" instruction.

Example:	LD	XWA, 100H
	LDC	DMAS0, XWA
	LD	XWA, 50H
	LDC	DMAD0, XWA
	LD	WA, 40H
	LDC	DMAC0, WA
	LD	A, 05H
	LDC	DMAM0, A

(DM	AM0	to 3)				
0	0	0	0	Mode Note: When setting v	alues for this register, set the u	pper 4 bits to 0
		¥	V	Z: 0 = Byte transfer, 1 = Word transfer		<execution time=""></execution>
0	0	0	Z	Transfer destination address INC mode (DMADn +) \leftarrow (DMASn)	(Peripheral to Memory)	16 states
				DMACn ← DMACn –1 if DMACn = 0 then INT.		(2 μs)
0	0	1	Z	Transfer destination address DEC mode (DMADn –) \leftarrow (DMASn)	(Peripheral to Memory)	16 states
				DMACn ← DMACn –1 if DMACn = 0 then INT.		(2 µs)
0	1	0	Z	Transfer source address INC mode (DMADn) ← (DMASn +)	(Memory to Peripheral)	16 states
				DMACn ← DMACn –1 if DMACn = 0 then INT.		(2 μs)
0	1	1	Z	Transfer source address DEC mode (DMADn) ← (DMASn –)	(Memory to Peripheral)	16 states
				DMACn ← DMACn −1 if DMACn = 0 then INT.		(2 µs)
1	0	0	Z	Fixed address mode (DMADn) ← (DMASn)	(Peripheral to Peripheral)	16 states
				DMACn ← DMACn −1 if DMACn = 0 then INT.		(2 µs)
1	0	1	1	Counter mode DMASn ← DMASn + 1	(Interrupt counter)	11 states
				$DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INT.		(1.375 μs)

(3) Transfer mode register DMA0 to 3

(1 states = 125 ns at 16 MHz, High frequency mode)

Note 1: n; corresponds to micro DMA channels 0 to 3.

DMADn + / DMASn + : Post-increment(Increments register value after transfer.)

DMADn - / DMASn - : Post-decrement(Decrement register value after transfer.)

Note 2: Execution time: When setting source address/destination address area to ROM/RAM area.

Note 3: Do not use the codes other than the above mantioned codes for transfer mode register.

3.4.3 Interrupt Controller

Figure .3.4.4 shows a configuration of the interrupt controller.

The interrupt controller has an interrupt request flag, an interrupt priority setting register, and a micro-DMA start vector register for each interrupt channel (total 21 channels). The interrupt request flag latches an interrupt request from a peripheral device.

The interrupt request flag is cleared in the following cases:

- (1) When the device is initialized (reset)
- (2) When the CPU accepted an interrupt and its interrupt vector is read out
- (3) When cleared by an instruction (by writing 0 to the Interrupt Priority Control Register's <IxxC> bit)

Example: To clear the INT0 interrupt request, set up the register after the "DI" instruction as shown below.

LD (INT0CP1), $\cdots 0 \cdots B$

Also, the <IxxC> bit can be read as an interrupt request flag to see if the interrupt request is generated.

Interrupt priority can be set up to six levels using the Interrupt Priority Control Register. Setting the value in this register to 0 or 7 disables the relevant interrupt request. The nonmaskable interrupt (watchdog timer interrupt) has its priority fixed to the highest level (7). If interrupt requests with the same priority level occur simultaneously, they are accepted in order of default priority (which is set in hardware).

The interrupt controller resolves priority between the simultaneously generated interrupts and sends the interrupt request of the highest priority and its vector address to CPU. The CPU compares the priority of the received interrupt request with the values set in the Status Register (SR)'s interrupt mask bits <IFF2:0>. If priority is higher for the requested interrupt, the CPU accepts it and write the value of the accepted interrupt priority plus 1 to <IFF2:0>. When interrupt servicing is finished by RETI instruction, the interrupt priority, that has been saved to the stack, is restored back into <IFF2:0>.

The interrupt controller also handles micro-DMA processing for the interrupt sources used to initiate micro-DMA processing by writing their micro-DMA start vectors to the Micro-DMA Start Vector Register (4 channels). Parameters must be set in the Micro-DMA Control Registers (DMAS3 to 0, DMAD3 to 0, DMAC3 to 0 and DMAM3 to 0) before micro-DMA processing can be performed.

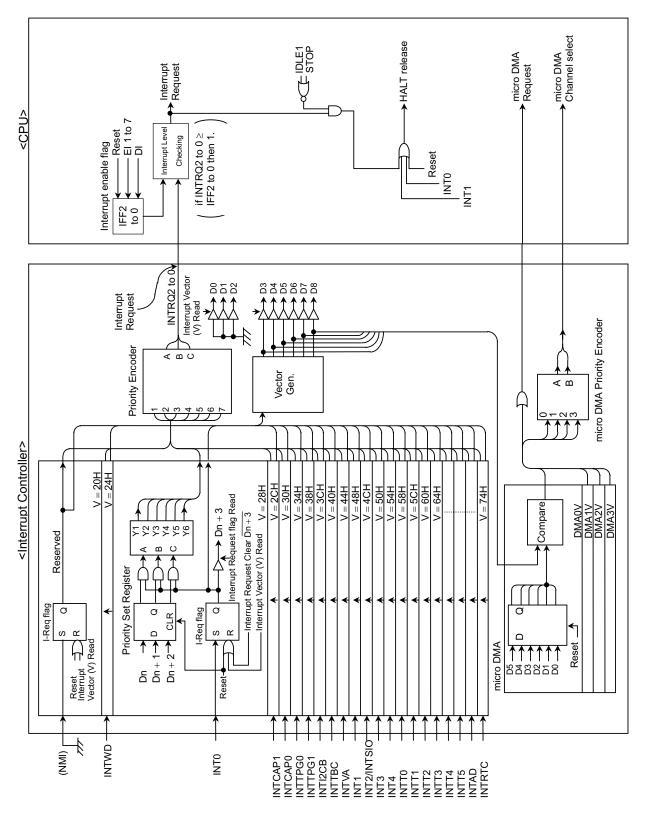


Figure.3.4.4 Block diagram of interrupt controller

(1) Interrupt priority setting register

INT0CP1	7	6	5	4	3	2	1	0	_	
(0070H)	ICAP1C	ICAP1M2	ICAP1M1	ICAP1M0	10C	10M2	I0M1	10M0	(Initial Valu	ie: 0000 0000)
	ICAP1C	CAP1 i flag	nterrupt req		No interrupt	• •	,	terrupt flag	(write)	R/W
	ICAP1M2		nterrupt req	0	00: Interrupt 01: Interrupt	request lev	el 1			
	ICAP1M1			0	10: Interrupt 11: Interrupt	request lev	el 3			write only
	ICAP1M0			1	00: Interrupt 01: Interrupt 10: Interrupt	request lev	el 5			
	10C	INT0 ir	iterrupt requ	est flag 0	11: Interrupt	request (re	ad)/Clear in	terrupt flag	(write)	R/W
	1:Interrupt request (read)/- (write) I0M2 INT0 interrupt request level 000: Interrupt request disable 001: Interrupt request level 1									
	10M1			0	10: Interrupt 11: Interrupt	request lev	el 2			write only
	10M0			1 1	00: Interrupt 01: Interrupt 10: Interrupt 11: Interrupt	request lever request lever	el 5 el 6			inte only

INT0/CAP1 Interrupt Register

CAP0/TPG0 Interrupt Register

INTCP0TG0 (0071H)

0	7	6	5	4	3	2	1	0		
	ITPG0C	ITPG0M2	ITPG0M1	ITPG0N	ICAP0C	ICAP0M2	ICAP0M1	ICAP0M0	(Initial Value	: 0000 0000)
ſ	ITPG0C	TPG0 flag	interrupt	request	0: No interrup 1: Interrupt re	• •	,	nterrupt flag	(write)	R/W
	ITPG0M2	TPG0 level	interrupt	request	000: Interrupt 001: Interrupt					
	ITPG0M1				010: Interrupt 011: Interrupt					
	ITPG0M0				100: Interrupt 101: Interrupt	•				write only
					110: Interrupt 111: Interrupt					
	ICAP0C	CAP0 flag	interrupt	request	0: No interrup 1: Interrupt re	• •	,	nterrupt flag	(write)	R/W
	ICAP0M2	CAP0 level	interrupt	request	000: Interrupt 001: Interrupt					
	ICAP0M1				010: Interrupt 011: Interrupt					
	ICAP0M0				100: Interrupt 101: Interrupt	request leve	el 4			write only
					110: Interrupt 111: Interrupt	request leve	el 6			

TPG1/I²C bus Interrupt Register

INTTP1I2C	7	6	5	4	3	2	1	0	
(0072H)	II2CC	II2CM2	II2CM1	II2CM0	ITPG1C	ITPG1M2	ITPG1M1	ITPG1M0	(Initial Value: 0000 0000)

II2CC	I ² C bus interrupt request	0: No interrupt request (read)/Clear interrupt flag (write)	R/W
	flag	1: Interrupt request (read)/- (write)	10/00
II2CM2	I ² C bus interrupt request	000: Interrupt request disable	
	level	001: Interrupt request level 1	
II2CM1		010: Interrupt request level 2	
		011: Interrupt request level 3	write only
II2CM0		100: Interrupt request level 4	write only
		101: Interrupt request level 5	
		110: Interrupt request level 6	
		111: Interrupt request disable	
ITPG1C	TPG1 interrupt request	0: No interrupt request (read)/Clear interrupt flag (write)	R/W
	flag	1: Interrupt request (read)/- (write)	r/w
ITPG1M2	TPG1 interrupt request	000: Interrupt request disable	
	level	001: Interrupt request level 1	
ITPG1M1		010: Interrupt request level 2	
		011: Interrupt request level 3	write only
ITPG1M0		100: Interrupt request level 4	write only
		101: Interrupt request level 5	
		110: Interrupt request level 6	
		111: Interrupt request disable	

TBC/VA Interrupt Register

7 6 5 4 3 2 0 INTTBCVA 1 (0073H) IVAC IVAM2 IVAM1 IVAM0 ITBCC ITBCM2 ITBCM1 ITBCM0 (Initial Value: 0000 0000)

IVAC	VA interrupt request flag	0: No interrupt request (read)/Clear interrupt flag (write) 1: Interrupt request (read)/- (write)	R/W
IVAM2	VA interrupt request level	000: Interrupt request disable	
		001: Interrupt request level 1	
IVAM1		010: Interrupt request level 2	
		011: Interrupt request level 3	
IVAM0		100: Interrupt request level 4	write only
		101: Interrupt request level 5	
		110: Interrupt request level 6	
		111: Interrupt request disable	
ITBCC	TBC interrupt request flag	0: No interrupt request (read)/Clear interrupt flag (write)	DAA
		1: Interrupt request (read)/- (write)	R/W
ITBCM2	TBC interrupt request	000: Interrupt request disable	
	level	001: Interrupt request level 1	
ITBCM1		010: Interrupt request level 2	
		011: Interrupt request level 3	write only
ITBCM0		100: Interrupt request level 4	write only
		101: Interrupt request level 5	
		110: Interrupt request level 6	
		111: Interrupt request disable	

(Initial Value: 0000 0000)

0

I1M0

INT1/INT2/SIO Interrupt Register

INT12SIO (0074H)

2510	7	6	5	4	3
4H)	12C/	12M2/	I2M1/	12M0/	I1C
	SIOC	SIOM2	SIOM1	SIOM0	

0100	SIGINE SIGINI	0101110		
I2C/SIOC	INT2/SIO interrupt r	equest 0:	:No interrupt request (read)/Clear interrupt flag (write)	R/W
	flag	1:	:Interrupt request (read)/- (write)	R/W
I2M2/SIOM2	INT2/SIO interrupt r	equest 0	00: Interrupt request disable	
	level	0	01: Interrupt request level 1	
I2M1/SIOM1		0	10: Interrupt request level 2	
I		0	11: Interrupt request level 3	write only
I2M0/SIOM0		10	00: Interrupt request level 4	write only
		10	01: Interrupt request level 5	
		1	10: Interrupt request level 6	
		1	11: Interrupt request disable	
I1C	INT1 interrupt reque	est flag 0:	:No interrupt request (read)/Clear interrupt flag (write)	R/W
		1:	:Interrupt request (read)/- (write)	1.7,4,4
I1M2	INT1 interrupt reque	est 0	00: Interrupt request disable	
	level	0	01: Interrupt request level 1	
I1M1		0	10: Interrupt request level 2	
		0	11: Interrupt request level 3	write only
I1M0		10	00: Interrupt request level 4	write only
		10	01: Interrupt request level 5	
			10: Interrupt request level 6	
		1	11: Interrupt request disable	

2

I1M2

1

I1M1

INT3/INT4 Interrupt Register

INT43	7	6	5	4	3	2	1	0	-	
(0075H)	I4C	I4M2	I4M1	I4M0	I3C	13M2	I3M1	I3M0	(Initial Valu	ue: 0000 0000)
	I4C	INT4 flag	interrupt	-): No interrup 1: Interrupt re	• •	,	nterrupt flag	(write)	R/W
	I4M2	INT4 level	interrupt	-	000: Interrupt	•				
	I4M1)10: Interrupt)11: Interrupt	•				
	I4M0				100: Interrupt 101: Interrupt	•				write only
					110: Interrupt 111: Interrupt	request lev	el 6			
	I3C	INT3 flag	interrupt	request (): No interrup 1: Interrupt re	t request (re	ead)/Clear ir	nterrupt flag	(write)	R/W
	I3M2	INT3 level	interrupt	request (000: Interrupt	request dis	able			
	I3M1			(010: Interrupt	request lev	el 2			
	I3M0				100: Interrupt 101: Interrupt	request lev	el 4			write only
					110: Interrupt	•				

111: Interrupt request disable

Timer0/Timer1 Interrupt Register

INTT1	Т
(0076	H)

TT0	7	6	5	4	3	2	1	0	_
6H)	IT1C	IT1M2	IT1M1	IT1M0	IT0C	IT0M2	IT0M1	IT0M0	(Initial Value: 0000 0000)

IT1C	Timer1	interrupt	request	0: No interrupt request (read)/Clear interrupt flag (write)	R/W
	flag			1: Interrupt request (read)/- (write)	R/W
IT1M2	Timer1	interrupt	request	000: Interrupt request disable	
	level			001: Interrupt request level 1	
IT1M1				010: Interrupt request level 2	
				011: Interrupt request level 3	write only
IT1M0				100: Interrupt request level 4	write only
				101: Interrupt request level 5	
				110: Interrupt request level 6	
				111: Interrupt request disable	
IT0C	Timer0	interrupt	request	0: No interrupt request (read)/Clear interrupt flag (write)	R/W
	flag			1: Interrupt request (read)/- (write)	R/W
IT0M2	Timer0	interrupt	request	000: Interrupt request disable	
	level			001: Interrupt request level 1	
IT0M1				010: Interrupt request level 2	
				011: Interrupt request level 3	unite endu
IT0M0				100: Interrupt request level 4	write only
				101: Interrupt request level 5	
				110: Interrupt request level 6	
				111: Interrupt request disable	

Timer2/Timer3 Interrupt Register

7

IT2M1

IT2M0

6

level

5

4

INTT3T2

(00)	77	'H)	
(00	11	п)	

IT3C	IT3M2	IT3M1	IT3M0) IT2C	IT2M2	IT2M1	IT2M0	(Initial Valu	e: 0000 0000)
IT3C	Timer3 flag	interrupt	request	0: No interrup 1: Interrupt re	• •	,	nterrupt flag	(write)	R/W
IT3M2	Timer3	interrupt	request	000: Interrupt 001: Interrupt	•				
IT3M1				010: Interrupt 011: Interrupt	•				·
IT3M0				100: Interrupt 101: Interrupt	•				write only
				110: Interrupt 111: Interrupt	•				
IT2C	Timer2 flag	interrupt	request	0: No interrup 1: Interrupt re		,	nterrupt flag	(write)	R/W
IT2M2	Timer2	interrupt	request	000: Interrupt	request disa	able			

001: Interrupt request level 1 010: Interrupt request level 2

011: Interrupt request level 3

100: Interrupt request level 4

101: Interrupt request level 5110: Interrupt request level 6111: Interrupt request disable

3

2

1

0

write only

Timer4/Timer5 Interrupt Register

INTT5T
(0078H)

5T4	7	6	5	4	3	2	1	0	_
H)	IT5C	IT5M2	IT5M1	IT5M0	IT4C	IT4M2	IT4M1	IT4M0	(Initial Value: 0000 0000)

IT5C	Timer5	interrupt	request	0: No interrupt request (read)/Clear interrupt flag (write)	R/W
	flag			1: Interrupt request (read)/- (write)	R/W
IT5M2	Timer5	interrupt	request	000: Interrupt request disable	
	level			001: Interrupt request level 1	
IT5M1				010: Interrupt request level 2	
				011: Interrupt request level 3	write only
IT5M0				100: Interrupt request level 4	write only
				101: Interrupt request level 5	
				110: Interrupt request level 6	
				111: Interrupt request disable	
IT4C	Timer4	interrupt	request	0: No interrupt request (read)/Clear interrupt flag (write)	
	flag			1: Interrupt request (read)/- (write)	R/W
IT4M2	Timer4	interrupt	request	000: Interrupt request disable	
	level			001: Interrupt request level 1	
IT4M1				010: Interrupt request level 2	
				011: Interrupt request level 3	unite enlu
IT4M0				100: Interrupt request level 4	write only
				101: Interrupt request level 5	
				110: Interrupt request level 6	
				111: Interrupt request disable	

AD/RTC Interrupt Register

7 6 5 4 3 2 1 0 INTADRTC (0079H) IRTCC IRTM2 IRTM1 IRTM0 IADC IADM2 IADM1 IADM0 (Initial Value: 0000 0000)

IRTCC	RTC interrupt request flag	0: No interrupt request (read)/Clear interrupt flag (write) 1: Interrupt request (read)/- (write)	R/W
IRTM2	RTC interrupt request	000: Interrupt request disable	
	level	001: Interrupt request level 1	
IRTM1		010: Interrupt request level 2	
		011: Interrupt request level 3	
IRTM0		100: Interrupt request level 4	write only
		101: Interrupt request level 5	
		110: Interrupt request level 6	
		111: Interrupt request disable	
IADC	AD interrupt request flag	0: No interrupt request (read)/Clear interrupt flag (write)	DAM
		1: Interrupt request (read)/- (write)	R/W
IADM2	AD interrupt request level	000: Interrupt request disable	
		001: Interrupt request level 1	
IADM1		010: Interrupt request level 2	
		011: Interrupt request level 3	unite entre
IADM0		100: Interrupt request level 4	write only
		101: Interrupt request level 5	
		110: Interrupt request level 6	
		111: Interrupt request disable	

Figure 3.4.5 Interrupt priority setting register

- Note 1: The interrupt priority setting register must not be used with read-modify-write instruction.
- Note 2: The interrupt request signal and flag of the capture 0 interrupt (INTCAP0) is cleared by reading its data register.
- Note 3: The interrupt request signal and flag of the capture 1 interrupt (INTCAP1) is cleared by reading its data register.
- Note 4: The interrupt request signal and flag of the SIO interrupt (INTSIO) is cleared by reading its data buffer register.
- Note 5: The interrupt request signal and flag of the AD conversion completion interrupt (INTAD) is cleared by reading AD conversion value register.
- Note 6: When the timing pulse generator 0 interrupt (INTTPG0) is used as the FIFO empty interrupt, the interrupt request signal is cleared by writing timing data and output data, but the interrupt request flag is not cleared. It is necessary to clear the interrupt request flag by an instruction before executing RETI instruction.
- (2) External interrupt control

External Interrupt Control Register 0

IIMC0	7	6 5		4	3	2	1	0	_	
(005EH)		1		I4IE	13IE	I2IE	I1IE	I0IE	(Initial Valu	e: ***0 0000)
	<u>.</u>			(INT4)	(INT3)	(INT2)	(INT1)	(INT0)		
	I4IE	External interrupt input			0: Disable					
	I3IE					1: Enable				
	I2IE									write only
	I1IE									
	IOIE									

External Interrupt Input Mode Control Register 1

IIMC1	7	6	5	4	3	2	1	0		
(005FH)	I4EG	I3EG	I2EG	I1EG	I0EG		INTTPG0E	INTTPG0S	(Initial Value: 00	000 0*00)
	I4EG	IN	T4 edge sele	ction		0: Rising edg				

I4EG	INT4 edge selection	0: Rising edge	
		1: Falling edge	
13EG	INT3 edge selection	0: Rising edge	
		1: Falling edge	
I2EG	INT2 edge selection	0: Rising edge	write only
		1: Falling edge	write only
I1EG	INT1 edge/level selection	0: Rising edge	
		1: Level	
I0EG	INT0 edge selection	0: Rising edge	
		1: Falling edge	

Figure 3.4.6 Interrupt Input Mode Control Register

- Note 1: The INT0 and INT1 pins can also be used for standby release. When these pins are not used for standby release, setting IIMC0<I1IE, I0IE> to 00 maintains the port function during standby mode.
- Note 2: When the active edge is changed by the IIMC1<I4EG, I3EG, I2EG, I1EG, I0EG>, they must be changed after disabling interrupt.

LD	(INT0CP1)	, XXXX0000B	; Disable the INT0 interrupt, clear the INT0 interrupt
			request flag.
LD	(IIMC0)	, XXXXXXX0B	; Disable the INT0 input
LD	(IIMC1)	, XXXX1XXXB	; Change the active edge to falling edge from rising
			edge.
LD	(INT0CP1)	, XXXX0nnnB	; Set interrupt level "nnn" for INT0, clear the interrupt
			request flag.

Note 3: The minimum pulse width for external interrupt signal is $2/f_{SYS}$ [s] (250 ns at fc = 16 MHz).

Note 4: Prohibt read-modify-write.

Interrupt	Shared Pin		Mode	Setting Method		
INT0	P54		Rising edge	IIMC1 <i0eg> = 0,IIMC0<i0ie> = 1</i0ie></i0eg>		
			Falling edge	IIMC1 <i0eg> = 1,IIMC0<i0ie> = 1</i0ie></i0eg>		
INT1	P53		Rising edge	IIMC1 <i1eg> = 0,IIMC0<i1ie> = 1</i1ie></i1eg>		
		ᠴ᠊᠆ᠸ	Level	IIMC1 <i1eg> = 1,IIMC0<i1ie> = 1</i1ie></i1eg>		
INT2	P52		Rising edge	IIMC1 <i2eg> = 0,IIMC0<i2ie> = 1</i2ie></i2eg>		
			Falling edge	IIMC1 <i2eg> = 1,IIMC0<i2ie> = 1</i2ie></i2eg>		
INT3	P51		Rising edge	IIMC1 <i3eg> = 0,IIMC0<i3ie> = 1</i3ie></i3eg>		
			Falling edge	IIMC1 <i3eg> = 1,IIMC0<i3ie> = 1</i3ie></i3eg>		
INT4	P50		Rising edge	IIMC1 <i4eg> = 0,IIMC0<i4ie> = 1</i4ie></i4eg>		
			Falling edge	IIMC1 <i4eg> = 1,IIMC0<i4ie> = 1</i4ie></i4eg>		

 Table 3.4.2
 Setting of external interrupt pin functions

(3) Micro DMA start vector

When the CPU reads the interrupt vector after accepting an interrupt, it simultaneously compares the interrupt vector with each channel's Micro DMA start vector (bits 3 to 8 of the interrupt vector). When the two match up, the interrupt from the channel whose value matched is processed in Micro DMA mode.

If an interrupt vector matches up in more than two channels, the channel with the lower number has higher priority.

Micro DMA0 Start Vecter Register

DMA0V	7	6	5	4	3	2	1	0	
(007CH)	, , 		DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0	(Initial Value: **00 0000) Write only

Micro DMA1 Start Vecter Register

DMA1V	7	6	5	4	3	2	1	0	
(007DH)			DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0	(Initial Value: **00 0000) Write only

Micro DMA2 Start Register

DMA2V	. 7	7	6	5	4	3	2	1	0	_
(007EH)	[DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0	(Initial Value: **00 0000) Write only

Micro DMA3 Start Register

DMA3V	7	6	5	4	3	2	1	0	
(007FH)	[DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0	(Initial Value: **00 0000) Write only

Note: Prohibt read-modify-write.

Figure 3.4.7 Micro DMA start vector

(4) Notice of the interrupt controller

When the CPU fetches an instruction to clear the interrupt request flag for the interrupt controller immediately before an interrupt is generated, the CPU may execute the instruction between receiving the interrupt and reading the interrupt vector. In such a case, the CPU reads default vector 0028H and the interrupt vector at address FFFF28H.

To avoid the above occurring, clear the interrupt request flag by entering the instruction to clear the flag after the DI instruction. In the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing instruction and following more than one instruction are executed. When EI instruction is placed immediately after clearing instruction, an interrupt becomes enable before interrupt request flags are cleared.

In the case of changing the value of the interrupt mask register $\langle IFF2: 0 \rangle$ by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction

3.5 Functions of Ports

The TMP93CF76/CF77/CW76/CU76/CT76 have 67 bits for I/O ports, 8 bits for input ports and 10 bits for output ports. These port pins have I/O functions for the built-in CPU and internal I/Os as well as general-purpose I/O port functions. Table 3.5.1 lists the function of each port pin. Resetting makes the pins listed below function as general-purpose I/O ports.

Port Name	Pin Name	Pin No.	Direction	Output Mode	Direction/ Output Mode setting unit	Pin Name for Built-in Function
Port 0	P00 to P07	8	I/O	Push-pull	Bit	
Port 1	P10 to P17	8	I/O	Push-pull	Bit	
Port 2	P20 to P27	8	I/O	Push-pull	Bit	
Port 4	P40 to P47	8	Input	-	(fixed)	AIN2 to AIN9
Port 5	P50	1	I/O	Push-pull	Bit	INT4/TI3/TI5/SI
	P51	1	I/O	Push-pull	Bit	INT3/TI2/TI4/SO
	P52	1	I/O	Push-pull	Bit	INT2/TI1/TI0/SCK
	P53	1	I/O	Push-pull	Bit	INT1
	P54	1	I/O	Push-pull	Bit	INT0
Port 7	P73	1	I/O	Push-pull/Open-drain	Bit	SDA0
	P74	1	I/O	Push-pull/Open-drain	Bit	SCL0
	P75	1	I/O	Push-pull/Open-drain	Bit	SDA1/AIN0
	P76	1	I/O	Push-pull/Open-drain	Bit	SCL1/AIN1
Port 8	P80	1	I/O	Push-pull	Bit	CTLIN
	P81	1	I/O	Push-pull	Bit	DFGIN
	P82	1	I/O	Push-pull	Bit	RMTIN
	P83	1	I/O	Push-pull	Bit	EXT/TO1
	P84	1	I/O	Push-pull	Bit	DPGIN
	P85	1	I/O	Push-pull	Bit	CFGIN
	P86	1	I/O	Push-pull	Bit	CSYNCIN
	P87	1	I/O	Push-pull	Bit	COMPIN
Port 9	P90	1	I/O	Push-pull/Open-drain	Bit	TP0/TPG00
	P91	1	I/O	Push-pull/Open-drain	Bit	TPG01/VASWP
	P92	1	I/O	Push-pull/Open-drain	Bit	TP1
	P93	1	I/O	Push-pull/Open-drain	Bit	TPG03
	P94	1	I/O	Push-pull/Open-drain	Bit	CR
	P95	1	I/O	Push-pull/Open-drain	Bit	HA
	P96	1	I/O	Push-pull/Open-drain	Bit	TO1/TPG10
	P97	1	I/O	Push-pull/Open-drain	Bit	TPG11
Port A	PA0	1	I/O	Push-pull	Bit	PVPH/PWM3
	PA3	1	I/O	Push-pull/Open-drain	Bit	PWM2
Port B	PB0	1	I/O	Open-drain	Bit	XT1
	PB1	1	I/O	Open-drain	Bit	XT2
Port C	PC0 to PC7	8	Output	High break down voltage	(fixed)	G0 to G7
Port D	PD0, PD1	2	Output	High break down voltage	(fixed)	G8, G9
Port E	PE0 to PE7	8	I/O	High break down voltage /Open-drain	Bit	S0 to S7
Port F	PF0 to PF5	6	I/O	High break down voltage /Open-drain	Bit	S8 to S13

Table 3.5.1	Functions of ports
Table 5.5.1	i unciona oi porta

Note 1: Read signals from the port data register are switched according to the function of the port, when the port registers (P5, P6, P7, P8, P9, PA, PB, PE, PF) are read out (Refer to Figure 3.5.2 to Figure 3.5.31).

Output data is written to output latch by writing operation to the port.

- Note 2: Due to "Read-Modify & Write" instruction, 1 byte data including specified 1 bit data are read out once and the 1 byte are modified, and then the modified 1 byte are written to output latches.
- Note 3: The port status during STOP mode, except PWM0 and PWM1, can be selected from no-change or high impedance. When WDMOD<DRVE> is 1, the port status remains. And when it is 0, the port status becomes high impedance. This function is controlled upon the structure shown below.

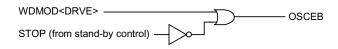
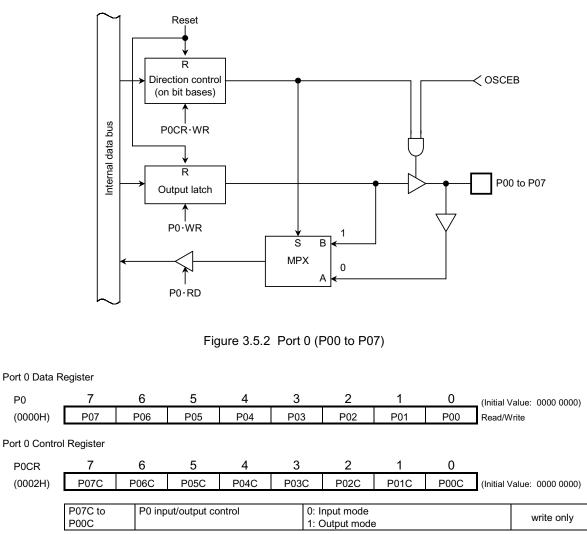



Figure 3.5.1 Port status control circuit for STOP mode

3.5.1 Port 0 (P00 to P07)

Port 0 is an 8-bit general purpose I/O port which can be set to input or output mode to each bit. I/O mode is set by Port 0 control register (P0CR). Reset operation clears Port 0 data register (P0) and P0CR to 0 and initializes port 0 to the input mode.

Prohibit read-modify-write.

Figure 3.5.3 Registers for Port 0

3.5.2 Port 1 (P10 to P17)

Port 1 is an 8-bit general purpose I/O port which can be set to input or output mode to each bit. I/O mode is set by Port 1 control register (P1CR). Reset operation clears Port 1 data register (P1) and control register P1CR to 0 and initializes port 1 to the input mode.

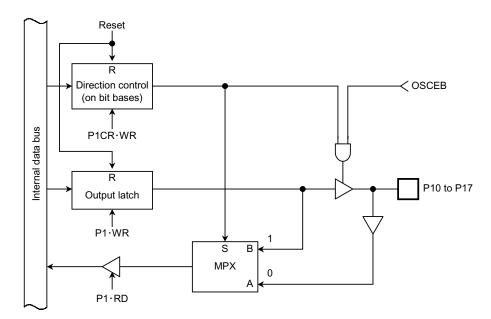


Figure 3.5.4 Port 1 (P10 to P17)

Port 1 Data R	Register										
P1	7	6	5	4	3		2	1	0	(Initial \	/alue: 0000 0000)
(0001H)	P17	P16	P15	P14	P13	}	P12	P11	P10	、 Read/W	/rite
Port 1 Contro	l Register										
P1CR	7	6	5	4	4 3		3 2		1 0		
(0004H)	P17C	P16C	P15C	P14C	P14C P130		P12C	P11C	P10C	(Initial \	/alue: 0000 0000)
	P17C to P1 input/output control P10C					0: Input mode					Write only
						1: Output mode					white only

Prohibit read-modify-write.

Figure 3.5.5 Registers for Port 1

3.5.3 Port 2 (P20 to P27)

Port 2 is an 8-bit general purpose I/O port which can be set to input or output mode to each bit. I/O mode is set by Port 2 control register (P2CR). Reset operation sets Port 2 data register (P2) to 1 and clears P2CR to 0 and initializes port 2 to the input mode.

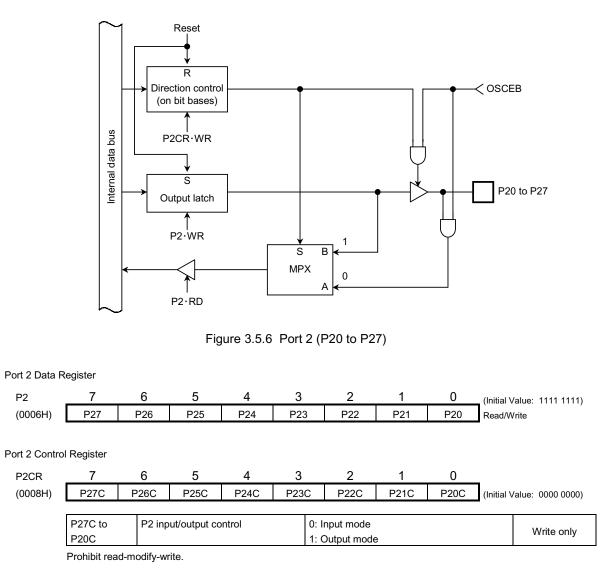
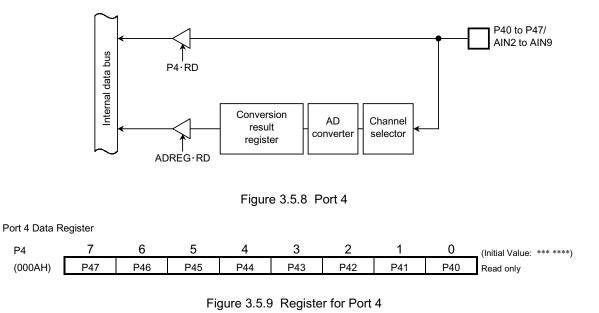




Figure 3.5.7 Registers for Port 2

3.5.4 Port 4 (P40 to P47)

Port 4 is an 8-bit general purpose input port. Port 4 is also used for analog input ports (AIN2 to AIN9) of 8-bit AD conversion circuit (AD).

Note: The input channel selection of AD converter is set by AD converter mode register (ADMOD).

3.5.5 Port 5 (P50 to P54)

Port 5 is a 5-bit general purpose I/O port which can be set to input or output mode to each bit. I/O mode is set by Port 5 control register (P5CR). Reset operation sets Port 5 data register (P5) to 1 and clears control register P5CR to 0 and initializes port 5 to the input mode.

(1) P50/INT4/TI3/TI5/SI

P50 is also used as external interrupt input (INT4), timer counter input (TI3, TI5), or serial data input (SI).

When P50 is used as INT4, TI3, TI5 or SI, clear P5CR<P50C> to 0 and it is set to input mode.

INT4 interrupt input is permitted by $\langle I4IE \rangle$ of external interrupt control register 0 (IIMC0), and can choose input edge by $\langle I4EG \rangle$ of external interrupt control register 1 (IIMC1).

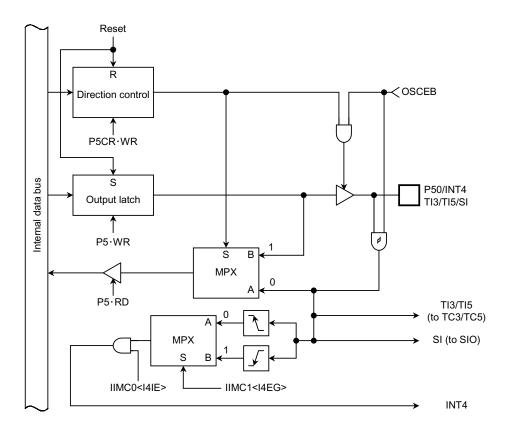


Figure 3.5.10 Port 5 (P50)

(2) P51/INT3/TI2/TI4/SO

P51 is also used as external interrupt input (INT3), timer counter input (TI2, TI4) or serial data output (SO).

When P51 is used as INT3, TI2 or TI4, clear P5CR <P51C> to 0 and it is set to input mode.

INT3 interrupt input is permitted by <I3IE> of IIMC0, and can choose input edge by <I3EG> of IIMC1.

When P51 is used as SO, set P5CR<P51F> and <P51C> to 1 respectively.

(3) P52/INT2/TI1/TI0/SCK

P52 is also used as external interrupt input (INT2), timer counter input (TI1, TI0) or serial clock (SCK).

When P52 is used as INT2, TI1, TI0 or SCK input, clear P5CR<P52C> to 0 and it is set to input mode.

INT2 interrupt input is permitted by <I2IE> of IIMC0, and can choose input edge by <I2EG> of IIMC1.

When P52 is used as SCK output, set P5CR<P52F> and <P52C> to 1 respectively.

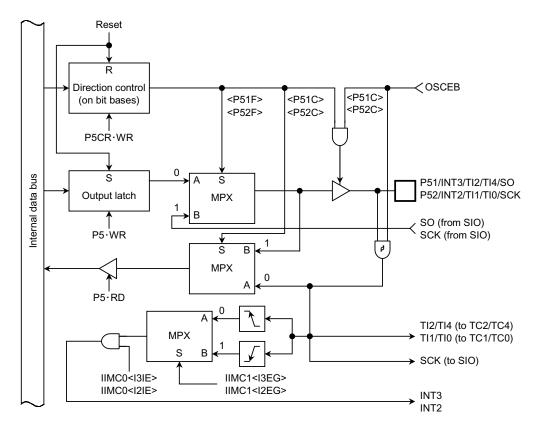


Figure 3.5.11 Port 5 (P51, P52)

(4) P53/INT1

P53 is also used as external interrupt input (INT1).

When P53 is used as INT1, clear P5CR<P53C> to 0 and it is set to input mode.

INT1 interrupt input is permitted by $<\!I1IE\!>$ of IIMC0, and can choose input edge by $<\!I1EG\!>$ of IIMC1.

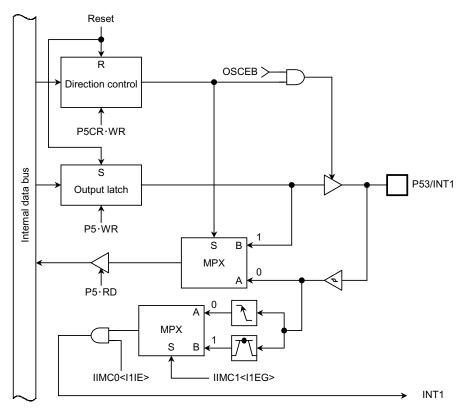


Figure 3.5.12 Port 5 (P53)

(5) P54/INT0

P54 is also used as external interrupt input (INT0).

When P54 is used as INT0, clear P5CR<P54C> to 0 and it is set to input mode.

INTO interrupt input is permitted by $<\!I0IE\!>$ of IIMC0, and can choose input edge by $<\!I0EG\!>$ of IIMC1.

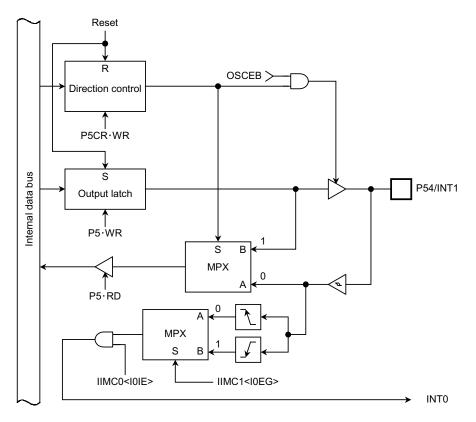
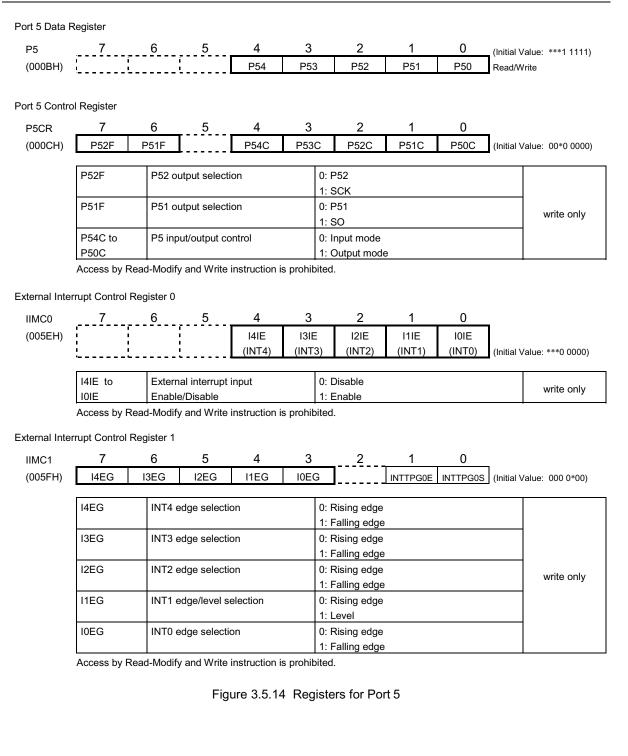



Figure 3.5.13 Port 5 (P54)

Note 1: Do not write the data to <P51F> and <P51C> of Port 5 control register at the same time, <P52F> and <P52C> as well.

Note 2: INT0 and INT1 pin are applicable also to standby release.

<IOIE> and <I1IE> are set to "0" when not using it an object for standby release, a port function can be maintained also during standby.

- Note 3: When change effective edge by IIMC1 register, change after carrying out interrupt prohibition.
 - LD (INT0TP1), ---- 0000B ; Disabled INT0、 Clear the request flag.
 - LD (IIMC0), -----0B ; INT0 input disable.
 - LD (IIMC1), ---- B ; Change from a rising edge to level detection.
 - LD (INT0CP1), ---- 0nnnB ; INT0 is set to a level n and a request flag is cleared.
- Note 4: "H" level and "L" level of the external interrupt minimum input pulse width are 2/f_{SYS}[s] (250 ns at 16 MHz operation).

3.5.6 Port 7 (P73 to P76)

Port 7 is a 4-bit general purpose I/O port which can be set to input or output mode to each bit. I/O mode is set by Port 7 control register (P7CR). Reset operation sets Port 7 data register (P7) to 1 and clears P7CR to 0 and initializes port 7 to the input mode. In the case of the output mode, Port 7 can be set to either push-pull output or N-ch open-drain output per bit by open-drain output control register 1 (ODCR1).

(1) P73/SDA0, P74/SCL0

P73 and P74 are also used as serial data (SDA0) or serial clock (SCL0) of serial bus interface (I²C bus).

When outputting SDA0 or SCL0, set Port 7 function register (P7FC)<P73F><P74F>, ODCR1<POD73><POD74> and P7CR<P73C><P74C> to 1 respectively. When inputting, clear P7CR<P73C><P74C> to 0.

Input source of P73 and P74 can be chosen by <PR73><PR74> of Port 7 input control register (P7ICR).

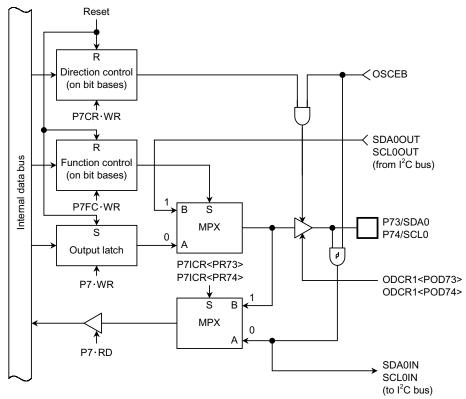


Figure 3.5.15 Port 7 (P73, P74)

(2) P75/SDA1/AIN0, P76/SCL1/AIN1

P75 and P76 are also used as serial data/address (SDA1), serial clock (SCL1) of I^2C bus or analog input ports (AIN0, AIN1) of 8-bit AD conversion circuit (AD).

When outputting SDA1 or SCL1, set P7FC<P75F><P76F>,

ODCR1 < POD75 > < POD76 > and P7CR < P75C > < P76C > to 1 respectively. When inputting SDA1, SCL1, AIN0, or AIN1, clear F7CR < P75C > < P76C > to 0 respectively.

Input source of P75 and P76 can be chosen by <PR75><PR76> of P7ICR.

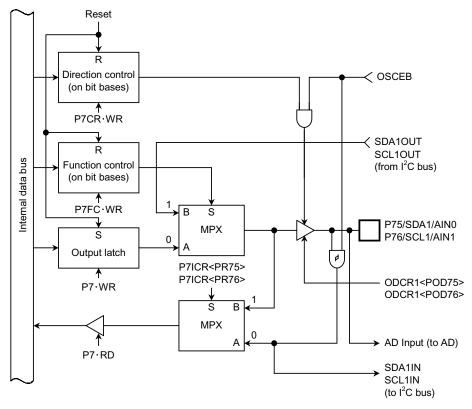


Figure 3.5.16 Port 7 (P75,P76)

Port 7 Data F	Register										
P7	7	6	5	5 4		2	1		(Initial Value: *111 1***)		
(000FH)		P76	P75	P74	P73		<u>.</u>	Rea	ad/Write		
Port 7 Contro	ol Register										
P7CR	7	6	5	4	3	2	1	0			
(0011H)		P76C	P75C	P74C	P730				ial Value: *000 0***)		
	P76C to P73C	P7 inp	ut/output co	ontrol		0: Input mode 1: Output mode	e		write only		
	Access by Read-Modify and Write instruction is prohibited.										
Port 7 Functi	ion Register										
P7FC	7	6	5	4	3	2	1	0			
(0013H)	L	P76F	P75F	P74F	P73F			(Init	ial Value: *000 0***)		
	P76F	P76 ot	itput select	ion		0: P76 1: SCL1					
	P75F	Ρ75 οι	utput select	ion		0: P75 1: SDA1]				
	P74F	Ρ74 οι	itput select	ion		0: P74 1: SCL0					
	P73F	Ρ73 οι	itput select	ion		0: P73 1: SDA0					
	Access by Read-Modify and Write instruction is prohibited.										
Open-drain 0	Output Contro	l Register 1									
ODCR1	7	6	5	4	3	2	1	0			
(0015H)		POD76	POD75	POD74	POD7		1	-	ial Value: *000 0***)		
	POD76 to POD73					0: Push-pull O 1: Open-drain			write only		
	Access by Read-Modify and Write instruction is prohibited.										
Port 7 Input	Control Regis	ster									
P7ICR	7	6	5	4	3	2	1	0			
(000DH)		PR76	PR75	PR74	PR7	3		(Init	ial Value: *000 0***)		
	PR76 to PR73								write only		
	Access by F	Read-Modif	and Write	instruction i	is prohib	1: Output latch ited.	1				
Figure 3.5.17 Registers for Port 7											

3.5.7 Port 8 (P80 to P87)

Port 8 is an 8-bit general purpose I/O port which can be set to input or output mode to each bit. I/O mode is set by Port 8 control register (P8CR). Reset operation sets Port 8 data register P8 to 1 and clears P8CR to 0 and initializes port 8 to the input mode.

(1) P80/CTLIN, P81/DFGIN, P82/RMTIN, P84/DPGIN, P85/CFGIN, P86/CSYNCIN, P87/COMPIN

P80, P81, P84 and P85 are also used as capture trigger inputs (CTLIN, DFGIN, DPGIN, CFGIN).

P82, P86 and P87 are also used as remote-control signal input (RMTIN), composite synchronizing signal input (CSYNCIN) and head-amp.-switch comparison signal input (COMPIN) respectively.

When it is used as these functional inputs, clear P8CR<P80C, P81C, P82C, P84C, P85C, P86, P87C> to 0 respectively, and it is set to the input mode.

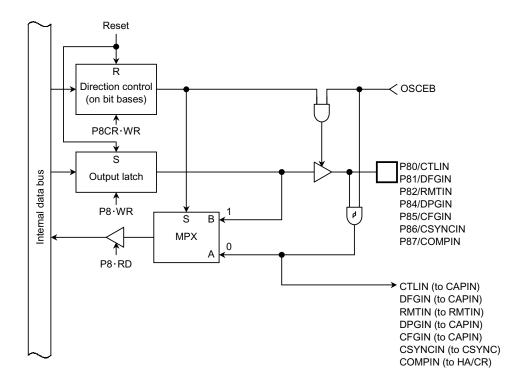


Figure 3.5.18 Port 8 (P80 to P87)

(2) P83/EXT/TO1

P83 is also used as capture trigger input (EXT) or timer counter output 1 (TO1).

When P83 is used as capture trigger input, clear P8CR<P83C> to 0 and it is set to the input mode.

When it is used as timer counter 1 output, set Port 8 function register (P8FC)<P83F> and P8CR<P83C> to 1 respectively.

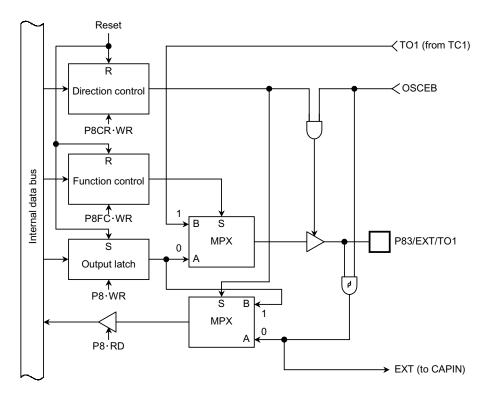


Figure 3.5.19 Port 8 (P83)

Port 8 Data F	Register											
P8	7	7 6 5		4	3	2	1	0	(Initial Value: 1111 1111)	11)		
(0016H)	P87	P86	P85	P84	P83	P82	P81	P80	Read/Write			
Port 8 Contro	l Register											
P8CR	7	6	5	4	3	2	1	0	_			
(0018H)	P87C	P86C	P85C	P84C	P83C	P82C	P81C	P80C	(Initial Value: 0000 0000)			
	P87C to P80C	P8 inp	ut/output co	ontrol		nput mode	0		write only			
P80C 1: Output mode Access by Read-Modify and Write instruction is prohibited.												
Port 8 Functi	on Register											
P8FC	7	6	5	4	3	2	1	0	-			
(0014H)			P83F		(Initial Value: **** 0*	**)						
	P83F	P83 o	P83 output selection			P83	write on	ly				
	A access by (Access by Deed Medify and Write instruction is predicted										

Access by Read-Modify and Write instruction is prohibited.

Figure 3.5.20 Registers for Port 8

3.5.8 Port 9 (P90 to P97)

Port 9 is an 8-bit general purpose I/O port which can be set to input or output mode to each bit. I/O mode is set by Port 9 control register (P9CR). Reset operation sets Port 9 data register (P9) to 1 and clears P9CR to 0 and initializes port 9 to the input mode. In the case of the output mode, Port 9 can set to either push-pull output or N channel open-drain output per bit by open-drain output control register 2 (ODCR2).

(1) P90/TP0/TPG00

P90 is also used as timing pulse output 0 (TP0) or the timing pulse generator 0 (TPG00).

When P90 is used as TP0 output, set Port 9 function register (P9FC)<P90F> and P9CR<P90C> to 1 respectively. (Refer to chapter 3.8.3 Timing Pulse Output)

When it is used as TPG00 output, set P9<P90> and P9CR<P90C> to 1 respectively. TPG00 output is permitted by setting timing pulse control register (TPCR) <TPGOE0> to 1.

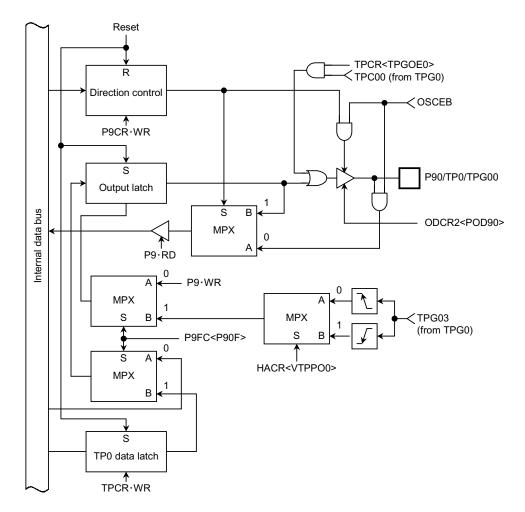


Figure 3.5.21 Port 9 (P90)

(2) P91/TPG01/VASWP

P91 is also used as timing pulse generator 0 (TPG0) output (TPG01) or Video/Audio Head switching control signal (VASWP).

When P91 is used as TPG01 output, clear Head Amp control register (HACR)<TPVASEL> to 0 and also set P9FC<P91F> and P9CR<P91C> to 1 respectively.

When it is used as VASWP output, set HACR<TPVASEL> to 1, set P9FC<P91F> to 1, and clear P9CR<P91C> to 0 respectively. (Refer to chapter 3.14.3 Control of VASMP Output)

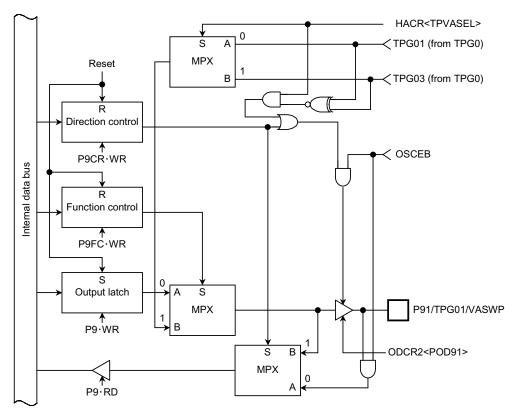


Figure 3.5.22 Port 9 (P91)

(3) P92/TP1

P92 is also used as timing pulse output (TP1). When P92 is used as TP1 output, set P9FC<P92F> and P9CR<P92C> to 1 respectively.

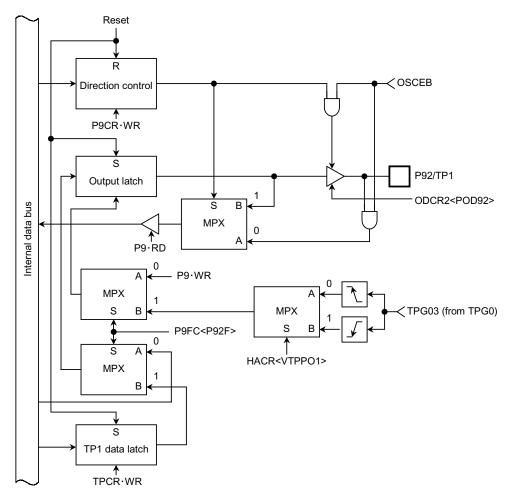


Figure 3.5.23 Port 9 (P92)

93CF76-73

(4) P93/TPG03, P94/CR, P95/HA

P93, P94 and P95 are also used as timing pulse generator 0 (TPG0) output (TPG03), Color Rotary control output (CR), Head Amp switching control output (HA), respectively. When they are used as these function outputs, set P9FC<P93F, P94F, P95F> and P9CR<P93C, P94C, P95C> to 1 respectively.

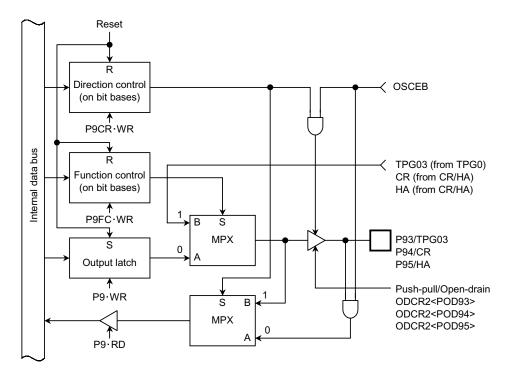


Figure 3.5.24 Port 9 (P93 to P95)

(5) P96/TO1/TPG10

P96 is also used as timer counter output 1 (TO1) and timing pulse generator 1 (TPG1) output (TPG10). When P96 is used as TO1 output, set P9FC<P96F> and P9CR<P96C> to 1 respectively, and clear TPCR<TPGOE1> to 0.

When P96 is used as TPG10 output, clear P9<P96> and P9FC<P96F> to 0, set P9CR<P96C> to 1 respectively, and set TPCR<TPGOE1> to 1.

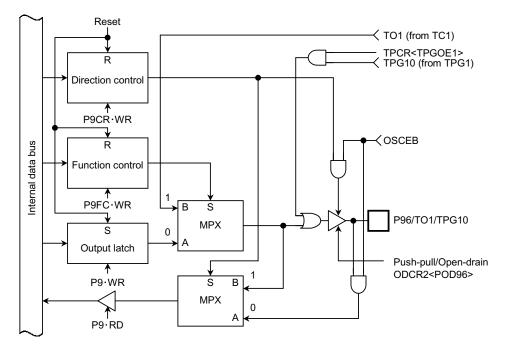


Figure 3.5.25 Port 9 (P96)

(6) P97/TPG11

P97 is also used as timing pulse generator 1 (TPG1) output (TPG11).

When P97 is used as TPG11 output, set P9FC<P97F> and P9CR<P97C> to 1 respectively.

 $\rm P97$ can be used as a logical-output syncronized with TPG10 as a below shown logical matrix.

This is enabled by setting TPCR<TPG1CNT> to 1.

TPG10	P97 output
н	TPG11
L	High-Z

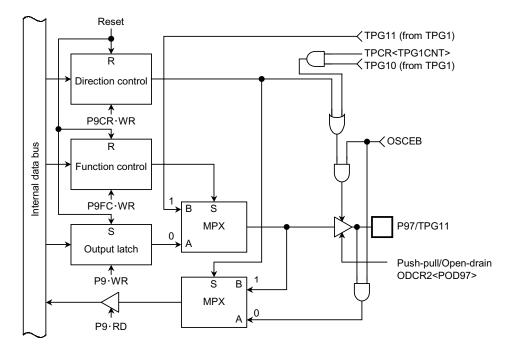


Figure 3.5.26 Port 9 (P97)

Port 9 Data I	Register									
P9	7	6	5	4	3	2	1	0	(Initial Value: 1111 1111)	
(0017H)	P97	P96	P95	P94	P93	P92	P91	P90	Read/Write	
Port 9 Contro	ol Register									
P9CR	7	6	5	4	3	2	1	0		
(0019H)	P97C	P96C	P95C	P94C	P93C	P92C	P91C	P90C	(Initial Value: 0000 0000)	
	P97C to P9 input/output control 0: Input mode P90C 1: Output mode Access by Read-Modify and Write instruction is prohibited.									
Port 9 Funct	ion Register									
P9FC	7	6	5	4	3	2	1	0	-	
(001AH)	P97F	P96F	P95F	P94F	P93F	P92F	P91F	P90F	(Initial Value: 0000 0000)	
	P97F P97 output selection					P97 FPG11				
	P96F	P96 or	utput select	ion		P96/TPG10 FO1				
	P95F	P95 o	utput select	ion		P95				
	P94F	P94 o	utput select	ion		P94				
	P93F	P93 o	utput select	ion	0: F	P93 FPG03	write only			
	P92F	P92 o	utput select	ion	0: F	P92				
	P91F P91 output selection					P91				
	P90F	P90 o	1: TPG01/VASWP P90 output selection 0: P90 1: TP0/TPG00							
	Access by F	Read-Modify	and Write	instruction is						

Open-drain Output control Register 2

ODCR2	7	6	5	4	3	2	1	0	_
(001BH)	POD97	POD96	POD95	POD94	POD93	POD92	POD91	POD90	(Initial Value: 0000 0000)
		- r							

POD97 to	P9 open-drain control	0: Push-pull Output	unite entre					
POD90		1: Open-drain Output	write only					
Assess by Dead Medify and Write instruction is prohibited								

Access by Read-Modify and Write instruction is prohibited.

Head Amp Control Register

HACR	7	6	5	4	3	2	1	0	_	
(008DH)	VTPPO1	VTPPO0	TPVASEL	DFFPO1	DFFPO0	COMPS	CRPO	HAPO	(Initial V	alue: 0000 0000)
	-	ľ		-						
	TPE1	TPG0	3(P92) edge	selection	0:	Rising edge				
					1:	1: Falling edge				
	TPE0	TPG0	TPG03(P90) edge selection			0: Rising edge				R/W
					1:	1: Falling edge				R/W
	TPVASEL	P91 o	utput selecti	on	0:	TPG01				
					1:	VASWP				

Access by Read-Modify and Write instruction is prohibited.

Timing Pulse Control Register

TPCR (0086H)	7 TPGOE1 TP	6 5 4 3 PGOE0 TPG1CNT	2 1 0 TP1D TP0D (Initial V	/alue: 00*0 *0*0)
	TPGOE1	TPG10 output control	0: Disable	
			1: Enable	
	TPGOE0	TPG00 output control	0: Disable	
			1: Enable	
	TPG1CNT	P97/TPG11 output control	0: Disable	R/W
			1: TPG10 Enable	
	TP1D	TP1 data		
	TP0D	TP0 data latch	TP0 data	

Figure 3.5.27 Registers for Port 9

3.5.9 Port A (PA0, PA3)

Port A is a 2-bit general purpose I/O port which can be set to input or output mode to each bit. I/O mode is set by Port A control register (PACR). Reset operation sets Port A data register (PA) to 1 and PACR to 0 and initializes port A to the input mode.

(1) PA0/PVPH/PWM3

PA0 is also used as pseudo-synchronized signal output (PVPH) or 8-bit PWM output (PWM3).

When PA0 is used as general purpose I/O port, set PA0F1> and PA0F0> of port A function register (PAFC) to 0 and set the I/O mode by PACRPA0C>.

When PA0 is used as PVPH output, set PAFC<PA0F0> to 1, clear PACR<PA0C> to 0 respectively.

When PA0 is used as PWM3 output, set PAFC<PA0F1><PA0F0> to 10, and set PACR<PA0C> to 1 respectively.

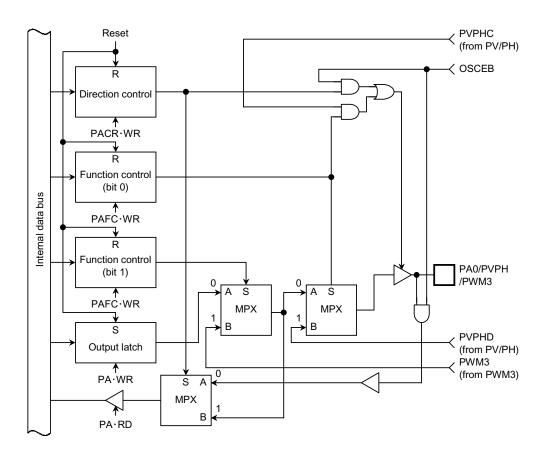


Figure 3.5.28 Port A (PA0)

(2) PA3/PWM2

PA3 is also used as 14-bit PWM output (PWM2). In the case of output mode, PA3 can be set to either push-pull output or N-ch open-drain output by open-drain output control register 3 (ODCR3)<PODA3>.

When PA3 is used as PWM2, set PAFC<PA3F> and PACR<PA3C> to 1 respectively.

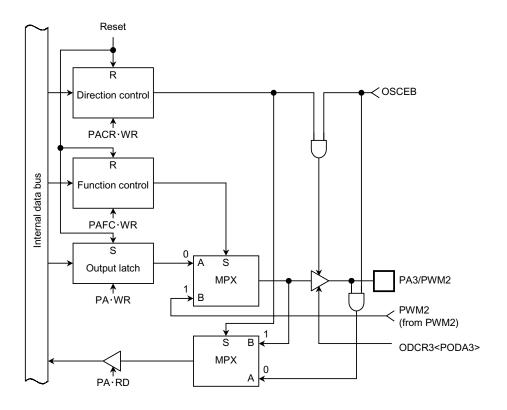
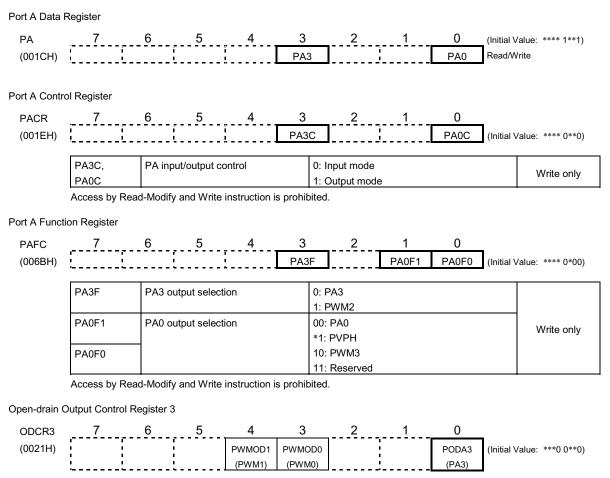



Figure 3.5.29 Port A (PA3)

PODA3	PA3 open-drain control	0: Push-pull Output 1: Open-drain Output	Write only
-------	------------------------	---	------------

Access by Read-Modify and Write instruction is prohibited.

Figure 3.5.30 Registers for Port A

3.5.10 Port B (PB0, PB1)

Port B is a 2-bit general purpose I/O port which can be set to input or output mode to each bit.

I/O mode is set by Port B control register (PBCR). Reset operation sets port B data register (PB) to 1 and PBCR to 0 and initializes port B to the input mode. Output buffer is constructed of N-channel open-drain.

(1) PB0/XT1,PB1/XT2

PB0 and PB1 are also used as a low-frequency oscillation circuit (XT1, XT2). A resonator is connected to XT1 and XT2. The low-frequency oscillation circuit goes active by setting system clock control register 0 (SYSCR0)<XTEN> to 1.

Figure 3.5.31 Port B (PB0, PB1)

Port B Data	Register									
PB	7	6 5	4	3 2	1	0	(Initial Value: **** **11)			
(001DH)		; !			PB1	PB0	Read/Write			
Port B Control Register										
PBCR	7	6 5	4	3 2	1	0	_			
(001FH)					PB1C	PB0C	(Initial Value: **** **00)			
	PB1C,	PB input/output	ut control	0: Input mode			Write only			
	PB0C		1: Output m				white only			
	Prohibit read-r	nodify-write.								

Figure 3.5.32 Registers for Port B

3.5.11 Port C (PC0/G0 to PC7/G7), Port D (PD0/G8 to PD1/G9)

Port C and port D are 8-bit and 2-bit P-channel high break-down voltage output port. PC and PD are also used grid-outputs and can drive vacuum fluorescent tube directly.

Reset operation clears port C data register (PC) and port D data register (PD) to 0 respectively.

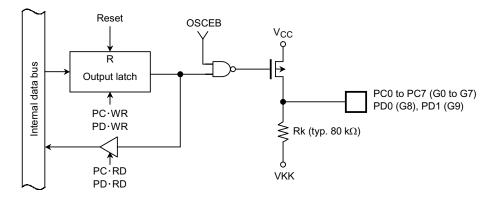
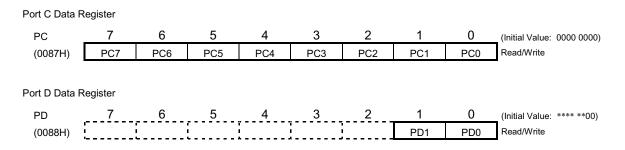
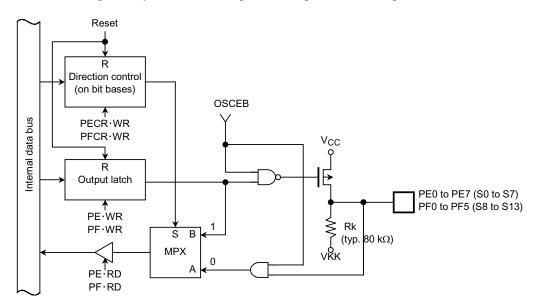
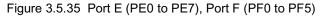


Figure 3.5.33 Port C (PC0 to PC7), Port D (PD0, PD1)


Figure 3.5.34 Registers for Port C, Port D

3.5.12 Port E (PE0/S0 to PE7/S7), Port F (PF0/S8 to PF5/S13)

Port E and port F are 8-bit and 6-bit P-channel high break-down voltage output port. PE and PF are also used segment-outputs and can drive vacuum fluorescent tube directly. I/O mode is set by port E control register (PECR) and port F control register (PFCR).

Reset operation sets port E data register (PE), port F data register (PF), PECR, and PFCR to 0 respectively and initializes port E and port F to the input mode.

Port E Data I	Register											
PE	7	6	5	4	3	2	1	0	(Initial Value: 0000 0000)			
(0089H)	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	Read/Write			
Port E Contro	ol Register											
PECR	7	6	5	4	3	2	1	0				
(008BH)	PE7C	PE6C	PE5C	PE4C	PE3C	PE2C	PE1C	PE0C	(Initial Value: 0000 0000)			
	PE7C to PE0C	PE inp	out/output co	ontrol	0: Input mode				Write only			
		ما سم م مانات ب س			1: 0	Dutput mode	9					
Prohibit read-modify-write.												
Port F Data F	Register											
PF	7	6	5	4	3	2	1	0	(Initial Value: **00 0000)			
(008AH)	· · · · · · · · · · · · · · · · · · ·		PF5	PF4	PF3	PF2	PF1	PF0	Read/Write			
Port F Contro	ol Register											
PFCR	7	6	5	4	3	2	1	0				
(008CH)			PF5C	PF4C	PF3C	PF2C	PF1C	PF0C	(Initial Value: **00 0000)			
									1			
	PF5C to	PF inp	ut/output co	ontrol		nput mode	Write only					
	PF0C				1: 0	Dutput mode	9					

Prohibit read-modify-write.

Figure 3.5.36 Registers for Port E, Port F

3.5.13 PWM0, PWM1

PWM0 and PWM1 output 14-bit pulse width modulation output (PWM0, PWM1).

The outputs are enabled by accessing PWM Start Regigter (PWMRUN) <PWM0RUN><PWM1RUN> and able to be set to N-channel open-drain output by Opendrain Output Control Register 3 (ODCR3).

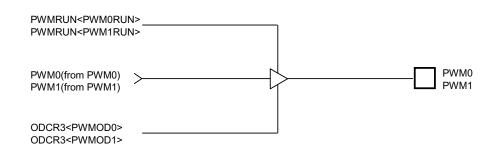


Figure 3.5.37 PWM0, PWM1

PWM Start Resister

PWMRUN	7	6 5	5 4	3	2	1	0		
(003DH)					PWM2RUN	PWM1RUN	PWM0RUN (In	nitial Value: **** *000)	
		-							
	PWM1RUN	PWM1 start/	stop		0: Stop				

	UN PWWII start/stop	U. Stop	
		1: Start	Muite and
PWM0R	UN PWM0 start/stop	0: Stop	Write only
		1: Start	

Open Drain Output Control Resister 3

ODCR3	7	6	5	4	3	2	1	0	_	
(0021H)				PWMOD1 (PWM1)	PWMOD0 (PWM0)			PODA3 (PA3)	(Initial V	′alue: ***0 0**0)
	PWMOD1	PWM1 Open Drain control				0: Push-Pull Output 1: Open Drain Output				
	PWMOD0 PWM0 Open Drain control			0: Push-Pull Output 1: Open Drain Output				Write only		

Figure 3.5.38 Registers for PWM0, PWM1

3.5.14 CLK

CLK can output fc/4 or fs/4 clock. The output is enabled by System Clock Control Register 3 (SYSCR3)<CLKEN>. The source clock can be selected from fc or fs by System Clock Control Register 1 (SYSCR1)<SYSCK> and System Clock Control Register 0 (SYSCR0)<RSYSCK>.

By the reset, <CLKEN> is initialized to 0 and CLK goes high-impedance.

During the reset, CLK is pulled internally up to V_{CC} level. (Refer to 6 Port Section Equivalent Circuit Diagram.)

When CLK is not enabled, the terminal should be pulled externally up to V_{CC} , in order to avoid some extra power consumption at the input gate.

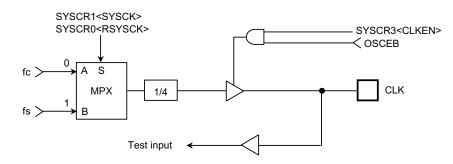


Figure 3.5.39 CLK

System Clock Control Resister 0 7 6 5 3 2 SYSCR0 RSYSCK (006EH) XEN XTEN RXEN RXTEN WUFF (Reset Value: 1010 00**) RSYSCK 0: High frequency clock (fc) Clock selection after released R/W STOP mode 1: Low frequency clock (fs) System Clock Control Resister 1 6 SYSCR1 7 5 3 (006FH) SYSCK (Reset Value: 0*** 0000) "0" SYSCK System clock selection 0: High frequency clock (fc) R/W 1: Low frequency clock (fs) System Clock Control Resister 3 0 SYSCR3 6 5 __7_ (006DH) CLKEN (Initial Value: 1111 00*0) "0 "0' CLKEN CLK output selection 0: High-inpidance output R/W 1: Clock output

Figure 3.5.40 Register for CLK

3.6 Timer Counter

TMP93CF76/CF77/CW76/CU76/CT76F have an 8-bit timer counter and five 16-bit timer counters. They can be used as various event counters needed for VCR system control.

3.6.1 8-bit Timer Counter 0 (TC0)

(1) Block diagram

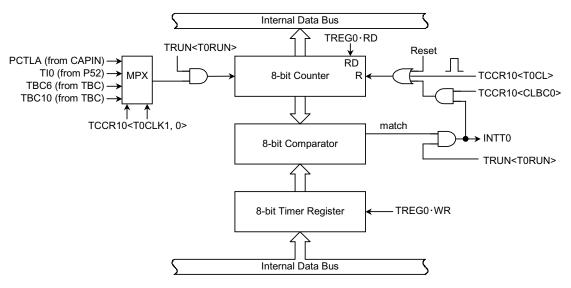


Figure 3.6.1 Composition of the Timer Counter 0

a. Up-counter

The 8-bit up-counter counts up with the input clock selected by Timer Counter Control Resister 10 (TCCR10)<T0CLK1,0>. The input clock can be selected from TBC6(2⁶/f_{SYS}), TBC10(2¹⁰/f_{SYS}) from Time Base Counter (TBC), PCTLA from Capture Input Control Circuit (CAPIN) and TI0(P52). The up-counter starts to count up when Timer Start Control Resister (TRUN)<T0RUN> is 1, and it stops to count up when TRUN<T0RUN> is 0. Reset operation clears the up-counter and TRUN<T0RUN>.

When TCCR10<CLBC0> is 1, the up-counter is cleared by the match signal from the comparator.

The up-counter is directly cleared by setting TCCR10<T0CL> to 1.

b. Timer register (TREG0)

The timer register is 8-bit register for setting the value of the interval time.

When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator. In case of setting "00H" to timer register, the match signal is outputted from comparator when up-counter overflows.

The set data is transferred to the comparator immediately after writting to TREG0. The real-time value of up-counter can be read out by reading TREG0.

TREG0 is not initialized when resetting.

c. Comparator

8-bit comparator compares the value of up-counter with the setting value of the timer register. When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator, and interrupt request (INTTO) occurs.

(2) Control Register

Timer Counter Control Register 10 7 TCCR10 6 5 4 3 2 0 1 (0028H) CLBC1 T1CL T1CLK1 T1CLK0 CLBC0 TOCL T0CLK1 T0CLK0 (Initial Value: 0000 0000) CLBC0 TC0 counter clear by match 0: Disable 1: Enable TOCL TC0 counter clear 0: -1: Clear (One-shot) R/W T0CLK1 TC0 source clock selection 00: PCTLA (from CAPIN) 01: TI0 (from P52) T0CLK0 10: TBC6 11: TBC10 Timer Register 0 0 7 6 5 4 3 2 1 TREG0 TC01 (0029H) TC07 TC06 TC05 TC04 TC03 TC02 TC00 (Initial Value: 0000 0000) Read **TR07 TR06 TR05** TR04 **TR03** TR02 TR01 TR00 (Initial Value: **** ****) Write Prohibit read-modify-write. Timer Start Control Register 7 6 5 З 2 Λ Λ 1

IRUN		0	5	7	5	2		0	_	
(0027H)			T5RUN	T4RUN	T3RUN	T2RUN	T1RUN	TORUN	(Initial Value	e: *00 0000)
	TORUN	TC0	count start		C	: Stop				
					1	: Start				R/W

Figure 3.6.2 Registers for TC0

(3) Operation

a. Timer mode

In this mode, the up-counter counts up with TBC6 or TBC10.

Stop TC0 first, and select one input clock by TCCR10<T0CLK1,0> and set an interval time to TREG0. Then, enable TC0 interrupt (INTT0) and start TC0. The INTT0 interrupt request occurs when the value of the up-counter coincides with the value of TREG0.

Example : When generating TC0 interruption every $32\mu s$ by fc = 16MHz, set up each register in the order of the following.

TRUN	MSB LSB 76543210	
	0	The count of the TC0 is stopped.
TCCR10	1 * 1 0	The source clock is set to TBC6 (8 µs).
TREG0	$0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0$	$32 \ \mu s \div 8 \ \mu s = 04 H$ is set to the timer register.
INT1T0	0 n n n	INTTO interrupt is enabled with Level "nnn".
TRUN	1	The count of the TC0 is started.

Note: *; Don't care –; No change

Table 3.6.1	Interrupt In	terval for the TC0
-------------	--------------	--------------------

Interrupt Interval (at fc = 16 MHz)	Resolution	Input Clock
8.0 μs to 2.048 ms	8.0 μs	TBC6 (2 ⁶ /f _{SYS})
128 μs to 32.768 ms	128 μs	TBC10 (2 ¹⁰ /f _{SYS})

b. Event counter mode

In this mode, the up-counter counts up with the rising edge of TI0 (P52).

Stop TC0 first, and select TI0 as a source clock by TCCR10<T0CLK1,0> and set an interval time to TREG0. Then, enable TC0 interrupt (INTT0) and start TC0. The INTT0 interrupt request occurs when the value of the up-counter coincides with the value of TREG0.

The maximum input frequency is $f_{SYS}/2^3$ [Hz] (1 MHz at fc = 16 MHz). The minimum input pulse width (H level and L level) is each $2^2/f_{SYS}$ [s] (500 ns at fc = 16 MHz).

c. Playback control signal counter mode

In this mode, the up-counter counts up with the rising edge of PCTLA signal from Capture Input Control Circuit (CAPIN).

Stop TCO first, and select PCTLA as a source clock by TCCR10<T0CLK1,0> and set an interval time to TREG0. Then, enable TCO interrupt (INTTO) and start TCO. The INTTO interrupt request is occurs when the value of the upcounter coincides with the value of TREG0.

3.6.2 16-Bit Timer Counter (TC1)

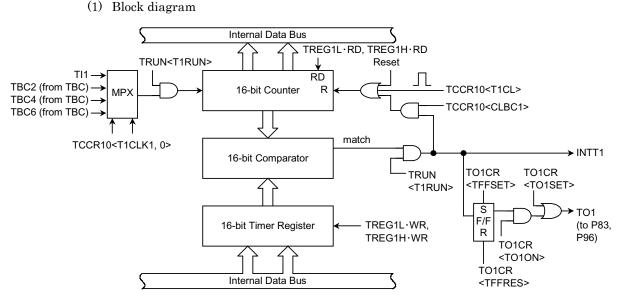


Figure 3.6.3 Composition of the timer counter 1

a. Up-counter

The 8-bit up-counter counts up with the input clock selected by Timer Counter Control Register 10 (TCCR10)<T1CLK1,0>. The input clock can be selected from TBC2(2²/fSYS), TBC4(2⁴/fSYS), TBC6(2⁶/fSYS) from Time Base Counter (TBC) and TI1(P52). The up-counter starts to count up when Timer Start Cntrol Register (TRUN)<T1RUN> is 1, and it stops to count up when TRUN<T1RUN> is 0. Reset operation clears the up-counter and TRUN<T1RUN>.

When TCCR10<CLBC1> is 1, the up-counter is cleared by the match signal from the comparator.

The up-counter is directly cleared by setting TCCR10<T1CL> to 1.

b. Timer register (TREG1L/TREG1H)

The timer register is 16-bit register (8-bit register \times 2) for setting the value of the interval time.

Set the lower 8-bit value to TREG1L first, and then, set the higher 8-bit value to TREG1H.

When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator. In case of setting "0000H" to timer register, the match signal is outputted from comparator when up-counter overflows.

The set data is transferred to the comparator immediately after writting to timer register. The real-time value of up-counter can be read out by reading TREG1L and TREG1H.

TREG1L and TREG1H is not initialized when resetting. TREG1H must be read after reading TREG1L. In case an overflow occurs immediately after reading TREG1L, the carry-over is added to the value of TREG1H.

Note: TREG1H must be written a data. Otherwise, the up-counter is not compared with the timer register.

c. Comparator

16-bit comparator compares the value of up-counter with the setting value of the timer register. When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator, and interrupt request (INTT1) occurs.

d. Output control circuit

The match signal from comparator is divided by 2 with a flip-flop (F/F) and can be outputted to TO1(P83 and P96).

When TO1CR<TO1SET> is 1, TO1 output is set to 1 and when <TO1SET> is 0, the divided signal is outputted from TO1.

When TO1CR<TFFSET> is 1, the flip-flop is set to 1 and when TO1CR <TFFRESET> is 1, the flip-flop is cleared to 0.

(2) Control register

Timer Counter Control Register 10

TCCR10 7 6 5 4 3 2 1 0 (0028H) CLBC1 T1CL T1CLK1 T1CLK0 CLBC0 TOCL T0CLK1 T0CLK0 (Initial Value: 0000 0000) CLBC1 0: Disable TC1 counter clear by match 1: Enable T1CL TC1 counter clear 0: -1: Clear (One-shot) R/W T1CLK1 TC1 source clock selection 00: TI1 (from P52) 01: TBC2 10: TBC4 T1CLK0 11: TBC6 Timer Register 1 Lower order 7 6 5 4 3 2 1 0 TREG1L (002AH) TC17 **TC16** TC15 TC14 TC13 TC12 TC11 TC10 (Initial Value: 0000 0000) Read TR17 **TR16 TR15 TR14 TR13 TR12** TR11 TR10 (Initial Value: **** ****) Write Prohibit read-modify-write. Timer Register 1 Higher order 7 6 5 4 3 2 1 0 TREG1H (002BH) TC1F TC1E TC1D TC1C TC1B TC1A TC19 TC18 (Initial Value: 0000 0000) Read TR1F TR1E TR1D TR1C TR1B TR1A TR19 TR18 (Initial Value: **** ****) Write Prohibit read-modify-write.

Note: Writing and reading in order of TREG1L \rightarrow TREG1H are necessary.

Timer Start Control Register

TRUN	7	6	5	4	3	2	1	0	_	
(0027H)	i i 1		T5RUN	T4RUN	T3RUN	T2RUN	T1RUN	TORUN	(Initial Valu	e: **00 0000)
	T1RUN	TC1	count start		0	: Stop				
		1011	oouni olun			: Start				R/W

TO1 Control Register

TO1CR	7	6	5	4	3	2	1	0	
(0062H)	1	i I	i I		TFFRES	TFFSET	TO10N	TO1SET	(Initial Value: **** 0000)

TFFRES	Flip Flop reset	0: -	
		1: Reset (One-shot)	
TFFSET	Flip Flop reset	0: –	
		1: Set (One-shot)	unite entre
TO10N	TO1 ON/OFF	0: OFF	write only
		1: ON	
TO1SET	TO1 output control	0: Divided signal is outputted from TO1.	
		1: Set TO1 to 1.	

Prohibit read-modify-write.

- (3) Operation
 - a. Timer mode

In this mode, the up-counter counts up with TBC2, TBC4 or TBC6.

Stop TC1 first, and select one input clock by TCCR10<T1CLK1,0> and set an interval time to TREG1L and TREG1H. Then, enable TC1 interrupt (INTT1) and start TC1. The INTT1 interrupt request occurs when the value of the up-counter coincides with the value of TREG1L and TREG1H.

Interrupt I	nterv	al (at fc = 16 MHz)	Resolution		Input Clock
0.5 μs	to	32.768 ms	0.5 μs	TBC2	$(2^2/f_{SYS})$
2 μs	to	131.072 ms	2 μs	TBC4	(2 ⁴ / f _{SYS})
8 μs	to	524.288 ms	8 μs	TBC6	(2 ⁶ / f _{SYS})

Table 3.6.2 Interrupt Interval or the TC1

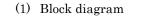
b. Event counter mode

In this mode, the up-counter counts up with the rising edge of TI1 (P52).

Stop TC1 first, and select TI1 as a source clock by TCCR10<T1CLK1,0> and set an interval time to TREG1L and TREG1H. Then, enable TC1 interrupt (INTT1) and start TC1. The INTT1 interrupt request occurs when the value of the up-counter coincides with the value of TREG1L and TREG1H.

The maximum input frequency is $f_{SYS}/2^3$ [Hz] (1 MHz at fc = 16 MHz). The minimum input pulse width (H level and L level) is each $2^2/f_{SYS}$ [s] (500 ns at fc = 16 MHz).

c. Timer output 1 (TO1)


The match signal from comparator is divided by 2 with the flip-flop (F/F). The divided signal is outputted to TO1(P83 and P96).

Example: When outputing 40 [kHz] pulse at fc = 16 MHz (duty 50%), set up each register in order of the following.

	MSB LSB 76543210	
TRUN	0-	The count of the TC1 is stopped.
TO1CR	1000	Reset the flip-flop.
TCCR10	0 1 0 1	Counter is cleared and the source clock is set to TBC2 (0.5 μ s).
TREG1L	0 0 0 1 1 0 0 1	40 kHz, 0019H is set to timer register.
TREG1H	0 0 0 0 0 0 0 0	
INTT1T0	$0 \ 0 \ 0 \ 0 \$	(INTT1 interrupt is disabled in this example.)
TO1CR	1 -	TO1 output is "ON".
TRUN	0010	TC1 starts counting.

Note: -; No change

3.6.3 16-Bit Timer Counter (TC2)

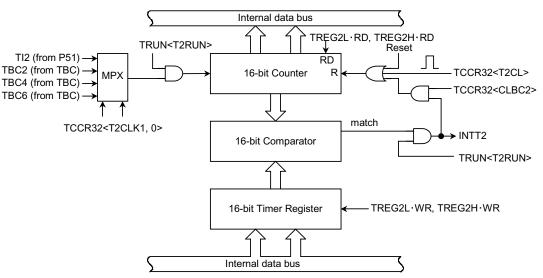


Figure 3.6.5 Composition of the Timer Counter 2

a. Up-counter

The 16-bit up-counter counts up with the input clock selected by Timer Counter Control Register 32 (TCCR32)<T2CLK1,0>. The input clock can be selected from TBC2(2²/f_{SYS}), TBC4(2⁴/f_{SYS}), TBC6(2⁷/f_{SYS}) from Time Base Counter (TBC) and TI2(P51). The up-counter starts to count up when Timer Start Control Register (TRUN)<T2RUN> is 1, and it stops to count up when TRUN<T2RUN> is 0. Reset operation clears the up-counter and TRUN <T2RUN>.

When TCCR32<CLBC2> is 1, the up-counter is cleared by the match signal from the comparator.

The up-counter is directly cleared by setting TCCR32<T2CL> to 1.

b. Timer register (TREG2L/TREG2H)

The timer register is 16-bit register (8-bit register \times 2) for setting the value of the interval time.

Set the lower 8-bit value to TREG2L first, and then, set the higher 8-bit value to TREG2H.

When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator. In case of setting "0000H" to timer register, the match signal is outputted from comparator when up-counter overflows.

The set data is transferred to the comparator immediately after writting to timer register. The real-time value of up-counter can be read out by reading TREG2L and TREG2H.

TREG2L and TREG2H is not initialized when resetting. TREG2H must be read after reading TREG2L. In case an overflow occurs immediately after reading TREG2L, the carry-over is added to the value of TREG2H.

- Note: TREG2H must be written a data. Otherwise, the up-counter is not compared with the timer register.
- c. Comparator

16-bit comparator compares the value of up-counter with the setting value of the timer register. When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator, and interrupt request (INTT2) occurs.

(2) Control register

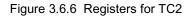
Timer Counter Control Register 32

TCCR32	7	6	5	4	3	2	1	0	
(002CH)	CLBC3	T3CL	T3CLK1	T3CLK0	CLBC2	T2CL	T2CLK1	T2CLK0	(Initial Value: 0000 0000)

CLBC2	TC2 counter clear by match	0: Disable	
		1: Enable	
T2CL	TC2 counter clear	0: -	
		1: Clear (One-shot)	R/W
T2CLK1	TC2 source clock selection	00: TI2 (from P51)	r./ v v
		01: TBC2	
T2CLK0		10: TBC4	
		11: TBC6	

Timer Register 2 Lower order

TREG2L	7	6	5	4	3	2	1	0	_
(002EH)	TC27	TC26	TC25	TC24	TC23	TC22	TC21	TC20	(Initial Value: 0000 0000) Read
									-
	TR27	TR26	TR25	TR24	TR23	TR22	TR21	TR20	(Initial Value: **** ****) Write
	Prohibit rea	ad-modify-w	rite.						_
Timer Registe	er 2 Higher o	order							


· · · · · · · · · · · · · · · · · · ·	. _								
TREG2H	7	6	5	4	3	2	1	0	_
(002FH)	TC2F	TC2E	TC2D	TC2C	TC2B	TC2A	TC29	TC28	(Initial Value: 0000 0000) Read
									_
	TR2F	TR2E	TR2D	TR2C	TR2B	TR2A	TR29	TR28	(Initial Value: **** ****) Write

Prohibit read-modify-write.

Note: Writing and reading in order of TREG2L \rightarrow TREG2H are necessary.

Timer Start Control Register	Timer	Start	Control	Reaister
------------------------------	-------	-------	---------	----------

TRUN	7	6	5	4	3	2	1	0	_	
(0027H)			T5RUN	T4RUN	T3RUN	T2RUN	T1RUN	TORUN	(Initial Valu	e: **00 0000)
	T2RUN	тс	2 count start		(: Stop				R/W
					1	: Start	F/ VV			

(3) Operation

a. Timer mode

In this mode, the up-counter counts up with TBC2, TBC4 or TBC6.

Stop TC2 first, and select one input clock by TCCR32<T2CLK1,0> and set an interval time to TREG2L and TREG2H. Then, enable TC2 interrupt (INTT2) and start TC2. The INTT2 interrupt request occurs when the value of the up-counter coincides with the value of TREG2L and TREG2H.

Interrupt interval (at fc=16 MHz)	Resolution	Input Clock
0.5 μs to 32.768 ms	0.5 μs	TBC2 (2 ² /f _{SYS})
2 μs to 131.072 ms	2.0 μs	TBC4 (2 ⁴ /f _{SYS})
8 μs to 524.288 ms	8.0 μs	TBC6 (2 ⁶ /f _{SYS})

Table 3.6.3 Interrupt Interval for the TC2

b. Event counter mode

In this mode, the up-counter counts up with the rising edge of TI2 (P51).

Stop TC2 first, and select TI2 as a source clock by TCCR32<T2CLK1,0> and set an interval time to TREG2L and TREG2H. Then, enable TC2 interrupt (INTT2) and start TC2. The INTT2 interrupt request occurs when the value of the up-counter coincides with the value of TREG2L and TREG2H.

The maximum input frequency is $f_{SYS}/2^3$ [Hz] (1 MHz at fc = 16 MHz). The minimum input pulse width (H level and L level) is each $2^2/f_{SYS}$ [s] (500 ns at fc = 16 MHz).

3.6.4 16-Bit Timer Counter (TC3)

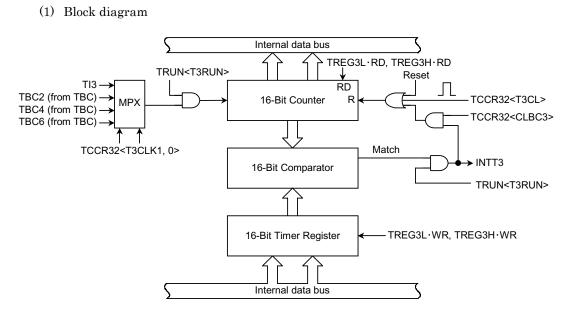


Figure 3.6.7 Composition of the timer counter 3

a. Up-counter

The 16-bit up-counter counts up with the input clock selected by Timer Counter Control Register 32 (TCCR32)<T3CLK1,0>. The input clock can be selected from TBC2(2²/fSYS), TBC4(2⁴/fSYS), TBC6(2⁷/fSYS) from Time Base Counter (TBC) and TI3(P50). The up-counter starts to count up when Timer Start Control Register (TRUN)<T3RUN> is 1, and it stops to count up when TRUN<T3RUN> is 0. Reset operation clears the up-counter and TRUN <T3RUN>.

When TCCR32<CLBC3> is 1, the up-counter is cleared by the match signal from the comparator.

The up-counter is directly cleared by setting TCCR32<T3CL> to 1.

b. Timer register (TREG3L/TREG3H)

The timer register is 16-bit register (8-bit register \times 2) for setting the value of the interval time.

Set the lower 8-bit value to TREG3L first, and then, set the higher 8-bit value to TREG3H.

When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator. In case of setting "0000H" to timer register, the match signal is outputted from comparator when up-counter overflows.

The set data is transferred to the comparator immediately after writting to timer register. The real-time value of up-counter can be read out by reading TREG3L and TREG3H.

TREG3L and TREG3H is not initialized when resetting. TREG3H must be read after reading TREG3L. In case an overflow occurs immediately after reading TREG3L, the carry-over is added to the value of TREG3H.

Note: TREG3H must be written a data. Otherwise, the up-counter is not compared with the timer register.

c. Comparator

16-bit comparator compares the value of up-counter with the setting value of the timer register. When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator, and interrupt request (INTT3) occurrs.

(2) Control register

Timer Counter Control Register 32

TCCR32	7	6	5	4	3	2	1	0	_	
(002CH)	CLBC3	T3CL	T3CLK1	T3CLK0	CLBC2	T2CL	T2CLK1	T2CLK0	(Initial Valu	e: 0000 0000)
	CLBC3	TC3	counter clea	ar by match	-	: Disable : Enable				
	T3CL	TC3	TC3 counter clear 0: – 1: Clear (One-shot)							
	T3CLK1	TC3	source clocl	k selection		: Clear (On 0: TI3 (from		R/W		
					C	1: TBC2				
	T3CLK0				1	0: TBC4				
					1	1: TBC6				

Timer Register 3 Lower order

TREG3L	7	6	5	4	3	2	1	0	_
(0060H)	TC37	TC36	TC35	TC34	TC33	TC32	TC31	TC30	(Initial Value: 0000 0000) Read
	TR37	TR36	TR35	TR34	TR33	TR32	TR31	TR30	(Initial Value: **** ****) Write
	Prohibit rea	ad-modify-w		d · · · · · · · · · · · · · · · · · · ·					

Timer Register 3 Higher order

TREG3H	7	6	5	4	3	2	1	0	_
(0061H)	TC3F	TC3E	TC3D	TC3C	TC3B	TC3A	TC39	TC38	(Initial Value: 0000 0000) Read
	TR3F	TR3E	TR3D	TR3C	TR3B	TR3A	TR39	TR38	(Initial Value: **** ****) Write
	Prohibit rea	ad-modify-w	rite.						-

Note: Writing and reading in order of TREG3L→TREG3H are necessary.

Timer Start Control Register

TRUN	7	 6 5	4	3	2	1	0	_		
(0027H)		 T5RUN	T4RUN	T3RUN	T2RUN	T1RUN	TORUN	(Initial Valu	e: **00 0000)	
	T3RUN	TC3 count start			: Stop : Start				R/W	7

Figure 3.6.8 Registers for TC3

- (3) Operation
 - a. Timer mode

In this mode, the up-counter counts up with TBC2, TBC4 or TBC6.

Stop TC3 first, and select one input clock by TCCR32<T3CLK1,0> and set an interval time to TREG3L and TREG3H. Then, enable TC3 interrupt (INTT3) and start TC3. The INTT3 interrupt request occurs when the value of the up-counter coincides with the value of TREG3L and TREG3H.

Interrupt interval (at fc = 16 MHz)	Resolution	Inpu	ut Clock
0.5 μs to 32.768 ms	0.5 μs	TBC2	$(2^2/f_{SYS})$
2 µs to 131.072 ms	2.0 μs	TBC4	$(2^4/f_{SYS})$
8 μs to 524.288 ms	8.0 μs	TBC6	(2 ⁶ /f _{SYS})

Table 3.6.4 Interrupt interval for the TC3

b. Event counter mode

In this mode, the up-counter counts up with the rising edge of TI3 (P50).

Stop TC3 first, and select TI3 as a source clock by TCCR32<T3CLK1,0> and set an interval time to TREG3L and TREG3H. Then, enable TC3 interrupt (INTT3) and start TC3. The INTT3 interrupt request occurs when the value of the up-counter coincides with the value of the TREG3L and TREG3H.

The maximum input frequency is $f_{SYS}/2^3$ [Hz] (1 MHz at fc = 16 MHz). The minimum input pulse width (H level and L level) is each $2^2/f_{SYS}$ [s] (500 ns at fc = 16 MHz).

3.6.5 16-Bit Timer Counter (TC4)

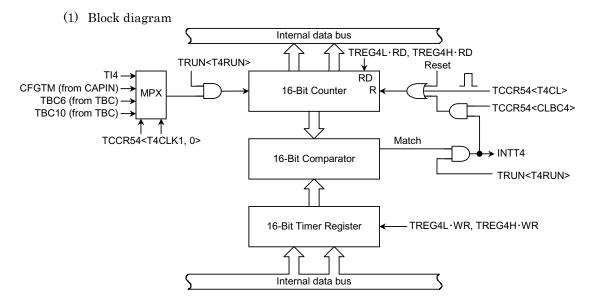


Figure 3.6.9 Composition of the timer counter 4

a. Up-counter

The 16-bit up-counter counts up with the input clock selected by Timer Counter Control Register 54 (TCCR54)<T4CLK1,0>. The input clock can be selected from TBC6(2⁶/f_{SYS}), TBC10(2¹⁰/f_{SYS}) from Time Base Counter (TBC), CFGTM signal from Capture Input Control Circuit (CAPIN) and TI4(P51). The up-counter starts to count up when Timer Start Control Register (TRUN)<T4RUN> is 1, and it stops to count up when TRUN<T4RUN> is 0. Reset operation clears the up-counter and TRUN<T4RUN>.

When TCCR54<CLBC4> is 1, the up-counter is cleared by the match signal from the comparator.

The up-counter is cleared by setting TCCR54<T4CL> to 1.

b. Timer register (TREG4L/TREG4H)

The timer register is 16-bit register (8-bit register \times 2) for setting the value of the interval time.

Set the lower 8-bit value to TREG4L first, and then, set the higher 8-bit value to TREG4H.

When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator. In case of setting "0000H" to timer register, the match signal is outputted from comparator when up-counter overflows.

The set data is transferred to the comparator immediately after writting to timer register. The real-time value of up-counter can be read out by reading TREG4L and TREG4H.

TREG4L and TREG4H is not initialized when resetting. TREG4H must be read after reading TREG4L. In case an overflow occurs immediately after reading TREG4L, the carry-over is added to the value of TREG4H.

Note: TREG4H must be written a data. Otherwise, the up-counter is not compared with the timer register.

c. Comparator

16-bit comparator compares the value of up-counter with the setting value of the timer register. When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator, and interrupt request (INTT4) occurs.

(2) Control register

Timer Counter Control Register 54

TCCR54	7	6	5	4	3	2	1	0	_	
(002DH)	CLBC5	T5CL	T5CLK1	T5CLK0	CLBC4	T4CL	T4CLK1	T4CLK0	(Initial Valu	ie: 0000 0000)
	CLBC4	TC4 o	counter clea	ar by match	-	: Disable : Enable				
	T4CL	TC4 o	counter clea	ır	-	:-				
					1	: Clear (On		R/W		
	T4CLK1	TC4 s	source clocl	<pre>selection</pre>	0	0: TI4 (from				
					0	1: CFGTM				
	T4CLK0				1	0: TBC6				
					1	1: TBC10				
	•	•								· · · ·

Timer Register 4 Lower order

TREG4L	7	6	5	4	3	2	1	0	_
(0032H)	TC47	TC46	TC45	TC44	TC43	TC42	TC41	TC40	(Initial Value: 0000 0000) Read
	TR47	TR46	TR45	TR44	TR43	TR42	TR41	TR40	(Initial Value: **** ****) Write
	Prohibit rea	ad-modify-w	•	• • • •					

Timer Register 4 Higher order

TREG4H	7	6	5	4	3	2	1	0	_	
(0033H)	TC4F	TC4E	TC4D	TC4C	TC4B	TC4A	TC49	TC48	(Initial Value: 0000 0000) Read	
	TR4F	TR4E	TR4D	TR4C	TR4B	TR4A	TR49	TR48	(Initial Value: **** ****) Write	
Prohibit read-modify-write.										

Note: Writing and reading in order of TREG4L→TREG4H are necessary.

Timer Start Control Register

TRUN	7	6	5	4	3	2	1	0	_		
(0027H)			T5RUN	T4RUN	T3RUN	T2RUN	T1RUN	TORUN	(Initial Valu	e: **00 0000)	
	T4RUN	٦	TC4 count start): Stop : Start				R/W	7

Figure 3.6.10 Registers for TC4

- (3) Operation
 - a. Timer mode

In this mode, the up-counter counts up with TBC6 or TBC10.

Stop TC4 first, and select one input clock by TCCR54<T4CLK1,0> and set an interval time to TREG4L and TREG4H. Then, enable TC4 interrupt (INTT4) and start TC4. The INTT4 interrupt request occurs when the value of the up-counter coincides with the value of TREG4L and TREG4H.

Table 3.6.5	Interrupt	Interval	for	the	TC4
10010 01010	micomapt	micor var			

Interrupt interval (at fc = 16 MHz)	Resolution	Input Clock
8 μs to 524.288 ms	8.0 μs	TBC6 (2 ⁶ /f _{SYS})
128 μs to 8388.608 ms	128 μs	TBC10 (2 ¹⁰ /f _{SYS})

b. Event counter mode

In this mode, the up-counter counts up with the rising edge of TI4 (P51).

Stop TC4 first, and select TI4 as a source clock by TCCR54<T4CLK1,0> and set an interval time to TREG4L and TREG4H. Then, enable TC4 interrupt (INTT4) and start TC4. The INTT4 interrupt request occurs when the value of the up-counter coincides with the value of the TREG4L and TREG4H.

The maximum input frequency is $f_{SYS}/2^3$ [Hz] (1 MHz at fc = 16 MHz). The minimum input pulse width (H level and L level) is each $2^2/f_{SYS}$ [s] (500 ns at fc = 16 MHz).

c. Capstan FG signal counter mode

In this mode, the up-counter counts up with the rising edge of CFGTM signal from CAPIN.

Stop TC4 first, and select CFGTM as a source clock by TCCR54<T4CLK1,0> and set an interval time to TREG4L and TREG4H. Then, enable TC4 interrupt (INTT4) and start TC4. The INTT4 interrupt request occurs when the value of the up-counter coincides with the value of TREG4L and TREG4H.

3.6.6 16-Bit Timer Counter (TC5)

(1) Block diagram

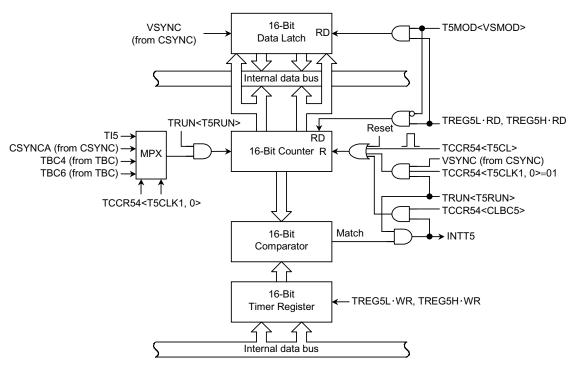


Figure 3.6.11 Composition of the timer counter 5

a. Up-counter

The 16-bit up-counter counts up with the input clock selected by Timer Counter Control Register 54 (TCCR54)<T5CLK1,0>. The input clock can be selected from TBC4(24/fSYS), TBC6(26/fSYS) from Time Base Counter (TBC), CSYNCA signal from Sync Signal Separator (CSYNC) and TI5(P50). The up-counter starts to count up when Timer Start Control Register (TRUN)<T5RUN> is 1, and it stops to count up when TRUN<T5RUN> is 0. Reset operation clears the up-counter and TRUN<T5RUN>.

When TCCR54<CLBC5> is 1, the up-counter is cleared by the match signal from the comparator.

The up-counter is cleared by setting TCCR54<T5CL> to 1.

b. Timer register (TREG5L/TREG5H)

The timer register is 16-bit register (8-bit register \times 2) for setting the value of the interval time.

Set the lower 8-bit value to TREG5L first, and then, set the higher 8-bit value to TREG5H.

When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator. In case of setting "0000H" to timer register, the match signal is outputted from comparator when up-counter overflows.

The set data is transferred to the comparator immediately after writting to timer register. The real-time value of up-counter can be read out by reading TREG5L and TREG5H.

TREG5L and TREG5H is not initialized when resetting. TREG5H must be read after reading TREG5L. In case an overflow occurs immediately after reading TREG5L, the carry-over is added to the value of TREG5H.

- Note : TREG5H must be written a data. Otherwise, the up-counter is not compared with the timer register.
- c. Comparator

16-bit comparator compares the value of up-counter with the setting value of the timer register. When the value of timer register coincides with the value of up-counter, a match signal is outputted from comparator, and interrupt request (INTT5) occurs.

d. Data latch

The data latch latches the value of the up-counter at the rising edge of the vertical synchronizing signal VSYNC and read the value of this latch from TREG5L and TREG5H when T5MOD<VSMOD> is 1.

(2) Control register

Timer Counter Control Register 54

TCCR54 7 6 5 3 2 0 4 1 (002DH) CLBC5 T5CL T5CLK1 T5CLK0 CLBC4 T4CL T4CLK1 T4CLK0 (Initial Value: 0000 0000) CLBC5 TC5 counter clear by match 0: Disable 1: Enable T5CL TC5 counter clear 0: -1: Clear (One-shot) R/W T5CLK1 TC5 source clock selection 00: TI5 (from P50) 01: CSYNCA (from CSYNC) 10: TBC4 T5CLK0 11: TBC6 Timer Register 5 Lower Order TREG5L 7 6 5 4 3 2 1 0 (0034H) TC57 TC56 TC55 TC54 TC53 TC52 TC51 **TC50** (Initial Value: 0000 0000) Read TR57 TR56 TR55 TR54 TR53 TR52 TR51 **TR50** (Initial Value: **** ****) Write Prohibit read-modify-write. Timer Register 5 Higher Order TREG5H 7 6 5 4 3 2 1 0 (0035H) TC5F TC5E TC5D TC5C TC5B TC5A TC59 TC58 (Initial Value: 0000 0000) Read TR5F TR5E TR5D TR5C TR58 TR5B TR5A TR59 (Initial Value: **** ****) Write Prohibit read-modify-write. Note: Setting and reading in order of TREG5L→TREG5H are necessary. Timer Start Control Register 5 4 3 2 1 0 TRUN T5RUN T4RUN T3RUN T2RUN T1RUN TORUN (Initial Value: **00 0000) (0027H) T5RUN TC5 count start 0: Stop R/W 1: Start

TC5 Mode Control Register

T5MOD	7	6	5	4	3	2	1	0		
(008EH)			·				i !	VSMOD	(Initial Value	e: **** ***0)
	VSMOD	TC5 fu	nction seled	ction		: Timer/Eve : C.sync C		r		R/W

- (3) Operation
 - a. Timer mode

In this mode, the up-counter counts up with TBC4 or TBC6.

Stop TC5 first, and select one input clock by TCCR54<T5CLK1,0> and set an interval time to TREG5L and TREG5H. Then, enable TC5 interrupt (INTT5) and start TC5. The INTT5 interrupt request occurs when the value of the up-counter coincides with the value of TREG5L and TREG5H.

Table 3.6.6 Interrupt interval for the TC5

Interrupt interval (at fc = 16 MHz)	Resolution	Input Clock		
2 μs to 131.072 ms	2.0 μs	TBC4 (2 ⁴ /f _{SYS})		
8 µs to 524.288 ms	8.0 μs	TBC6 (2 ⁶ /f _{SYS})		

b. Event counter mode

In this mode, the up-counter counts up with the rising edge of TI5 (P50).

Stop TC5 first, and select TI5 as a source clock by TCCR54<T5CLK1,0> and set an interval time to TREG5L and TREG5H. Then, enable TC5 interrupt (INTT5) and start TC5. The INTT5 interrupt request occurs when the value of the up-counter coincides with the value of the TREG5L and TREG5H.

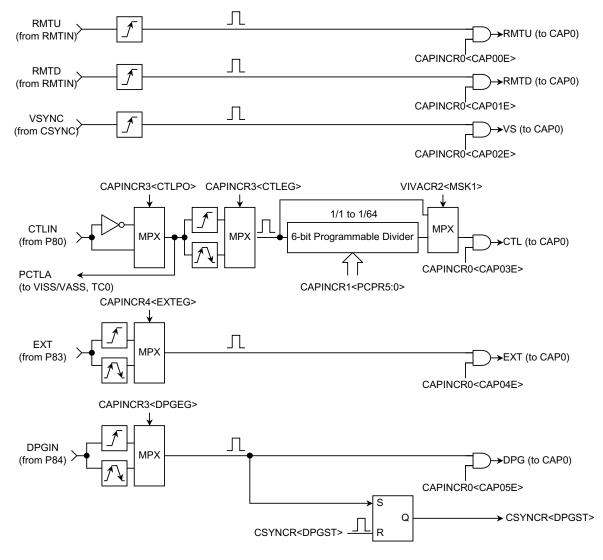
The maximum input frequency is $f_{SYS}/2^3$ [Hz] (1 MHz at fc = 16 MHz). The minimum input pulse width (H level and L level) is each $2^2/f_{SYS}$ [s] (500 ns at fc = 16 MHz).

c. Composite Sync. (C.Sync) signal counter mode

In this mode, the up-counter counts up with the rising edge of CSYNCA signal from CSYNC. Composite Sync. signal (C.sync) is inputted to CSYNCIN (P86) pin and its edge is selected by Sync Signal Separator (CSYNC). TC5 can measure the selected signal CSYNCA by synchronizing with the Vertical Synchronizing Signal (V.sync).

Stop TC5 first, and set T5MOD<VSMOD> to 1 and CSYNCA signal is selected as a source clock when TCCR54<T5CLK1,0>. Then, start TC5. The data latch latches the value of the up-counter at the rising edge of the VSYNC signal and the up-counter is cleared at the same time.

Composite Sync. signal can be measured by reading the data latch in Capture 0 interrupt (INTCAP0) service routine.


3.7 Capture

The capture circuit latches the time data of the time base counter (TBC) and the captures input status (trigger input signal). The data of TBC can be latched by the trigger input signal and the interrupt request is generated to CPU. By using the capture circuit, time measurement process for servo control can be done in high accuracy.

The capture circuit consists of the capture 0 (CAP0) with eight level of 24-bit FIFO (first-in first-out) data buffer, the capture 1 (CAP1) and the capture 2 (CAP2) with single level of 17-bit FIFO data buffers.

3.7.1 Capture Input Control Circuit (CAPIN)

Capture input control circuit (CAPIN) controls the trigger input signals for the three channels of capture circuits (CAP0, CAP1 and CAP2), and consists of the capture 0 input control circuit, capture 1 input control circuit and capture 2 input control circuit.

(1) Capture 0 (CAP0) input control circuit

Note: The minimum input pulse width ("H" level and "L" level) of CTLIN, EXT, DPGIN are $2/f_{SYS}$ (250 ns at fc = 16 MHz).

Figure 3.7.1 Capture 0 input control circuit

a. Remote control signal rising edge (RMTU)

This is the rising edge signal of the remote control signal detected by the remote control signal input circuit (RMTIN).

Enabling this trigger input to capture 0 (CAP0) is controlled by Capture Input Control Register 0 (CAPINCR0)<CAP00E>.

b. Remote control signal falling edge (RMTD)

This is the falling edge signal of the remote control signal detected by the remote control signal input circuit (RMTIN).

Enabling this trigger input to capture 0 (CAP0) is controlled by CAPINCR0<CAP01E>.

c. Sync. separation input (VS)

This is the vertical synchronizing signal (VSYNC) separated from Composite Sync.signal by Syncronizing signal separator (CSYNC).

Enabling this trigger input to capture 0 (CAP0) controlled by CAPINCR0 <CAP02E>.

d. Control signal input (CTL)

The CTLIN signal is a pulse formed with an external amplifier from the picture CTL signal and inputted to pin80 (CTLIN). The polarity of CTLIN can be selected by Capture Input Control Register 3 (CAPINCR3)<CTLPO>. The capturing timing can be selected from either rising edge of control signal or both rising and falling edges by CAPINCR3<CTLEG>. The detected edge signal can be divided by a 6-bit programmable frequency divider. The frequency division ratio can be set by Capture Input Control Register 1 (CAPINCR1)<PCPR5 to 0> from 1/1 to 1/64. It is selectable to skip the dividing process for CTLIN by VISS/VASS Control Resister 2 (VIVACR2)<MSK1>.

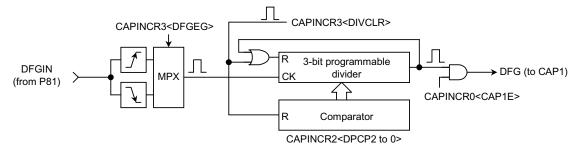
Enabling the trigger input to capture 0 (CAP0) is controlled by CAPINCR0 <CAP03E>.

e. EXT Input (EXT)

This is the trigger signal from EXT (P83) pin. Rising edge or rising/falling edge of EXT is selected by Capture Input Control Register 4 (CAPINCR4)<EXTEG>.

Enabling the trigger input to capture 0 (CAP0) is controlled by CAPINCR0 <CAP04E>.

f. Drum PG signal input (DPG)

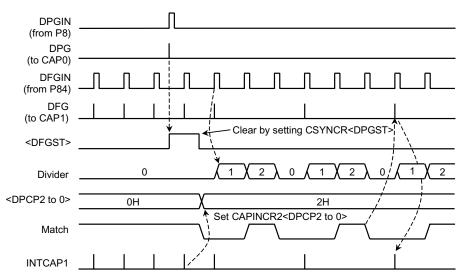

The external Drum PG signal is inputted to DPGIN (P84) pin.

Rising edge or rising/falling edge of DPGIN is selected by Capture Input Control Register 3 (CAPINCR3)<DFGEG>.

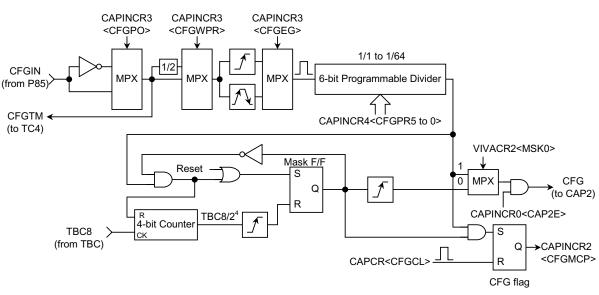
Enabling the trigger input to capture 0 (CAP0) is controlled by CAPINCR0 <CAP05E>.

A status F/F is also set by DPGIN. The status F/F can be read by CSYNC Control Register (CSYNCR)<DPGST>. By setting <DPGST> to 1, the status F/F is cleared.

(2) Capture 1 (CAP 1) Input Control

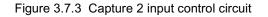


Note: The minimum input pulse width ("H" level and "L" level) of DFGIN is $f_{SYS}/2$ (250 ns at fc = 16 MHz).

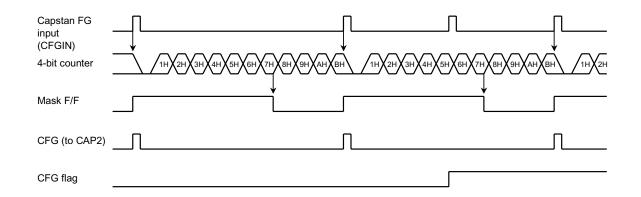

Capture 1 input control circuit

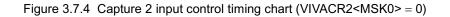
The trigger of capture 1 (CAP1) is the external Drum FG signal (DPGIN). Rising edge or falling edge of DFGIN is selected by CAPINCR3<DFGED>. The detected edge signal is divided by a 3-bit programmable frequency divider from 1/1 (CAPINCR2<DPCP2 to 0 = 0H>) to 1/8 (<DPCP2 to 0 > = 7H). 3-bit programmable divider and <DPCP2:0> can be cleared to 0 by setting CAPINCR3<DIVCLR>. Enabling trigger input to Capture1 (CAP1) is controlled by CAPINCR0<CAP1E>.

Figure 3.7.2 shows a timing chart of the Capture 1 Control Circuit.



(3) Capture 2 (CAP2) Input Control


Note: The minimum input pulse width ("H" level and "L" level) of CFGIN is $2/f_{SYS}$ (250 ns at fc = 16 MHz).



The trigger of capture 2 (CAP2) is the external capstan FG signal (CFGIN). The polarity of CFGIN can be selected by CAPINCR3 <CFGPO>. The input signal can be divided 1/1 or 1/2 by using CAPINCR3<CFGWPR>. Either rising edge or both rising and falling edges of CFGIN signal can be selected by CAPINCR3<CFGEG>. The detected edge signal can be divided by a 6-bit programmable frequency divider. The frequency division ratio can be set by Capture Input Control Register 4 (CAPINCR4)<CFGPR5 to 0>. The divided CFGIN signal can be masked during an interval of TBC8 (2^{9} /fc) × 8 [s] by a 4-bit mask counter. The CFGIN signal during the interval is not inputted to CAP2, but sets CAPINCR2<CFGMCP> to 1. The CFG flag <CFGMCP> can be reset to 0 by CAPCR<CFGCL>. CFGIN signal to mask processing or by-passing can be selected by VIVACR2<MSK0>.

Enabling the trigger input to capture 2 (CAP2) is controlled by CAPINCR0<CAP2E>.

Figure 3.7.4 shows the timing chart for Capture 2 Input Control.

(4) Capture Input Control Register

CAPINCR0	7	6	5	4		3	2	1	0			
(0046H)	CAP2E	CAP1E	CAP05E	CAP04E	CA	AP03E	CAP02E	CAP01E	CAP00E	(Initial Value:		
	(CFG)	(DFG)	(DPG)	(EXT)	(CTL)	(VS)	(RMTD)	(RMTU)	0000 0000)		
	CAP2E	Capture 2	2 input Enable	e/Disable		0: Disat						
							1: Enable					
	CAP1E	Capture 1	Capture 1 input Enable/Disable				0: Disable					
							1: Enable					
	CAP05E to	Capture 0) input Enable	e/Disable		0: Disat	ble					
	CAP00E					1: Enab	le					

Capture Input Control Register 0

Capture Input Control Register 1

CAPINCR1	7	6	5	4	3	2	1	0	(Initial Value:
(0047H)	PCTLCK1	PCTLCK0	PCPR5	PCPR4	PCPR3	PCPR2	PCPR1	PCPR0	0000 0000)
	PCPR5 to PCPR0	CTL sign ratio (1/1	. ,	reqency divis	sion 000000 000001 tc 111111	: 1/2 o			R/W

Capture Input Control Register 2

CAPINCR2	7	6	5	4		3	2	1	0	(Initial Value:
(0048H)	0	RMTST	RMTP0	RMTBP	CF	GMCP	DPCP2	DPCP1	DPCP0	0000 0000)
	CFGMCP	CFG flag				0: Norm 1: Error				read only
	DPCP2 to DPCP0	0	al (DFGIN) division ratio	o (1/1 to 1/8)		000: 1/1 001: 1/2 to 111: 1/8	2			R/W

Note: The bit 7 should be cleared to 0.

Capture Input Control Register 3

CAPINCR3	7	6	5	4	3	2	1	0	(Initial Value:			
(0049H)	DIVCLR	CTLPO	CFGPO	DPGEG	DFGEG	CFGWPR	CFGEG	CTLEG	0000 0000)			
	DIVCLR	DFG divid division ra			0: – 1: Clea	r (One-shot)						
	CTLPO	CTL input	polarity sele	ction		0: Positive 1: Negative						
	CFGPO	CFG inpu	t polarity sele	ection		0: Positive 1: Negative						
	DPGEG	DFG inpu	t edge select	ion		0: Rising edge 1: Both edge						
	DFGEG	DFG inpu	t edge select	ion		0: Rising edge 1: Falling edge						
	CFGWPR	CFG inpu	t division ratio	D	0: 1/1 1: 1/2							
	CFGEG	CFG inpu	t edge select	ion		0: Both edge 1: Rising edges						
	CTLEG	CTL input	edge selecti	on		0: Rising edge 1: Both edges						

Capture Input Control Register 4

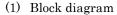
CAPINCR4	7	6	5	4		3	2	1	0	(Initial Value:		
(0068H)	EXTEG		CFGPR5	CFGPR4	CF	-GPR3	CFGPR2	CFGPR1	CFGPR0	0*00 0000)		
	EXTEG	EXT inpu	t edge selecti	on		0: Risin						
							1: Both edges					
	CFGPR5 to	CFG sign	G signal (CFGIN)				000000: 1/1					
	CFGPR0	Frequence	Frequency division ratio (1/1 to 1/64)				to					
						111111	: 1/64					

CSYNC Control Register

CSYNCR (0057H)	7	6	5 DPGST	4 CSYNCPO	3 SEPMOD	2 CSYNBP	1 0	0 MASK	(Initial Value: 0*00 0000)
(DPGST	DPG det	ection monito		(Read) 0: – 1: DPG (Write) 0: –				R/W

Note: The bit 7 and 1 should be cleared to 0.

VISS/VASS Control Register 2


VIVACR2	7	6	5	4	3	2	1	0	(Initial Value:
(0055H)	PCTLPO	PCTLCKS	MSK1	MSK0	VISS3	VISS2	VISS1	VISS0	0*00 0000)
	MSK1	CTLIN inp	out division co	ontrol	0: Divid 1: Bypa	DAA			
	MSK0	CFG inpu	t masking co	ntrol	0: Mask	R/W			
					1: Bypa	SS			

Capture Control Register

	-									
CAPCR	7	6	5	4	3	2	1	0	_	
(0052H)	CAP2T (CFG)	CAP1T (DFG)	CAPCL	VISFRS	VASFRS	TPRS0	CFGCL	CAFRS	(Initial Value: 0000 0000)	
	CFGCL CFG flag clear 0: - 1: Clear (One-shot)									
	Prohibit read	-modify-write								

Figure 3.7.5 Register for CAPIN

3.7.2 Capture 0 (CAP0)

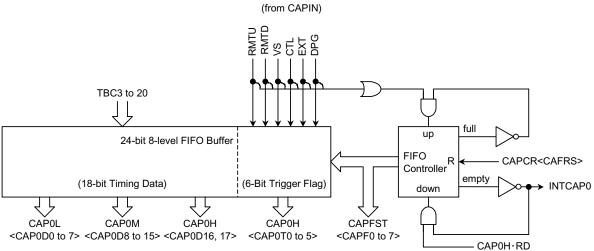


Figure 3.7.6 Composition of the Capture 0

- (2) Operation
 - a. Capture

The trigger signals for capture 0 (CAP0) are the six signals outputted from capture 0 input control circuit: RMTU, RMTD, VS, CTL, EXT and DPG. The CAP0 latches 18-bit timing data (Outputs from Time Base Counter: TBC3 to TBC20) and 6-bit trigger data in 3-byte Capture Data Register (CAP0L, CAP0M, CAP0H).

The 24 bits latched data can be obtained by reading CAP0L \rightarrow CAP0M \rightarrow CAP0H in order. The address of FIFO buffer is shifted by reading CAP0H.

Note: CAP0M and CAP0H need to be read serially. Therefore, CAP0M and CAP0H need to be read by word operation, or CAPFST, CAP0L,CAP0M and CAP0H need to be read by long-word read operation.

ex1) LDB	reg. (CAP0L)	
LDW	reg. (CAP0M)	; CAP0M/CAP0H word read operation
ex2) LDL	reg. (CAPFST)	; CAPFST/CAP0L/CAP0M/CAP0H long-word read operation

b. FIFO Status Register

The 24-bit 8-level data buffer features FIFO (First In First Out) function, allowing the data latched first to be read first. Capture 0 FIFO status register (CAPFST) indicates the status of FIFO shifting, and the status bits that correspond to the level being latched are set to 1. When the 8-level FIFO buffer becomes full, capture operations are disabled and the FIFO status register shows "FFH".

When the FIFO status register shows "00H", meaning empty, "FFH" is read out from the capture data register. The capture data can be read out when INTCAP0 interruption is generated or FIFO status register doesn't show "00H."

c. Capture Reset

In addition to a system reset function (initialization by resetting), capture 0 also has a software reset function. Software reset is performed by writing 1 at <CAFRS> of capture control register (CAPCR). In performing a software reset, the following circuits are initialized.

- a. The FIFO address counter indicates the first level of the 8-stage FIFO buffer.
- b. The FIFO status register (CAPFST) is initialized to "00H."

d. INTCAP0 Interruption

When a latch operation is performed by the trigger input, INTCAP0 interruption request is generated. The INTCAP0 interruption request signal is held in the active state until the FIFO status register reaches "00H" (empty).

When INTCAP0 interruption is accepted, read out the capture data from CAP0L, CAP0M and CAP0H <CAP0D16 to 17> and trigger data from CAP0H<CAP0T0 to 5> to verify the time data and interrupt sources.

INTCAP0 interruption request is available until reading out the FIFO buffer until the FIFO status register reaches "00H" or writing 1 to CAPCR<CAFRS>.

e. Data Processing

The upper 6 bits of the FIFO buffer show the status of the trigger input. As the data corresponding to the trigger input is set to 1, the trigger input can be identified by reading out the data.

Restore the latched data to RAM, and by subtracting the data from the data latched by the next trigger input, highly precise time measurement can be performed. Detection precision is 500 ns at 16 MHz operation, and quantum error is extremely small.

(3) Control Register

Capture 0 FIFO Status Register

CAPFST	7	6	5	4	3	2	1	0	_	
(004AH)	CAPF7	CAPF6	CAPF5	CAPF4	CAPF3	CAPF2	CAPF1	CAPF0	(Initial Value:	
	(FIFO8)	(FIFO7)	(FIFO6)	(FIFO5)	(FIFO4)	(FIFO3)	(FIFO2)	(FIFO1)	0000 0000)	
	CAPF7	FIFO stat	us		0: No ca	0: No capture data				
	to CAPF0				1: Capt	1: Capture data present in FIFO				

Capture 0 Data Register - Low order

CAP0L	7	6	5	4	3	2	1	0	(Initial Value:
(004BH)	CAP0D7	CAP0D6	CAP0D5	CAP0D4	CAP0D3	CAP0D2	CAP0D1	CAP0D0	**** ****)
	(TBC10)	(TBC9)	(TBC8)	(TBC7)	(TBC6)	(TBC5)	(TBC4)	(TBC3)	Read only

Capture 0 Data Register - Middle order

CAP0M	7	6	5	4	3	2	1	0	(Initial Value:
(004CH)	CAP0D15	CAP0D14	CAP0D13	CAP0D12	CAP0D11	CAP0D10	CAP0D9	CAP0D8	**** ****)
	(TBC18)	(TBC17)	(TBC16)	(TBC15)	(TBC14)	(TBC13)	(TBC12)	(TBC11)	Read only

Capture 0 Data Register - High order

CAP0H	7	6	5	4	3	2	1	0	
(004DH)	CAP0T5	CAP0T4	CAP0T3	CAP0T2	CAP0T1	CAP0T0	CAP0D17	CAP0D16	(Initial Value:
	(DPG)	(EXT)	(CTL)	(VS)	(RMTD)	(RMTU)	(TBC20)	(TBC19)	**** ****)
									-
	CAP0T5	Trigger in	put status		0: No tri	gger input			reed ends
	to CAP0T0				1: Trigg	er input acce	pted in FIFO		read only

Capture Control Register

CAPCR	7	6	5	4	3	2	1	0	_
(0052H)	CAP2T	CAP1T	CAPCL	VISFRS	VASFRS	TPRS0	CFGCL	CAFRS	(Initial Value:
	(CFG)	(DFG)							0000 0000)
	CAFRS	CAP0 FIF	O counter/st	atus clear	0: -				DAA
					1: Clear	r (One-shot)			R/W
	-								

Prohibit read-modify-write.

Figure 3.7.7 Registers for Capture 0

3.7.3 Capture 1/Capture 2 (CAP1/CAP2)

(1) Block diagram

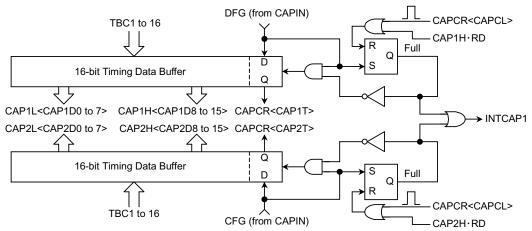


Figure 3.7.8 Composition of the Capture 1/Capture 2

- (2) Operation
 - a. Capture

The trigger input signals are DFG and CFG signals for capture 1 and capture 2 respectively.

The outputs of time base counters (TBC1 to TBC16) are latched into the 2 bytes of capture data register (CAP1L and CAP1H for Capture1, CAP2L and CAP2H for Capture2) at the edge of the trigger input signal.

The trigger input signal is also latched into <CAP1T> or <CAP2T> of capture control register (CAPCR).

When the CAPCR<CAP1T> is 1, capture 1 data can be obtained by reading out the lower data from capture 1 data register (CAP1L) and the higher data from capture 1 data register (CAP1H) in this order. By reading out CAP1H, the trigger input status <CAP1T> is cleared. When <CAP1T> is 0, "FFH" is read out from CAP1L and CAP1H each.

When the CAPCR<CAP2T> is 1, capture 2 data can be obtained by reading out the lower data from capture 2 data register (CAP2L) and higher data from capture 2 data register (CAP2H) in this order. By reading out CAP2H, the trigger input status <CAP2T> is cleared. When <CAP2T> is 0, "FFH" is read out from CAP2L and CAP2H each.

b. Capture Reset

In capture 1 and 2, trigger input status <CAP1T> and <CAP2T> can be cleared by writing 1 to CAPR <CAPCL> .

c. INTCAP1 Interruption

When the trigger input signal is latched by the edge of DFG or CFG signal, an INTCAP1 interruption request is generated.

INTCAP1 is common interruption for both Capture 1 and Capture 2, and read out <CAP1T> and <CAP2T> to identify the trigger input.

INTCAP1 interruption request is kept available until <CAP1T> <CAP2T> is cleared to 0.

INTCAP1 interruption request is released by reading out either CAP1H or CAP2H and clearing <CAP1T> <CAP2T> to 0, or by writing CAPCR <CAPCL> to 1.

- (3) Control Register
 - a. Control Register for Capture 1

Capture 1 Data Register - Low order

CAP1L	7	6	5	4	3	2	1	0	(Initial Value:
(004EH)	CAP1D7	CAP1D6	CAP1D5	CAP1D4	CAP1D3	CAP1D2	CAP1D1	CAP1D0	**** ****)
	(TBC8)	(TBC7)	(TBC6)	(TBC5)	(TBC4)	(TBC3)	(TBC2)	(TBC1)	Read only

Capture 1 Data Register - High order

CAP1H	7	6	5	4	3	2	1	0	(Initial Value:
(004FH)	CAP1D15	CAP1D14	CAP1D13	CAP1D12	CAP1D11	CAP1D10	CAP1D9	CAP1D8	**** ****)
	(TBC16)	(TBC15)	(TBC14)	(TBC13)	(TBC12)	(TBC11)	(TBC10)	(TBC9)	Read only

Capture Control Register

CAPCR	7	6	5	4		3	2	1	0	_
(0052H)	CAP2T (CFG)	CAP1T (DFG)	CAPCL	VISFRS	VA	ASFRS	TPRS0	CFGCL	CAFRS	(Initial Value: 0000 0000)
	CAP1T	CAP1 trig	ger (DFG) in	put status			igger input er input			read only
	CAPCL	CAP1/CA	P2 status cle	ar		0: – 1: Clear	r (One-shot)			R/W
	Drahihit road									

Prohibit read-modify-write.

Figure 3.7.9 Registers for Capture 1

b. Control Register for Capture 2

CAP2L	7	6	5	4	3	2	1	0	(Initial Value:	
(0050H)	CAP2D7	CAP2D6	CAP2D5	CAP2D4	CAP2D3	CAP2D2	CAP2D1	CAP2D0	**** ****)	
	(TBC8)	(TBC7)	(TBC6)	(TBC5)	(TBC4)	(TBC3)	(TBC2)	(TBC1)	Read only	
Capture 2 Data	a Register – H	ligh order								
CAP2H	7	6	5	4	3	2	1	0	(Initial Value:	
(0051H)	CAP2D15	CAP2D14	CAP2D13	CAP2D12	CAP2D11	CAP2D10	CAP2D9	CAP2D8	**** ****)	
	(TBC16)	(TBC15)	(TBC14)	(TBC13)	(TBC12)	(TBC11)	(TBC10)	(TBC9)	Read only	
Capture Contro CAPCR	ol Register 7	6	5	4	3	2	1	0		
(0052H)	CAP2T	CAP1T	CAPCL	VISFRS	VASFRS	TPRS0	CFGCL	CAFRS	(Initial Value:	
	(CFG)	(DFG)							0000 0000)	
	CAP2T	CAP2 trig	ger (CFG) in	igger input Jer input			read only			
	CAPCL CAP1/CAP2 status clear 0: – 1: Clear (One-shot)									
	Prohibit read	-modify-write								

Capture 2 Data Register - Low order

Figure 3.7.10 Registers for Capture 2

3.8 Timing Pulse Generator (TPG)

To generate the various kinds of timing pulse necessary for VTR system control, the TMP93CF76/CF77/CW76/CU76/CT76 has timing pulse generator 0 (TPG0) with 22-bit 8-stage FIFO buffer and 20-bit timing pulse generator 1 (TPG1).

The TPG0 and TPG1 can output the timing pulse synchronized with time base counter (TBC). The accuracy for both TPG0 and TPG1 is 500 ns (when operating at 16 MHz).

3.8.1 Timing Pulse Generator 0 (TPG0)

(1) Block diagram

The TPG0 is composed of 22-bit 8-stage FIFO data register (16-bit timing data + 6bit output data), 16-bit comparator, 6-bit output data buffer and FIFO control circuit.

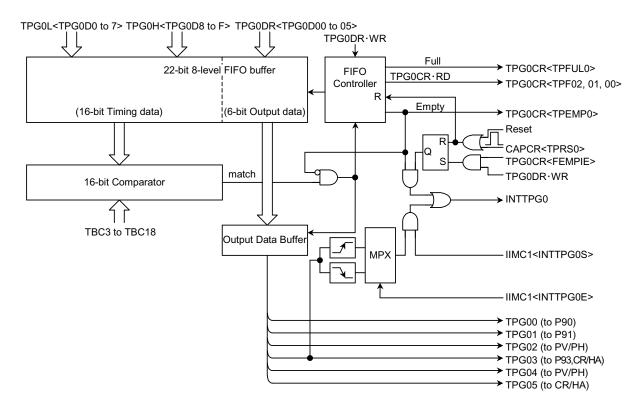


Figure 3.8.1 Composition of timing pulse generator 0 (TPG0)

- (2) Operation
 - a. 22-bit 8-stage FIFO buffer

This is a 22-bit data register which is composed of 16-bit timing data and 6-bit output data. As this register has a 8-stage FIFO structure, the first written timing data and output data are transferred first to the comparator and output data register. Set the data to the lower timing data register (TPG0L), the higher timing data register (TPG0H) and the output data register (TPG0DR) in this order. The FIFO address is incremented by writing of TPG0DR. 6-bit output data is transferred to the output data buffer when 16-bit timing data matches the value of TBC3 to TBC18. And they become the TPG00 to TPG05.

b. 16-bit comparator

When the set data of the TPG0L and TPG0H matches the value of TBC3 to TBC18, the comparator outputs a match signal. The value of TPG0DR is transferred to output data buffer and the FIFO address is incremented by the match signal.

c. Output data buffer

The data set in the output data register (TPG0DR) is latched by the match signal from the 16-bit comparator, and TPG00 to TPG05 outputs are changed. When resetting, this buffer is cleared to 0 and TPG00 to TPG05 outputs become 0.

d. FIFO control circuit

The FIFO control circuit controls the 22-bit 8-stage FIFO buffer and has a status flag to monitor the FIFO address.

The current number of retained data can be verified by reading out the FIFO status flags <TPF02, TPF01, TPF00> of the TPG0 control register (TPG0CR). When the value of the FIFO status flag is 000, the FIFO empty flag<TPEMP0> is set to 1 in case the retained data is nothing. While <TPEMP0> is 1, transferring the output data to output data buffer is disabled. When the value of the FIFO status flag is 000, the FIFO full flag <TPFUL0> is set to 1 in case the retained data are 8 words. While <TPFUL0> is 1, writing a data to the FIFO buffer is disabled. The FIFO status flags updates the status each time the match signal is outputted from the comparator. The contents of the FIFO status flags is cleared to 000 by resetting. In addition, the FIFO address can be cleared directly by writing 1 to <TPRS0> of the capture control register (CAPCR).

e. Timing pulse generator 0 interrupt (INTTPG0)

When the contents of the FIFO buffer becomes empty, INTTPGO (empty) interrupt to request the writing of the next data is generated. INTTPGO (empty) interrupt request can be controlled by TPGOCR <FEMPIE> and CAPCR <TPRSO>. When TPGOCR <FEMPIE> is 1, INTTPGO (empty) interrupt request is enabled by writing of TPGO output data register (TPGODR). And by writing 1 to CAPCR <TPRSO>, it can be disabled (the FIFO address is also cleared).

In addition, INTTPG0 (TPG03) interrupt request can be generated at the rising or falling edge of TPG03. Either rising or falling edge of TPG03 can be selected by <INTTPG0E> of Interrupt Input Mode Control Register (IIMC1). To enable or disable INTTPG0 (TPG03) interrupt request can be selected using IIMC1 <INTTPG0S>.

INTTPG0 interrupt request is generated through the logical-OR with INTTPG0 (empty) interrupt request and INTTPG0 (TPG03) interrupt request.

(3) Control Register

TPG0 Control Register

TPG0CR 7 5 3 0 6 1 (0036H) 0 FEMPIE TPFUL0 TPEMP0 TPF02 TPF01 TPF00 (Initial Value: 0*00 1000) FEMPIE Enable INTTPG0 FIFO interrupt 0: Disable write only 1: Enable **TPFUL0** 0: -TPG0 FIFO full flag 1: FIFO full TPEMP0 0: -TPG0 FIFO empty flag 1: FIFO empty TPF02 TPG0 FIFO status flag 000: Empty or Full 001: Retained data is 1 word read only 010: Retained data are 2 words TPF01 011: Retained data are 3 words 100: Retained data are 4 words 101: Retained data are 5 words 110: Retained data are 6 words TPF00 111: Retained data are 7 words

Note 1: The bit 7 of TPG0CR should be written 0.

Note 2: Prohibit read-modify-write.

TPG0 Timing Data Register – Low order

TPG0L	7	6	5	4	3	2	1	0	_	
(0037H)	TPG0D7	TPG0D6	TPG0D5	TPG0D4	TPG0D3	TPG0D2	TPG0D1	TPG0D0	(Initial Value:	**** ****)
	(TBC10)	(TBC9)	(TBC8)	(TBC7)	(TBC6)	(TBC5)	(TBC4)	(TBC3)	Write only	
	Prohibit rea	d-modify-wr	ite.						-	

TPG0 Timing Data Register – High order

TPG0H	7	6	5	4	3	2	1	0	_
(0038H)	TPG0DF	TPG0DE	TPG0DD	TPG0DC	TPG0DB	TPG0DA	TPG0D9	TPG0D8	(Initial Value: **** ****)
	(TBC18)	(TBC17)	(TBC16)	(TBC15)	(TBC14)	(TBC13)	(TBC12)	(TBC11)	Write only
	Prohibit rea	d-modify-wr	ite.						-

TPG0 Output Data Register

TPG0DR	7	6	5	4	3	2	1	0	_	
(0039H)			TPGD05	TPGD04	TPGD03	TPGD02	TPGD01	TPGD00	(Initial Value:	**** ****)
			(TPG05)	(TPG04)	(TPG03)	(TPG02)	(TPG01)	(TPG00)	Write only	
	Prohibit rea	d-modify-wr	ite.						_	
Capture Contro	ol Register									
CAPCR	7	6	5	4	3	2	1	0	_	
(0052H)	CAP2T	CAP1T	CAPCL	VISFRS	VASFRS	TPRS0	CFGCL	CAFRS	(Initial Value:	0000 0000)
	(CFG)	(DFG)								
	-									
	TPRS0	TPG0	FIFO counte	er clear		0: –				R/W
						1: Clear (Or	e-shot)			1 1/ 1 1

Note 1: TPRS0 should be set to 1 before setting STOP mode.

Note 2: Prohibit read-modify-write.

Interrupy Input Mode Control Register 1

IIMC1	7	6	5	4	3	2	1	0	_	
(005FH)	I4EG	I3EG	I2EG	I1EG	10EG		INTTPG0E	INTTPG0S	(Initial Value	e: 0000 0*00)
	INTTPG0E	INTTP	G0 (TPG03) edge seled	ction	0: Rising ed	ge			
						1: Falling ed	lge			D 44/
	INTTPG0S	INTTP	G0 source s	election		0: FIFO emp	oty			R/W
						1: FIFO emp	oty or TPG0	3		

Prohibit read-modify-write.

Figure 3.8.2 Registers for TPG0

- (4) Outputs of timing pulse generator 0
 - a. TPG00

TPG00 outputs from TPG00 (P90) pin

b. TPG01

TPG01 can be used as AFF (Audio-head switching) signal. It outputs from TPG01 (P91) pin. It controls output of Video/Audio head switching control signal (VASWP).

c. TPG02

TPG02 controls the pseudo synchronizing signal output (PV/PH).

d. TPG03

TPG03 can be used as DFF (Video-head switching) signal. It outputs from TPG03 (P93) pin. It controls Head Amplifier (HA) /Color Rotary (CR) output, Video/Audio-head switching control signal (VASWP) output, and Timing pulse output (TP0, TP1).

e. TPG04

TPG04 controls the pseudo synchronizing signal output (PV/PH).

f. TPG05

TPG05 controls the Head Amplifier/Color Rotary (HA/CR) output.

3.8.2 Timing Pulse Generator 1 (TPG1)

(1) Block diagram

TPG1 is composed of 20-bit data register (16-bit timing data + 4-bit output data), 16-bit comparator and 4-bit output data buffer.

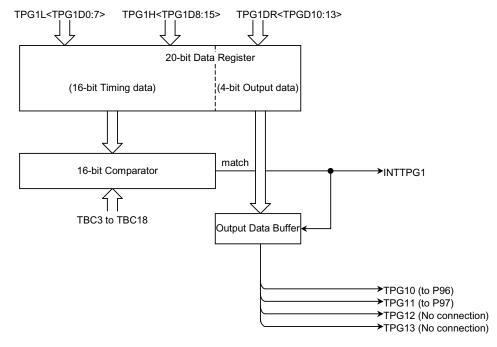


Figure 3.8.3 Composition of timing pulse generator 1 (TPG1)

- (2) Operation
 - a. 20-bit data register

This is a 20-bit data register which is composed of 16-bit timing data and 4-bit output data. Set the data to the lower timing data register (TPG1L), higher timing data register (TPG1H), and the output data register (TPG0DR) in this order. 4-bit output data is transferred to the output data buffer when 16-bit timing data matches the value of TBC3 to TBC18. And they become the TPG10 to TPG13.

b. 16-bit comparator

When the set data of the TPG1L and TPG1H matches the value of TBC3 to TBC18, the comparator outputs a match signal. The data of TPG1DR is transferred to output data buffer and INTTPG1 interrupt request is generated by the match signal.

c. Output data buffer

The data set in the output data register (TPG1DR) is latched by the match signal from the 16-bit comparator, and TPG10 to TPG13 are outputted. By resetting, this buffer is cleared to 0 and TPG10 to TPG13 output become 0.

(3) Control register

TPG1 Timing Data Register – Low order

TPG1L	7	6	5	4	3	2	1	0	_	
(003AH)	TPG1D7	TPG1D6	TPG1D5	TPG1D4	TPG1D3	TPG1D2	TPG1D1	TPG1D0	(Initial Value:	0000 0000)
	(TBC10)	(TBC9)	(TBC8)	(TBC7)	(TBC6)	(TBC5)	(TBC4)	(TBC3)	Write only	
	Prohibit rea	d-modify-wr	ite.							
TPG1 Timing I	Data Registe	er – High ord	er							
TPG1H	7	6	5	4	3	2	1	0	-	
(003BH)	TPG1DF	TPG1DE	TPG1DD	TPG1DC	TPG1DB	TPG1DA	TPG1D9	TPG1D8	(Initial Value:	0000 0000)
	(TBC18)	(TBC17)	(TBC16)	(TBC15)	(TBC14)	(TBC13)	(TBC12)	(TBC11)	Write only	
	Prohibit rea	d-modify-wr	ite.							
TPG1 Output I	Data Registe	er								
TPG1DR	7	6	5	4	3	2	1	0	_	
(003CH)	1				TPGD13	TPGD12	TPGD11	TPGD10	(Initial Value:	**** 0000)
	!				(TPG13)	(TPG12)	(TPG11)	(TPG10)	Write only	

Prohibit read-modify-write.

Figure 3.8.4 Registers for TPG1

- (4) Output of timing pulse generator 1
 - a. TPG10

TPG10 outputs from TPG10 (P96) pin.

(Refer to 3.5.8 Port 9)

b. TPG11

TPG11 outputs from TPG11 (P97) pin. (Refer to 3.5.8 Port 9)

3.8.3 Timing Pulse Output (P90, TP0, P92, TP1)

The timing pulse synchronized with DFF (cylinder head switching) signal can output from TO0 (P90) and TP1 (P92).

a. TP0

The data written in <TP0D> of Timing Pulse Control Register (TPCR) outputs at the rising edge or falling edge of TPG03. Either rising edge or falling edge of TPG03 can be selected by <VTPPO0> of head amp control register (HACR). Please refer to 3.5.8 port9 (1) P90/TP0/TPG00 section.

b. TP1

The data written in <TP1D> of Timing Pulse Control Register (TPCR) outputs at the rising edge or falling edge of TPG03. Either rising edge or falling edge of TPG03 can be selected by <VTPPO1> of head amp control register. Please refer to 3.5.8 Port9 (3) P92/TP1 section.

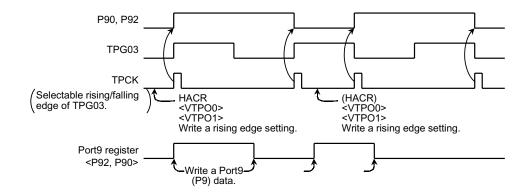


Figure 3.8.5 Timing Pulse output

3.9 Pulse Width Modulation Output (PWM)

TMP93CF76/CF77/CW76/CU76/CT76 have 3 channels of the pulse width modulation output with 14-bit resolution (PWM0, PWM1, PWM2) and another 1 channel with 8-bit resolution (PWM3). PWM can be used for some applications, such as D.C. conversion for the frequency/phase error of a drum and capstan servo system, tuner control (voltage synthesizing system), etc. by attaching a low path filter outside.

3.9.1 8-bit PWM (PWM3)

(1) Block diagram

PWM3 is composed of 8-bit data register (PWMDBR), a data latch, and a comparator.

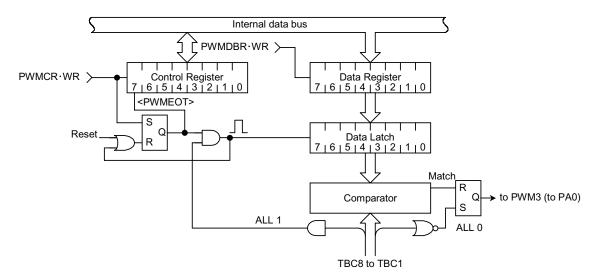


Figure 3.9.1 Composition of the 8-bit PWM output(PWM3)

(2) Control of PWM3 output

PWM3 is the pulse width modulation output with 8-bit resolution and the carrier frequency is $1/T_M = f_{\rm SYS}/2^8$ [Hz] (32 us/31.25 kHz at 16 MHz operation). When the value of the 8-bit data latch is "n", pulse width (active "H") is n×t0 (t0 = 1/ f_{\rm SYS} [s]).

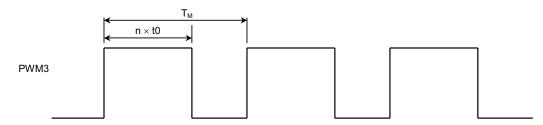
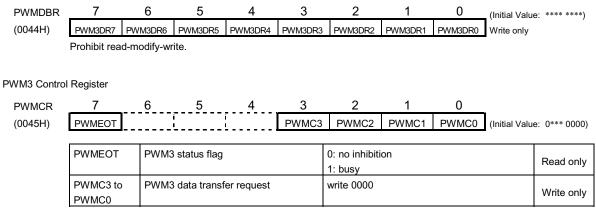



Figure 3.9.2 PWM3 output timing chart

PWM3 Data Register

Prohibit read-modify-write.

Figure 3.9.3 Registers for the 8-bit PWM

PWM3 output is controlled by the data transmission to the data latch. When PWM3 status flag (PWMCR<PWMEOT> is 0, and the data can be written in PWMDBR.

By writing 0000 in PWMCR <PWMC3:0>, a data transmission request from PWMDBR to the data latch occurs, and the output data is transmitted at the timing that TBC8 to TBC1 of Time Base Counter (TBC) becomes "FFH", and the output switches.

Note: When PWMCR < PWMEOT > is 1, do not write the data in PWMDBR.

3.9.2 14-Bit PWM(PWM0 to PWM2)

(1) Block diagram

PWM0, PWM1 and PWM2 are composed of 14-bit data registers (PWM0DRL/PWM0DRH, PWM1DRL/PWM1DRH, PWM2DRL/PWM2DRH), data latches and comparators.

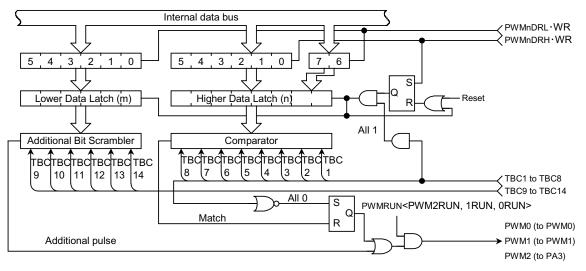
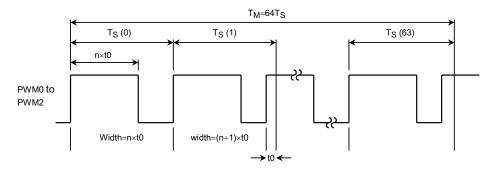
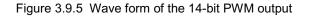




Figure 3.9.4 Composition of the 14-bit PWM output (PWM0 to PWM2)

(2) Control of PWM0 to PWM2 output

PWM0 to PWM2 are the pulse width modulation output with 14-bit resolution and the one cycle time $T_M = 2^{14}/f_{\rm SYS}$ [s] (2.048ms at 16 MHz operation). The carrier frequency $1/T_{\rm S} = 64/T_{\rm M}$ [Hz] (32 µs/31.25 kHz at 16 MHz operation). The data registers are assigned as PWM0DRL/PWM0DRH, PWM1DRL/PWM1DRH, PWM2DRL/PWM2DRH. Write the 8-bits data to PWMnDRL first, and then write the 6-bits data to PWMnDRH. After writing the data to PWMnDRH, Lower Data Latch (m) and Higher Data Latch (n) latch the data written in PWMnDRL and PWMnDRH at the next TS cycle. When the value of the higher data latch is "n" and the value of the lower data latch is "m", pulse width (active "H") of TS is n × t0 (t0 = 1/fSYS) [s], and the pulse with t0 is added at the "m" points into 64 TS cycle. The PWM output is enabled when the PWM start register (PWMRUN)<PWM0RUN, PWM1RUN, PWM2RUN> is set to 1.

PWMRUN 7 6 5 4 3 2 1 0 (003DH) PWM2RUN PWM	PWM Start Reg	gister									
PWM2RUN PWM2 start/stop 0: Stop PWM1RUN PWM1 start/stop 0: Stop PWM0RUN PWM0 start/stop 0: Stop PWM0RUN PWM0DS PWM0DS PWM0PL 7 6 5 PWM0RUN PWM0DS PWM0DS PWM0DD Prohibit read-modify-write. PWM0DD PWM0DD PWM0DD PWM1Register - Ligh order PWM0DD PWM0DD PWM0DD PWM0DD PWM1Register - Low order PWM1Register - Low order PWM1Register - Low order Write only PWM1Register - Ligh order PWM1DS PWM1D3 PWM1D3 PWM1D3 PWM1D4 PWM1Register - Ligh order PWM1Register - Ligh order Write only Write only Write only PWM1Register - Ligh order PWM1DD PWM1D2 PWM1D8 PWM1D8 PWM1D8 PWM1Register - Ligh order PWM1D5 PWM1D4	PWMRUN	7	6	5	4	3	2	1	0	_	
I: Start I: Start PWM1RUN PWM1 start/stop 0: Stop I: Start PWM0RUN PWM0 start/stop 0: Stop I: Start PWM0RUN PWM0 start/stop 0: Stop I: Start I: Start PWM0RUN PWM0 start/stop 0: Stop PWM0 Register - Low order PWM0DZ PWM0DZ PWM0DZ PWM0DD Prohibit read-modify-write. Pwm0DA PWM0DA PWM0DB PWM0DB PWM0 Register - High order PWM0DC PWM0DD PWM0DB PWM0DD PWM0DB PWM1 Register - Low order PWM0DD PWM0DD PWM0DB PWM0DB PWM0DD PWM0DB PWM0 Register - Low order PWM0DZ PWM0DD PWM0DB PWM0DB PWM0DB PWM0DB PWM0DB PWM0DB PWM1DB	(003DH)	!!					PWM2RUN	PWM1RUN	PWMORUN	(Initial Value:	**** *000)
PWM1RUN PWM1 start/stop 0: Stop R/W PWM0RUN PWM0 start/stop 0: Stop R/W PWM0RUN PWM0DFL 7 6 5 4 3 2 1 0 (initial Value: *******) (003EH) PWM0DZ PWM0D6 PWM0D6 PWM0D7 PWM0D6 PWM0D6 PWM0D7 PWM0D7 PWM0D7 PWM0D7 PWM0D7 PWM0D7 PWM0D7 PWM0D6 PWM0D7 PWM0D6 PWM0D7 PWM0D6 PWM0D7 PWM1D7 PWM1D7 <td></td> <td>PWM2RUN</td> <td>PWM2 star</td> <td>t/stop</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		PWM2RUN	PWM2 star	t/stop							
I: Start RW PWM0RUN PWM0 start/stop 0: Stop 1: Start 0: Stop PWM0Register - Low order PWM0DZ PWM0DZ PWM0D6 PWM0DZ PWM0D6 PWM0DZ PWM0D6 PWM0DZ PWM0D6 PWM0DZ PWM0D6 PWM0DZ PWM0D6 PWM0DRH 7 6 5 4 9 (initial Value: *******) (003EH) PWM0DD PWM0DD PWM0DRH 7 6 5 4 3 2 0 (003FH) Imitial Value: PWM0DD PWM0DD PWM0DD PWM0DB PWM0DB PWM0DB PVM11 Register - Low order PWM1D5 PWM1D4 PWM1D3 PWM1D2 PWM1D0 Write only Prohibit read-modify-write. PWM1D5 PWM1D6 PWM1D6 PWM1D7 PWM1D7 PWM1D7 PWM1D7 PWM1D7 PWM1D7 PWM1D7 PWM1D7 PWM1D7 PWM1D8 PWM1D8 <td< td=""><td></td><td>PW/M1RUN</td><td>PWM1 star</td><td>t/stop</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		PW/M1RUN	PWM1 star	t/stop							
PWM0 Register - Low order PWM0DRL 7 6 5 4 3 2 1 0 (nitial Value: *******) PWM0DRL 7 6 5 4 3 2 1 0 (nitial Value: *******) PWM0DRL 7 6 5 4 3 2 1 0 (nitial Value: *******) Prohibit read-modify-write. PWM0DR 7 6 5 4 3 2 1 0 (nitial Value: *******) PWM0Register - High order PWM0DD PWM0DD PWM0DD PWM0DD PWM0DD PWM0DB PWM0DB Write only ************************************		1 WINITCON	1 10001 3141	1/3top			•				R/W
PWM0 Register - Low order PWM0DRL 7 6 5 4 3 2 1 0 (initial Value: *******) (003EH) PWM0DZ PWM0DE PWM0D5 PWM0D4 PWM0D2 PWM0D2 PWM0D0 Write only Prohibit read-modify-write. PWM0DRH .7 .6 .5 .4 .2 1 0 (initial Value: *******) PWM0 Register - High order PWM0DD PWM0DD PWM0DD PWM0DA PWM0D8 PWM0D8 PWM0D8 Write only Prohibit read-modify-write. PWM1D2 PWM1D2 PWM1D5 PWM1D4 PWM1D2 PWM1D0 Write only Write only PWM1DRL 7 6 5 4 3 2 1 0 (initial Value: *******) PWM1DRL 7 6 5 4 3 2 1 0 (initial Value: *******) PWM1DR 7 6 5 4 3 2 1 0 (initial Value: *******) PWM1DR 7 6 5 4 3 2 1<		PWM0RUN	PWM0 star	t/stop			0: Stop				
PWMODRL 7 6 5 4 3 2 1 0 (Initial Value: *******) (003EH) PWM0DZ PWM0DS PWM0DS PWM0D3 PWM0D2 PWM0D1 PWM0D0 Write only Prohibit read-modify-write. PWM0DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) PWM0RH 7 6 5 4 3 2 1 0 (Initial Value: ********) PWM0RH 7 6 5 4 3 2 1 0 (Initial Value: *******) PWM1Register - Low order PWM1D2 PWM1D4 PWM1D3 PWM1D2 PWM1D0 Write only *******) PWM1Register - Ligh order PWM1D2 PWM1D2 PWM1D2 PWM1D0 Write only ************************************							1: Start				
(003EH) PWM0D7 PWM0D6 PWM0D5 PWM0D3 PWM0D2 PWM0D1 PWM0D0 Write only Prohibit read-modify-write. PWM0DRH 7 6 5 4 3 2 1 0 (initial Value: *******) (003FH)	PWM0 Registe	er – Low order									
Prohibit read-modify-write. PWM0 Register - High order PWM0DRH 7 6 5 4 3 2 1 0 (Initial Value: ********) (003FH)	PWM0DRL	7	6	5	4	3	2	1	0	(Initial Value:	**** ****)
PWM0 Register - High order PWM0DRH 7 6 5 4 3 2 1 0 (nitial Value: *******) (003FH) Prohibit read-modify-write. PWM0DD PWM0DC PWM0DB PWM0DA PWM0DB PWM0DB Write only PWM1 Register - Low order PWM1DZ PWM1DZ PWM1DZ PWM1D2 PWM1D1 PWM1D0 Write only (0040H) PWM1DZ PWM1D5 PWM1D4 PWM1D3 PWM1D2 PWM1D1 PWM1D0 Write only PWM1DR Register - High order PWM1DA PWM1DD PWM1DB PWM1D2 PWM1D8 PWM1D8 Write only PWM1DRH 7 6 5 4 3 2 0 (initial Value: *******) (0041H) Prohibit read-modify-write. PWM2D2 PWM1DA PWM1D8 PWM1D8 Write only Write only PWM2DR C 7 6 5 4 3 2 0 (initial Value: *******) (0041H) PWM2D7 PWM2D6 PWM2D7 PWM2D7 PWM2D7 PWM2D8 PWM2D8 PWM2D8 PWM2D9	(003EH)	PWM0D7 PV	VM0D6 PW	/M0D5	PWM0D4	PWM0D3	PWM0D2	PWM0D1	PWM0D0	,	,
PWM0DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) (003FH) Prohibit read-modify-write. PWM0DD PWM0DB PWM0D3 PWM1D1 PWM1D4		Prohibit read-m	odify-write.								
(003FH) PWM0DD PWM0DD PWM0DB PWM0DA PWM0D9 PWM0D8 Write only PWM1 Register - Low order PWM1DRL 7 6 5 4 3 2 1 0 (Initial Value: *******) (0040H) PWM1D7 PWM1D6 PWM1D5 PWM1D4 PWM1D3 PWM1D2 PWM1D0 Write only Prohibit read-modify-write. PWM1DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) WM1 Register - High order PWM1DRH 7 6 5 4 3 2 1 0 (Initial Value: ********) (0041H) Prohibit read-modify-write. PWM1DD PWM1DA PWM1DA PWM1D8 Write only Write only PWM2Rk 7 6 5 4 3 2 1 0 (Initial Value: *******) Write only PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: ********) PWM2DRH 7 6 5 4 3 2 0	PWM0 Registe	er – High order									
Prohibit read-modify-write. PWM1 Register - Low order PWM1DRL 7 6 5 4 3 2 1 0 (Initial Value: *******) (0040H) PWM1D7 PWM1D6 PWM1D5 PWM1D4 PWM1D2 PWM1D1 PWM1D0 Write only Prohibit read-modify-write. PWM1 Register - High order PWM1DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) (0041H) PWM1DD PWM1D8 PWM1D8 Write only Prohibit read-modify-write. PWM2DR PWM2DR PWM2 Register - Low order PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: *******) (0042H) PWM2D6 PWM2D5 PWM2D4 PWM2D2 PWM2D0 Write only Write only Prohibit read-modify-write. </td <td>PWM0DRH</td> <td>7</td> <td>6</td> <td>5</td> <td>4</td> <td>3</td> <td>2</td> <td>1</td> <td>0</td> <td>(Initial Value:</td> <td>**** ****)</td>	PWM0DRH	7	6	5	4	3	2	1	0	(Initial Value:	**** ****)
PWM1 Register - Low order PWM1DRL 7 6 5 4 3 2 1 0 (Initial Value: *******) (0040H) PWM1D7 PWM1D6 PWM1D5 PWM1D4 PWM1D3 PWM1D2 PWM1D1 PWM1D0 Write only Prohibit read-modify-write. PWM1DRH -7 -6 5 4 3 2 1 0 (Initial Value: *******) (0041H)	(003FH)	i !!_	PW	MODD F	PWM0DC	PWM0DB	PWM0DA	PWM0D9	PWM0D8	Write only	
PWM1DRL 7 6 5 4 3 2 1 0 (Initial Value: *******) (0040H) PWM1D7 PWM1D6 PWM1D5 PWM1D4 PWM1D3 PWM1D2 PWM1D1 PWM1D0 Write only Prohibit read-modify-write. PWM1DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) WM1DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) WM1DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) WM1DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: *******) PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: ********) (0042H) PWM2D7 PWM2D6 PWM2D7 PWM2D7 PWM2D7 PWM2D7 PWM2D7 PWM2D7 </td <td></td> <td>Prohibit read-m</td> <td>odify-write.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Prohibit read-m	odify-write.								
(0040H) PWM1D7 PWM1D6 PWM1D5 PWM1D4 PWM1D3 PWM1D2 PWM1D1 PWM1D0 Write only Prohibit read-modify-write. PWM1DRH 7 6 5 4 3 2 1 0 (Initial Value: ************************************	PWM1 Registe	er – Low order									
Prohibit read-modify-write. PWM1 Register – High order PWM1DRH 7 6 5 4 3 2 1 0 (Initial Value: ********) (0041H) PWM1DD PWM1DD PWM1DC PWM1DB PWM1D9 PWM1D9 (Initial Value: ********) PWM2 Register – Low order PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: ********) (0042H) PWM2D7 PWM2D6 PWM2D5 PWM2D4 PWM2D3 PWM2D2 PWM2D1 PWM2D0 Vrite only (Initial Value: ********) (Initial Value: ************************************	PWM1DRL	7	6	5	4	3	2	1	0	(Initial Value:	**** ****)
PWM1 Register – High order PWM1DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) (0041H) Prohibit read-modify-write. PWM1DD PWM1DC PWM1DB PWM1DA PWM1D9 PWM1D8 Write only PWM2 Register – Low order PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: *******) (0042H) PWM2D7 PWM2D6 PWM2D5 PWM2D4 PWM2D3 PWM2D2 PWM2D0 Write only PWM2 Register – High order PWM2DR H 7 6 5 4 3 2 1 0 (Initial Value: *******) PWM2 Register – High order PWM2DR H 7 6 5 4 3 2 1 0 (Initial Value: *******) W043H) PWM2DR H 7 6 5 4 3 2 1 0 (Initial Value: *******) Write only PWM2DD PWM2DD PWM2DA PWM2DA PWM2DB PWM2DB PWM2DB PWM2DB PWM2DA PWM2DA	(0040H)	PWM1D7 PW	M1D6 PW	M1D5 F	PWM1D4	PWM1D3	PWM1D2	PWM1D1	PWM1D0	Write only	
PWM1DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) (0041H) PWM1DD PWM1DC PWM1DB PWM1DA PWM1D9 PWM1D8 Write only Prohibit read-modify-write. PWM2Dr Low order Initial Value: *******) (Initial Value: *******) PWM2DRL 7 6 5 4 3 2 1 0 (0042H) PWM2D7 PWM2D6 PWM2D5 PWM2D4 PWM2D2 PWM2D1 PWM2D0 Prohibit read-modify-write. Prohibit read-modify-write. PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) (0043H) Image: PWM2DD PWM2DD PWM2DC PWM2DC PWM2DA PWM2D9 PWM2D8 Write only (0043H) Image: PWM2DD PWM2DD PWM2DC PWM2DB PWM2D8 PWM2D8 Write only Prohibit read-modify-write. PWM2DD PWM2DA PWM2D9 PWM2D8 Write only		Prohibit read-m	odify-write.								
(0041H) PWM1DD PWM1DC PWM1DB PWM1D9 PWM1D8 Write only Prohibit read-modify-write. PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: **** ****) (0042H) PWM2D7 PWM2D6 PWM2D5 PWM2D4 PWM2D3 PWM2D2 PWM2D1 PWM2D0 Write only Prohibit read-modify-write. PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: ******) PWM2 Register - High order PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) (0043H) PWM2DD PWM2DD PWM2DC PWM2DB PWM2DA PWM2D9 PWM2D8 Write only Prohibit read-modify-write. PWM2DD PWM2DA PWM2D9 PWM2D8 Write only	PWM1 Registe	er – High order									
Prohibit read-modify-write. PWM2 Register – Low order PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: **** ****) (0042H) PWM2D7 PWM2D6 PWM2D5 PWM2D4 PWM2D3 PWM2D2 PWM2D1 PWM2D0 Write only PWM2DR Prohibit read-modify-write. PWM2DRH 7 6 5 4 3 2 PWM2D1 PWM2D0 Write only PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: ************************************	PWM1DRH	7	6	5	4	3	2	1	0	(Initial Value:	**** ****)
PWM2 Register - Low order PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: **** ****) (0042H) PWM2D7 PWM2D6 PWM2D5 PWM2D4 PWM2D3 PWM2D2 PWM2D1 PWM2D0 Write only Prohibit read-modify-write. Prohibit read-modify-write. PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) PWM2 Register - High order PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: *******) (0043H) Image: PWM2DD PWM2DD PWM2DC PWM2DB PWM2DA PWM2D8 Write only Prohibit read-modify-write. Prohibit read-modify-write. Image: PWM2DA PWM2DB PWM2DB PWM2D8 PWM2D8	(0041H)	,	PW	M1DD F	PWM1DC	PWM1DB	PWM1DA	PWM1D9	PWM1D8	Write only	
PWM2DRL 7 6 5 4 3 2 1 0 (Initial Value: **** ****) (0042H) PWM2D7 PWM2D6 PWM2D5 PWM2D4 PWM2D3 PWM2D2 PWM2D1 PWM2D0 Write only Prohibit read-modify-write. Prohibit read-modify-write. PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: **** ****) PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: **** ****) (0043H) PWM2DD PWM2DD PWM2DC PWM2DB PWM2DA PWM2D9 PWM2D8 Write only Prohibit read-modify-write. Prohibit read-modify-write. P 1 0 (Initial Value: **** ****)		Prohibit read-m	odify-write.								
(0042H) PWM2D7 PWM2D6 PWM2D5 PWM2D4 PWM2D3 PWM2D2 PWM2D1 PWM2D0 Write only Prohibit read-modify-write. PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: **** ****) (0043H) PWM2DD PWM2DC PWM2DB PWM2DA PWM2D9 PWM2D8 Write only Prohibit read-modify-write.	PWM2 Registe	er – Low order									
Prohibit read-modify-write. PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: **** ****) (0043H) PWM2DD PWM2DC PWM2DB PWM2DA PWM2D9 PWM2D8 Write only Prohibit read-modify-write.	PWM2DRL	7	6	5	4	3	2	1	0	(Initial Value:	**** ****)
PWM2 Register – High order PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: **** ****) (0043H) PWM2DD PWM2DC PWM2DB PWM2DA PWM2D9 PWM2D8 Write only Prohibit read-modify-write. Prohibit read-modify-write. Prohibit read-modify-write. PWM2D8 PWM2D8 PWM2D8	(0042H)	PWM2D7 PW	M2D6 PW	M2D5 F	PWM2D4	PWM2D3	PWM2D2	PWM2D1	PWM2D0	Write only	
PWM2DRH 7 6 5 4 3 2 1 0 (Initial Value: **** ****) (0043H) PWM2DD PWM2DD PWM2DB PWM2DA PWM2D9 PWM2D8 Write only Prohibit read-modify-write. Prohibit read-modify-write. Final Action of the second seco		Prohibit read-m	odify-write.								
(0043H) PWM2DD PWM2DC PWM2DB PWM2DA PWM2D9 PWM2D8 Write only Prohibit read-modify-write.	PWM2 Registe	er – High order									
(0043H) PWM2DD PWM2DC PWM2DB PWM2DA PWM2D9 PWM2D8 Write only Prohibit read-modify-write.	PWM2DRH	7	6	5	4	3	2	1	0	(Initial Value:	**** ****)
Prohibit read-modify-write.		,			PWM2DC			PWM2D9		`	,
		Prohibit read-m	odify-write.								
Open-drain Output Control Register 3	Open-drain Ou	tput Control Reg	gister 3								
ODCR3 7 6 5 4 3 2 1 0	ODCR3	7	6	5	4	3	2	1	0		
(0021H) PWMOD1 PWMOD0 PODA3 (Initial Value: ***0 0**0)									r	(Initial Value	***0 0**0)
(PWM1) (PWM0) (Port A3)		·		Ľ			<u>]</u>	, , ,		(
PWMOD1 PWM1 Open-drain control 0: Push-pull Output	I	PWMOD1	PWM1 Ope	en-drain c	control		•	•			
1: Open-drain Output		DWARDE									
PWMOD0 PWM0 Open-drain control 0: Push-pull Output write only 1: Open-drain Output 1: Open-drain Output 1: Open-drain Output 1: Open-drain Output		PWMOD0	PWM0 Ope	en-drain c	control						write only
PODA3 PA3/PWM2 Open-drain control 0: Push-pull Output		PODA3	PA3/PWM2	2 Open-di	rain contro						
1: Open-drain Output							•				

Prohibit read-modify-write.

Figure 3.9.6 Registers for 14-bit PWM

3.10 Sync Signal Separator (CSYNC)

The Sync Signal Separator (CSYNC) separates Vertical Synchronizing signal (V.sync) from composite synchronizing signal (C.sync).

3.10.1 Block Diagram

The Sync Signal Separator is composed of Synchronizing signal separator and H-pulse generator.

The configuration of the Sync Signal Separator is shown in Figure 3.10.1.

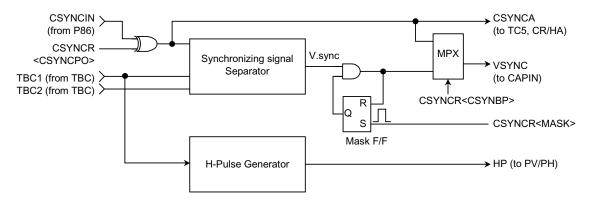


Figure 3.10.1 Composition of the sync signal separator

(1) Synchronizing signal separator

The Synchronizing Signal Separator separates V.sync signal from the C.sync inputted from CSYNCIN (P86) pin. A separated V.sync signal (VSYNC) is transferred to Capture 0 (CAP0) via Capture input control circuit (CAPIN). And it is used as a reference signal in the servo processing routine.

(2) H-Pulse Generator

The H-pulse generator generates a serrated-pulse (HP signal). The HP signal is transferred to the Pseudo-sync signal output circuit (PV/PH), and it is superimposed on the pseudo-V.sync signal as a serrated-pulse.

(Figure 3.11.1 Pseudo-sync signal output circuit.)

3.10.2 Control Registers

CSYNCR	7	6	5	4	3	2	1	0		
(0057H)			DPGST	CSYNCPO	SEPMOD	CSYNBP	0	MASK	(Initial Value	: **00 00*0)
	r									
	CSYNCPO	C.sync	input polar	ity selection		0: Positive				
						1: Negative				
	SEPMOD	7-bit co	ounter source	e clock sele	ection	0: TBC1				
		(during	counting d	own)		1: TBC2				R/W
	CSYNBP	C.sync	bypass cor	ntrol		0: V.sync				
						1: Bypass				
	MASK	VSYNC	C (to CAPI	N) mask con	ntrol	0: –				
						1: Release m	asking (On	e-shot)		

CSYNC Control Register

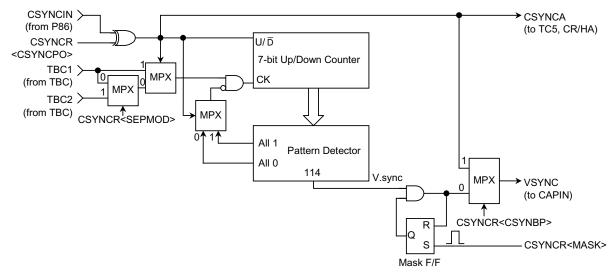

Note: The bit 1 of CSYNCR should be set to 0.

Figure 3.10.2 Register for CSYNC

3.10.3 Synchronizing signal Separator

The synchronizing signal separator separtes the vertical synchronizing signal (V.sync) from the composite synchronizing signal inputted from CSYNCIN (P86) pin. The synchronizing signal separator is composed of a 7-bit up/down counter and a pattern detector (comparison circuit).

The 7-bit up/down counter counts TBC1 (2/fSYS) or TBC2 (2²/fSYS) output from Time Base Counter (TBC). And its direction for counting is controlled by input polarity of CSYNCIN pin (when CSYNCA is 1, the counter is counting up, when CSYNCA is 0, the counter is counting down). The source clock for counting up is TBC1 (0.25 μ s: fc = 16 MHz). The source clock for counting down is selected from either TBC1 or TBC2 (0.5 μ s: fc = 16 MHz) by CSYNCR <SEPMOD>. The input polarity of CSYNCIN pin (CSYNCA signal) is selected by setting CSYNCR<CSYNCPO> and it controls the direction for counting. In case that CSYNCA is 1 and the counter becomes all 1, the counter stops. Also in case that CSYNCA is 0 and the counter becomes all 0 the counter stops as well. When CSYNCR <CSYNBP> is set to 1, CSYNCA instead of V.sync is inputted to capture input control circuit (CAPIN).

Vertical synchronizing signal separation

When the pattern detector (comparison circuit) detects "114 (72H)" (TBC1 = 250 [ns] at fc = 16 [MHz]. Therefore, threshold is 250 [ns] \times 114 = 28.5 [µs]), it outputs the V.sync signal. V.sync signal is inputted to capture input control circuit (CAPIN) and resets a flip-flop (Mask F/F) for masking. The flip-flop is reset once, the following V.sync signals are not accepted until masking is released. The flip-flop is released from masking when CSYNCR<MASK> is set to 1. Timing chart of vertical synchronizing signal separation is show in Figure 3.10.3.

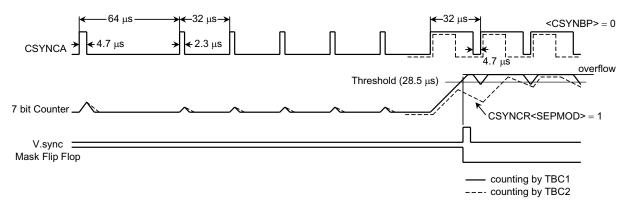


Figure 3.10.3 Timing Chart for Vertical synchronizing signal separation

3.10.4 H-Pulse Generator

H-Pulse generator generates a serrated pulse inserted into V.sync signal. This pulse (HP signal) is transferred to Pseudo-sync signal output circuit (PV/PH), and it can be mixed into pseudo-V.sync signal. Configuration of the H-Pulse generator is shown in Figure 3.10.4.

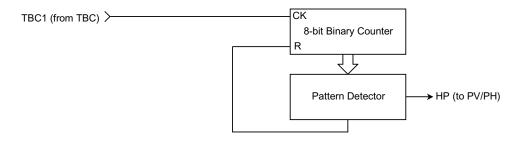
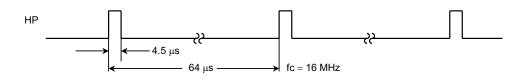
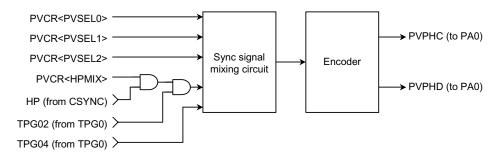


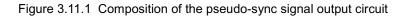
Figure 3.10.4 H-Pulse generator

H.Pulse Generator generates a serrated pulse (HP signal) to be mixed into pseudo-V.sync signal. The timing to mix HP signal into pseudo-V.sync signal is controlled by TPG02 from the timing pulse generator 0 (TPG0) (Refer to section 3.11 Pseudo-sync signal output circuit). HP signal is not synchronized with Composite sync. signal input.

The wave form of the HP signal is shown in Figure 3.10.5.




Figure 3.10.5 Wave form of HP signal output


3.11 Pseudo-sync Signal Output Circuit (PV/PH)

The TMP93CF76/CF77/CW76/CU76/CT76 have a function to output a pseudo-sync signal (PV) in place of the playback sync signal during special effect reproduction. The PV output is controlled by the timing pulse generator 0 (TPG0)'s TPG02 and TPG04 outputs and the PV control register (PVCR).

3.11.1 Block Diagram

The pseudo-sync signal output circuit consists of a sync signal mixing circuit and a 3level output circuit. The sync signal mixing circuit is used to superimpose the serrated pulse (HP) that is generated by the H pulse generator of the sync signal separation circuit (CSYNC) on a pseudo-V.sync signal.

3.11.2 Control Register

to PVSEL0

PV/PH Control Register 0 **PVCR** 3 2 6 1 HPMIX PVSEL2 PVSEL1 PVSEL0 (0058H) (Initial Value: **** 0000) Insert HP to pseudo-V.sync HPMIX 0: Disable 1: Enable R/W PVSEL2 PV/PH output format selection Select output format 0H to 7H

Figure 3.11.2 Register for PV/PH

3.11.3 Control of Pseudo-V.sync. Signal Output

Output of the pseudo-sync signal (PVPH) is controlled by TPG02 and TPG04 outputs of Timing Pulse Generator 0 (TPG0) and PV control register (PVCR).

The pseudo-V.sync. signal is patterned by the TPG0, and it is outputted while TPG04 is high-level. The TPG02 output is used to set a period at which time HP signal is inserted (HP signal is inserted into the pseudo-V.sync. signal while TPG02 is high-level). The serration (HP signal) is generated by the H.Pulse generator of the sync signal separation circuit (CSYNC). The HP signal is inserted into pseudo V.sync by setting the PVCR <HPMIX> to 1.

The pseudo-sync signal has six output formats which can be selected by PVCR <PVSEL2:0>. Figure 3.11.3 shows the output formats of the pseudo-V.sync signal.

<	PVSEL 2:0)>	TPG02
2	1	0	TPG04 (<hpmix> = 1)</hpmix>
0	0	0	HPVss level
0	0	1	
0	1	0	
0	1	1	
1	*	0	
1	*	1	

Note: *; Don't care

Figure 3.11.3 Pseudo-V.sync output format

3.12 VISS/VASS Detector (VIVA)

VISS/VASS detector is a control circuit specific to VISS (Video Index Search System)/VASS (Video Address Search System) of VHS. Duty of CTL signal recorded on the control track can be discriminated and VISS code can be detected. Also the address code of VASS can be read out.

3.12.1 Block Diagram

VISS/VASS detector is composed of a CTL duty discrimination circuit, a VISS detection circuit, a VASS head detection circuit and a 16-bit address code register.

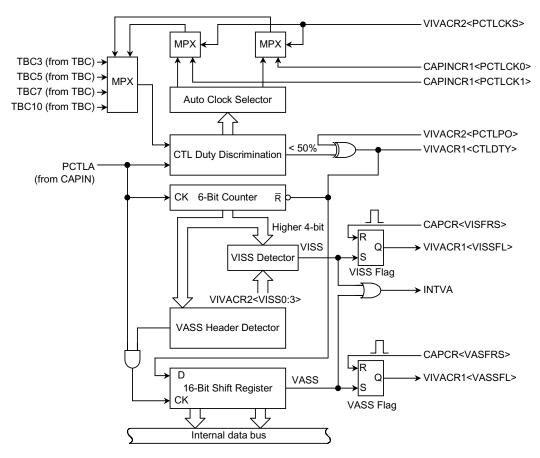


Figure 3.12.1 Composition of the VISS/VASS detector

3.12.2 Control Registers

VISS/VASS Control Register 1

VIVACR1	7	6	5	4	3	2	1	0	_	
(0054H)	0		i			CTLDTY	VISSFL	VASSFL	(Initial Valu	e: 0*** *100)
	CTLDTY	CLT duty d	etect mon	itor flag		L duty \geq 50%		,		
					1: CT	L duty < 50%	6 (when <pc< td=""><td>CTLP0 > = 0</td><td>)</td><td></td></pc<>	CTLP0 > = 0)	
	VISSFL	VISS detec	t flag		0:					read only
					1: VIS	S detected				read only
	VASSFL	VASS dete	ct flag		0: –					
					1: VA	SS detected				

Note: The bit 7 of VIVACR1 should be cleared to 0.

VISS/VASS Control Register 2

VIVACR2	7	6	5	4	3	2	1	0	_	
(0055H)	PCTLPO	PCTLCKS	MSK1	MSK0	VISS3	VISS2	VISS1	VISS0	(Initial Valu	e: 0*00 0000)
	PCTLPO	CTL du	uty discrimi	nation polarit	y 0: Pos	tive (CTL du	uty ≤ 50% w	hen <ctld< td=""><td>)TY> = 1)</td><td></td></ctld<>)TY> = 1)	
		selecti	on		1: Neg	ative (CTL o	luty > 50% \	when <ctl< td=""><td>DTY> = 1)</td><td></td></ctl<>	DTY> = 1)	
	PCTLCKS	CTL du	uty discrimi	nation	0: Sele	cted by CA	PINCR1 <pc< td=""><td>CTLCK0, 1></td><td></td><td>R/W</td></pc<>	CTLCK0, 1>		R/W
		sampli	ng clock se	lector	1: Sele	cted autom	atically			1.7.4.4
	VISS3 to	VISS o	liscriminatio	on compariso	on 4-bit da	ata "0H" to "	FH"			
	VISS0	data			(compa	ared with hig	gher 4-bit da	ata of 6-bit c	ounter)	

Capture Input Control Register 1

PCTLCK1	CTL duty discrimination	00: TBC3	
	sampling clock selection in case	01: TBC5	R/W
PCTLCK0	<pctcks>= 0</pctcks>	10: TBC7	
		11: TBC10	

Capture Control Register

CAPCR	7	6	5	4	3	2	1	0	_	
(0052H)	CAP2T	CAP1T	CAPCL	VISFRS	VASFRS	TPRS0	CFGCL	CAFRS	(Initial Value	e: 0000 0000)
	(CFG)	(DFG)								
	VISFRS	Reset	VISS flag		0: -					
					1: Rese	et (One-sho	t)			DAA
	VASFRS	Reset	VASS flag		0: -					R/W
					1: Rese	et (One-sho	t)			

Prohibit read-modify-write.

VASS Data Register

VASSDR	7	6	5	4	3	2	1	0	_
(0056H)	VASS7	VASS6	VASS5	VASS4	VASS3	VASS2	VASS1	VASS0	(Initial Value: **** ****)
	VASS15	VASS14	VASS13	VASS12	VASS11	VASS10	VASS9	VASS8	
									-

VASS7 to VASS0	VASS data lower 8 bits	Twice reading from VASSDR. The first is lower 8-bit, the second is higher 8-bit.	
VASS15 to VASS8	VASS data higher 8 bits		read only

Figure 3.12.2 Registers for VISS/VASS

3.12.3 Control of the CTL Duty Discrimination Circuit

The clock source can be selected automatically or a command by VIVACR2 <PCTLCKS>. When VIVACR2<PCTLCKS> is 0, the clock source is selected by CAPINCR1 <PCTLCK1, 0>. When <PCTLCKS> is 1, according to the cycle of CTL signal, clock source is automatically selected by hardware (it applies to Table 3.12.1).

(1) Control of CTL duty discrimination circuit

The polarity of picture-play CTL signal inputted from CTLIN (P80) pin, which is named PCTLA signal, is selected of Capture Input Control Circuit (CAPIN) and PCTLA signal is transferred to VISS/VASS detector (VIVA). The CTL duty discrimination circuit discriminates the duty of PCTLA signal. If the duty is more than 50%, VIVACR1<CTLDTY> is cleared to 0. When it is less than 50%, <CTLDTY> is set to 1. The polarity of discrimination can be reversed by VIVACR2<PCTLPO>.

(2) Clock selection control

The clock source for CTL duty discrimination is selected by CAPINCR1<PCTLCK1, 0>.

When VIVACR2<PCTLCKS> is 0, the clock source for CTL duty discrimination is selected by CAPINCR1<PCTLKC1, 0>. When VIVACR2<PCTKCKS> is 1, it is selected automatically by hardware.

The clock source for CTL duty discrimination is selected from Table 3.12.1.

<pctlck1> <pctlck0></pctlck0></pctlck1>	Clock source for CTL duty discrimination (at fc = 16 MHz)	Cycle o	f CTL	signal
00	TBC3 (1 μs)		to	512 μs
01	TBC5 (4 μs)	512 μs	to	2048µs
10	TBC7 (16 μs)	2048 μs	to	8192 μs
11	TBC10 (128 μs)	8192 μs	to	

Table 3.12.1 Correspondence of the cycle of CTL signal and the clock source for duty discrimination

3.12.4 Control of VISS Detector

VISS detector is composed of a 6-bit up-counter which counts PCTLA signal, a 4-bit comparison circuit which detects VISS code, and a R/S flip-flop (VISS flag).

The output of the CTL duty discrimination circuit is inputted to a reset-input (activelow) of the 6-bit up-counter. When VIVACR2<PCTLPO> is 0, the 6-bit up-counter counts up while the output of the CTL duty discrimination circuit is high.

The higher 4-bit of the 6-bit up-counter are connected to 4-bit comparison circuit for detection of VISS code and are compared with VIVACR2<VISS3 to 0>. When the higher 4-bit of the 6-bit up-counter matches VIVACR2<VISS3 to 0>, VIVACR1<VISSFL> is set to 1 and INTVA occurs at the same time. VIVACR1<VISSFL> can be cleared to 0 by setting CAPCR<VISFRS> to 1.

The relation between the count value of the PCTLA signal and VIVACR2<VISS3 to 0> are shown in Table 3.12.2.

Clear VIVACR2<PCTLPO> to 0 when a tape runs forward, set <PCTLPO> to 1 when it runs reversed.

<vi8< th=""><th>SS3> to</th><th>o <vis< th=""><th>S0></th><th>The count value for detecting VISS index code</th></vis<></th></vi8<>	SS3> to	o <vis< th=""><th>S0></th><th>The count value for detecting VISS index code</th></vis<>	S0>	The count value for detecting VISS index code
3	2	1	0	
0	0	0	0	Don't use
0	0	0	1	4
0	0	1	0	8
0	0	1	1	12
0	1	0	0	16
0	1	0	1	20
0	1	1	0	24
0	1	1	1	28
1	0	0	0	32
1	0	0	1	36
1	0	1	0	40
1	0	1	1	44
1	1	0	0	48
1	1	0	1	52
1	1	1	0	56
1	1	1	1	60

Table 3.12.2 Relation between the value of <VISS3> to <VISS0> and count value of the PCTLA signal

3.12.5 Control of VASS Detector

VASS detector consists of a header detection circuit and address code register (16-bit shift register).

If a header detection circuit detects that the output of the CTL duty discrimination circuit is 1, 9 times continuously after it detects that the output of the CTL duty discrimination circuit is 0, a header of VASS is detected. The output of the CTL duty discrimination circuit is shifted into 16-bit shift register 16 times, as address code, following the output of the CTL duty discrimination circuit is 0 after a header of VASS. When a shift register latched all 16-bit data, VIVACR1<VASSFL> is set to 1 and INTVA occurred.

It recognizes which an interrupt is occurred by reading VIVACR1<VISSFL> and VAVACR1<VASSFL> is cleared to 0 by setting VAVACR1<VASFRS> to 1.

In order to read a 16-bit address code, a data is read from VASDR twice. The first data is read as lower 8-bit (VASS7 to 0), and the second data is read as higher 8-bit (VASS15 to 8).

Clear VIVACR<PCTLPO> to 0 when a tape operates forward, set VIVACR2<PCTLPO> to 1 when it operates backward. However, when a tape operates backward, a LSB and MSB of an address code is exchanged.

- Note 1: Since an address code has 4 headers, an INTVA is occurred 4 times each an address code. But 4th data is dummy data. It is necessary that an address code should be read before beginning to shift a next address code into a shift register after INTVA is occurred.
- Note 2: After a data is written to VASDR, lower 8-bit of an address code can be read from VASDR.

3.13 Remote Control Signal Input Circuit (RMTIN)

The remote control signal input circuit (RMTIN) rejects noise from remote control signal. It detects the rising edge and the falling edge from RMTIN signal (P82) without the noise. The detected rising edge signal (RMTU) and the falling edge signal (RMTD) are inputted into capture 0 (CAP0) via capture input circuit (CAPIN). The pulse width of a remote control signal can be measured by CAP0.

(1) Block diagram

The remote control signal input circuit is composed of H-level noise canceller and Llevel noise canceller, which each consists of a 4-bit up-counter and a comparator.

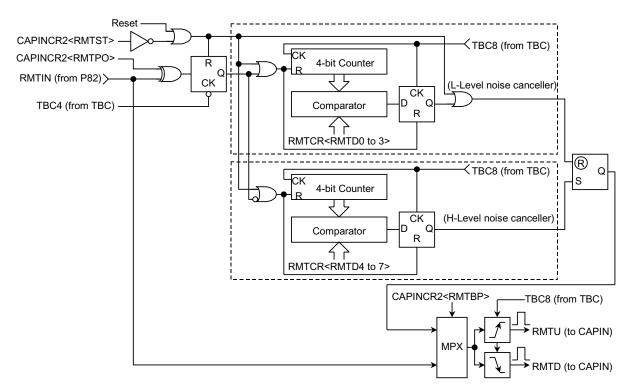


Figure 3.13.1 Composition of the remote control signal input circuit (RMTIN)

(2) Control register

Remote Control signal input Control Register

RMTCR	7	6	5	4	3	2	1	0		
(0053H)	RMTD7	RMTD6	RMTD5	RMTD4	RMTD3	RMTD2	RMTD1	RMTD0	(Initial Value	e: 0000 0000)
	RMTD7 to	Width	of H noise c	ancellation		Setting of co	omparative	value of 4-b	it counter	
	RMTD4					(H-level nois	se canceller)		R/W
	RMTD3 to	Width	of L noise c	ancellation		Setting of co	omparative	value of 4-b	it counter	r./ v v
	RMTD0					(L-level nois	e canceller			

Capture Input Control Register 2

CAPINCR2	7	6	5	4	3	2	1	0	_
(0048H)	0	RMTST	RMTP0	RMTBP	CFGMCP	DPCP2	DPCP1	DPCP0	(Initial Value: 0000 0000)
					-				

RMTST	Start/Stop remote control signal input	0: Stop & Counter clear	R/W
	control	1: Start	
RMTP0	Switching polarity of remote control	0: Positive	
	signal input	1: Negative	
RMTBP	RMTIN noise canceller control	0: Active	
		1: Bypass	

Note: The bit 7 should be cleared to 0.

Figure 3.13.2 Register for RMTIN

(3) Operation of the remote control signal input circuit

The remote control signal input circuit starts operation by setting CAPIN2<RMTST> to 1. In advance, the input polarity of a remote control signal and noise removal width need to be set up.

a. Control of remote control signal input

By CAPIN2 <RMTPO>, the polarity of the remote control signal inputted from RMTIN (P82) pin can be changed accordingly. The inputted remote control signal is sampled with the falling edge of TBC4 and is inputted to a noise canceller.

b. Operation of the noise canceller (in case CAPIN2<RMTPO> is 0)

"H" level noise removal width and "L" level noise removal width are set up by RMTCR <RMTD7:0> and <RMTD3:0> each. When the width of "H" level pulse or "L" level pulse of the remote control signal is less than the removal width set to RMTCR<RTMD7:4> and RMTCR<RTMD3:0>, the pulse is rejected as a noise.

i) "H" level noise canceller

While the remote control signal is high, a 4-bit counter counts up by TBC8. And while the remote control signal is low, the 4-bit counter is reset. When the count of the counter matches the value of RMTCR<RMTD7:4>, a flip-flop is set to 1 as a rising edge of remote control signal.

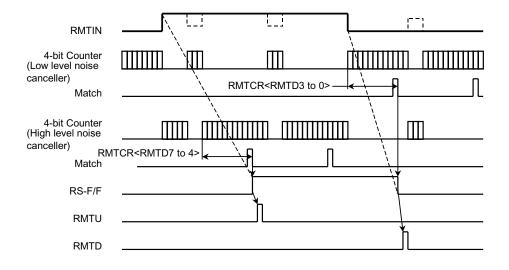
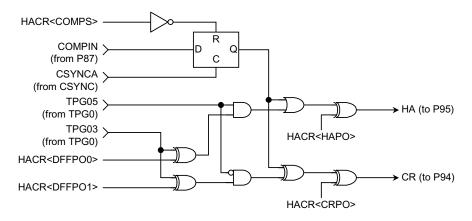
ii) "L" level noise canceller

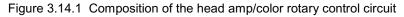
While the remote control signal is low, a 4-bit counter counts up by TBC8. And while the remote control signal is high, the 4-bit counter is reset. When the count of the counter matchs the value of RMTCR<RMTD3:0>, a flip-flop is cleared to 0 as a falling edge of remoto control signal.

iii) Measurement of remote control signal pulse width

The rising edge of the flip-flop output (RMTU) and the falling edge of the flip-flop output (RMTD) are inputted into Capture 0 (CAP0) via Capture Input Control Circuit (CAPIN). The time gap between RMTU and RMTD can be measured in INTCAP0 interrupt routine.

When RMTCR<RMTD7:4> or RMTCR<RMTD3:0> is cleared to 0, "H" or "L" level cancellation is not performed. Also when CAPINCR2<RMTBP> is set 1, it is not performed.


Figure 3.13.3 Timing chart of the remote control signal input circuit (CAPINCR2<RMTPO> = 0)

3.14 Head Amp Switch/Color Rotary Control Circuit (HA/CR)

TMP93CF76/CF77/CW76/CU76/CT76 have the head amp switch (HA)/color rotary (CR) control output circuit. HA output/CR output can control Video-head amplifier switching with the logical combination pattern by TPG03, TPG05 of Timing Pulse Generator 0 (TPG0) and setting value of head amp control register (HACR).

3.14.1 Block Diagram

3.14.2 Control Register

Head Amp Control Register

HACR	7	6	5	4	3	2	1	0		
(008DH)	VTPPO1	VTPPO0	TPVASEL	DFFPO1	DFFPO0	COMPS	CRPO	HAPO	(Initial Value	: 0000 0000)
	TPVASEL	P91 ou	tput selecti	on		0: TPG01				
						1: VASWP				
	DFFPO1	CR co	ntrol			0: Positive				
		TPG03	ity selector		1: Negative					
	DFFPO0	HA co	ntrol			0: Positive				
		TPG03	ity selector		1: Negative	R/W				
	COMPS	HR/CF	control			0: Disable		r////		
		Enable	COMPIN			1: Enable				
	CRPO	CR co	ntrol			0: Positive				
		CR ou	tput polarity	selector		1: Negative				
	HAPO	HA co	ntrol			0: Positive				
		HA out	put polarity	selector		1: Negative				

Figure 3.14.2 Register for HA/CR

(1) Logic architecture and operation mode

Controlling HA (Head Amp)/CR (Color Rotary) output is performed by TPG03 and TPG05 of Timing Pulse Generator 0 (TPG0) and Head Amp Control Register (HACR) as shown in Figure 3.14.2.

$$\begin{split} \mathsf{HA} &= \mathsf{<HAPO>} \oplus \left[(\mathsf{COMPIN} \cdot \mathsf{<COMPS>} + \ (\mathsf{TPG05} \cdot (\mathsf{TPG03} \oplus \mathsf{<DFFPO0>})) \right] \\ \mathsf{CR} &= \mathsf{<CRPO>} \oplus \left[(\mathsf{COMPIN} \cdot \mathsf{<COMPS>} \oplus (\overline{\mathsf{TPG05}} \cdot (\mathsf{TPG03} \oplus \mathsf{<DFFPO1>})) \right] \end{split}$$

Generally, for controlling a head amplifier switching, HA output and CR output are provided with three basic modes as shown below.

Mode	<comps></comps>	TPG05	HA output	CR output					
mode1	0	0	<hapsilon <hr=""></hapsilon>	<crpo> ⊕ (TPG03 ⊕ <dffpo1>)</dffpo1></crpo>					
mode2	0	1	$\langle HAPO \rangle \oplus (TPG03 \oplus \langle DFFPO0 \rangle)$	<crpo></crpo>					
mode3	1	0	<hapo></hapo>	$\langle CRPO \rangle \oplus COMPIN \oplus (TPG03 \oplus \langle DFFPO1 \rangle)$					

Table 3.14.1 HA/CR output operate mode

In this case, TPG03 can be used as a cylinder head switching signal (DFF). The polarity of TPG03 input is selected by HACR <DFFPO1, 0>. And TPG05 can be used for switching mode 1 to 3. HACR <COMPS> controls the input of COMPIN (P87) signal (emvelop detection and camparison of FM signal of SP/EP head).

(2) Example

SP/EP mode is set by HACR <HAPO> = HACR <CRPO>. HA and CR output frequence is shown in Figure 3.14.4 in case of <DFFPOO> = <DFFPO1> (In case with an example of a Rec/Pre amplifier device to Figure 3.14.3).

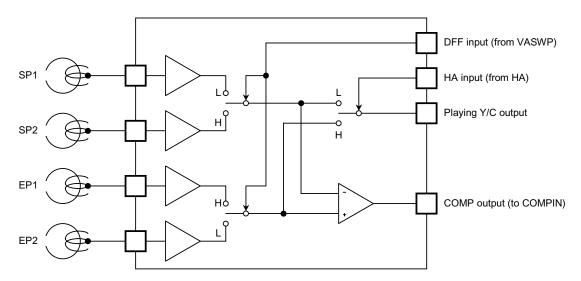


Figure 3.14.3 Example for the interface with Rec/Pre amplifier

Mode	SP mode (<hapo> = <crpo> = 0)</crpo></hapo>	EP mode (<hapo> <crpo> = 1)</crpo></hapo>
	REC/PB	REC/PB/CUE/REV
	TPG03 SP1 SP2 SP1 SP2	TPG03 EP2 EP1 EP2 EP1
mode1	TPG05	TPG05
	HA <u>SP</u>	HA EP
	CR CH1 CH2 CH1 CH2	CR <u>CH2</u> CH1 <u>CH2</u> CH1
	STILL	STILL
mode2	TPG03 EP2 SP2 EP2 SP2	TPG03 _SP1 EP1 _SP1 EP1
	TPG05	TPG05
	HA EP SP EP SP	HA <u>SP</u> EP <u>SP</u> EP
	CR <u>CH2</u>	CR CH1
	CUE/REV (SP mode)	
	TPG03 SP2/EP1	SP1/EP2
	TPG05	
mode3	COMPIN <u>SP</u> EP <u>SP</u> EP <u>SP</u> EP	SP EP SP EP SP EP SP
	HA <u>SP</u> EP2 EP1 <u>SP2</u> EP1 <u>SP2</u> EP1	SP2 SP1 EP2 SP1 EP2 SP1 EP2 EP1 SP2
	CR CH1 _{CH2} CH1 CH2 CH1 CH2 CH1	снасн1 СН2 СН1 СН2 СН1 снасн1 СН2

Figure 3.14.4 HA/CA output frequence

As shown in Figure 3.14.4, the control for each operation, such as REC/PB, STILL and CUE/REV, can be performed by setting the modes. Moreover, SLOW operation can be controlled by using sequentially mode 1 and 2.

3.14.3 Control of VASWP Output

TPG03 and TPG01 are used as DFF signal (cylinder head switching) and AFF signal (audio head change) for head switching control each.

DFF signal is outputted to TPG03 (P93) pin and AFF signal is outputted to TPG01 (P91) pin respectively. The signal multiplexed with these signals can also be outputted to VASWP (P91) pin.

(1) Circuit composition

The circuit construction of VASWP output is shown in Figure 3.14.5, also refer to figure 3.5.21 (P91).

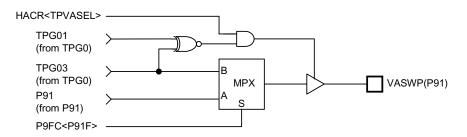


Figure 3.14.5 Composition of the VASWP circuit

(2) VASWP output

P9FC <P91F> is set to 1, and VASWP output is enabled by HACR <TPVASEL>. 3state output maltiprexed with DFF signal (TPG03) and AFF signal (TPG01) is outputted to VASWP pin. The timing chart, an example of VASWP output is shown in Figure 3.14.6.

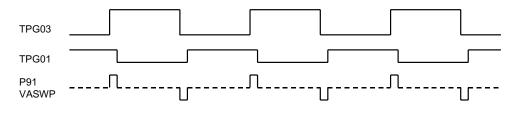


Figure 3.14.6 VASWP output timing chart

Note: When P91 terminal is used as VASWP output, set P9CR <P91C> to 0.

3.15 Serial Channels (SIO)

The TMP93CF76/CF77/CW76/CU76/CT76 have one built-in 8-bit synchronous serial channel. Serial channel (SIO) is connected to an external circuit via P52 (SCK), P51 (SO), P50 (SI).

3.15.1 Block Diagram

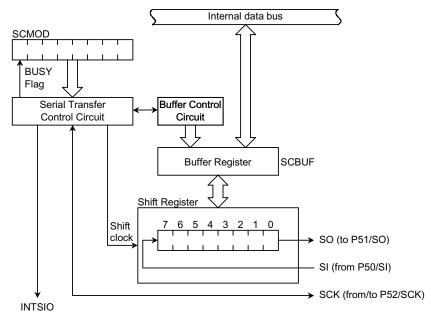


Figure 3.15.1 Configuration of the serial channel

3.15.2 Control Registers

The serial channel are controlled by serial channel control register (SCMOD) and serial channel buffer register(SCBUF). To use serial channel, set the port 5 control register to serial channel pin function.

(0067H)	FFSI FFSI	SRES	SMD1	SMD0	SIFT	<u> </u>							
	FFSI	Quidal				CLKSI	SCKS	SIOE	(Initial Value:	1000 0000)			
		Serial	transfer mo	nitor flag		0: Transfer i 1: Transfer s				Read only			
	SRES	Serial	transfer terr	mination		0: – 1: Terminate	e (One-shot)					
	SMD1	Serial	transfer mo	de selection	l	00: Transmi 01: Receive							
	SMD0					10: reserved 11: Transmit/receive mode							
	SIFT	Serial	transfer shi	ft edge seled	ction	0: Leading e 1: Trailing e	0			R/W			
	CLKSI	Serial selecti		ernal clock ra	ate	0: f _{SYS} /2 ³ 1: f _{SYS} /2 ⁷							
	SCKS	Serial	transfer clo	ck selection		0: Internal c 1: External c							
	SIOE	Serial	transfer sta	rt		0: Stop 1: Start							
Serial Channel	Buffer Regis	ster							·				
SCBUF	7	6	5	4	3	2	1	0	(Initial Value:	**** ****)			
(0066H)	TRB7	TRB6	TRB5	TRB4	TRB3	TRB2	TRB1	TRB0	Read/Write				
	Prohibit read	d-modify-wr	ite.										

Serial Channel Control Register SC

Interrupt Source Control Register

ISCR	7	6	U U	3	 	0	
(008FH)	SELINT				 		(Initial Value: 0*** ****)

SELINT	Interrupt source select	0: INT2 1: INTSIO	R/W

Note: It is necessary to select from either serial channel interrupt (INTSIO) or external interrupt 2 (INT2) by <SELINT> of interrupt source control register (ISCR) because an interrupt request flag is used both as a INTSIO and INT2.

3.15.3 Operation

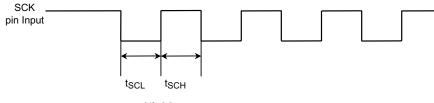
- (1) Shift Clock
 - a. Clock Source Selection

The clock of SIO can be selected from either internal clock or external clock by setting SCMOD <SCKS>.

i) Internal clock

The clock rate can be selected from either $TBC3(f_{SYS}/2^3)$ or $TBC7(f_{SYS}/2^7)$ by setting SCMOD <CLKSI>.

Figure 3.15.1 shows the maximum transfer rate using the internal clock.


The shift clock automatically stops after the end of one-frame transfer operation and waits for the next transfer operation. The SCK pin holds high-level in no transferring.

Internal Clock	Maximum Transfer Rate (at fc = 16 MHz)
TBC3 (f _{SYS} /2 ³)	1 Mbps
TBC7 (f _{SYS} /2 ⁷)	62500 bps

Table 3.15.1 The maximum transfer rate by internal clock

ii) External clock

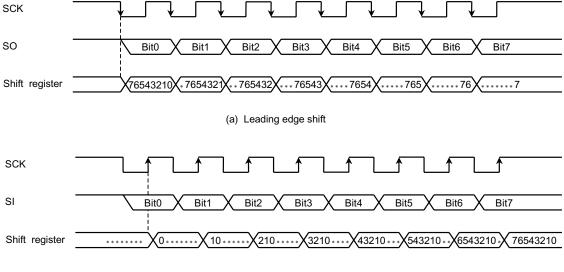
The clock input to the SCK pin is used as the shift clock. Before starting serial transfer, set SCMOD <SCKS> to 1. To make certain shift operation, it is necessary to input more than 8/fc at both high-level and low-level of the shift clock width.

 t_{SCL} , t_{SCH} > 8/fc [s]

Figure 3.15.2 External clock input

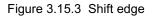
b. Shift Edge Selection

The leading or trailing edge shift can be selected by setting SCMOD <SIFT>.


i) Leading edge

The serial data are shifted on the leading edge of the shift clock (falling edge of SCK pin input/output).

ii) Trailing edge


The serial data are shifted on the trailing edge of the shift clock (rising edge of SCK pin input/output).

In the transmit mode, trailing edge mode can not be operating.

(b) Trailing edge shift

Note : * ; Don' t care

(2) Serial Operation

Three transfer mode such as transmit, receive and simultaneous transmit-receive modes for serial channel are selected by SCMOD<SMD1, 0>. After reset, SMOD<SMD1, 0> are cleared to 0, and transmit mode is selected. The following explains the operation in each transfer mode.

a. Transmit mode

After setting transmit mode 00 to SMOD<SMD1, 0>, the first transmit data is written into a buffer registers SCMOD. When transmit mode is not set, a transmit data can not be written into a buffer registers. Next, set SCMOD <SIOE> to 1 to start transmission. After starting transmission, a transmit data is transferred from a buffer register to a shift register, the transmit data is output from the SO pin synchronous with the falling edge of shift clock (leading edge shift), starting from the least significant bit (LSB). When LSB of written data is output to SO pin, the buffer register is empty and the serial channel interrupt to request a new data is generated. When the next transmit data is written into the buffer register in the interrupt service program, the interrupt request signal is cleared.

- Note: After SCMOD<SIOE> is set to 1, undefined data is output from SO pin till the first falling edge of the shift clock
 - i) Internal clock mode

In the internal clock mode, when all data are finished to transmit, if a new data is not set in the buffer register, the shift clock stops and a wait function starts.

Figure 3.15.4 (a) shows the timing chart of internal clock operation in transmit mode (with wait function).

ii) External clock mode

In the external clock mode, data must be set in the buffer registers before the next data shift operation begins. Therefore the transfer rate is determined by the maximum delay time from interrupt request generation to writing the transmit data into the buffer register in the interrupt service program.

Figure 3.15.4 (b) shows the timing chart of external clock operation in transmit mode.

iii) Finish to transmit

In order to end the transmit operation, set SCMOD<SIOE> to 0 instead of writing the next transmit data into the buffer register in the interrupt service program. When <SIOE> is cleared to 0, the transmit operation stops when all data is output. And when SCMOD<SRES> is set to 1, the transmit operation stops immediately and SCMOD<SIOE> is cleared to 0 automatically.

The end of transmit operation can be confirmed by reading out the serial transfer monitor flag SCMOD<FFSI>. When the transmit operation is finished, the serial transfer monitor flag is set to 1.

In the external clock mode, $\langle SIOE \rangle$ must be cleared to 0 before starting the next transmit data shift operation. If $\langle SIOE \rangle$ is not cleared to 0 before the shift operation begins; otherwise, dummy data is transmitted and operation ends.

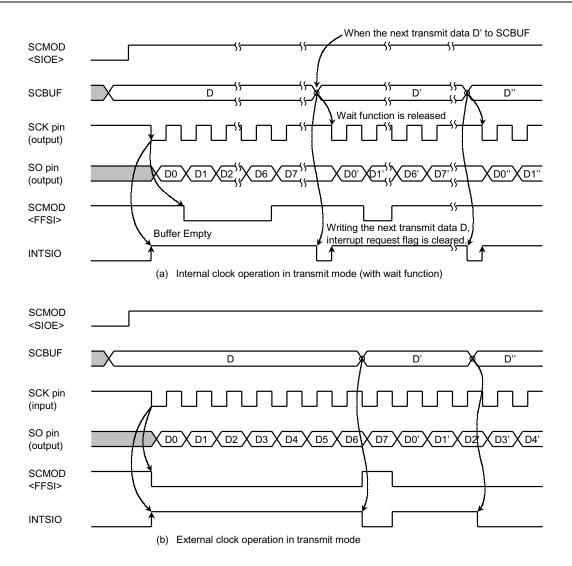


Figure 3.15.4 Serial channel timing chart in transmit mode

b. Receive Mode

After setting receive mode 01 to SCMOD <SMD1, 0> and 1 to SCMOD <SIOE>, receive mode is enabled. Data is received from SI pin to the shift register synchronous with the shift clock, starting from the least significant bit (LSB). When 8-bit data is received, the data is transferred from the shift register to the buffer register, the buffer register is full and the serial channel interrupt to read a received data is generated. When the received data is read from the buffer register in the interrupt service program, the interrupt request signal is cleared.

i) Internal clock mode

In the internal clock mode, if the previous receive data has not been read from the buffer register after the next data is received, the shift clock stops and a wait function starts until the previous data is read.

Figure 3.15.5 (a) shows the timing chart of internal clock operation in receive mode (leading edge shift with wait function).

Figure 3.15.6 (a) shows the timing chart of internal clock operation in receive mode (trailing edge shift with wait function).

ii) External clock mode

In the external clock mode, because the shift operation synchronizes with external supplied clock, it is necessary to read from the buffer register before transferring the next receive data to the buffer register. If the previous data has not read, the receive data will not be transferred to the buffer register, and next receive data will be canceled.

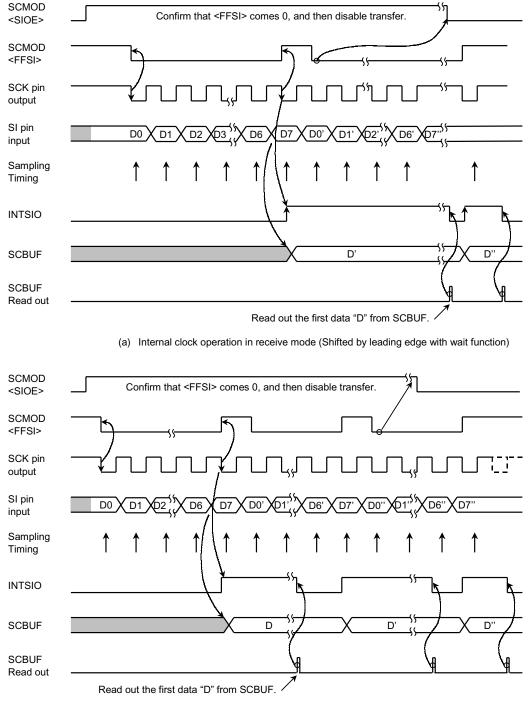
The maximum transfer rate of the external clock operation is determined by the maximum delay time from the generation of interrupt requests to reading received data.

Figure 3.15.5 (b) shows the timing chart of external clock operation in receive mode (leading edge shift).

Figure 3.15.6 (b) shows the timing chart of external clock operation in receive mode (trailing edge shift).

iii) Shift edge

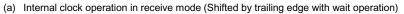
In the receive mode, either leading edge shift or trailing edge shift can be selected. Because data is received at the leading edge of the serial clock, the first shift data must already be input to the SI pin when the initial serial clock pulses are applied at transfer start.

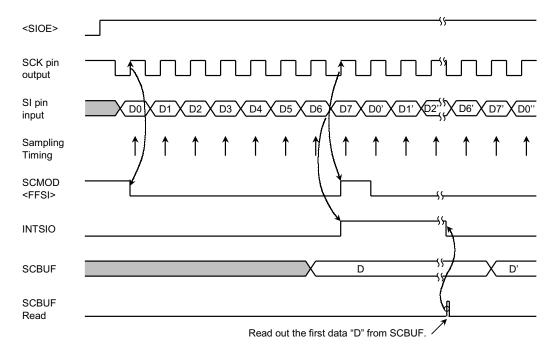

iv) Finish to receive

To end the receive operation, clear SCMOD <SIOE> to 0. When <SIOE> is cleared to 0, the receive operation stops after all data are received and transferred to the buffer register.

Setting SCMOD <SRES> is set to 1, the receive operation stops immediately and SCMOD <SIOE> is cleared to 0 automatically.

Note: If the transfer mode is switched, the contents of the buffer register is lost. In case that the mode needs to be switched, switch the mode after clearing <SIOE> to 0 and reading out the last received data. Undefined data is output from SO pin.


An end of receive operation can be confirmed by reading the serial transfer monitor flag SCMOD<FFSI>.



(b) External clock operation in receive mode (shifted by leading edge)

Figure 3.15.5 Serial channel timing chart in receive mode (Leading edge)

(b) External clock operation in receive mode (shifted by trailing edge)

Figure 3.15.6 Serial channel timing chart in receive mode (Trailing edge)

c. Transmit/Receive mode

After setting transmit/receive mode 11 to SMOD <SMD1, 0>, the first transmit data is written into a buffer registers SCMOD. And then set SCMOD <SIOE> to 1, transmit/receive mode is enabled. The transmit data is output from SO pin synchronous with the falling edge of shift clock (leading edge shift), data is received from SI pin to the shift register synchronous with the rising edge of shift clock (trailing edge shift), starting from the least significant bit (LSB).

When 8-bit data is received, the data is transferred from the shift register to the buffer register, the buffer register is full and the serial channel interrupt to read a received data is generated. When the received data is read from the buffer register in the interrupt service program, the interrupt request signal is cleared. And then a next data is written into buffer register.

Note: After SCMOD<SIOE> is set to 1, undifined data is output from SO pin till the first falling edge of the shift clock.

i) Internal clock mode

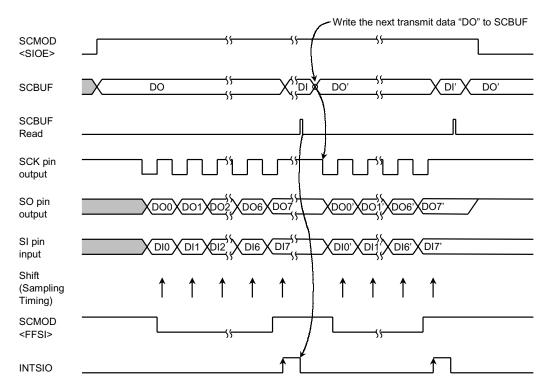
In the internal clock mode, a wait function starts until the receive data is read and the next transmit data is written into the buffer register.

ii) External clock mode

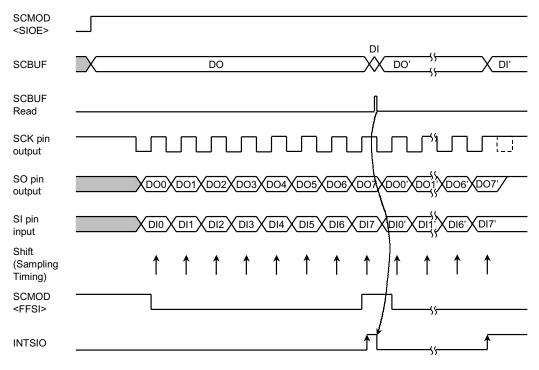
In the external clock mode, the receive data must be read and the next transmit data written before the next shift operation, because the shift operation is synchronized with external supplied clock. The maximum transfer rate of the external clock operation is detemined by the maximum delay time from interrupt request generation to reading received data and writing transmit data.

Figure 3.15.7 (b) shows the timing chart of external clock operation in transmit/receive mode.

Since the buffer registers are used for both transmit and receive data, transmit data must be written after 8 receive data is read.


iii) Finish to transmit

To end the transmit/receive operation, clear SCMOD <SIOE> to 0.


When SCMOD <SIOE> is cleared to 0, the transmit/receive operation ends after all data are received and transferred to the buffer register.

In the transmit/receive mode, the serial transfer operation ends just after setting SCMOD <SRES> to 1, and SCMOD <SIOE> is cleared to 0 auto matically.

The end of transmit/receive operation can be confirmed by reading the serial transfer monitor flag SCMOD <FFSI>.

(a) Internal clock operation in transmit/receive mode (with wait function)

(b) External clock operation in transmit/receive mode

Figure 3.15.7 Serial channel timing chart in transmit/receive mode

3.16 Serial Bus Interface (I²C bus)

TMP93CF76/CF77/CW76/CU76/CT76 have one channel serial bus interface (I²C bus). The interface terminals for communication are multiplexed and named channel 0 and 1. These sets of terminals can be switched by software. (I²C bus is the bus system by Philips.)

The interface terminals can be selected from two channels.

- Channel 0; P73 (SDA0), P74 (SCL0)
- Channel 1; P75 (SDA1), P76 (SCL1)

The terminals for I^2C bus are multiplexed with P7 port and these are used as normal port when not to use as I^2C bus. When used for I^2C bus pins, control registers are set to 1 for output mode and function registers are set to 1 for I^2C bus.

I²C bus Function

- Master/Slave Switching
- Single Master System without BUS arbitration
- High Speed Capability with 8-level FIFO in Master mode
- 9-bit data (8-bit data and 1-bit acknowledge)

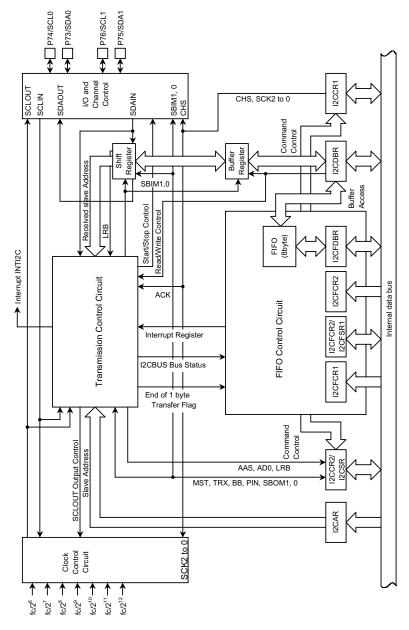
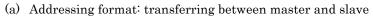
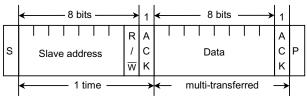
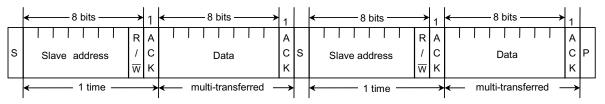


Figure 3.16.1 Configuration of serial bus interface

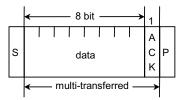

3.16.1 Control


The following registers are used for control and monitor the serial bus interface.

- Serial BUS Interface Control Register 1 (I2CCR1)
- Serial BUS Interface Control Register 2 (I2CCR2)
- Serial BUS Interface Data Buffer Register (I2CDBR)
- I²C bus Address Register (I2CAR)
- Serial BUS Interface Status Register (I2CSR)


3.16.2 Data Format in I²C bus Mode

The followings shows the data format in I²C bus.



(b) Addressing format (restart): in case the direction for transfer

(c) Free data format: transferring format for data only; transferring neither involving slave address and direction bit

Note: S ; start condition: Output timing pulse which indicates start transmitting.

- R/\overline{W} ; direction bit: Indicate the direction for transferring against slave.
 - 0: slave receives (master transfers)
 - 1: slave transfers (master receives)
- ACK ; acknowledge bit: Receiver response to transmitting as a confirmation for data receiving
 - 0: receiving completed
 - 1: not accepting data transferred, or in case master receiver
 - instructs slave transmitter to terminate transferring
- P ; stop condition: Output timing pulse which indicates terminate transmitting

Figure 3.16.2 Data Format for I²C bus

3.16.3 Control in I²C Bus

The following registers are used for control and monitor the serial BUS interface.

Serial BUS Interface Control Register 1

I2CCR1	7	6	5	4	3	2	1	0		
(0081H)	0	0	0	ACK	CHS		SCK		(Initial Value: 00	00 0000)
	ACK	Ackn	owledge b	oit select			ledge not r ledge retur		transmitter.	
	CHS	Input	'Output ch	hannel sele	ect	0: Channe 1: Channe	I 0 (SCL0,	SDA0)		R/W
	SCK			frequency aster mode		000: fc/2 ⁶ 001: fc/2 ⁷ 010: fc/2 ⁸ 011: fc/2 ⁹	(250 kHz) (125 kHz) (62.5 kHz) (31.2 kHz) (15.6 kHz) (7.8 kHz) (3.9 kHz)		[MHz]	write only

Note 1: The bit 7 to 5 should be cleared to 0.

Note 2: Prohibit read-modify-write.

Serial BUS Interface Data Buffer Register

I2CDBR	7	6	5	4	3	2	1	0	
(0082H)	I2DBR7	I2DBR6	I2DBR5	I2DBR4	I2DBR3	I2DBR2	I2DBR1	I2DBR0	(Initial Value: **** ****) Read/Write
	Prohibit re	ad-modify-	write.						-

I²C bus Address Register

I2CAR	7	6	5	4	3	2	1	0	_
(0083H)	SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS	(Initial Value: 0000 0000)
	SA	Slov		for a co	rial bus				
	SA	Slave	e address	for a se	inal bus				

interface	south and a
ALS Address confirm 0: Confirm sla	write only write only
1: Not confirm	n slave address(free data format)

Prohibit read-modify-write.

Serial BUS Interface Control Register 2

I2CCR2	7	6	5	4	3	2	1		0	_
(0084H)	MST	TRX	BB	PIN	SE	BIM	0	-	0	(Initial Value: 0001 0000)

MST	Master/slave selection	0: Slave 1: master	
TRX	Transmission/Receive selection	0: Receiver 1: Transmitter	
BB	Start/stop condition control	0: Generate the stop condition when MST, TRX and Pin are 1.1: Generate the start condition when MST, TRX and PIN are 1.	write only
PIN	Interrupt request reset	0: – 1: Cancel interrupt service request	
SBIM	Serial BUS interface Operating mode selection	00: Port mode 01: reserved 10: I ² C bus mode 11: reserved	

Note 1: The bit 1 and 0 should be cleared to 0. Note 2: Prohibit read-modify-write.

Serial BUS Interf	ace Status Re	gister							
I2CSR	7	6 5	4	3	2	1	0	_	
(0084H)	MST T	RX BB	PIN		AAS	AD0	LRB	(Initial Value:	0001 *000)
	MTS	Master/slave monitor	selection	mode	0: Slave 1: Master				
	TRX Transmission/Receive select status monitor				0: Receiver 1: Transmit				
	BB I ² C bus status monitor				0: BUS free 1: BUS bus				
	PIN	Interrupt reque	st moniter		0: Interrupt 1: interrupt		•]
	AAS	Slave address monitor	tection	0: Slave ad not detecte	" Read only				
					1: Slave ad detected	ddress ma	tch or "Gl	ENERAL CALL	"
	AD0	"GENERAL monitor	CALL" de	tection	0: "GENER 1: "GENER			ted	

Se

LRB

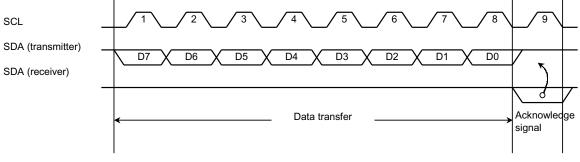
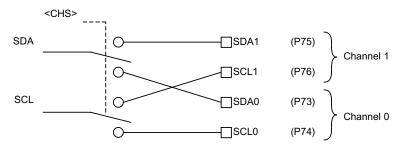
(1) Acknowledge mode specification

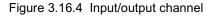
Last receive bit monitor

Set the I2CCR1 <ACK> to 1 for operation in the acknowledge mode.

In the receive mode during the clock pulse cycle, the SDA pin is set to the low-level in order to generate the acknowledge signal. When I2CCR1 <ACK> is cleared to 0, the SDA pin released high-level in the acknowledge timing.

0: Last receive bit is 0 (Acknowledge) 1: Last receive bit is 1 (No-Acknowledge)

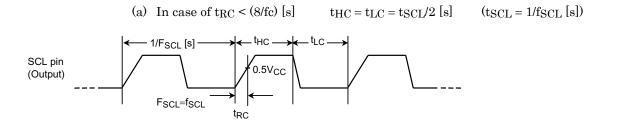



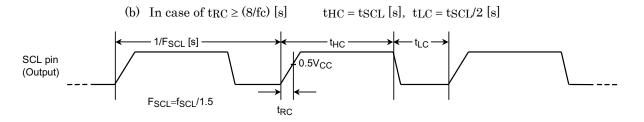

Figure 3.16.3 Acknowledge signal output timing

(2) Input/Output channel setting

The channel can be selected by setting I2CCR1 <CHS>.

Channel 1 (pair of SCL1 and SDA1) is selected by setting 1 to I2CCR1 <CHS> and Channel 0 (pair of SCL0 and SDA0) is selected by setting 0 to I2CCR1 <CHS>.





(3) Serial Clock

The I2CCR1 <SCK 2:0> are used to select a maximum transfer frequency directed from the SCL pin in the master mode. When rising time of the output clock (t_{RC}) is at least 8/fc [s], a high-level time of the output clock (t_{HC}) is t_{SCL} .

While the SCL line is fixed to low-level by a slave device, the output clock stops. The first clock (t_{HC} [s]) after restart is (t_{SCL}/2) \leq t_{HC} \leq t_{SCL}.

SCK	F _{SCL} (at fc = 16 MHz)						
(Bit 2 to 0 of I2CCR1)	t _{RC} < 50	0 [ns]	500 [ns] \leq t _{RC}				
000	250	kHz	166.7	kHz			
001	125	kHz	83.3	kHz			
010	62.5	kHz	41.7	kHz			
011	31.2	kHz	20.8	kHz			
100	15.6	kHz	10.4	kHz			
101	7.8	kHz	5.2	kHz			
110	3.9	kHz	2.6	kHz			
	In case of	of (a)	In case of (b)				

Figure 3.16.5 Serial clock

(4) Slave Address and Address Comfirm

When TMP93CF76/CF77/CW76/CU76/CT76 is used as a slave device, set the slave address <SA6:0> and <ALS> to I2CAR register. Set I2CAR2 <ALS> 0 to the for the addressing format mode.

(5) Master/Slave Selection

Set the I2CCR2 <MST> to 1 for operating the serial bus interface as a master device. I2CCR2 <MST> is cleared to 0 by the handware after a stop condition on the bus is detected.

(6) Transmitter/Receiver Selection

Set the I2CCR2 <TXR> to 1 for operating the serial bus interface as a transmitter. Clear I2CCR2 <TRX> for operation as a reciver. When the serial bus interface receive a slave address setted in I2CAR or a GENERAL CALL from the master device in the addressing format is transferred in the slave mode, I2CCR2 <TRX> is set to 1 if the direction bit (R/W) sent from the master device is 1, and is cleared to 0 if the bit is 0.

In the master mode, after an acknowledge signal is returned from the slave device, I2CCR2 <TRX> is set to 0 if a transmitted direction bit is 1, and set to 1 if it is 0.

When an acknowledge signal is not returned, the current condition is maintained.

I2CCR2 <TRX> is cleared to 0 by the hardware after a stop condition on a bus is detected.

The following shows I2CCR2 <TRX> change conditions in each mode and I2CCR2 <TRX> after changing.

Mode	Direction bit	Change condition	I2CCR2 <trx> after changing</trx>
Slave mode	0	A received slave address is	0
	1	the same as a value set to	1
		I2CAR.	
Master mode	0	ACK signal is returned.	1
	1		0

When the serial bus interface circuit operates in the free data format, the slave address and the direction bit are not recognized. They are handled as data just after generating a start condigion. I2CCR2 <TRX> was not changed by the hardware.

(7) Start/Stop Condition Generation (for Master Mode)

When I2CSR <BB> is 0, the slave address and the direction bit which are set to the I2CDBR are output on a bus after generation a start condition be writing 1 the I2CCR2 <MST>, I2CCR2 <TRX>, I2CCR2 <BB> and I2CCR2 <PIN>. It is necessary to set transmitted data to I2CDBR and set 1 to <ACK> beforehand.

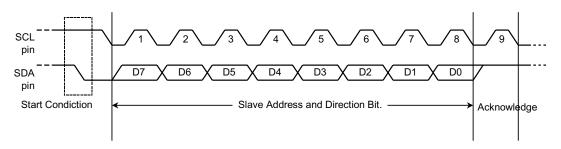
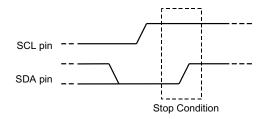



Figure 3.16.6 Start condition and slave address generation

When I2CSR <BB> is 1, a sequence of generating a shop condition is started by writing 1 to I2CCR2 <MST>, I2CCR2 <TRX>, and I2CCR2 <PIN>, and 0 to I2CCR2 <BB>. Do not modify the contents of I2CCR2 <MST>, I2CCR2 <TRX>, I2CCR2 <BB>, and I2CCR2 <PIN> until a stop condition is generated on a bus.

The bus condition can be indicated by reading I2CSR <BB>. The I2CSR <BB> is set to 1 when start condition is detected and is cleated to 0 when stop condition is detected on a bus.

(8) Interrupt Service Request and Cancel

When a serial bus interface interrupt request (INTI2C) occurs, the I2CSR <PIN> is cleared to 0. During the time that <PIN> is 0, the SCL pin is pulled down to the low level.

<PIN> is cleared to 0 when 1-byte of data is transmitted or received. Either writing/reading data to/from the I2CDBR sets <PIN> to 1.

The time from <PIN> being set to 1 until the SCL pin is released takes tLOW.

In the address recognition mode (ALS = 0), <PIN> is cleared to 0 when the received slave address is the same as the value set to the I2CAR or when a "GENERAL CALL" is received (all 8-bit data are 0 after a start condition). Although I2CCR2 <PIN> can be set to 1 by the program, <PIN> is not cleared to 0 when it is written 0.

(9) Serial Bus Interface Operation Mode Selection

The I2CCR2 <SBIM1:0> is used to specify the serial bus interface operation mode. Set the I2CCR2 <SBIM1:0> to 10 when used in the I²C bus Mode after confirming that input signal via port is high level. Switch a mode to port after confirming sure that the bus is free.

(10) Slave Address Match Detection Monitor

I2CSR <AAS> is set to 1 in the slave mode, in the address recognition mode (<ALS> = 0), or when receiving "GENERAL CALL" or a slave address with the same value that is set to the I2CAR. When I2CAR2 <ALS> is 1, I2CSR2 <AAS> is set to 1 after receiving the first 1byte of data. <AAS> is cleared to 0 by writing/reading data to/from a data buffer register.

(11) GENERAL CALL Detection Monitor

I2CSR $\langle AD0 \rangle$ is set to 1 in the slave mode, when all 8-bit data received after a start condition are 0. I2CSR $\langle AD0 \rangle$ is cleared to 0 when a start or stop condition is detected on a bus.

(12) Last Received Bit Monitor

The SDA line value stored at the rising edge of the SCL line is sent to I2CSR <LRB>. In the acknowledge mode, immediately after an INTI2C interrupt request is generated an acknowledge signal is read by reading contents of I2CSR <LRB>.

3.16.4 Data Transfer in I²C bus Mode

(1) Device Initialization

Set I2CCR1 <ACK>, <CHS>, <SCK 2:0>. Clear 0 to bits 7 to 5.

Set a slave address and I2CAR <ALS> <ALS> = 0 when an addressing format. After confirming that input signals via port are high level, for specifying the default setting to slave receiver mode, clear 0 to I2CCR2 <MST>, <TRX>, <BB> and set 1 to I2CCR2 <PIN>, 10 to I2CCR1 <SBIM 1:0>; and 0 to bit 0 and 1.

(2) Start condition and Slave address Generation.

Confirm that I2CSR $\langle BB \rangle$ is 0.

Set I2CCR2 <ACK> to 1 and specify a slave address and a direction bit to the I2CDBR.

When I2CSR <BB> is 0, the start condition is generated and the slave address and the direction bit which were set to the I2CDBR are output on a bus by setting 1 to I2CCR2 <MST>,<TRX>, <BB> and <PIN>. A slave device receives these data and pulls down the SDA line to the low level at the acknowledge signal timing. An INTI2C interrupt request occurs at the 9th falling edge of the SCL clock cycle, and the I2CSR <PIN> is cleared to 0.

The SCL pin is pulled down to the low level while <PIN> is 0. When an interrupt request occurs, I2CCR2 <TRX> changes by the according to the direction bit only when an acknowledge signal is returned from the slave device.

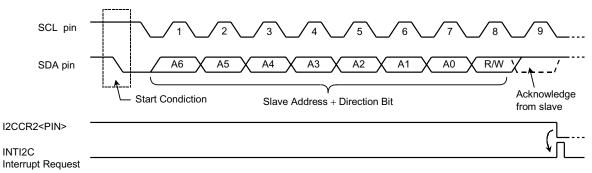
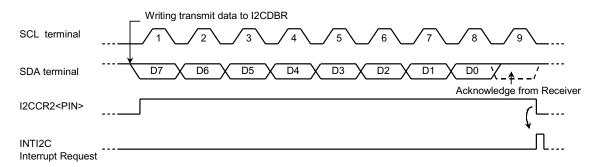
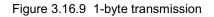


Figure 3.16.8 Start condition and slave address generation

(3) 1-byte Data Transfer

Check I2CRS <MST> by the INTI2C interrupt process after a 1-byte data transfer is completed, and determine whether the mode is a master or slave.


a. When I2CSR <MST> is 1 (Master mode)


Check <TRX> and determine whether the mode is a transmitter or receiver.

i) When I2CSR <TRX> is 1 (Transmitter mode)

Check I2CSR < LRB>. When the <LRB> is 1, a receiver does not request data. Implement the process to generate a stop condition (described later) and terminate data transfer.

When <LRB> is 0, the receiver requests new data. Write the transmitted data to the I2CDBR. After writing the data, <PIN> becomes 1, a serial clock pulse is generated for transferring a new 1-byte of data from the SCL pin, and then the 1-byte data is transmitted from SDA pin. After the data is transmitted, an INTI2C interrupt request occurs. <PIN> becomes 0 and the SCL pin is pulled down to the low level. If the data to be transferred is more than one byte in length, repeat the procedure from <LRB> checking above.

ii) When I2CSR <TRX> is 0 (Receiver mode)

Set I2CCR1 <ACK> to 1 and read the received data from the I2CDBR (data which is read immediately after a slave address is sent is undefined). After the data is read, <PIN> becomes 1. The serial bus interface output a serial clock pulse to the SCL pin to transfer new 1-byte of data and set the SDA pin to 0 at the acknowledge signal timing.

An INTI2C interrupt request occurs, < PIN> becomes 0 and the SCL pin pulled down to the low level. The serial bus interface output a clock pulse for 1-byte of data transfer and the acknowledge signal each time that received data is read from the I2CDBR.

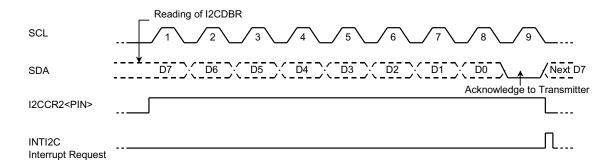
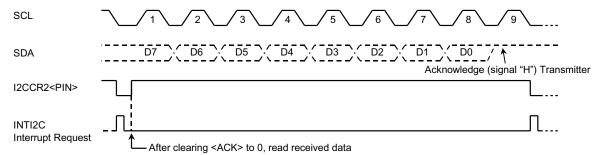
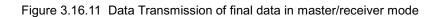




Figure 3.16.10 1-byte receive

In order to terminate transmitting data to a transmitter, clear <ACK> to 0 before reading data which is 1-byte before the last data to be received. The SDA pin released high-level in an acknowledge timing of last received byte. The receiver indicates to the transmitter that data transfer is complete. After data is received and an interrupt request has occurred, the serial bus interface generates a stop condition and terminate data transfer. When reading data from I2CDBR in the last received byte, the serial clock and acknowledge signal don't output because <ACK> is 0.

b. When < MST> is 0 (Slave mode)

In the slave mode, an INTI2C interrupt request occurs when the serial bus interface receive a slave address or a "GENERAL CALL" from the master device, or when a "GENERAL CALL" is received and data transfer is complete after matching a received slave address. When an INTI2C interrupt request occurs, I2CCR2 <PIN> is cleared, and the SCL pin is pulled down to the low level. Either reading/writing from to the I2CDBR or setting <PIN> to 1 releases the SCL pin after taking tLOW time.

In the slave mode, the serial bus interface operates either in normal slave mode.

Check the I2CSR <TRX>, <AAS> and <AD0> and implement processes according to conditions listed in the next table.

TRX	AAS	AD0	Status	Service
1	1	0	In Slave/Receiver mode, received the slave address of serial bus interface with direction bit 1. This condition is slave transmit mode by transfer request from master device.	
	0	0	In slave transmitter mode, 1-byte transmission has completed.	In case of $ = 1$ (no further data request), set $ 1$ and $ 0$ for BUS release. In case of $ = 0$ (further data request), write transmit data to I2CDBR register.
0	1	1/0	In slave receiver mode, received address of the serial bus interface with direction bit 0 or "GENERAL CALL". This condition is slave receive mode by receive request from master device.	5
	0	1/0	In slave receiver mode, 1-byte receive has completed.	Read received data from I2CDBR register.

Table 3.16.1 Status and service in slave mode

(4) Stop Condition Generation

When I2CSR <BB> is 1, a sequence of generating a stop condition is started by writing 1 to I2CCR2<MST>, <TRX>, and <PIN>, and 0 to I2CCR2<BB>. Do not modify the contents of I2CCR2<MST>, <TRX>, <BB>, <PIN> until stop condition is generated on a bus.

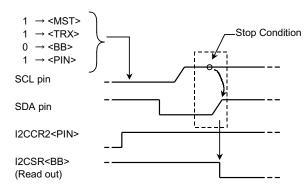


Figure 3.16.12 Stop condition generation

(5) Restart

Restart is used to change the direction of data transfer between a master device and a slave device during transferring data. The following explains how to restart when the serail bus interface is in the master mode.

Clear 0 to I2CCR2<MST>, <TRX>, and <BB> and set 1 to I2CCR2<PIN> and release the bus. The SDA pin retains the high level and the SCL pin is released. Since a stop condition is not generated on the bus, the bus is assumed to be in a busy state from other devices. Check I2CSR<BB> until it becomes 1 to check that the SCL pin of the serial bus interface are released. Check the I2CSR<LRB> until it becomes 1 to check that the SCL line of the bus is not pulled down to the low level by other devices. After confirming that the bus stays in a free state, generate a start condition with procedure (2).

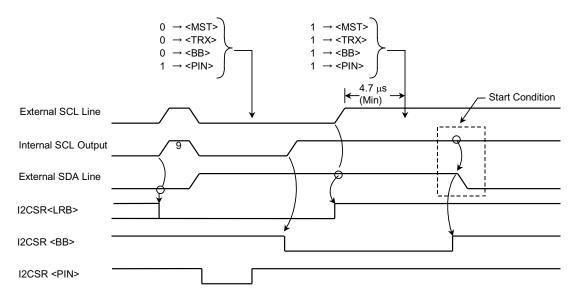


Figure 3.16.13 Restart timing chart

3.16.5 FIFO Controling

In I²C bus/Master mode, 8-byte continuous data transfer can be done with FIFO control.

I²C bus control registers are accessed from FIFO control circuit instead of CPU. Before starting FIFO control circuit, I²C bus should be set in slave mode (initialized condition). FIFO control circuit is controlled by following registers,

I ² C bus	FIFO	Control	Register 1	
----------------------	------	---------	------------	--

I2CFCR1 (0063H)

7	6	5	4	3	2	1	0	_	
T/R		FSCK		CONT		BYTE		(Initial Value	0000 0000)
T/R	EIEO t	ransfer mod			0: Receiver	modo			
1/ K			ie selection		1: Transmitt				
FSCK	Serial selection	clock freque	ency (fscl)		000: fc/2 ⁶ (2 001: fc/2 ⁷ (1	,			
	selecti	on			0011 IC/2 (1) 010: fc/2 ⁸ (6)				
					011: fc/2 ⁹ (3	,			
					100: fc/2 ¹⁰ (
					101: fc/2 ¹¹ (write only		
					110: fc/2 ¹² (
					111: –	lHz]			
CONT	Data tr	ansfer mod	e selection		0: 8 to 1-byt				
					1: Continuo	us transfer			
BYTE	Numbe	er of transfe	r data byte		000: 1-byte				
	(Data i	s valid whe	n <cont> =</cont>	= 0)	001: 2-byte				
					010: 3-byte				
					011: 4-byte				
					100: 5-byte				
					101: 6-byte				
					110: 7-byte				
					111: 8-byte				

Prohibit read-modify-write.

I²C bus FIFO Control Register 2

I2CFC (0064

CR2	7	6	5	4	3	2	1	0	_	
4H)	START	STOP	CHS	ĪNT]	;	RST		(Initial Value	e: 1101 **1*)
	START	Start F	IFO buffer t	transfer		0: Start or restart				
						1: –				
	STOP	Stop F	IFO buffer t	ransfer		0: Stop				
						1: -				

CHS	Input/Output Channel selection	0: Channel 0 (SCL0, SDA0)	write only
		1: Channel 1 (SCL1, SDA1)	write only
INT	Restart in continuous mode	0: Start continuous transfer	
		1: –	
RST	Reset for I ² C bus and FIFO control	0: Reset	
	circuit (Note)	1: -	

Note 1: Since 4.5-state width system reset is executed after writing to this register, Do not access with I²C bus or FIFO controller during the period.

Note 2: Prohibit read-modify-write.

I ² C bus FIFO I	Data Buffer R	legister									
I2CFDBR	7	6	5	4	3	2	1	0	(Initial Value	e: **** ****)	
(0065H)	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0	Read/Write		
	Prohibit read	d-modify-wr	ite.								
I ² C bus FIFO S	Status Regist	er 1									
I2CFSR1	7	6	5	4	3	2	1	0			
(0064H)	SDA	END	CHS	BUSY	FULL	EMPTY	SCERR	AKERR	(Initial Value	: *000 0000)	
	SDA	SDA li	SDA line monitor				0: SDA line low				
						1: SDA line	high				
	END	FIFO b	ouffer status	flag		1: End of transfer					
						cleared by setting <stop> to 0</stop>			P> to 0		
	CHS	Input/C	Dutput chan	nel monitor		0: Channel 0					
						1: Channel 1					
	BUSY	FIFO b	ouffer transf	er status		1: FIFO buffer data in transfer					
						C	eared by s	etting <stc< td=""><td>)P> to 0</td><td>read only</td></stc<>)P> to 0	read only	
	FULL	FIFO b	ouffer full/Re	eceive end		0: –				read only	
						1: FIFO buff	er full/receiv	ve end			
	EMPTY	FIFO b	ouffer empty	//Transmit e	nd	0: –					
						1: FIFO buff	er empty/Tr	ansmit end			
SCERR Start condition error				0: –							
						1: Start con	dition error				
AKERR Acknowledge error				0: –							
						1: Acknowle	dge error				

I²C bus FIFO Status Register 2

 I2CFSR2
 7
 6
 5
 4
 3
 2
 1
 0

 (0069H)
 NOMAT
 LRBM
 (Initial Value: 01** ****)
 (Initial Value: 01** ****)

NOMAT	Matching monitor between SCL line	0: –	
	and SCL terminal	1: SCL line pulled down by slave device	need ends
LRBM	Last received bit monitor	0: Last receive bit 0 (acknowledge)	read only
	(acknowledge signal monitor)	1: Last receive bit 1 (no-acknowledge)	

(1) Transmit Operation

Set the number of byte transferred and select transfer clock by setting I2CFCR1 register. Set FIFO controller in transmitter mode by setting 1 to I2CFCR1 <T/ \overline{R} >. The number of byte for transfer at start time includes slave address. This can be set up to 8 bytes. By setting I2CFCR1 <CONT>, the number of byte is set to 8bytes and continuous data transfer becomes available. After setting I2CFCR1 register, write data into I2CFDBR in order of transmission. When number of data written becomes the number of byte set, I2CFSR1 <FULL> register is set 1. It's ignored if data is written during <FULL> is 1. For starting transmission, slave address and <R/ \overline{W} > bit should be set as the first data.

Then set I2CFCR2 <CHS> and <START>, the FIFO controller becomes active.

The FIFO controller sets I2CFSR <BUSY> to 1 and accesses I2CFCR1, I2CFDBR and I2CFCR2 registers to start transmission. At this time, if BUS is busy, <SCERR> bit in I2CFSR1 register is set 1 and generate the interrupt request INTI2C. If this happens, set I2CFCR2 < $\overline{\text{RST}}$ > to 1 and reset FIFO controller by software.

If there is no acknowledge return for each byte, the interrupt request INTI2C is generated and I2CFSR1 <AKERR> is set 1.

When all data byte has been transferred, I2CFSR1 <EMPTY> is set 1 and the interrupt request INTI2C is generated. And if I2CFCR1 <CONT> is 0, I2CFSR1 <END> register is set 1 to terminate all data transfer. In case that <CONT> bit is 1, <END> bit is not set because of continuous mode. This is the reason why the rest of data should be transferred by restarting after setting the number of data remained and data into I2CFCR1 and I2CFDBR registers. If an interrupt request is no needed when data transfer completes, set < \overline{INT} > to 0 before restart.

(2) Receive Operation

The procedure is almost same as transmit operation except that the number of data byte does not include slave address. Set the FIFO controller in Receiver mode by setting I2CFCR1 <T/ \overline{R} >. Following that, set slave address and I2CFDBR <R/ \overline{W} > and set FIFO controller active by setting I2CFCR2 <START> to 0. When the number of data, which was set in I2CFCR1 register, has been received, I2CFSR <FULL> is set 1 and the interrupt request INTI2C is generated. The status can be monitored in I2CFSR1 <CONT> and < \overline{INT} > as same as in transmit operation.

The content of dummy read, which is executed right after the slave address, is not set into FIFO buffer.

(3) Restart Operation

When <END> bit is 1, to provide the following procedure can be recognized as restart operation,

Start preparation as same as (1) or (2) Start by setting < START > bit 0

The FIFO controller does restart operation then data is transferred.

(4) Stop Operation

By setting I2CFCR2 $<\overline{\text{STOP}}>$ to 0 when I2CFCR1 <END> is 1, FIFO controller stops data transfer after generate stop condition on to BUS and clearing I2CFSR1 <BUSY> is 0.

3.17 8-Bit AD Conversion Circuit (AD)

The TMP93CF76/CF77/CW76/CU76/CT76 have an 8-bit AD conversion circuit of high precision, the successive comparison type with 10-channels analog input. The 8-cannels (AIN2 to AIN9) of 10-channels analog input pin are also used as general purpose input ports (P40 to P47). The other 2-channels (AIN0, AIN1) are also used as I/O port (P75, P76).

The AD conversion ends in 11.9 μs (at 16 MHz).

3.17.1 Block diagram

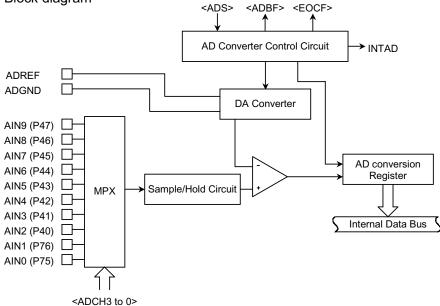


Figure 3.17.1 Composition of the 8-bit AD conversion circuit

3.17.2 Operation of AD Conversion Circuit

(1) AD conversion reference voltage

The positive electrode of AD conversion reference voltage connects to ADREF pin, and the negative electrode of AD conversion reference voltage connects to ADGND pin.

The AD conversion is carried out by splitting reference voltage between ADREF pin and ADGND pin to bit divided by 256 by ladder resistor in DA converter and making a judgment by comparing it with analog input voltage.

(2) Analog input channels

One of the 10-channels analog input (AIN0 to AIN9) is selected by the AD conversion control register ADMOD <ADCH3 to 0>.

The analog input channel selection register ADMOD <ADCH3 to 0> are initialized to 0 by reset operation, then the AIN0 (P75) is selected. When these ports are not used as the analog input port, they can be used as general purpose input ports (Port 4), input/output ports (P75, P76).

During conversion, do not change output level. (The AD conversion value may be in fluenced)

(3) AD conversion time

The result of AD conversion is stored into ADREG after the passage of 95 states (11.9 μ s at fc = 16 MHz) from setting ADMOD <ADS> to 1.

(4) Start AD conversion start

AD conversion is started by setting ADMOD < ADS> to 1. After AD conversion starts, ADCR < ADBF> is set to 1.

- Note : If AD conversion is restarted when <ADBF> is 1, AD conversion will be stopped. Set ADMOD <ADS> to 1 after confirming <ADBF> to 0.
- (5) AD conversion end

After the end of AD conversion ADMOD <EOCF> is set to 1, and the interrupt request signal (INTAD) is generated, and the <ADBF> is cleared to 0.

(6) AD conversion interruption (INTAD)

After the end of AD conversion, the interrupt request signal (INTAD) is generated, and the AD circuit requests CPU to interrupt. The interrupt request signal (INTAD) is cleared to 0 by reading out the ADREG in program.

- Note : When interrupt is accepted and the vector address is read, the interrupt request flag is not cleared to 0 because interrupt request signal(INTAD) remains 1 until the content of ADREG is read. Accordingly, the interrupt request flag must be cleared to 0 by program after the content of ADREG is read. (Refer to 3.4 Interrupts.)
- (7) Reading of AD conversion values

The result of AD conversion is put into the AD conversion register (ADREG).

The AD conversion end flag ADMOD <EOCF> is cleared to 0 by reading the ADREG.

The value of the ADREG is an undefined data durring AD conversion.

Figure 3.17.2 shows the timing chart of AD conversion operation.

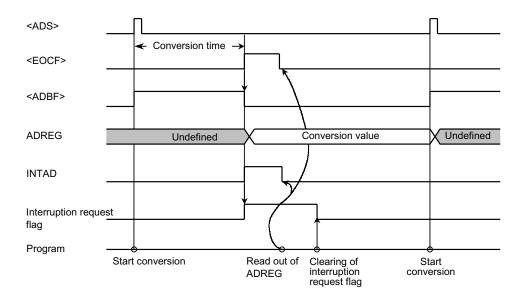


Figure 3.17.2 Shown in timingchart of AD conversion operation.

Note: When executing the HALT instruction during AD conversion, AD conversion is stopped and the value of ADREG is undefined. At the same time, AD control register (ADMOD) is initialized.

3.17.3 Control Register

ADMOD	7	6	5	4	3	2	1	0	_		
(005AH)	1	EOCF	ADBF	ADS	ADCH3	ADCH2	ADCH1	ADCH0	(Initial Value	e: 1000 0000)	
	EOCF	EOCF AD conversion completed flag				conversion	in progress	or before co	onversion		
					1: AD	conversion	completed			read only	
	ADBF	BF AD conversion busy flag			0: AD	conversion	stopped			read only	
				1: AD	1: AD conversion in progress						
	ADS	AD conversion start			0: –	0: -					
					1: Sta	1: Start					
	ADCH3 to	Analog	input chan	nel selectio	n 0000:	AIN0	0110: A	IN6			
	ADCH0				0001:	AIN1	0111: A	IN7		R/W	
				0010:	AIN2	1000: A	IN8		1000		
					0011:	AIN3	1001: A	IN9			
					0100:	AIN4	1010 to	111: Reser	rved		
					0101:	AIN5					

AD Converter Control Register

Note: Bit 7 of ADCR must be set to 1.

AD Conversion Register

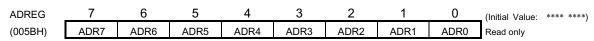


Figure 3.17.3 Registers for AD converter

3.18 Watchdog Timer (Runaway Detecting Timer)

TMP93CF76/CF77/CW76/CU76/CT76 contain a watchdog timer of Runaway detecting.

The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU of the malfunction.

Connecting the watchdog timer output to the reset pin internally forces a reset.

This watchdog timer consists of 22-stage binary counters.

These binary counters are also used as a warm-up timer for the internal oscillator stabilization. This is used for releasing the STOP and before changing system clock.

3.18.1 Block Diagram

Figure 3.18.1 shows the block diagram of the watchdog timer (WDT).

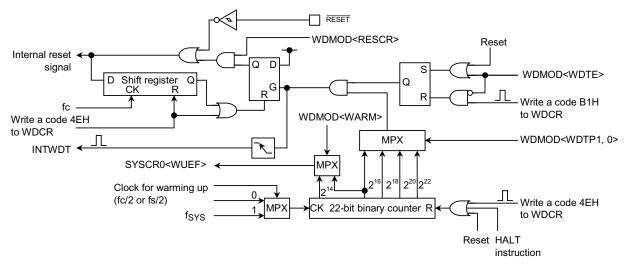


Figure 3.18.1 Composition of the Watchdog Timer/Warm-up Timer

The watchdog timer consists of 22-stage binary counters which use System clock (fsys) as the input clock. The 22-stage binary counter has $fsys/2^{16}$, $fsys/2^{18}$, $fsys/2^{20}$, and $fsys/2^{22}$ output. Selecting one of the outputs with the WDMOD<WDTP1, 0> register generates a watchdog interrupt and outputs watchdog timer out when an overflow occurs. The binary counter for the watchdog timer should be cleared to 0 with runaway detecting result software (instruction) before an interrupt occurs.

Example:			
LDW	(WDMOD), 0B100H	;	disable
LD	(WDCR), 4EH	;	write clear code
SET	7, (WDMOD)	;	enable again
	,	; ;	

The runaway detecting result can also be connected to the reset pin internally. In this case, the watchdog timer resets itself.

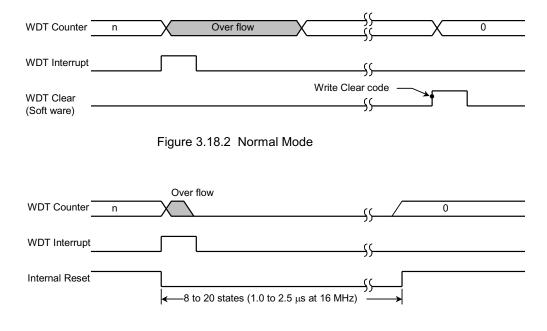


Figure 3.18.3 Reset mode

For warm-up counter, 2^{14} and 2^{16} output of 22-stage binary counter can be selected using WDMOD<WARM> register.

3.18.2 Control Registers

Watchdog timer WDT is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog Timer Mode Register (WDMOD)
 - a. Setting the detecting time of watchdog timer <WDTP>

This 2-bit register is used to set the watchdog timer interrupt time for detecting the runaway. This register is initialized to WDMOD<WDTP1, $0 \ge 00$ when reset.

The detecting time of WDT is shown Table 3.18.1.

b. Watchdog timer enable/disable control register <WDTE>

When reset, WDMOD<WDTE> is initialized to 1 enable the watchdog timer.

To disable, it is necessary to set this bit to 0 and write the disable code (B1H) in the watchdog timer control register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return from the disable state to enable state by merely setting <WDTE> to 1.

c. Watchdog timer out reset connection<RESCR>

This register is used to connect the output of the watchdog timer with $\overline{\text{RESET}}$ terminal, internally. Since WDMOD<RESCR>is initialized to 0 at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog Timer Control Register (WDCR)

This register is used to disable and clear of binary counter the watchdog timer function.

• Disable control

By writting the disable code (B1H) in this WDCR register after clearing WDMOD<WDTE> to 0, the watchdog timer can be disabled.

 WDMOD
 ←
 0
 X X
 Clear WDMOD <WDTE> to 0.

 WDCR
 ←
 1
 0
 0
 1
 Write the disable code (B1H).

Note: X:Don't care -: No change

• Enable control

Set WDMOD<WDTE>to 1.

• Watchdog timer clear control

The binary counter can be cleared and resume counting by writing clear code (4EH) into the WDCR register.

WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).

Watchdog Timer Mode Control Register

valoridog Till		ition registe								
WDMOD	7	6	5	4	3	2	1	0	_	
(005CH)	WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTM0	RESCR	DRVE	(Initial Value	e: 1000 0000)
	WDTE	\A/atab	de a tine e r T	nahla (Diaak		0: Disable				
	WDIE	watch	dog timer E	nable/Disat		1: Enable				
	WDTP1, 0	WDT o	detection tim	ie		00: 2 ¹⁵ /f _{SYS}				
						01: 2 ¹⁷ /f _{SYS}				
						10: 2 ¹⁹ /f _{SYS}				
						11: 2 ²¹ /f _{SYS}				
	WARM	Warm	-up timer so	urce clock s	selection	0: 2 ¹⁴ /input frequency 0: 2 ¹⁷ /input frequency				
										R/W
	HALTM1, () HALT	mode selec	tion		00: RUN mo	de			1010
						01: STOP m	ode			
						10: IDLE1				
						11: IDLE2				
	RESCR	Watch	dog timeout	control		0: Don't care	9			
						1: Connects	WDT outpu	t to RESET	internaly	
	DRVE	Pin co	ntrol of STC	P mode		0: I/O off				
						1: Remains	the state be	fore HALT		

Watchdog Timer Control Register

WDCR	7	6	5	4	3	2	1	0	_	
(005DH)	WDCR7	WDCR6	WDCR5	WDCR4	WDCR3	WDCR2	WDCR1	WDCR0	(Initial Value): **** ****)
									•	
	WDCR Watchdog timer control				B1H: Disable code					
						4EH: Clear o	code			Write only
						Others: Don	't care			

Prohibit read-modify-write.

Figure 3.18.4 Watchdog timer control register

Table 3.18.1 Watchdog timer detecting time

System clock	Watchdog Timer Detecting Time								
selection	WDMOD <wdtp1,0></wdtp1,0>								
<sysck></sysck>	00 01 10 11								
1(fs)	2.000 s	8.000 s	32.000 s	128.000 s					
0(fc)	4.097 ms	16.384 ms	65.536 ms	262.144 ms					

at fc = 16 MHz, fs = 32.768 kHz

3.18.3 Operation

The watchdog timer generates interrupt INTWD after the detecting time set in the WDMOD<WDTP1, 0>. The watchdog timer must be zero-cleared by software before an INTWD interrupt is generated. If the CPU malfunctions (runaway) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter overflows and an INTWD interrupt is generated. The CPU detects malfunction (runaway) due to the INTWD Interrupt and it is possible to return to normal operation by an anti-mulfunction program.

The watchdog timer restarts operation immediately after resetting is released. The watchdog timer stops its operation in the IDLE1 and STOP modes.

Example 1: Clear the binary counter

WDCR ← 0 1 0 0 1 1 1 0 Write clear code (4EH).

Example 2: Set the watchdog timer detecting time to $2^{17}/f_{SYS}$

WDMOD ← 1 0 1 - - - X X

Example 3: Disable the watchdog timer

WDMOD	← 0 X X	Clear WDTE to 0.
WDCR	← 101 10001	Write disable code (B1H).

Example 4: Set the STOP mode (warming up time: 2¹⁶/f_{SYS})

WDMOD	← 101XX	Set the STOP mode.
Execute HAL1	command.	Set the HALT mode.

Note : X : Don't care -: No change

4. Electrical Characteristics

4.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Power Supply Voltage	Vcc	-0.5 to 6.5	
Input Voltage	V _{IN}	-0.5 to Vcc+0.5	v
Output Voltage (except PC, PD, PE, PF)	V _{OUT1}	-0.5 to Vcc+0.5	v
Output Voltage (PC, PD, PE, PF)	V _{OUT2}	Vcc-40	
Output Current (except PC, PD, PE, PF) (per 1 pin)	I _{OH1}	-3.2	
Output Current (PC, PD) (per 1 pin)	I _{OH2}	-25	
Output Current (PE, PF) (per 1 pin)	I _{OH3}	-15	
Output Current (per 1 pin)	I _{OL}	3.2	mA
Output Current (total except PC, PD, PE, PF)	ΣI_{OH1}	-40	
Output Current (total of PC, PD, PE, PF)	ΣI_{OH2}	-120	
Output Current (total)	ΣI_{OL}	120	
Power Dissipation (Ta = 70° C)	PD	600	mW
Soldering Temperature	Tsolder	260	
Storage Temperature	Tstg	-65 to 150	°C
Operating Temperrature	Topr	-20 to 70	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

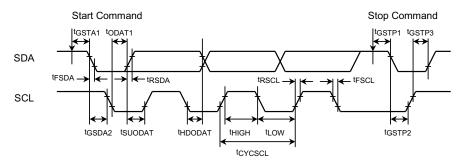
						Ta = -20	to 70°C
	Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Power S	upply	Vcc	fc = 4 to 16 MHz	4.5		5.5	V
Voltage			fs = 30 to 34 kHz	2.7			v
	P0, P1, P2, P4, P9, PA, PB, PE, PF	V _{IL1} (CMOS)				0.3 Vcc	
Input Low	RESET , P5, P7, P8	V _{IL2} (Schmitt)		-0.3		0.25 Vcc	
Voltage	TEST	VIL ₃ (Fixed)				0.3	
	X1	V _{IL4} (Xtal)	Vcc = 2.7 to 5.5 V			0.2 Vcc	v
	P0, P1, P2, P4, P9, PA, PB, PE, PF	V _{IH1} (CMOS)	VCC = 2.7 10 5.5 V	0.7 Vcc			v
Input High	RESET , P5, P7, P8	VIH2 (Schmitt)		0.75 Vcc		Vcc + 0.3	
Voltage	TEST	VIH3 (Fixed)	Vcc - 0.3]	
	X1	V _{IH4} (Xtal)		0.8 Vcc			

					Ta = -20) to 70°C
Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Output Low Voltage	VOL	IOL = 1.6 mA (Vcc = 2.7 to 5.5 V)			0.45	V
Output High	VOH	IOH = -400 μA (Vcc = 2.7 to 5.5 V)	2.4			v
Voltage	VOH1	IOH = -700 μA (Vcc = 4.5 to 5.5 V)	4.1			v
PE, PF	юн	Vcc = 4.5 V	-5			mA
PC, PD	UH	VOH = 2.4 V	-15			ША
Input Leakage Current	ILI	$0.0 \leq Vin \leq V_{CC}$		0.02	±5	
Output Leakage Current	ILO	$0.2 \leq Vin \leq V_{CC} - 0.2$		0.05	±10	μA
Power Down Voltage	VSTOP	$\label{eq:VIL2} \begin{array}{l} VIL2 = 0.2 \; V_{CC}, \\ VIH2 = 0.8 \; V_{CC} \end{array}$	2.0		6.0	v
RESET	5	Vcc = 5 V ± 10%	50		150	
Pull Up Resistor	R _{RST}	$Vcc = 3 V \pm 10\%$	80		200	kΩ
Pin Capacitance	CIO	osc = 1 MHz/100 mVp-p			10	pF
Schmitt Width RESET , P5,P7,P8	VTH			1.0		V
NORMAL				30	50	
RUN		$Vcc = 5 V \pm 10\%$		18	28	mA
IDLE2		fc = 16 MHz		15	25	ШA
IDLE1				5	8	
SLOW	Icc	Vcc = 3 V ± 10%		50	80	
RUN		$VCC = 3.7 \pm 10\%$ fs = 32.768 kHz		30	45	
IDLE2		$(typ: V_{CC} = 3.0 V)$		25	40	μA
IDLE1				12	25	
STOP		Vcc = 2.7 to 5.5 V		0.2	10	1

4.2 DC Characteristics (2/2)

Note 1: Typical value are for $Ta = 25^{\circ}C$ and Vcc = 5 V unless otherwise noted.

Note 2: Icc measurement conditions (NORMAL,SLOW).


Only CPU is operational; output pins are open and input pins are fixed.

4.3 AD Conversion Characteristics

	Ta = -20	to 70°C, $V_{CC} =$	4.5 to 5.5 V		
Parameter	Symbol	Min	Тур.	Max	Unit
Analog Reference Voltage Supply	ADREF	Vcc – 1.5	Vcc	Vcc	V
Analog Reference voltage Supply	ADGND	Vss	Vss	Vss	V
Analog Input Voltage Range	V _{AIN}	ADGND		ADREF	V
Analog Current for ADREF	I _{REF}		1.0	1.5	mA
Total tolerance					
(excludes quantization error)	ET	—	—	±3	LSB
(Ta = 25°C, Vcc = ADREF = 5 V)					

4.4 Serial Bus Interface Timing

(1) I²C bus Logic Timing

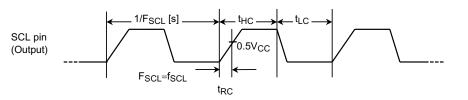
Parameter	Symbol	Min	Тур.	Max	Unit
SCL cycle	t _{CYCSCL}	2 ^N /fc	_	_	s
SCL low pulse width	t _{LOW}		2 ^{N-1} /fc	_	s
SCL High pulse width	t _{HIGH}	2 ^{N-1} /fc			s
SDA Rising Time (Note 1)	t _{RSDA}			_	s
SDA Falling Time (Note 1)	t _{FSDA}		_	_	s
SCL Rising Time (Note 1)	t _{RSCL}				s
SCL Falling Time (Note 1)	t _{FSCL}				s
The time from start command write to start sheecense	t _{GSTA1}	_		2 ^N /fc	s
Start condition hold time, start generation of the first clock after this	t _{GSTA2}		2 ^{N-1} /fc		s
Delay time from SCL falling to data output (Note 2)	t _{ODAT1}			5/fc	s
Set up time of data output for SCL rising (Note 2)	t _{SUODAT}	0		_	s
The time of holding data for SCL rising (Note 3)	t _{HODAT}	4/fc			s
The time from stop command write to starting stop sheecense	t _{GSTP1}	_	_	2 ^{N-1} /fc	s
The time from SDA falling to SCL rising (during stop sheecense)	t _{GSTP2}	2 ^{N-2} /fc	_		s
Stop condition set up time	t _{GSTP3}	2 ^{N-1} /fc	_		s

Note 1: The time of rising/falling depend on the feature of bus interface.

Note 2: The worst case is at the first bit of slave address.

Note 3: The worst case is at the acknowledge bit.

Note 4: N: dividing value set by I2CCR1 <SCK 2:0>.


SCK	Ν
000	6
001	7
010	8
011	9
100	10
101	11
110	12
111	reserved

(2) Master SCL output timing

The I2CCR1 <SCK 2:0> are used to select a maximum transfer frequency directed from the SCL pin in the master mode. When rising time of the output clock (t_{RC}) is at least 8/fc [s], a high-level time of the output clock (t_{HC}) is t_{SCL} .

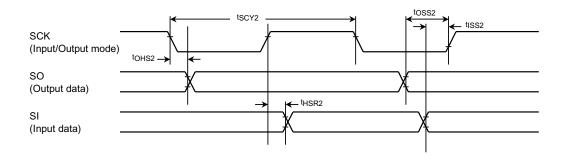
While the SCL line is fixed to low-level by a slave device,the output clock stops. The first clock (t_{HC} [s]) after restart is (t_{SCL}/2) \leq t_{HC} \leq t_{SCL}.

(a) In case of $t_{RC} < (8/f_c)$ [s] $t_{HC} = t_{LC} = t_{SCL}/2$ [s] $(t_{SCL} = 1/f_{SCL}$ [s])

(b) In case of $t_{RC} \ge (8/fc)$ [s] $t_{HC} = t_{SCL}$ [s], $t_{LC} = t_{SCL}/2$ [s]

(3) Clock Syncro 8 bit SIO mode

1. SCK Input mode


Parameter	Symbol	Expre	Unit	
Falameter	Symbol	Min	Max	Unit
SCK cycle	t _{SCY2}	2⁵X		s
SCK falling→Latch output data	t _{OHS2}	6X		s
Enable output data→SCK raising	t _{OSS2}		t _{SCY2} – 16X	s
SCK raising→Latch input data	t _{HSR2}	6X		ns
Enable input data→SCK raising	t _{ISS2}	0		ns

Note: $X=^{1}/_{fc}$

2. SCK Output mode

Parameter	Symbol	Expre	ession	Unit
Falameter	Symbol	Min	Max	Offic
SCK cycle	t _{SCY2}	2⁵X	2 ¹¹ X	s
SCK falling→Latch output data	t _{OHS2}	2X		s
Enable output data→SCK raising	t _{OSS2}		$t_{\text{SCY2}} - 2X$	s
SCK raising→Latch input data	t _{HSR2}	2X		s
Enable input data→SCK raising	t _{ISS2}	0		ns

Note: $X=^{1}/_{fc}$

5. Table of Special Function Registers (SFR; Special Function Register)

The special function registers (SFRs) include the I/O ports and peripheral control registers allocated to the 144-byte addresses from 000000H to 00008FH.

Configuration of the table

Symbol	Name	Address	7	6	5	4	3	2	1	0		
						Bit sy	/mbol					
				Read/Write								
						Value af	ter Reset					
				Function								

- Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these registers. The "LD" (transfer) instruction must be used to write for "Prohibit RMW" registers.
 - R/W
 : Read/Write

 R
 : Read-only

 W
 : Write-only

 Prohibit RMW
 : Prohibit read-modify-write

 (cannot be used the instruction such as RES,SET,TEST,CHG,STCF,ANDCF,ORCF,XORCF)

Don't access (Reserved) addresses.

Address	Name								
000000H	P0	20H	(Reserved)	40H	PWM1DRL	60H	TREG3L	80H	(Reserved)
1H	P1	21H	ODCR3	41H	PWM1DRH	61H	TREG3H	81H	I2CCR1
2H	P0CR	22H	(Reserved)	42H	PWM2DRL	62H	T1MOD	82H	I2CDBR
3H	(Reserved)	23H	TBCMOD	43H	PWM2DRH	63H	I2CFCR1	83H	I2CAR
4H	P1CR	24H	TBCDR0	44H	PWMDBR	64H	I2CFCR2	84H	I2CCR2
5H	(Reserved)	25H	TBCDR1	45H	PWMCR	65H	I2CFDBR	85H	(Reserved)
6H	P2	26H	TBCIF	46H	CAPINCR0	66H	SCBUF	86H	TPCR
7H	(Reserved)	27H	TRUN	47H	CAPINCR1	67H	SCMOD	87H	PC
8H	P2CR	28H	TCCR10	48H	CAPINCR2	68H	CAPINCR4	88H	PD
9H	(Reserved)	29H	TREG0	49H	CAPINCR3	69H	I2CFSR2	89H	PE
AH	P4	2AH	TREG1L	4AH	CAPFST	6AH	(Reserved)	8AH	PF
BH	P5	2BH	TREG1H	4BH	CAP0L	6BH	PAFC	8BH	PECR
СН	P5CR	2CH	TCCR32	4CH	CAP0M	6CH	SYSCR2	8CH	PFCR
DH	P7ICR	2DH	TCCR54	4DH	CAP0H	6DH	SYSCR3	8DH	HACR
EH	(Reserved)	2EH	TREG2L	4EH	CAP1L	6EH	SYSCR0	8EH	T5MOD
FH	P7	2FH	TREG2H	4FH	CAP1H	6FH	SYSCR1	8FH	ISCR
10H	(Reserved)	30H	(Reserved)	50H	CAP2L	70H	INT0CP1		
11H	P7CR	31H	(Reserved)	51H	CAP2H	71H	INTCP0TG0		
12H	(Reserved)	32H	TREG4L	52H	CAPCR	72H	INTTP1I2C		
13H	P7FC	33H	TREG4H	53H	RMTCR	73H	INTTBCVA		
14H	P8FC	34H	TREG5L	54H	VIVACR1	74H	INT12SIO		
15H	ODCR1	35H	TREG5H	55H	VIVACR2	75H	INT43		
16H	P8	36H	TPG0CR	56H	VASSDR	76H	INTT1T0		
17H	P9	37H	TPG0L	57H	CSYNCR	77H	INTT3T2		
18H	P8CR	38H	TPG0H	58H	PVCR	78H	INTT5T4		
19H	P9CR	39H	TPG0DR	59H	(Reserved)	79H	INTADRTC		
1AH	P9FC	3AH	TPG1L	5AH	ADMOD	7AH	(Reserved)		
1BH	ODCR2	3BH	TPG1H	5BH	ADREG	7BH	(Reserved)		
1CH	PA	3CH	TPG1DR	5CH	WDMOD	7CH	DMA0V		
1DH	PB	3DH	PWMRUN	5DH	WDCR	7DH	DMA1V		
1EH	PACR	3EH	PWM0DRL	5EH	IIMC0	7EH	DMA2V		
1FH	PBCR	3FH	PWM0DRH	5FH	IIMC1	7FH	DMA3V		

Table 5.1	I/O register address ma	n
	I/O IEgistel audiess me	ıμ

Symbol	Name	Address	7	6	5	4	3	2	1	0
SYSCR0	System	00006EH	XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF		
	Clock		R/W	R/W	R/W	R/W	R/W	R/W	(R/W)	(R/W)
	Control		1	0	1	0	0	0	(0)	(0)
	Register0		High	Low	High	Low	System	Warming	Fix to 0.	Fix to 0.
			frequency	frequency	frequency	frequency	clock after	up timer		
			oscillator	oscillator	oscillator	oscillator	releasing			
			(fc: 16 MHz)	(fs: 32 kHz)	(fc) after	(fs) after	STOP	(Write)		
					released	released	mode	0: Don't		
			0: Stop	0: Stop	STOP	STOP		care		
			1: Oscillation	1: Oscillation	mode	mode	0: fc	1: Start		
							(Normal)	timer		
					0: Stop	0: Stop	1: fs			
					1: Oscillation	1: Oscillation	(Slow)	(Read)		
								0: End of		
								warming		
								up 1. Under		
								1: Under		
								warming		
SYSCR1	System	00006FH					SYSCK	up		
0100101	Clock	00000111	(R/W)				R/W	(R/W)	(R/W)	(R/W)
	Control		(0)				(0)	(0)	(0)	(0)
	Register1		Fix to 0.				System	Fix to 0.	Fix to 0.	Fix to 0.
	rtogiotori		1 1/10 0.				clock	1 1/ 10 0.	1 1/2 10 0.	1 1/ 10 0.
							oroon			
							0: fc			
							(Normal)			
							1: fs			
							(Slow)			
SYSCR2	System	00006CH	_	_		RTCCK	RTCST	RTCIS1	RTCIS0	
l	Clock		(R/W)	(R/W)		R/W	R/W	R/	W	
	Control		(0)	(0)		0	0	()	
	Register2		Fix to 0.	Fix to 0.		RTC input	RTC	Interval tim	e control of	
						clock	count	RTC interru	upt	
						source	control			
						select		00: f _{SYS} /2 ¹⁶		
							0: Stop&	01:f _{SYS} /2 ¹⁷		
						0: fs	Clear	10: f _{SYS} /2 ¹⁵	or fs/214	
						1: fc/4 or	1: Start	11:Reserve	ed	
						fs/4				

(1) System Control/RTC

Symbol	Name	Address	7	6	5	4	3	2	1	0
WDMOD	Watch Dog	00005CH	WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTM0	RESCR	DRVE
	Timer		R/W	R/	W	R/W	R/W		R/W	R/W
	Mode		1	()	0	0		0	0
	Register		WDT timer	WDT detection	on time	Warming up	HALT mode	selection	WDT interal	Pin control
			Enable/			timer			reset control	of STOP
			Disable	00: 2 ¹⁵ /f _{SYS}		source	00: RUN			mode
			control	01: 2 ¹⁷ /f _{SYS}		clock	01: STOP		0: —	
				10: 2 ¹⁹ /f _{SYS}		selection	10: IDLE1		1: Connects	0: I/O off
			0: Disable	11: 2 ²¹ /f _{SYS}			11: IDLE2		WDT	1: Remains
			1: Enable			0: 2 ¹⁴ /			output to	the state
						selected			RESET	before
						clock			internaly	HALT
						frequency				
						1: 2 ¹⁶ /				
						selected				
						clock				
						frequency				
WDCR	Watch Dog	00005DH								
	Timer	(Prohibit	Write-only							
	Control	RMW)				_	_			
	Register		B1H: WDT disable code 4EH: WDT clear code							

(2) Watch Dog Timer

(3) Time Base Counter (TBC) (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
TBCMOD	TBC Mode	000023H			TBC1E	TBC0E	INTTBC11	INTTBC10	INTTBC01	INTTBC00	
	Register	(Prohibit	(R/W)	(R/W)	R	W	R/	W	R/W		
		RMW)	(0)	(0)	(0	(0		0	
			Fix to 0.	Fix to 0.	INTTBC inter	rupt	TBC1 interru	pt source	TBC0 interru	pt source	
					enable/disab	le	clock selection	on	clock selection	on	
			00: Disable 00: TBC12					00: TBC11			
				01: INTTBC0 enable 01: TBC14					01: TBC13		
					10: INTTBC1 enable 10: TBC16				10: TBC15		
					11: INTTBCC	/1 enable	11: TBC18		11: TBC17		
TBCDR0	TBC Data	000024H	TBCD7	TBCD6	TBCD5	TBCD4	TBCD3	TBCD2	TBCD1	TBCD0	
	Register0		(TBC12)	(TBC11)	(TBC10)	(TBC9)	(TBC8)	(TBC7)	(TBC6)	(TBC5)	
						Read	d-only				
							0				
						TBC	12 to 5				
TBCDR1	TBC Data	000025H	TBCD15	TBCD14	TBCD13	TBCD12	TBCD11	TBCD10	TBCD9	TBCD8	
	Register1		(TBC20) (TBC19) (TBC18) (TBC17) (TBC16) (TBC15) (TBC14)					(TBC14)	(TBC13)		
			Read-only								
							0				
			TBC20 to 13								

Symbol	Name	Address	7	6	5	4	3	2	1	0
TBCIF	TBC	000026H			TBC1F	TBC0F				
	Interrupt	(Prohibit	(R/W)	(R/W)	R	/W		(R/W)		
	Flag	RMW)	(0)	(0)		0		(0)		
	Register		Fix to 0.	Fix to 0.	TBC1	TBC0		Fix to 0.		
					interrupt	interrupt				
			Note: This	Note: This	request flag	request flag		Note: This		
			bit is read as	bit is read as				bit is read as		
			1 always.	1 always.	Write	Write		1 always.		
					0: Clear	0: Clear				
					request	request				
					flag	flag				
					1: Don't set	1: Don't set				
					to 1.	to 1.				
					Read	Read				
					0: –	0: –				
					1: Interrupt	1: Interrupt				
					request	request				

(3) Time Base Counter (TBC) (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
TRUN	Timer Start	000027H			T5RUN	T4RUN	T3RUN	T2RUN	T1RUN	TORUN	
	Control						R	W			
	Register							0			
							0:Stop	1:Run			
TCCR10	Timer	000028H	CLBC1	T1CL	T1CLK1	T1CLK0	CLBC0	TOCL	T0CLK1	T0CLK0	
	Counter	(Prohibit	R/W	R/W	R	W	R/W	R/W	R	W	
	Control	RMW)	0	0	(0	0	0		0	
	Register10		TC1	TC1 counter	TC1 source of	clock	тс0	ТС0	TC0 source of	lock	
			counter	clear	selection		counter	counter	selection		
			clear by				clear by	clear			
			match	0: —	00: TI1 (from	P52)	match		00: PCTLA		
				1: Clear	01: TBC2			0: —	(from CA	PIN)	
			0: Disable	(One-shot)	10: TBC4		0: Disable	1: Clear	01: TI0 (from	P52)	
			1: Enable		11: TBC6		1: Enable	(One-shot)	10: TBC6		
						1			11: TBC10	1	
TREG0	Timer	000029H	TC/TR07	TC/TR06	TC/TR05	TC/TR04	TC/TR03	TC/TR02	TC/TR01	TC/TR00	
	Counter	(Prohibit		R/W							
	Register0	RMW)				0	/*				
				1 1	W: Writing T	REG0 registe	r R: Reading	TC0 counter	1	1	
TREG1L	Timer	00002AH	TC/TR17	TC/TR16	TC/TR15	TC/TR14	TC/TR13	TC/TR12	TC/TR11	TC/TR10	
	Counter	(Prohibit				R	/W				
	Register1L	RMW)				0	//*				
					W: Writing TF	REG1L registe	r R: Reading	TC1L counte	r	1	
TREG1H	Timer	00002BH	TC/TR1F	TC/TR1E	TC/TR1D	TC/TR1C	TC/TR1B	TC/TR1A	TC/TR19	TC/TR18	
	Counter	(Prohibit				R	/W				
	Register1H	RMW)				0	/*				
				N	W: Writing TR	EG1H registe	r R: Reading	TC1H counte	er		
T1MOD	Timer1	000062H					TFFRES	TFFSET	TO10N	TO1SET	
	Mode	(Prohibit					W	w	W	W	
	Register	RMW)					0	0	0	0	
							TFF Reset	TFF set	ТО1	ТО1	
							0: —	0: —	ON/OFF	Set/Reset	
							1: TFF reset	1: TFF set	0: TO1OFF	0: Divided	
							(One-shot)	(One-shot)	1: TO1ON	signal is	
										passed	
										TO1	
										1: TO1 set	

(4) Timer Counter 0,1

Symbol	Name	Address	7	6	5	4	3	2	1	0	
TCCR32	Timer	00002CH	CLBC3	T3CL	T3CLK1	T3CLK0	CLBC2	T2CL	T2CLK1	T2CLK0	
	Counter		R/W	R/W	R/	W	R/W	R/W	R/	W	
	Control	(Prohibit	0	0	C)	0	0	()	
	Register32	RMW)	тсз	тсз	TC3 source c	lock	TC2	TC2	TC2 source of	lock	
			counter	counter	selection		counter	counter	selection		
			clear by	clear			clear by	clear			
			match		00: TI3 (from	P50)	match		00: TI2 (from	P51)	
				0: —	01: TBC2			0: —	01: TBC2		
			0: Disable	1: Clear	10: TBC4		0: Disable	1: Clear	10: TBC4		
			1: Enable	(One-shot)	11: TBC6		1: Enable	(One-shot)	11: TBC6		
TREG2L	Timer	00002EH	TC/TR27	TC/TR26	TC/TR25	TC/TR24	TC/TR23	TC/TR22	TC/TR21	TC/TR20	
	Counter	(Prohibit		RW							
	Register2L	RMW)				0	/*				
					W: Writing TR	EG2L registe	r R: Reading	TC2L counte	r		
TREG2H	Timer	00002FH	TC/TR2F	TC/TR2E	TC/TR2D	TC/TR2C	TC/TR2B	TC/TR2A	TC/TR29	TC/TR28	
	Counter	(Prohibit				R	/W				
	Register2H	RMW)				0	/*				
				r	W: Writing TR	EG2H registe	r R: Reading	TC2H counte	er		
TREG3L	Timer	000060H	TC/TR37	TC/TR36	TC/TR35	TC/TR34	TC/TR33	TC/TR32	TC/TR31	TC/TR30	
	Counter	(Prohibit				R	/W				
	Register3L	RMW)				0	/*				
			W: Writing TREG3L register R: Reading TC3L counter								
TREG3H	Timer	000061H	TC/TR3F	TC/TR3E	TC/TR3D	TC/TR3C	TC/TR3B	TC/TR3A	TC/TR39	TC/TR38	
	Counter	(Prohibit				R	/W				
	Register3H	RMW)				0	/*				
				W: Writing TREG3H register R: Reading TC3H counter							

(5) Timer Counter 2, 3

Symbol	Name	Address	7	6	5	4	3	2	1	0	
TCCR54	Timer	00002DH	CLBC5	T5CL	T5CLK1	T5CLK0	CLBC4	T4CL	T4CLK1	T4CLK0	
	Counter	(Prohibit	R/W	R/W	R	W	R/W	R/W	R	W	
	Control	RMW)	0	0	()	0	0		0	
	Register54		TC5	TC5	TC5 source	clock	TC4	TC4	TC4 source clock		
			counter	counter	unter selection			counter	selection		
			clear by	clear			clear by	clear			
			match		00: TI5 (from	,	match		00: TI4 (from	P51)	
				0: —	01:CSYNCA			0: —	01:CFGTM		
			0: Disable	1: Clear	(from CS	YNC)	0: Disable	1: Clear	(from CA	PIN)	
			1: Enable	(One-shot)			1: Enable	(One-shot)	10: TBC6		
					11:TBC6				11:TBC10		
TREG4L	Timer	000032H	TC/TR47	TC/TR46	TC/TR45	TC/TR44	TC/TR43	TC/TR42	TC/TR41	TC/TR40	
	Counter	(Prohibit					W				
	Register4L	RMW))/*				
								TC4L counte			
TREG4H	Timer	000033H	TC/TR4F	TC/TR4E	TC/TR4D	TC/TR4C	TC/TR4B	TC/TR4A	TC/TR49	TC/TR48	
	Counter	(Prohibit					W				
	Register4H	RMW))/*				
								TC4H counte			
TREG5L	Timer	000034H	TC/TR57	TC/TR56	TC/TR55	TC/TR54	TC/TR53	TC/TR52	TC/TR51	TC/TR50	
	Counter	(Prohibit					W				
	Register5L	RMW))/*				
								TC5L counte			
TREG5H	Timer	000035H	TC/TR5F	TC/TR5E	TC/TR5D	TC/TR5C	TC/TR5B	TC/TR5A	TC/TR59	TC/TR58	
	Counter	(Prohibit					W				
	Register4H	RMW))/*				
					W: Writing TR	EG5H registe	er R: Reading	TC5H counte	er		
T5MOD	Timer5	00008EH								VSMOD	
	Mode									R/W	
	Register									0	
										TC5 function	
										selection	
										0: Timer/	
										Event Counter	
										1: C.sync	
										counter	

(6) Timer Counter 4, 5

Symbol	Name	Address	7	6	5	4	3	2	1	0		
CAPINCR0	Capture	000046H	CAP2E	CAP1E	CAP05E	CAP04E	CAP03E	CAP02E	CAP01E	CAP00E		
	Input		(CFG)	(DFG)	(DPG)	(EXT)	(CTL)	(VS)	(RMTD)	(RMTU)		
	Control			r	1	R	/W	r	1	T		
	Register0		0	0	0	0	0	0	0	0		
			Capture 0,1,	2 input sourc	e enable/disa	ble control						
			0: Disable	1: Enable						1		
CAPINCR1	Capture	000047H	PCTLCK1	PCTLCK0	PCPR5	PCPR4	PCPR3	PCPR2	PCPR1	PCPR0		
	Input		R	W			R	/W				
	Control		(0				0				
	Register1		CTL duty d	liscrimination	CTL signal (CTLIN) frequ	ency division r	atio				
			sampling clo	ck selction								
			(VIVACR2<	PCTLCKS>	000000: 1/1							
			= 0)		000001: 1/2							
					000010: 1/4							
			00: TBC3 0		to							
			10: TBC7 1		111111: 1/6							
CAPINCR2	Capture	000048H		RMTST	RMTP0	RMTBP	CFGMCP	DPCP2	DPCP1	DPCP0		
	Input		(R/W)	R/W	R/W	R/W	R		R/W			
	Control		(0)	0	0	0	0		0			
	Register2		Fix to 0.	RMTIN	RMTIN	RMTIN	CFG	Ŭ	(DFGIN) frequ	lency		
				start/stop	input	noise	status flag	division ratio)			
				control	polarity	chancellor						
				0.010	selection	control	0: Normal	000: 1/1				
				0: Stop& counter	0: Positive	0: Active	1: Error	001: 1/2				
				clear	1: Negative	1: Bypass		to 111: 1/8				
				1: Start	1. Negative	1. Dypass		111. 1/0				
CAPINCR3	Capture	000049H	DIVCLR	CTLPO	CFGPO	DPGEG	DFGEG	CFGWPR	CFGEG	CTLEG		
	Input	00001011	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	Control		0	0	0	0	0	0	0	0		
	Register3		DFG	CTL input	CFG input	DPG input	DFG input	CFG input	CFG input	CTLIN		
	rtogiotoro		divider	polarity	polarity	edge	edge	division	edge	input edge		
			division	selection	selection	selection	selection	ratio	selection	selection		
			ratio clear					selection				
				0: Positive	0: Positive	0: Rising	0: Rising		0: Both	0: Rising		
			0: —	1: Negative	1: Negative	edge	edge	0: 1/1	edges	edge		
			1: Clear			1: Both	1: Falling	1: 1/2	1: Rising	1: Both		
			(One-shot)			edges	edge		edge	edges		
CAPINCR4	Capture	000068H	EXTEG		CFGPR5	CFGPR4	CFGPR3	CFGPR2	CFGPR1	CFGPR0		
	Input		R/W				R	/W				
	Control		0					0				
	Register4		EXT input		CFG division	n ratio signal ((CFGIN) frequ	ency				
			edge									
			selection		000000: 1/1							
			000001: 1/2									
			0: Rising		000010: 1/4							
			edge		to							
			1: Both		111111: 1/6	4						
			edges									

(7) Capture Control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
CSYNCR	CSYNC	000057H	_		DPGST	CSYNCPO	SEPMOD	CSYNBP	_	MASK
	Control		(R/W)		R/W	R/W	R/W	R/W	(R/W)	R/W
	Register		(0)		0	0	0	0	(0)	0
			Fix to 0.		DPG detect	CSYNC	7-bit	C.sync	Fix to 0.	VSYNC
					monitor	input signal	counter	bypass		mask control
						polarity	down	control		0: —
					(Read)	selection	count			1: Release
					0:		selection	0: V.sync		masking
					1: DPG	0: Positive		1: Bypass		(One-shot)
					input	1: Negative	0: TBC1			
					detected		1: TBC2			
					(Write)					
					0: —					
					1: Reset					
					(One-shot)					
VIVACR2	VISS/	000055H	PCTLPO	PCTLCKS	MSK1	MSK0	VISS3	VISS2	VISS1	VISS0
	VASS		R/W	R/W	R/W	R/W			/W	
	Control		0	0	0	0			0	
	Register2		CTL signal	CTL duty	CTLIN	CFG input	VISS compa	are data		
			polarity	measuring	input	masking				
			selection	clock	division	control		data are com		
			_	selection	control		higher 4-bit	of the 6-bit C1	FL counter	
			0: Positive			0: Mask				
			(when duty		0: Divide	1: Bypass				
			< 50%,	by	1: Bypass					
			VIVACR1	CAPINCR1						
			<ctldty></ctldty>	<pctlck1,< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pctlck1,<>						
			= 1	2>						
			1: Negative	1: Automatic						
			(when duty	selection						
			> 50%,	301001011						
			VIVACR1							
			<ctldty></ctldty>							
			= 1							

(7) Capture Control (2/2)

(8) Capture 0

Symbol	Name	Address	7	6	5	4	3	2	1	0
CAPFST	Capture0	00004AH	CAPF7	CAPF6	CAPF5	CAPF4	CAPF3	CAPF2	CAPF1	CAPF0
	FIFO		(FIFO8)	(FIFO7)	(FIFO6)	(FIFO5)	(FIFO4)	(FIFO3)	(FIFO2)	(FIFO1)
	Status					Read	d-only			
	Register						0			
				Capture0	FIFO status	0: No capture	data, 1: Capt	ure data prese	ent in FIFO	
CAP0L	Capture0	00004BH	CAP0D7	CAP0D6	CAP0D5	CAP0D4	CAP0D3	CAP0D2	CAP0D1	CAP0D0
	Data					Read	d-only			
	Register		*	*	*	*	*	*	*	*
	- Low order									
CAP0M	Capture0	00004CH	CAP0D15	CAP0D14	CAP0D13	CAP0D12	CAP0D11	CAP0D10	CAP0D9	CAP0D8
	Data					Read	d-only			
	Register		*	*	*	*	*	*	*	*
	- Middle order									
CAP0H	Capture0	00004DH	CAP0T5	CAP0T4	CAP0T3	CAP0T2	CAP0T1	CAP0T0	CAP0D17	CAP0D16
	Data				Read	l-only			Read	l-only
	Register		*	*	*	*	*	*	*	*
	- High order				Trigger in	put status			Capture0 I	nigher data
			0:	No trigger in	out 1: T	rigger input a	ccepted in FIF	0	regi	ister

(9) Capture 1, 2

Symbol	Name	Address	7	6	5	4	3	2	1	0
CAP1L	Capture1	00004EH	CAP1D7	CAP1D6	CAP1D5	CAP1D4	CAP1D3	CAP1D2	CAP1D1	CAP1D0
	Data					Read	d-only			
	Register		*	*	*	*	*	*	*	*
	- Low order									
CAP1H	Capture1	00004FH	CAP1D15	CAP1D14	CAP1D13	CAP1D12	CAP1D11	CAP1D10	CAP1D9	CAP1D8
	Data					Read	d-only			
	Register		*	*	*	*	*	*	*	*
	- High order									
CAP2L	Capture2	000050H	CAP2D7	CAP2D6	CAP2D5	CAP2D4	CAP2D3	CAP2D2	CAP2D1	CAP2D0
	Data				-	Read	d-only	_	_	
	Register		*	*	*	*	*	*	*	*
	- Low order				-					
CAP2H	Capture2	000051H	CAP2D15	CAP2D14	CAP2D13	CAP2D12	CAP2D11	CAP2D10	CAP2D9	CAP2D8
	Data				-	Read	d-only		-	
	Register		*	*	*	*	*	*	*	*
	- High order									

Symbol	Name	Address	7	6	5	4	3	2	1	0
TPG0CR	TPG0	000036H			FEMPIE	TPFUL0	TPEMP0	TPF02	TPF01	TPF00
	Control	(Prohibit	(W)		w	R	R		R	
	Register	RMW)	(0)		0	0	1		0	
			Fix to 0.		INTTPG0	TPG0	TPG0	TPG0 FIFO	status flag	
					FIFO	FIFO full	FIFO			
					empty	flag	empty flag	000: Empty	or Full	
					interrupt			001: 1 word		
						0: —	0:	010: 2 word		
					0: Disable	1: FIFO full	1: FIFO	011: 3 word		
					1: Enable		empty	100: 4 word		
								101: 5 word		
								110: 6 word		
								111: 7 word	1	1
TPG0L	TPG0	000037H	TPG0D7	TPG0D6	TPG0D5	TPG0D4	TPG0D3	TPG0D2	TPG0D1	TPG0D0
	Lower	(Prohibit				Write	e-only			
	Timing Data	RMW)	*	*	*	*	*	*	*	*
	Register									
TPG0H	TPG0	000038H	TPG0DF	TPG0DE	TPG0DD	TPG0DC	TPG0DB	TPG0DA	TPG0D9	TPG0D8
	Higher	(Prohibit				Write	e-only			
	Timing Data	RMW)	*	*	*	*	*	*	*	*
	Register									
TPG0DR	TPG0	000039H			TPGD05	TPGD04	TPGD03	TPGD02	TPGD01	TPGD00
	Output	(Prohibit					Write	e-only		
	Data	RMW)			*	*	*	*	*	*
	Register									•
CAPCR	Capture	000052H	CAP2T	CAP1T	CAPCL	VISFRS	VASFRS	TPRS0	CFGCL	CAFRS
	Control	(Prohibit	(CFG)	(DFG)						
	Register	RMW)	R	R			R	W		
			0	0	0	0	0	0	0	0
			CAP2	CAP1	CAP1/	VISS detect	VASS	TPG0 FIFO	CFG flag	Capture0
			trigger input	trigger input	CAP2	flag clear	detect flag	counter	clear	FIFO
			status	status	status clear		clear	clear		counter/
						0: —			0: —	status
			0: No	0: No	0: —	1: Clear	0:	0: —	1: Clear	clear
			trigger	trigger	1: Clear	(One-shot)	1: Clear	1: Clear	(One-shot)	
			input	input	(One-shot)	,	(One-shot)	(One-shot)		0: —
			1: Trigger	1: Trigger						1: Clear
			input	input						(One-shot)

⁽¹⁰⁾ Timing Pulse Generator 0 (TPG 0)

(11) Timing Pulse Generator 1(TPG1)

Symbol	Name	Address	7	6	5	4	3	2	1	0
TPG1L	TPG1	00003AH	TPG1D7	TPG1D6	TPG1D5	TPG1D4	TPG1D3	TPG1D2	TPG1D1	TPG1D0
	Lower	(Prohibit	(TBC10)	(TBC9)	(TBC8)	(TBC7)	(TBC6)	(TBC5)	(TBC4)	(TBC3)
	Timing	RMW)				Write	e-only			
	Data		0	0	0	0	0	0	0	0
	Register					TPG1 lower	data register			
TPG1H	TPG1	00003BH	TPG1DF	TPG1DE	TPG1DD	TPG1DC	TPG1DB	TPG1DA	TPG1D9	TPG1D8
	Higher	(Prohibit	(TBC18)	(TBC17)	(TBC16)	(TBC15)	(TBC14)	(TBC13)	(TBC12)	(TBC11)
	Timing	RMW)				Write	only	-	-	
	Data		0	0	0	0	0	0	0	0
	Register					TPG1 higher	data register			
TPG1DR	TPG1	00003CH				\searrow	TPGD13	TPGD12	TPGD11	TPGD10
	Output	(Prohibit					(TPG13)	(TPG12)	(TPG11)	(TPG10)
	Data	RMW)						W	rite	
	Register						0	0	0	0
								TPG1 output	data register	

(12) 8-bit PWM

Symbol	Name	Address	7	6	5	4	3	2	1	0
PWMDBR	8-bit PWM	000044H	PWM3DBR7	PWM3DBR6	PWM3DBR5	PWM3DBR4	PWM3DBR3	PWM3DBR2	PWM3DBR1	PWM3DBR0
	Data	(Prohibit				Write	e-only			
	Buffer	RMW)	*	*	*	*	*	*	*	*
	Register									
PWMCR	8-bit PWM	000045H	PWMEOT				PWMC3	PWMC2	PWMC1	PWMC0
	Control	(Prohibit	R					Write	e-only	
	Register	RMW)	0					(0	
			End of				PWM data tr	ansfer reques	st	
			data							
			Transfer				These bits m	nust be cleare	d to 0.	
			PWM data							
			transfer							
			0:End of							
			transfer							
			1:Under							
			transfer							

	Foit Pwr		_	_	_		_	_		_
Symbol	Name	Address	7	6	5	4	3	2	1	0
PWMRUN	PWM Start	00003DH	/	/	/	/	/	PWM2RUN	PWM1RUN	PWM0RUN
	Control								R/W	
	Register							0	0	0
								0	: Stop 1: Sta	art
PWM0DRL	PWM0	00003EH	PWM0D7	PWM0D6	PWM0D5	PWM0D4	PWM0D3	PWM0D2	PWM0D1	PWM0D0
	lower	(Prohibit				Write	e-only			
	Data	RMW)	*	*	*	*	*	*	*	*
	Register									
PWM0DRH	PWM0	00003FH			PWM0DD	PWM0DC	PWM0DB	PWM0DA	PWM0D9	PWM0D8
	Higher	(Prohibit					Write	e-only		
	Data	RMW)			*	*	*	*	*	*
	Register									
PWM1DRL	PWM1	000040H	PWM1D7	PWM1D6	PWM1D5	PWM1D4	PWM1D3	PWM1D2	PWM1D1	PWM1D0
	Lower	(Prohibit				Write	only			
	Data	RMW)	*	*	*	*	*	*	*	*
	Register									
PWM1DRH	PWM1	000041H			PWM1DD	PWM1DC	PWM1DB	PWM1DA	PWM1D9	PWM1D8
	Higher	(Prohibit					Write	e-only		
	Data	RMW)			*	*	*	*	*	*
	Register									
PWM2DRL	PWM2	000042H	PWM2D7	PWM2D6	PWM2D5	PWM2D4	PWM2D3	PWM2D2	PWM2D1	PWM2D0
	Lower	(Prohibit				Write	only			
	Data	RMW)	*	*	*	*	*	*	*	*
	Register									
PWM2DRH	PWM2	000043H			PWM2DD	PWM2DC	PWM2DB	PWM2DA	PWM2D9	PWM2D8
	Higher	(Prohibit					Write	e-only		
	Data	RMW)			*	*	*	*	*	*
	Register									

(13) 14-bit PWM 0,1, 2

(14) CSYNC

Symbol	Name	Address	7	6	5	4	3	2	1	0
CSYNCR	CSYNC	000057H			DPGST	CSYNCPO	SEPMOD	CSYNBP		MASK
	Control		(R/W)		R/W	R/W	R/W	R/W	(R/W)	R/W
	Register		(0)		0	0	0	0	(0)	0
			Fix to 0.		DPG detect	CSYNC	7-bit	C.sync	Fix to 0.	VSYNC
					monitor	input signal	counter	bypass		mask
						polarity	down	control		control
					(Read)	selection	count			
					0: —		selection	0: V.sync		0: —
					1: DPG	0: Positive		1: Bypass		1: Release
					input	1: Negative	0: TBC1			masking
					detected		1: TBC2			(One-shot)
					(Write)					
					0:					
					1: Reset					
					(One-shot)					

(15) PV

Symbol	Name	Address	7	6	5	4	3	2	1	0
PVCR	PV	000058H		/	/		HPMIX	PVSEL2	PVSEL1	PVSEL0
	Control						R/W		R/W	
	Register						0		0	
							Insert HP	PV/PH output	ut format conti	ol
							to pseudo			
							V.sync			
							0: Disable			
							1: Enable			

Symbol	Name	Address	7	6	5	4	3	2	1	0
VIVACR1	VISS/	000054H	_					CTLDTY	VISSFL	VASSFL
	VASS	(Prohibit	(W)					R	R	R
	Control	RMW)	(0)					1	0	0
	Register1		Fix to 0.					CTL signal	VISS detect	VASS
								duty	flag	detect flag
								detector		
								monitor flag	0: —	0: —
									1: VISS	1: VASS
								0:CTL duty	detected	detected
								≥ 50% (VIVACR2		
								<pctlpo></pctlpo>		
								= 0)		
								-,		
								1: CTL duty		
								< 50%		
								(VIVACR2		
								<pctlpo></pctlpo>		
								= 0)		
VIVACR2	VISS/	000055H	PCTLPO	PCTLCKS	MSK1	MSK0	VISS3	VISS2	VISS1	VISS0
	VASS		R/W	R/W	R/W	R/W			W	
	Control		0	0	0	0	1/100		0	
	Register2		CTL signal	CTL duty	CTLIN	CFG input	VISS compa	are data		
			polarity selection	measuring clock	input division	masking control	These 4-bit	data are comp	ared with	
			3010011011	selection	control	control		of the 6-bit CT		
			0: Positive			0: Mask	5			
			(when duty	0: Selected	0: Divide	1: Bypass				
			< 50%,	by	1: Bypass					
			VIVACR1	CAPINCR1						
			<ctldty></ctldty>	<pctlck1,< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pctlck1,<>						
			= 1	2>						
			4. N	4. 4. 4						
			1: Negative	1: Automatic selection						
			(when duty > 50%,	301001011						
			VIVACR1							
			<ctldty></ctldty>							
			= 1					1		
VASSDR	VASS	000056H	VASS7	VASS6	VASS5	VASS4	VASS3	VASS2	VASS1	VASS0
	Data			1		VASS lowe	er 8-bit data	1	1	1
	Register		VASS15	VASS14	VASS13	VASS12	VASS11	VASS10	VASS9	VASS8
						VASS high	er 8-bit data			
							d-only	1		
			*	*	*	*	*	*	*	*
						Fwice reading				
					The First is	s lower 8-bit, t	ne second is	nigher 8-bit		

(16) VISS/VASS

(17) Remote Control Input (RMTIN)

Symbol	Name	Address	7	6	5	4	3	2	1	0
RMTCR	RMTIN	000053H	RMTD7	RMTD6	RMTD5	RMTD4	RMTD3	RMTD2	RMTD1	RMTD0
	Signal Input			R/	W			R	/W	
	Control			()				0	
	Register		V	Width of H noise cancellation Width of L noise cancellation						
	-			4-bit data (TBC8:32 µs) 4-bit data (TBC8:32 µs)						

(18) HA/CR

Symbol	Name	Address	7	6	5	4	3	2	1	0
HACR	Head Amp	00008DH	VTPPO1	VTPPO0	TPVASEL	DFFPO1	DFFPO0	COMPS	CRPO	HAPO
	Control					R	W			
	Register		0	0	0	0	0	0	0	0
			TPG03	TPG03	P91 output	TPG03	TPG03	Enable	CR output	HA output
			(P92) edge	(P90) edge	selection	input	input	COMPIN	polarity	polarity
			selection	selection		polarity	polarity		selector	selector
					0: TPG01	selector	selector	0: Disable		
			0: Rising	0: Rising	1: VASWP	0: Positive	0: Positive	1: Enable	0: Positive	0: Positive
			edge	edge		1: Negative	1: Negative		1: Negative	1: Negative
			1: Falling	1: Falling						
			edge	edge						

(19) 8-bit AD Converter

Symbol	Name	Address	7	6	5	4	3	2	1	0		
ADMOD	AD	00005AH	_	EOCF	ADBF	ADS	ADCH3	ADCH2	ADCH1	ADCH0		
	Converter		(R/W)	R	R	R/W		R/	R/W			
	Control		(1)	0	0	0		C)			
	Register		Fix to 1.	AD	AD	AD	Analog chan	nel selection				
				conversion	conversion	conversion						
				complete flag	busy flag	start	0000: AIN0	0110: AIN6				
							0001: AIN1	0111: AIN7				
				0: AD	0: AD	0: —	0010: AIN2	1000: AIN8				
				conversion	conversion	1: start	0011: AIN3	1001: AIN9				
				in	stopped		0100: AIN4	1010 to 1111	1: Reserved			
				progress	1: AD		0101: AIN5					
				or before	conversion							
				conversion	in							
				1: AD	progress							
				conversion								
				completed				1				
ADREG	AD	00005BH	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0		
	Converted		Read-only									
	Register		Undefined after reset									

(20) SIO

Symbol	Name	Address	7	6	5	4	3	2	1	0
SCBUF	SIO	000066H	TRB7	TRB6	TRB5	TRB4	TRB3	TRB2	TRB1	TRB0
	Buffer	(Prohibit				R/	W			
	Register	RWM)				Undefined	after reset			
SCMOD	SIO	000067H	FFSI	SRES	SMD1	SMD0	SIFT	CLKSI	SCKS	SIOE
	Control	(Prohibit	R	R/W	R	W	R/W	R/W	R/W	R/W
	Register	RWM)	1	0	(C	0	0	0	0
			Serial	Serial	Serial transfe	er mode	Serial	Serial	Serial	Serial
			transfer	transfer	select		transfer	transfer	transfer	transfer
			monitor	terminate			shift edge	internal	clock	start
			flag		00: Transmit	mode	select	clock rate	selection	
				0: —	01: Receive	mode		select		0: Stop
			0: Under	1: Terminate	10: reserved		0: Leading		0: Internal	1: Start
			transfer-	(One-shot)	11: Transmit	/receive	edge	0: 2 ³ /f _{SYS}	clock	
			ring		mode		1: Trailing	1: 2 ⁷ /f _{SYS}	1: External	
			1: Stop				edge		clock	
ISCR	Interrupt	00008FH	SELINT							
	Source		R/W							
	Control		0							
	Register		0: INT2							
			1: INTSIO							

(21) I²C bus (1)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
I2CCR1	I ² C bus	000081H	_	_	_	ACK	CHS	SCK2	SCK1	SCK0	
	Control			(W)		R/W	R/W		W		
	Register1		(0)	(0)	(0)	0	0	0	0	0	
		(Prohibit	These bits r	nust be clear	ed to "0"	0: Acknowledge	Channel	Serial clock	Serial clock selection		
		RMW)				not retured to	selection				
						transmitter		000: 250 kH	lz 100: 15.6	kHz	
							0: Channel0	001: 125 kH	lz 101: 7.8 l	κHz	
						1: Acknowledge	(SCL0,	010: 62.5 k	Hz 110: 3.9 I	Ηz	
						retured to	SDA0)	011: 31.2 k	Hz 111: (Re	served)	
						transmitter					
							1: Channel1	at fc = 16 M	Hz		
							(SCL1,				
							SDA1)				
I2CDBR	I ² C bus	000082H	I2DBR7	I2DBR6	I2DBR5	I2DBR4	I2DBR3	I2DBR2	I2DBR1	I2DBR0	
	Data Buffer	(Prohibit				R/W					
	Register	RMW)				Undefined a					
				[Can not be read			1	[
I2CAR	I ² C bus	000083H	SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS	
	Address	(Prohibit				Write-only				W	
	Register	RMW)	0	0	0	0	0	0	0	0	
			slave addre	ss selection						Address	
										recognition	
										mode	
										specification	
										0: Slave	
										address recognition	
										1: Non slave	
										address	
										recognition	

(21) I ² C bus	s (2)
---------------------------	-------

Symbol	Name	Address	7	6	5	4	3	2	1	0
I2CCR2	I ² C bus	000084H	MST	TRX	BB	PIN	SBIM1	SBIM0	_	_
	Control	(Prohibit		-	-	Write	e-only		-	
	Register2	RMW)	0	0	0	1	0	0	(0)	(0)
			Master/	Transmitter	Start/stop	Cancel	Serial bus in	terface	Fix to 0.	Fix to 0.
			slave	/receiver	condition	interrupt	operation mo	ode selection		
			selection	selection	generation	service				
						request	00: Port mod	de		
			0: Slave	0: Receiver	0: Stop	0: —	01: (Reserve			
			1: Master	1: Transmit-	condition	1: Cancel	10: I ² C bus r	node		
				ter	1: Start	interrupt	11: (Reserve	ed)		
					condition	service				
	-					request		1		
I2CSR	I ² C bus	000084H	MST	TRX	BB	PIN	_	AAS	AD0	LRB
	Status			1	1	Read	d-only	1	1	1
	Register		0	0	0	1		0	0	1
			Status	Status	Status	Interrupt		Slave	"GENERAL	Last
			monitor	monitor	monitor	request		address	CALL"	received bit
						monitor		match	detection	monitor
			0: Slave		0: Bus free			detection	monitor	
			1: Master	1: Transmit-	1: Bus busy	0: Request		monitor		0: Last
				ter		1: Release			0: —	received
								0: —	1: GENERAL	bit 0
								1: Slave	CALL	1: Last
								address	detected	received
								match or		bit 1
								GENERAL CALL		
								CALL detected		

(21) I²C bus (3)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
I2CFCR1	I ² C bus	000063H	T/ R		FSCK		CONT		BYTE		
	FIFO	(Prohibit				Write	e-only				
	Control	RMW)	0		0		0		0		
	Register1		FIFO	Serial transf	er clock selec	tion	Data	Transfer data	a byte control		
			transfer				transfer				
			mode	Serial clock selection			mode	000: 1 byte			
			selection				selection	100: 5 byte			
				000: fc/26(250	kHz) 100: fc/	2 ¹⁰ (15.6 kHz)		001: 2 byte			
			0: Receive	001: fc/27(125	kHz) 101: fc/	2 ¹¹ (7.8 kHz)	0: Data	101: 6 byte			
			mode	010: fc/28(62.	5 kHz) 110: fc	/2 ¹² (3.9 Hz)	transfer	010: 3 byte			
			1: Transmit	011: fc/29(31.2	2 kHz) 111: (F	Reserved)	mode	110: 7 byte			
			mode				every bit	011: 4 byte			
				at fc = 16 MH	łz		1: Series	111: 8 byte			
							data				
							transfer	These are enable when $\langle CONT \rangle = 0$			
							mode				
I2CFCR2	I ² C bus	000064H	START	STOP	CHS	INT		_	RST	_	
	FIFO	(Prohibit	W	W	W	W			W		
	Control	RMW)	1	1	0	1	—	—	1	—	
	Register2		FIFO buffer	FIFO buffer	I/O channel	Next			12C		
			transfer	transfer	selection	transfer			bus/FIFO		
			start	stop		start(series			control		
					0: Channel0	data			system		
			0: Start/	0: Stop	(SCL0,	transfer			reset		
			Restart	1:—	SDA0)	mode)					
			1: —		1: Channel1				0: Reset		
					(SCL1,	0: start			1: —		
					SDA1)	next					
						transfer 1: —					
I2CFDBR	l ² C bus	000065H	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0	
	FIFO	(Prohibit				R	/W				
	Data	RMW)	Undefined after reset								
	Buffer				(Can not be rea	ad written data	a.			

r

(21) I²C bus (4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
I2CFSR1	I ² C bus	000064H	SDA	END	CHS	BUSY	FULL	EMPTY	SCERR	AKERR
	FIFO					Read	l-only			
	Status		_	0	0	0	0	0	0	0
	Register1		SDA bus	FIFO buffer	I/O channel	FIFO buffer	FIFO buffer	FIFO buffer	Start con-	Acknow-
			monitor	status flag	monitor	transfer	full/	empty/	dition error	ledge error
						status	Receive	transmitter	detector	detector
			0: Low	0: —	0: Channel0	monitor	finishing	finishing		
			level	1: Finished	1: Channel1		monitor	monitor	0: —	0:
			1: High	transfer		1: Under			1: start	1: Acknow-
			level	I2CFCR2		FIFO	0: —	0: —	condition	ledge
				<stop></stop>		buffer	1: FIFO	1: FIFO	error	error
				= 0		data	buffer	buffer	genera-	genera-
				then		transfer	full/ finish	empty/	tion	tion
				clear		I2CFCR2	receiver	finish		
						<stop></stop>		transmit-		
						= 0		ter		
						then				
1005000	l ² C bus	00000011	NOMAT			clear				
I2CFSR2		000069H	NOMAT	LRBM	_	_	_	_	_	_
	FIFO		R	R			Linda Const			
	Status		0	1			Undefined	after reset		
	Register2		SCL output/	Last receive						
			SCL line	monitor						
			matching monitor	(Acknow- ledge						
			monitor	monitor)						
			0: —	monitory						
			1: SCL line	0: Last						
			is low by	receive						
			slave	bit 0						
			device	(Acknow-						
				ledge)						
				1: Last						
				receive						
				bit 1						
				(Non-						
				Acknow-						
				ledge)						

Symbol	Name	Address	7	6	5	4	3	2	1	0
INT0CP1	INT0/	0070H		INTO	CAP1			IN	Т0	
	CAP1	(Prohibit	ICAP1C	ICAP1M2	ICAP1M1	ICAP1M0	10C	10M2	I0M1	10M0
	Interrupt	RMW)	R/W	W	W	W	R/W	W	w	W
	Register		0	0	0	0	0	0	0	0
INTCP0TG0	CAP0/	0071H		INTT	PG0			INTC	CAP0	
	TPG0	(Prohibit	ITPG0C	ITPG0M2	ITPG0M1	ITPG0M0	ICAP0C	ICAP0M2	ICAP0M1	ICAP0M0
	Interrupt	RMW)	R/W	W	W	W	R/W	W	w	W
	Register		0	0	0	0	0	0	0	0
INTTP1I2C	TPG1/	0072H		INTI	2CB			INTT	PG1	
	I ² CBUS	(Prohibit	II2CC	II2CM2	II2CM1	II2CM0	ITPG1C	ITPG1M2	ITPG1M1	ITPG1M0
	Interrupt	RMW)	R/W	W	W	W	R/W	W	W	W
	Register		0	0	0	0	0	0	0	0
INTTBCVA	TBC/	0073H		INT	VA			INTTBC		
	VA	(Prohibit	IVAC	IVAM2	IVAM1	IVAM0	ITBCC	ITBCM2	ITBCM1	ITBCM0
	Interrupt	RMW)	R/W	W	W	W	R/W	W	W	W
	Register		0	0	0	0	0	0	0	0
INT12SIO	INT1/	0074H		INT2	/SIO			IN	T1	
	INT2/	(Prohibit	I2C	12M2	I2M1	I2M0	I1C	I1M2	I1M1	I1M0
	SIO	RMW)	/SIOC	/SIOM2	/SIOM1	/SIOM0				
	Interrupt		R/W	W	W	W	R/W	W	w	W
	Register		0	0	0	0	0	0	0	0
INT43	INT3/	0075H		IN	T4			IN	ТЗ	-
	INT4	(Prohibit	I4C	I4M2	I4M1	I4M0	I3C	I3M2	I3M1	I3M0
	Interrupt	RMW)	R/W	W	W	W	R/W	W	w	W
	Register		0	0	0	0	0	0	0	0
INTT1T0	Timer0/	0076H		INT	T1			INT	T0	
	Timer1	(Prohibit	IT1C	IT1M2	I1TM1	IT1M0	IT0C	IT0M2	IT0M1	IT0M0
	Interrupt	RMW)	R/W	W	W	W	R/W	W	W	W
	Register		0	0	0	0	0	0	0	0
INTT3T2	Timer2/	0077H		INT	T3			INT	T2	
	Timer3	(Prohibit	IT3C	IT3M2	IT3M1	IT3M0	IT2C	IT2M2	IT2M1	IT2M0
	Interrupt	RMW)	R/W	W	W	W	R/W	W	W	W
	Register		0	0	0	0	0	0	0	0
INT5T4	Timer4/	0078H	INTT5					INT	T4	
	Timer5	(Prohibit	IT5C	IT5M2	IT5M1	IT5M0	IT4C	IT4M2	IT4M1	IT4M0
	Interrupt	RMW)	R/W	W	W	W	R/W	W	W	W
	Register		0	0	0	0	0	0	0	0

(22) Interrupt priority setting register(1/2)

-										
Symbol	Name	Address	7	6	5	4	3	2	1	0
INTADRTC	AD/	0079H		INTI	RTC			INT	AD	-
	RTC	(Prohibit	IRTCC	IRTM2	IRTM1	IRTM0	IADC	IADM2	IADM1	IADM0
	Interrupt	RMW)	R/W	W	W	W	R/W	W	W	W
	Setting		0	0	0	0	0	0	0	0

(22) Interrupt priority setting register (2/2)

lxxM2	IxxM1	IxxM0	Function (Write)
0	0	0	Prohibit interrupt request.
0	0	1	Set interrupt request level to 1.
0	1	0	Set interrupt request level to 2.
0	1	1	Set interrupt request level to 3.
1	0	0	Set interrupt request level to 4.
1	0	1	Set interrupt request level to 5.
1	1	0	Set interrupt request level to 6.
1	1	1	Prohibit interrupt request.

IxxC	Function (Read)	Function (Write)
0	Indicates no interrupt request.	Clears interrupt request flag.
1	Indicates interrupt request.	Don't care

Note 1: Read-modify-write is prohibited.

Note 2: Note about clearing interrupt request flag.

The interrupt request flag of INTCAP1, INTCAP0, INTSIO0, INTSIO1, INTRX and INTAD are not cleared by writing 0 to IxxC of they are level interrupts.

They can be cleared only by resetting, reading captured data/ADREG/SC2BUF or reading/writing SC0BUF/SC1BUF.

Note 3: Note about clearing interrupt request flag.

When the INTTPG0 is used for a FIFO empty interrupt (a level signal), the interrupt controller also leaves a request flag (Flip/Flop) after clearing FIFO empty by setting next TPG0 data in an interrupt routin.

Therefore, in this case, the INTTPG0 request flag has to be cleared before executing RETI instruction.

Symbol	Name	Address	7	6	5	4	3	2	1	0
ISCR	Interrupt	00008FH	SELINT		_				_	_
	Source		R/W							
	Control		0							
	Register		0: INT2							
			1: SIO							

(23) Micro DMA Start Vector

Symbol	Name	Address	7	6	5	4	3	2	1	0	
DMA0V	micro	00007CH			DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0	
	DMA0	(Prohibit					Write	e-only			
	Start	RMW)			0						
	Vector				Set micro DMA start vector						
DMA1V	micro	00007DH			DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0	
	DMA1	(Prohibit			Write-only						
	Start	RMW)			0						
	Vector						Set micro DN	A start vector			
DMA2V	micro	00007EH	/		DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0	
	DMA2	(Prohibit					Write	e-only			
	Start	RMW)					(0			
	Vector		-	_		-	Set micro DN	A start vector			
DMA3V	micro	00007FH			DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0	
	DMA3	(Prohibit					Write	e-only			
	Start	RMW)					(0			
	Vector						Set micro DN	IA start vector			

(24) Port0

Symbol	Name	Address	7	6	5	4	3	2	1	0
P0	Port0	000000H	P07	P06	P05	P04	P03	P02	P01	P00
	data					R/	W			
	Register		0	0	0	0	0	0	0	0
P0CR	Port0	000002H	P07C	P06C	P05C	P04C	P03C	P02C	P01C	P00C
	Control	(Prohibit				Write	e-only			
	Register	RMW)	0	0	0	0	0	0	0	0
					0:	Input mode	1: Output mo	de		

(25) Port1

Symbol	Name	Address	7	6	5	4	3	2	1	0
P1	Port1	000001H	P17	P16	P15	P14	P13	P12	P11	P10
	data					R/	W			
	Register		0	0	0	0	0	0	0	0
P1CR	Port1	000004H	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
	Control	(Prohibit				Write	e-only			
	Register	RMW)	0	0	0	0	0	0	0	0
			0: Input mode 1: Output mode							

(26) Port2

Symbol	Name	Address	7	6	5	4	3	2	1	0	
P2	Port2	000006H	P27	P26	P25	P24	P23	P22	P21	P20	
	data					R/	W				
	Register		1	1	1	1	1	1	1	1	
P2CR	Port2	000008H	P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C	
	Control	(Prohibit				Write	-only				
	Register	RMW)	0	0	0	0	0	0	0	0	
			0: Input mode 1: Output mode								

(27) Port 4

Symbol	Name	Address	7	6	5	4	3	2	1	0		
P4	Port4	00000AH	P47	P46	P45	P44	P43	P42	P41	P40		
	data			Read-only								
	Register			Undefined after reset								

(28) Port 5

Symbol	Name	Address	7	6	5	4	3	2	1	0
P5	Port5	00000BH	/			P54	P53	P52	P51	P50
	data							R/W		
	Register					1	1	1	1	1
								-		-
P5CR	Port5	00000CH	P52F	P51F		P54C	P53C	P52C	P51C	P50C
	Control	(Prohibit	W	W				Write-only		
	Register	RMW)	0	0		0	0	0	0	0
			0: Port52	0: Port51			0: Input mo	de 1: C	utput mode	
			1: SCK	1: SO			1	1	1	1
IIMC0	External	00005EH	\sim			I4IE	I3IE	I2IE	I1IE	101E
	Interrupt	(Prohibit				(INT4)	(INT3)	(INT2)	(INT1)	(INT0)
	Control	RMW)						W		
	Register					0	0	0	0	0
								nal interrupt e		
								sable 1: Er		
IIMC1	External	00005FH	I4EG	13EG	I2EG	I1EG	10EG		INTTPG0E	INTTPG0S
	Interrupt	(Prohibit		1	Write-only	1	1		R/W	R/W
	Input	RMW)	0	0	0	0	0		0	0
	Mode		INT4 edge	INT3 edge	INT2 edge	INT1	INT0		INTTPG0	INTTPG0
	Control		selection	selection	selection	edge/level	edge		(TPG03)	source
						selection	selection		edge	selection
			0: Rising	0: Rising	0: Rising				selection	
			edge	edge	edge	0: Rising	0: Rising			0: FIFO
			1: Falling	1: Falling	1: Falling	edge	edge		0: Rising	empty
			edge	edge	edge	1: Level	1: Falling		edge	interrupt
							edge		1: Falling	1: FIFO
									edge	empty or
										TPG03
						1	1			interrupt

(29) Port 7

Symbol	Name	Address	7	6	5	4	3	2	1	0
P7	Port7	00000FH		P76	P75	P74	P73		\sim	\sim
	data					/W	1			
	Register			1	1	1	1			
	0						1			
P7CR	Port7	000011H		P76C	P75C	P74C	P73C			
	Control	(Prohibit			Write	e-only				
	Register	RMW)		0	0	0	0			
				0: In	put mode	1: Output	mode			
P7FC	Port7	000013H		P76F	P75F	P74F	P73F			
	Function	(Prohibit		W	W	W	W			
	Register	RMW)		0	0	0	0			
				0: Port76	0: Port75	0: Port74	0: Port73			
			_	1: SCL1	1: SDA1	1: SCL0	1: SDA0			
ODCR1	Open	000015H		POD76	POD75	POD74	POD73			
	Drain	(Prohibit			Write	e-only				
	Control	RMW)		0	0	0	0			
	Register1				0: Pu	sh-pull				
					1: Ope	en-drain	1			
P7ICR	P7	00000DH		PR76	PR75	PR74	PR73			
	Input	(Prohibit			Write	e-only				
	Control	RMW)		0	0	0	0			
	Register				0:	Pin				
					1: Outp	out latch				

(30) Port 8

Symbol	Name	Address	7	6	5	4	3	2	1	0	
P8	P8	000016H	P87	P86	P85	P84	P83	P82	P81	P80	
	data					R	/W				
	Register		1	1	1	1	1	1	1	1	
P8CR	P8	000018H	P87C	P86C	P85C	P84C	P83C	P82C	P81C	P80C	
	Control	(Prohibit		Write-only							
	Register	RMW)	0	0	0	0	0	0	0	0	
					0: In	put mode	1: Output n	node			
P8FC	P8	000014H	/	/	/	/	P83F	/	/	/	
	Function	(Prohibit					W				
	Register	RMW)					0				
							0: Port83				
							1: TO1				

Symbol	Name	Address	7	6	5	4	3	2	1	0
P9	P9	000017H	P97	P96	P95	P94	P93	P92	P91	P90
	data				_	R	W		_	-
	Register		1	1	1	1	1	1	1	1
				T	1		r		T	
P9CR	P9	000019H	P97C	P96C	P95C	P94C	P93C	P92C	P91C	P90C
	Control	(Prohibit		1	1	Write	e-only	I	1	
	Register	RMW)	0	0	0	0	0	0	0	0
				1	0: In	put mode	1: Output r	node	1	
P9FC	P9	00001AH	P97F	P96F	P95F	P94F	P93F	P92F	P91F	P90F
	Function	(Prohibit		1		Write	e-only		1	
	Register	RMW)	0	0	0	0	0	0	0	0
			0: Port97	0: Port96	0: Port95	0: Port94	0: Port93	0: Port92	0: Port91	0: Port90
			1: TPG11	1: TO1/	1: HA	1: CR	1: TPG03	1: TP1	1: TPG01/	1: TP0/
				TPG10					VASWP	TPG00
ODCR2	Open	00001BH	POD97	POD96	POD95	POD94	POD93	POD92	POD91	POD90
	Drain	(Prohibit					e-only			
	Control	RMW)	0	0	0	0	0	0	0	0
	Register2					Push-pull	1: Open-dr			
HACR	Head Amp	00008DH	VTPP01	VTPPO0	TPVASEL	DFFPO1	DFFPO0	COMPS	CRPO	HAPO
	Control			_			w	_		
	Register		0	0	0	0	0	0	0	0
			0: Rising	0: Rising	0: TPG01 1: VASWP	0: Positive	0: Positive	0: Disable 1: Enable	0: Positive	0: Positive 1: Negative
			edge 1: Falling	edge 1: Falling	I. VASWP	1: Negative	1: Negative	I. Enable	1: Negative	1. Negative
			edge	edge						
TPCR	Timing	000086H	TPGOE1	TPGOE0		TPG1CNT		TP1D		TP0D
	Pulse		R/W	R/W		R/W		R/W		R/W
	Control		0	0		0		0		0
	Register		TPG10	TPG00		P97		TP1 data		TP0 data
	, j		output	output		TPG11		latch		latch
			control	control		output				
						control				
			0: Disable	0: Disable						
			1: Enable	1: Enable		0: Disable				
						1: Enable				

(31) Port 9

(32)	Port	А
------	------	---

Symbol	Name	Address	7	6	5	4	3	2	1	0
PA	PortA	00001CH					PA3			PA0
	data						R/W			R/W
	Register						1			1
	-									
PACR	PortA	00001EH					PA3C	/		PA0C
	Control	(Prohibit					W			W
	Register	RMW)					0			0
	-						0: Input			0: Input
							mode			mode
							1: Output			1: Output
							mode			mode
ODCR3	Open-drain	000021H	$\overline{}$			PWMOD1	PWMOD0			PODA3
	Control	(Prohibit				(PWM1)	(PWM0)			(PortA3)
	Register3	3 RMW)				Writ	e-only			W
						0	0			0
						PWM0,1	Open-drain			PortA
						со	ntrol			Open-drain
										control
						0: Pu	sh-pull			0: Push-
						1: Op	en-drain			pull
										1: Open-
			-		_					drain
PAFC	PortA	00006BH					PA3F		PA0F2	PA0F1
	Function	(Prohibit					W		N N	N
	Register	RMW)					0			0
							0: Port A3		00: Port A0	
							1: PWM2		01: PVPH	
									10: PWM3	
									11: Reserve	d

(33) Port B

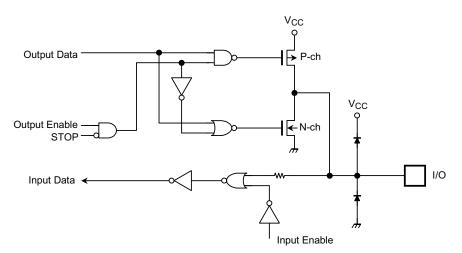
Symbol	Name	Address	7	6	5	4	3	2	1	0
PB	PortB	00001DH							PB1	PB0
	data								R	W
	Register								1	1
									(SYSCR0<	XTEN> = 0)
PBCR	PortB	00001FH						/	PB1C	PB0C
	Control	(Prohibit							Write	e-only
	Register	RMW)							0	0
									0: Inpu	t mode
									1: Outp	ut mode

Symbol	Name	Address	7	6	5	4	3	2	1	0	
PC	PC	000087H	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	
	data					R/	W				
	Register		0	0	0	0	0	0	0	0	
				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1	
PD	PD	000088H							PD1	PD0	
	data								R	/W	
	Register								0	0	
										1	
PE	PE	000089H	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	
	data				1	R/	W				
	Register		0	0	0	0	0	0	0	0	
				<u> </u>	1	1	1				
PF	PF	00008AH			PF5	PF4	PF3	PF2	PF1	PF0	
	data					1	R/	W		1	
	Register				0	0	0	0	0	0	
							1	r	r	T	
PECR	PE	00008BH	PE7C	PE6C	PE5C	PE4C	PE3C	PE2C	PE1C	PE0C	
	Control	(Prohibit		Write-only							
	Register	RMW)	0	0	0	0	0	0	0	0	
					0:	Input mode	1: Output mo	de			
PFCR	PF	00008CH	_	_	PF5C	PF4C	PF3C	PF2C	PF1C	PF0C	
	Control	(Prohibit			Write-only						
	Register	RMW)			0	0	0	0	0	0	
						0:	Input mode	1: Output mo	de		

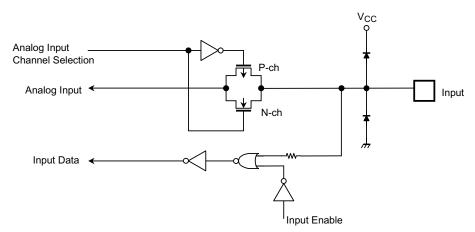
(34) Port C, D, E, F

(35) CLK output

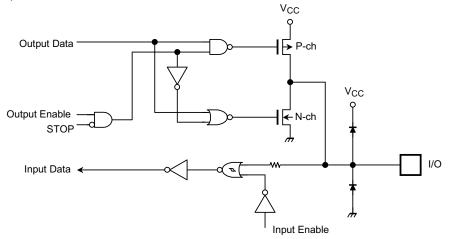
Symbol	Name	Address	7	6	5	4	3	2	1	0
SYSCR3	System	00006DH	_	_	_	_	_	_	_	CLKEN
	Control	(Prohibit	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)		R/W
	Register 3	RMW)	(1)	(1)	(1)	(1)	(1)	(1)		0
			Fix to 1.	Fix to 1.		0: Disable				
							Note: This	Note: This		1: Enable
							bit is read	bit is read		
							as 1	as 1		
							always.	always.		

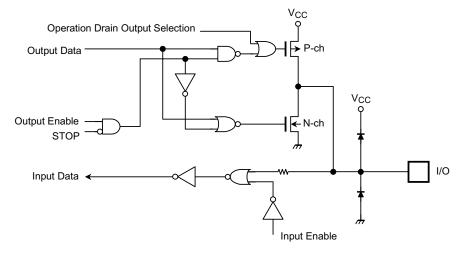

6. Port Section Equivalent Circuit Diagram

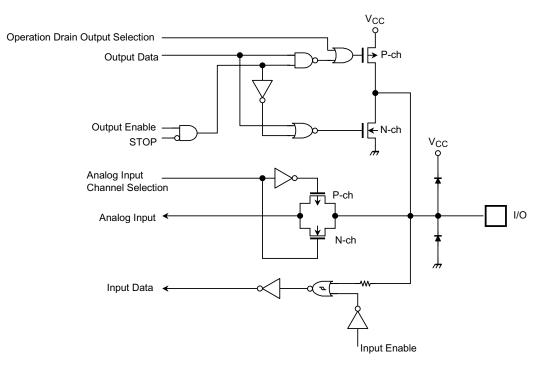
• Reading the circuit diagram

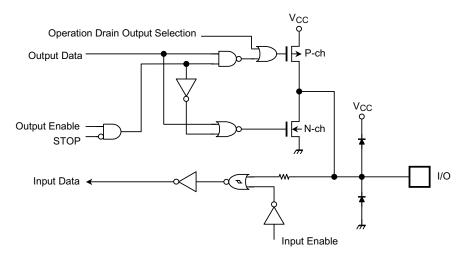

Basically, the gate symbols are written the same as those used for the standard CMOS logic IC [74HCxx] series.

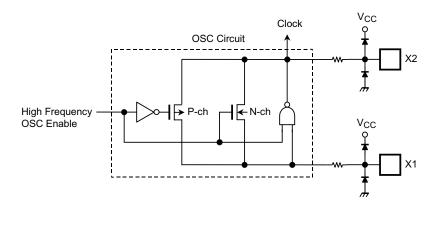
The dedicated signal is described below.

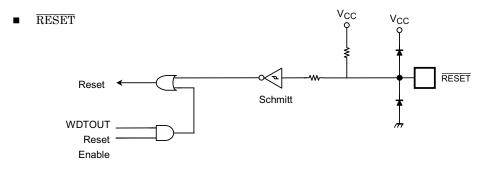

- STOP: This signal becomes active 1 when the halt mode setting register is set to the STOP mode (WDMOD<HALT1,0> = 0, 1) and the CPU executes the HALT instruction. When the drive enable bit WDMOD<DRVE> is set to 1, however, STOP remains at 0.
- The input protection resistans ranges from several tens ohms to several hundreds ohms.
 - P0, P1, P2


■ P4


■ P5, P8

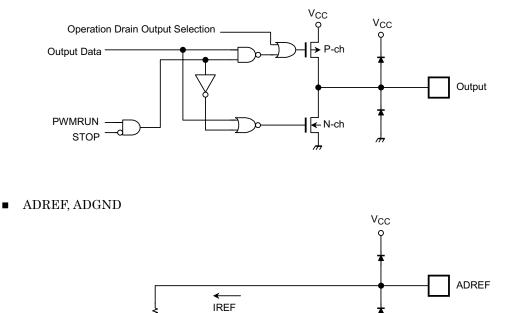

■ P9, PA


■ P75, P76

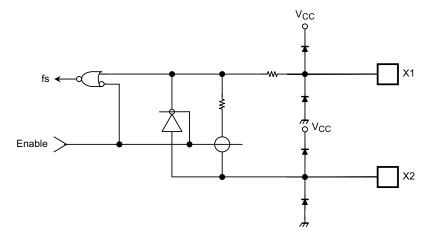


■ P73, P74

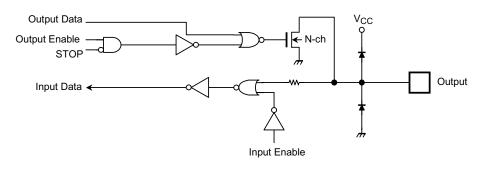
■ X1, X2

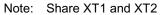


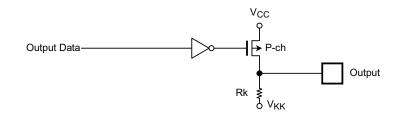
TEST


■ PWM0, PWM1

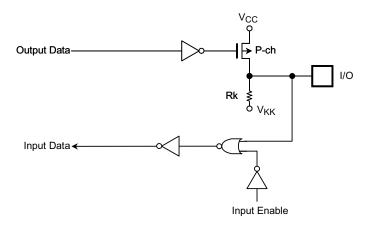
String Resistor

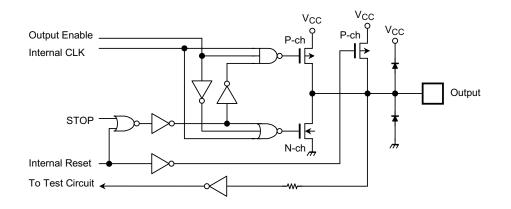

Note: IREF flows continuously at standby.

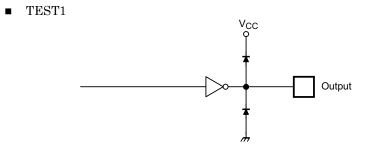

■ XT1, XT2


Note: Share PB1 and PB1

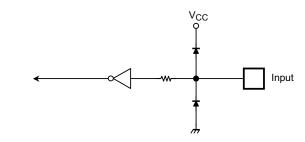
PB



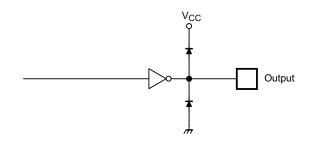

■ PC, PD



■ PE, PF



CLK



■ TEST2

■ TEST3

		Input/	Output		Condition of	
Port	Pin	Output	mode	Shared Function	input enable	Remark
P0	P00 to P07	I/O	P-P		P0*OBF	
P1	P10 to P17	I/O	P-P		P1*OBF	
P2	P20 to P27	I/O	P-P		P2*OBF	
P4	P40 to P47	I	_	AIN2 to AIN9	P4*OBF	Analog Input
P5	P50	I/O	P-P	INT4/TI3TI5/SI (Schmitt)	OBF	
	P51	I/O	P-P	INT3/TI2TI4/SO (Schmitt)	OBF	
	P52	I/O	P-P	INT2/TI1/TI0/SCK (Schmitt)	OBF	
	P53	I/O	P-P	INT1 (Schmitt)	OBF	
	P54	I/O	P-P	INT0 (Schmitt)	OBF	
P7	P73	I/O	P-P/O-D	SDA0 (I/O) (Schmitt)	OBF	
	P74	I/O	P-P/O-D	SCL0 (I/O) (Schmitt)	OBF	
	P75	I/O	P-P/O-D	SDA1/AIN0 (I/O) (Schmitt)	OBF	Analog Input
	P76	I/O	P-P/O-D	SCL1/AIN1 (I/O) (Schmitt)	OBF	Analog Input
P8	P80	I/O	P-P	CTLIN (Schmitt)	OBF	
	P81	I/O	P-P	DFGIN (Schmitt)	OBF	
	P82	I/O	P-P	RMTIN (Schmitt)	OBF	
	P83	I/O	P-P	EXT/TO1 (Schmitt)	OBF	
	P84	I/O	P-P	DPGIN (Schmitt)	OBF	
	P85	I/O	P-P	CFGIN (Schmitt)	OBF	
	P86	I/O	P-P	CSYNCIN (Schmitt)	OBF	
	P87	I/O	P-P	COMPIN (Schmitt)	OBF	
P9	P90	I/O	P-P/O-D	TP0/TPG00 (o)	P9*OBF	
	P91	I/O	P-P/O-D	TPG01/VASWP (3-state)	P9*OBF	
	P92	I/O	P-P/O-D	TP1 (o)	P9*OBF	
	P93	I/O	P-P/O-D	TPG03 (o)	P9*OBF	
	P94	I/O	P-P/O-D	CR (o)	P9*OBF	
	P95	I/O	P-P/O-D	HA (o)	P9*OBF	
	P96	I/O	P-P/O-D	TO1/TPG10 (o)	P9*OBF	
	P97	I/O	P-P/O-D	TPG11 (3-state)	P9*OBF	
PA	PA0	I/O	P-P	PVPH/PWM3 (3-state)	PA*OBF	
	PA3	I/O	P-P/O-D	PWM2 (o)	PA*OBF	
PB	PB0	I/O	O-D	XT1 (Xtal)	OBF	
	PB1	I/O	O-D	XT2 (Xtal)	OBF	
PC	PC0 to PC7	0	H-V	VFT (Grid)		High Voltage port
PD	PD0, PD1	0	H-V	VFT (Grid)		High Voltage port
PE	PE0 to PE7	I/O	H-V/ O-D	VFT (Segment)	OBF	High Voltage port
PF	PF0 to PF5	I/O	H-V/ O-D	VFT (Segment)	OBF	High Voltage port

Table 6	1 Pc	ort ena	ahle

P-P: Push-Pull, O-D: Open-drain, (O): Output, (I/O): Input/Output, (Schmitt): Schmitt input, except (Schmitt): CMOS input, OBF: STOP· WDMOD<DRVE>, P0 to PA: Access to Port register

7. Points of Concern and Restriction

- (1) Notation
 - a. Explanation of a built-in I/O register: Register Symbol <Bit Symbol> e.g.) TRUN<TORUN> ... Bit TORUN of Register TRUN
 - b. Read, Modify and Write Instruction

An instruction in which the CPU executes following by one instruction.

i)	CPU reads	data of the me	mory.				
ii)	CPU modifies the data.						
iii)	iii) CPU writes the data to the same memory.						
ex1) SET	3, (TRUN)	set bit 3 of TRUN				
ex2) INC	1, (100H)	increment the data of 100H				

• A sample Read, Modify and Write instructions using the TLCS-900

Exchange			
EX	(mem), R		
Arithmetic O	peration		
ADD	(mem), R/#	ADC	(mem), R/#
SUB	(mem), R/#	SBC	(mem), R/#
INC	#3, (mem)	DEC	#3, (mem)
Logical Opera	ation		
AND	(mem), R/#	OR	(mem), R/#
XOR	(mem), R/#		
Bit Manipula	tion		
STCF	#3/A, (mem)	SET	#3, (mem)
RES	#3, (mem)	TSET	#3, (mem)
CHG	#3, (mem)		
Rotate and S	hift		
RLC	(mem)	RRC	(mem)
RL	(mem)	RR	(mem)
SLA	(mem)	SRA	(mem)
SLL	(mem)	SRL	(mem)
RLD	(mem)	RRD	(mem)

 $c. \quad fc,\,fs,\,f_{\rm FPH},\,f_{\rm SYS},\,1\,\,state$

The clock frequency input from pins X1 and X2 pin is called fc, and the clock frequency input from XT1, XT2 pin is called fs. The clock frequency selected by SYSCR1<SYSCK> is called system clock f_{FPH} , and the clock frequency given by f_{FPH} divided by 2 is called f_{SYS} . One cycle of f_{SYS} is called 1 state.

(2) Care Points

a. Warming-up Counter

The warm-up counter operates when STOP mode is released even if the system is using an external oscillator. As a result, it takes warm-up time from inputting the releasing request to outputting the system clock.

b. WatchDog Timer

The watchdog timer starts operation immediately after the reset is released. When the watchdog timer is not used, disable it.

c. CPU (Micro DMA)

Only the "LDC cr, r", "LDC r, cr" instructions can be used to access the control registers in the CPU (like the transfer source address register (DMASn)).

d. $\overline{\text{TEST}}$, TEST1, TEST2, TEST3

Each pins for test is used as follows.

TEST : V_{CC} level TEST1, TEST2: Short on the PCB TEST3: OPEN

e. POP SR instruction

Please execute POP SR instruction during DI condition.

f. Releasing the HALT mode by requesting an interruption

Usually, interrupts can release all halts status. However, the interrupts = (INT0, INT1), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of fc or fs) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.