TOSHIBA

TOSHIBA Original CMOS 16-Bit Microcontroller

TLCS-900/H Series

TMP95C001FG

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs.

Before use this LSI, refer the section, "Points of Note and Restrictions".

Especially, take care below cautions.

CAUTION

How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = (NMI, INTO), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP mode. (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

Document Change Notification

The purpose of this notification is to inform customers about the launch of the Po-free version of the device. The introduction of a Pb-free replacement affects the datasheet. Please understand that this notification is intended as a substitute for a revision of the datasheet.

Changes to the datasheet may include the following, though not all of them may apply to this particular device.

1. Part number

Example: $TMPxxxxxxF \rightarrow TMPxxxxxxFG$

All references to the previous part number were left unchanged in body text. The new part number is indicated on the prelims pages (cover page and this notification).

2. Package code and package dimensions

Example: LQFP100-P-1414-0.50C → LQFP100-P-1414-0.50F

All references to the previous package code and package dimensions were left unchanged in body text. The new ones are indicated on the prelims pages.

3. Addition of notes on lead solderability

Now that the device is Pb-free, notes on lead solderability have been added.

4. RESTRICTIONS ON PRODUCT USE

The previous (obsolete) provision might be left unchanged on page 1 of body text. A new replacement is included on the next page.

5. Publication date of the datasheet

The publication date at the lower right corner of the prelims pages applies to the new device.

1. Part number

Previous Part Number (in Body Text)	New Part Number
TMP95C001F	TMP95C001FG

2. Package code and dimensions

Previous Package Code (in Body Text)	New Package Code
P-QFP64-1414-0.80A	QFP64-P-1414-0.80C

^{*:} For the dimensions of the new package, see the attached Package Dimensions diagram.

3. Addition of notes on lead solderability

The following solderability test is conducted on the new device.

Solderability of lead free products

Test Parameter	Test Condition	Note
Solderability	Use of Sn-37Pb solder Bath Solder bath temperature = 230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature = 245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (use of lead free)	Pass: Solderability rate until forming ≥ 95%

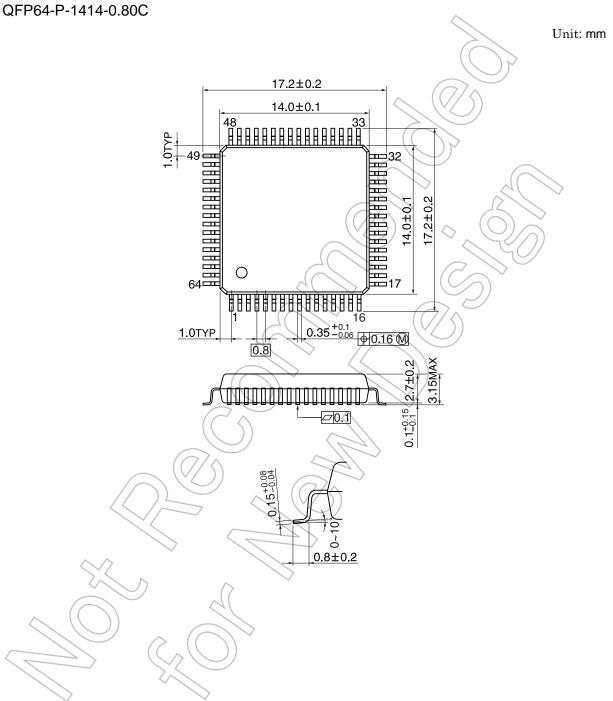
4. RESTRICTIONS ON PRODUCT USE

The following replaces the "RESTRICTIONS ON PRODUCT USE" on page 1 of body text.

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its
 use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations that
 regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring
 as a result of noncompliance with applicable laws and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.


5. Publication date of the datasheet

The publication date of this datasheet is printed at the lower right corner of this notification.

TMP95C001 **TOSHIBA**

(Annex)

Package Dimensions

III2008-02-20

CMOS 16-Bit Microcontroller TMP95C001F

1. Outline and Features

TMP95C001F is a 16-bit microcontroller of a high-speed 16-bit CPU (TLCS-900/H) core. It has only an indispensable function such as a wait controller, an interrupt controller, and etc.

TMP95C001F is presented in a 64-pin flat package. Its features are as follows.

- (1) High-speed 16-bit CPU (TLCS-900/H CPU)
 - Instruction mnemonics upwardly compatible with TLCS-90/900
 - 16M-byte linear address space
 - General-purpose registers using register bank system
 - 16-bit multiplication / division instructions, bit transfer / arithmetic instructions
 - Micro DMA: four channels (640 ns / 2 bytes at 25 MHz)
- (2) Minimum instruction execution time: 160 ns (at 25 MHz)
- (3) Internal RAM : No Internal ROM : No
- (4) External memory expansion
 - Expandable to 16 Mbytes (common to programs and data)
 - External data bus width selection pin $(AM8 / \overline{16})$
 - Can use both 8- and 16-bit external buses ··· dynamic bus sizing
- (5) Wait controller: four blocks
- (6) Interrupt function
 - Interrupt sources : 20

Internal interrupt: 13

External interrupt: 7

(7) Standby function

Three HALT modes (RUN, IDLE, STOP)

000707EBP1

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

95C001-1 2003-03-31

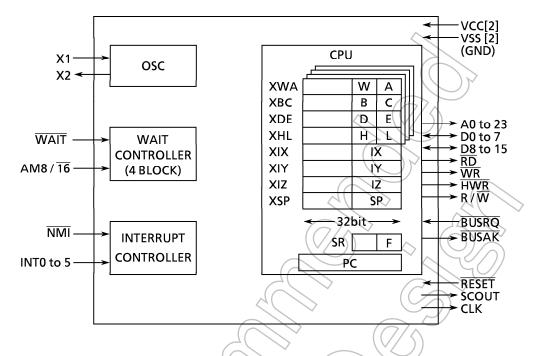


Figure 1 TMP95C001 Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins for TMP95C001F their name and outline functions are described below.

2.1 Pin Assignment

Figure 2.1 shows pin assignment of TMP95C001F.

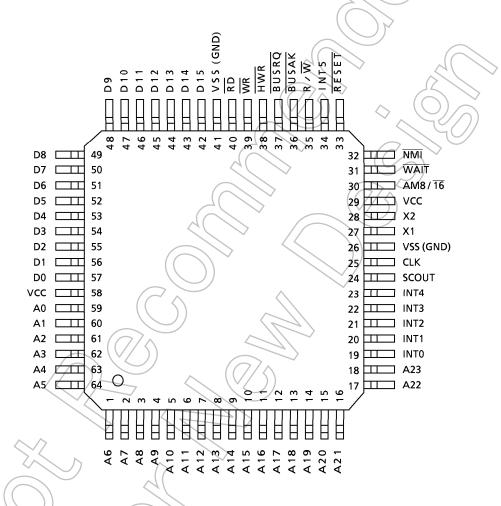


Figure 2.1 Pin Assignment (64-pin QFP)

2.2 Pin Names and Functions

Table 2.2 shows the I/O pin names and their functions.

Table 2.2 Pin Names and Functions

Pin Name	Pin Number	Input / Output	Function
D0 to D15	16	Input / Output	Data: Data bus 0 to 15
A0 to A23	24	Output	Address : Address bus 0 to 23
RD	1	Output	Read: Strobe signal to read external memory Setting RSRAM mode outputs RD even when reading internal areas.
WR	1	Output	Write: Strobe signal to write data of pins D0 to 7.
HWR	1	Output	Upper write: Strobe signal for writing data of pins D8 to 15.
BUSRQ	1	Input	Input Bus request: Signal to request external bus release.
BUSAK	1	Output	Bus acknowledge: Signal to indicate external bus is released after receiving BUSRQ.
R/W	1	Output	Read/write: "T" indicates read or dummy cycle; "0" indicates write cycle.
SCOUT	1	Output	System clock output: Outputs system clock (external clock divided by 2).
WAIT	1	Input	Wait: CPU bus wait request pin. (enabled in 1+N or 0+N WAIT mode).
INT0	1	Input	Interrupt request pin 0: Can be programmed for level or rising-edge detection.
INT1 to 4	4	Input//	Interrupt request pin 1 to 4: Rising-edge interrupt request pin
INT5	1//	Input	Interrupt request pin 5: Can be programmed for level or rising-edge detection.
NMI	1	Input	Non-maskable interrupt request pin: Can be programmed for falling-edge or falling-rising-edge detection.
CLK	\$2	Output	Clock output: Outputs external input clock X1 divided by 4. Pulled up during reset.
AM8/16		Input	Address mode: External data bus width selection pin. Set to 0 when using fixed 16-bit external bus or dual 8/16-bit external bus. Set to 1 with 8-bit external bus fixed.
RESET	1	Input	Reset: Initializes TMP95C001. (with pull-up)
X1/X2	2	Input/ Output	Oscillator connecting pins
VCC	2		Power supply pin (All Vcc pins should be connected with the power supply pin.)
VSS (GND)	2		Ground pin (0 V) (All Vss pins should be connected with GND (0 V).)

Note: Connect all VCC pins to power supply and all VSS pins to GND.

3. Operation

The following is a block-by-block description of the functions and basic operation of TMP95C001.

Note that the description concludes with cautions and restrictions for each block in 7, Usage Cautions and Restrictions.

3.1 CPU

TMP95C001 contains an advanced, high-speed 16-bit CPU (the TLCS-900/H_CPU). The CPU is described in the TLCS-900 CPU section in the previous chapter.

The following describes the CPU functions unique to TMP95C001 that are not described in "TLCS-900 CPU".

3.1.1 Reset Operation

Figure 3.1 (1) shows reset timing.

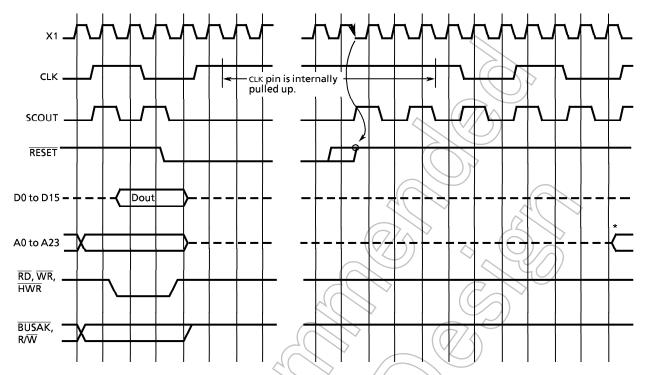
At TMP95C001 reset, the power supply voltage must be within the operating range and internal oscillation must be stable. Set the RESET input to 0 for at least ten system clocks (= 10 states: $0.8 \mu s$ for a 25-MHz clock).

When the reset is accepted, the CPU:

• Sets the program counter (PC) to the reset vector stored at addresses FFFF00H to FFFF02H.

PC (7:0) \leftarrow value at address FFFF00H PC (15:8) \leftarrow value at address FFFF01H

 $PC(23:16) \leftarrow value at address FFFF02H$


- Sets the stack pointer (XSP) to 100H
- Sets bits IFF2 to 0 of the status register (SR) to 111 (this sets the interrupt level mask register to level 7).
- Sets the MAX bit of the status register (SR) to 1 (this sets maximum mode). (Note: This product does not support minimum mode. Do not set the MAX bit to 0.)
- Clears bits RFP2 to 0 of the status register (SR) to 000 (this sets the register banks to 0).

After reset is released, the CPU begins execution from the instruction at the location specified in the PC. Other than the changes described above, reset does not alter any internal CPU registers.

When reset is accepted, processing of the internal I/O and other pins are as follows:

- Initializes the internal I/O registers as per specifications.
- Pulls up the clock pin to 1.

95C001-5 2003-03-31

A0 to A23 are output at the rising of X1 with the 10th or the 12th clock after acknowledging $\overline{RESET} = 1$.

Figure 3.1 (1) TMP95C001 reset timing

3.1.2 External Data Bus Size Selection Pin (AM8/ $\overline{16}$)

TMP95C001 selects an external data bus size by sampling inputs to $AM8/\overline{16}$ pin at the rising of a reset signal.

• AM8/16=0 (In case with 8 bit bus interlarded with 16 bit bus or fixed 16 bit bus)
D0 to D15 function as a 16 bit data bus.

The data bus size for external access is set by the wait control register. (Refer to "Wait control register" in section 3.5.2.).

• AM8/ $\overline{16}$ = 1 (In case with fixed 8 bit bus)

D0 to D7 function as an 8 bit data bus.

The values set in the wait control registers, <B0BUS>, <B1BUS>, <B2BUS>, <B3BUS> and <BEXBUS> are invalid, and it is fixed to an 8 bit data bus.

When using in case with fixed 8 bit bus, D8 to D15 should be fixed to 1 or 0.

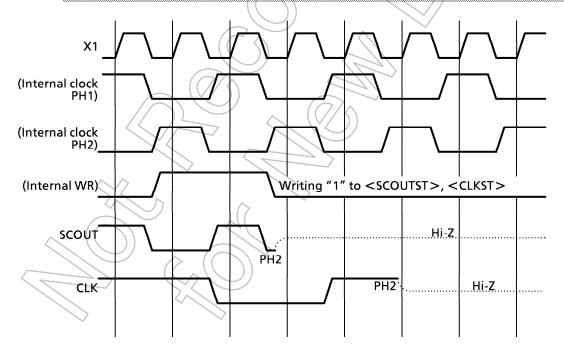
3.1.3 **Clock Output**

TMP95C001 has two clock output pins.

Setting a standby mode control register (STMOD) can control a clock output.

(1)Clock output pin (CLK)

- Setting STMOD < CLKST > to "1" disables output (high-impedance). When CLK pins are in the high-impedance condition, the pull-up register should be needed externally because of preventing the through current flowed into an input buffer of CLK pins.
- An output starts just after reset cancel.


(2)System clock output pin (SCOUT)

- Setting STMOD < SCOUTST > to "1" disables output (high-impedance).
- An output starts just after reset cancel.

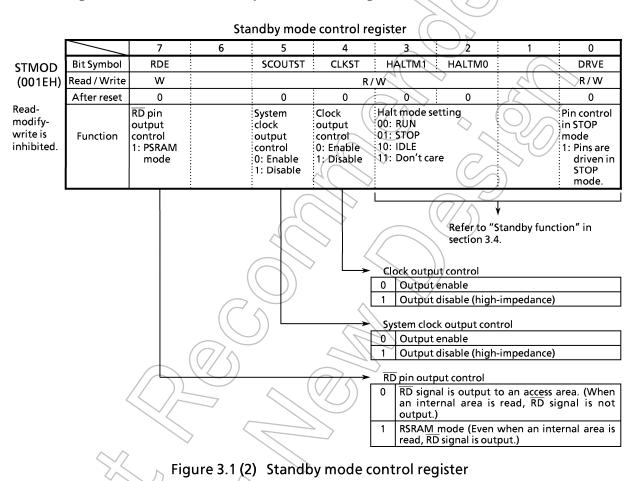
Figure 3.1 (2) shows a standby mode control register.

A timing Hi-Z (output disable) of SCOUT and CLK pins is shown as below figure.

<CLKST> and <SCOUTST> can be cleared by only a reset. These bits should not be written by "0".

Hi-Z at the rising of PH2 just after writing <SCOUTST > of WR · PH1. CLK

Hi-Z at the rising of PH2 following to PH2 and PH1 after writing to

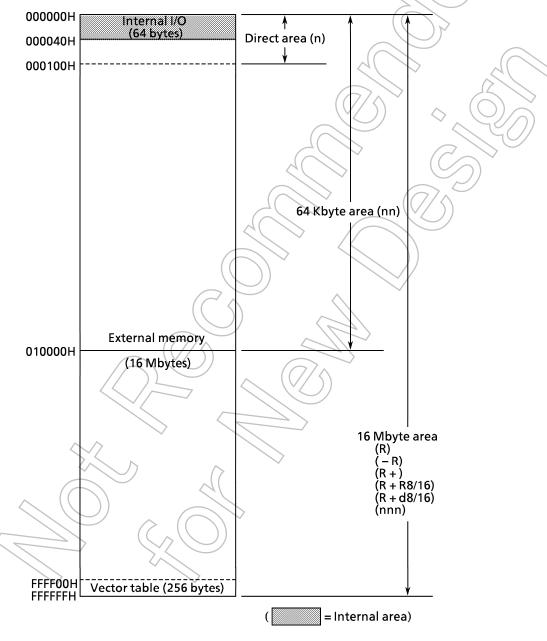

<CLKST> of WR · PH1.

95C001-7 2003-03-31

3.1.4 Pseudo SRAM Support

TMP95C001 has PSRAM mode to use a pseudo SRAM externally. Using PSRAM mode outputs \overline{RD} signal even when an internal area is read. Thus, an external PSRAM is refreshed. Writing "1" to the standby mode control register (STMOD) < RDE > can set PSRAM mode.

Figure 3.1(2) shows a standby mode control register.


95C001-8 2003-03-31

3.2 Memory Map

TMP95C001 uses an address area of 64 bytes as an internal I/O area.

This is allocated at addresses 000000H to 00003FH. The CPU can also access this internal I/O using a short instruction code according to "direct addressing mode".

Figure 3.2 shows an accessing area in the respective addressing modes for the memory map and the CPU.

Note: After reset, the stack pointer (XSP) is set to 100H.

Figure 3.2 TMP95C001 Memory Map

95C001-9 2003-03-31

3.2.1 Operation at internal I/O area access

TMP95C001 uses 64 bytes of address space (0H to 3FH) as an internal I/O area. Internal I/O registers are mapped on this area.

Operation of the internal I/O area access is different from that of the other address area access about following two points.

(1) In the internal I/O area access, \overline{RD} , \overline{WR} and \overline{HWR} strobe signals are nonactive and fixed to high level.

However, in PSRAM mode set by STMOD<RDE>register, \overline{RD} strobe signal becomes active also in the internal I/O area access. (See 3.1.4 Pseudo SRAM Support.)

(2) In the internal I/O area access, the number of waits becomes zero or one depending on the internal state of the CPU. This wait can't be controlled by wait controller (see 3.5 Wait Controller). When the specified address area overlaps with the internal I/O area, the operation as the internal I/O area takes priority of the specified address area.

3.3 Interrupts

TLCS-900 interrupts are controlled by the CPU interrupt mask flip-flops <IFF2 to 0> and the internal interrupt controller. Interrupts can come from a total of 20 sources:

Internal interrupts ··· 13

• Software interrupts : 8

• Illegal instructions : 1

• Interrupts from micro DMA : 4

External interrupts ... 7

• Interrupts from external pins (NMI, INTO to INT5)

Individual interrupt vector numbers (fixed) are allocated to each interrupt source. Seven levels of priority (variable) can be allocated to maskable interrupts. The priority of non-maskable interrupts is fixed at "7" (the highest priority).

When an interrupt is generated, the interrupt controller sends the priority value of that interrupt to the CPU. If more than one interrupt is generated simultaneously, the interrupt with the highest priority (7 non-maskable interrupts is the highest) is sent to the CPU.

The CPU compares the priority value with the value of the CPU interrupt mask register <IFF2 to 0>, and accepts the interrupt if the priority is higher or equal to the value in the CPU interrupt mask register. However, software interrupts and illegal instruction interrupts generated by the CPU are processed without comparison with the IFF <2:0> value.

The value of the interrupt mask register <IFF2 to 0> can be modified using the EI instruction (EI num sets IFF <2:0> to num). For example, executing "EI 3" enables acceptance of non-maskable interrupts and maskable interrupts with a priority of 3 or higher set in the interrupt controller.

However programming EI 0 enables acceptance of maskable interrupts with a priority of 1 or greater, and non-maskable interrupts. (It operates as the same as EI 1.)

The DI instruction (sets IFF <2:0 > to "7") is operationally the same as specifying "EI 7". As maskable interrupts have priorities in the range of 0 to 6, the DI instruction disables acceptance of maskable interrupts. The EI instruction is valid immediately after its execution. (With the TLCS-90, the EI instruction becomes valid only after the instruction following it is executed.)

As well as the general-purpose interrupt processing mode described above, the TLCS-900 also supports micro DMA processing mode. In micro DMA mode, the CPU transfers data automatically, thus accelerating interrupt processing such as data transfer to, or from, internal I/Os.

In addition to using an interrupt to start a micro DMA request, TMP95C001 also supports the "software start function", which start micro DMA requests by software.

Figure 3.3 (1) is a flowchart of overall interrupt processing.

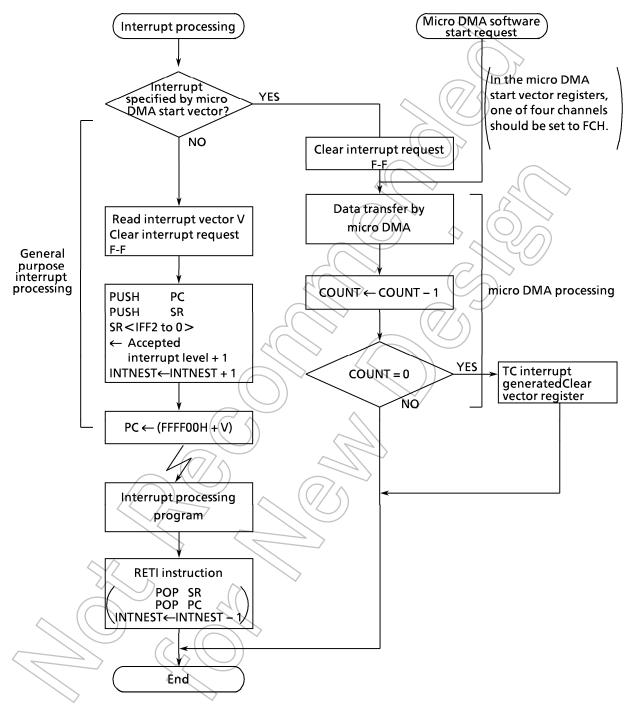


Figure 3.3 (1) Interrupt and Micro DMA Processing Flowchart

3.3.1 General-Purpose Interrupt Processing

On receiving an interrupt, the CPU operates as follows

However, in the case of software interrupts and illegal instruction interrupts generated by the CPU, the CPU skips (1) and (3) and executes steps (2), (4), and (5).

- (1) The CPU reads the interrupt vector from the interrupt controller. When more than one interrupt with the same level is generated at the same time, the interrupt controller generates an interrupt vector in accordance with the default priority (the smaller the vector value, the higher the priority (fixed)), and clears the interrupt request.
- (2) The CPU pushes the program counter (PC) and status register (SR) onto the stack (the area pointed to by XSP).
- (3) The CPU sets the interrupt mask register <IFF2 to 0> value to the level of the received interrupt incremented by 1. If the received interrupt is a level 7 interrupt, the CPU does not increment the interrupt mask register but sets it to "7".
- (4) The CPU increments interrupt nesting counter INTNEST by 1.
- (5) The CPU jumps to the address indicated by the data at address (FFFF00H + interrupt vector) and begins the interrupt processing routine.

 Table 3.3 (1) shows the times required by this processing.

	(,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
Stack Area Bus Width	Interrupt Vecter Area Bus Width	Number of Interrupt Processing Execution States	Interrupt Processing Time at fc = 25 MHz (μ s)
	8	28	2.24
0	16	24	1.92
$\langle \cdot \rangle_{ic}$	8	22	1.76
10	16	10	1 //

Table 3.3 (1) Interrupt Processing Time

When interrupt processing is complete, the RETI instruction is executed to return processing to the main routine. Executing the RETI instruction restores the program counter (PC) and status register (SR) from the stack, and decrements interrupt nesting counter INTNEST by 1.

Non-maskable interrupts cannot be disabled by program. However, the program can enable or disable maskable interrupts, and can set priorities individually for each maskable interrupt source. (Setting the interrupt priority level to 0 (or 7) disables an interrupt request.)

The CPU accepts interrupt requests with a higher or equal priority than the value of the CPU interrupt mask register <IFF2 to 0>. On accepting an interrupt, the CPU sets the <IFF2 to 0> register to the received interrupt level incremented by 1. This means that if an interrupt is generated with a higher priority than the interrupt currently being processed, the CPU accepts the interrupt request for the higher priority interrupt and nests processing.

If a new interrupt request is generated while the CPU is accepting an interrupt and performing steps (1) to (5) described above, the CPU does not sample the new interrupt until after execution of the first instruction of the interrupt processing routine. Therefore, setting DI as the first instruction disables maskable interrupt nesting.

(Note: The 900 and 900/L series sample the interrupt before executing the first instruction.) Resetting initializes the CPU mask register <IFF2 to 0> to "7". This disables maskable interrupts.

Table 3.3 (2) shows an interrupt vector and a micro DMA start vector tables for TMP95C001. The addresses FFFF00H to FFFFFFH (256 bytes) of the TMP95C001 are assigned for an interrupt vector area.

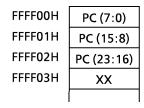
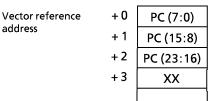
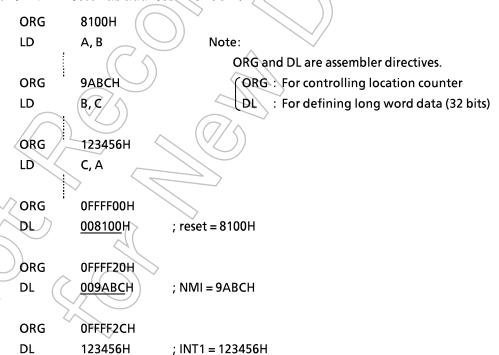

The interrupt vector area is depended on the derivative products.

Table 3.3 (2) TMP95C001 Interrupt Table


Default Priority	Туре	Interrupt Request Source	Vector "V"	Vector Reference Address	HDMA Start Vector
1		Reset, or SWI 0 instruction	0 0 0 0 H	FFFF00H	_
2		SWI 1 instruction	0004H	FFFF04H	_
3		INTUNDEF: Illegal instruction or SWI 2	0008H	FFFF08H	-
4	Non-	SWI 3 instruction	000СН	FFFF0CH	-
5	maskable	SWI 4 instruction	0010H	FFFF10H	-
6		SWI 5 instruction	0014H	FFFF14H	-
7		SWI 6 instruction	0018H	FFFF18H	-
8		SWI7 instruction	0 0 1 C H	FFFF1CH	-
9		NMI pin	0020H	FFFF20H	-
_		(reserved)	0024H	FFFF24H	-
10		INT0 pin	0028H	FFFF28H	28H
11		INT1 pin	0 0 2 C H	FFFF2CH	2CH
12		INT2 pin	0030H	FFFF30H	30H
13		INT3 pin	0034H	FFFF34H	34H
14		INT4/pin	0038H	FFFF38H	38H
15		INT5 pin	0 0 3 C H	FFFF3CH	3CH
-		(reserved)	0040H	FFFF40H	-
16	Maskable	INTTC0 : micro DMA completa (channel0)	0044H	FFFF44H	-
17		INTTC1 : micro DMA completa (channel1)	0048H	FFFF48H	-
18		INTTC2 : micro DMA completa (channel2)	0 0 4 C H	FFFF4CH	_
19		INTTC3 : micro DMA completa (channel3)	0 0 5 0 H	FFFF50H	_
-		(reserved)	0 0 5 4 H	FFFF54H	-
to		to	to	to	to
-		(reserved)	0 0 F C H	FFFFCH	-
		Software micro DMA			FCH

Setting reset or interrupt vector

① Reset vector


② Interrupt vector (other than reset vector)

(Setting example)

To define the reset vector as address 8100H, the NMI vector as address 9ABCH, and the INT1 vector as address 123456H:

XX : Don't care

3.3.2 MicroDMA Processing

In addition to conventional interrupt processing, TMP95C001 supports micro DMA function. For interrupt requests set for micro DMA, micro DMA processing is performed at the highest priority for maskable interrupts (level 6), regardless of the actual interrupt level set for the interrupt.

Because the function of micro DMA has been implemented with the cooperative operation of CPU, when CPU is a state of stand-by by HALT instruction, the requirement of micro DMA will be ignored (pending).

(1) Micro DMA Operation

When an interrupt request occurs for an interrupt specified by the micro DMA start vector register, micro DMA sends the micro DMA request to the CPU with the highest priority for maskable interrupts (level 6), regardless of the actual interrupt level set for the interrupt, and starts micro DMA. The micro DMA function has four channels. This allows micro DMA to be set for up to four interrupts at the same time.

When the micro DMA is accepted, the interrupt request flip flop is cleared, data are automatically transferred from the transfer source address to the transfer destination addresses(the address are set in the control register), and the transfer count is decremented. If the decremented result is other than zero, a value of the micro DMA start vector register retains, and the micro DMA processing terminates. If the decremented result is zero, the CPU sends the micro DMA transfer end interrupt (INTTC0 to 3) to the interrupt controller, clears a value of the micro DMA start vector register to 0, disables the next micro DMA startup, and terminates the micro DMA processing.

If multiple-channel micro DMA requests occur at the same time, the priority is determined by the channel numbers, not the interrupt levels. The lower the channel number, the higher the priority. (CH0 (high) \rightarrow CH3 (low))

If an interrupt request for the interrupt source used is received between the time that the micro DMA start vector is cleared and the time that it is reset, the CPU performs general-purpose processing at the specified interrupt level. Therefore, if the interrupt source is only being used for starting micro DMA (not used as an interrupt), set the interrupt level to zero.

When simultaneously using the same interrupt resource for both the micro DMA and general-purpose interrupts as described above, set the level of the interrupt source used to start micro DMA lower than the levels of all other interrupt sources. In this case, the cause of general interrupt is limited to the edge interrupt.

Example: When using external interrupts INT0 to 3 for running micro DMA 0 to 3

Set the interrupt level of INT0 to 3 to 1

Set other interrupt levels to 2 to 6

Like other maskable interrupts, the priority of the micro DMA transfer end interrupt is determined by the interrupt level and default priority.

The transfer source and transfer destination addresses are set in 32-bit control registers. However, as only 24-bit addresses are output, the address space available to micro DMA is 16M bytes. (The upper 8 bit of 32 bit is invalid.)

Three transfer modes are supported: 1-byte transfer, 1-word transfer (= two bytes), and 4-byte transfer. For each transfer mode, it is possible to specify whether to increment, decrement, or fix source and destination addresses after transfer. These modes facilitate data transfer from I/O to memory, from memory to I/O, and from I/O to I/O. For transfer mode details, see "3.3.2 (4) Transfer Mode Register Details" later in this manual.

As a 16-bit transfer counter is used, micro DMA can perform a maximum of 65536 transfers (initializing the counter to 0000H specifies the maximum number of transfers).

The 6 interrupt sources (INT0 to INT5) with micro DMA start vectors (as listed in Table 3.3 (2)) can be used to start micro DMA processing. Together with the soft start function, this gives a total of 7 different micro DMA triggers.

Figure 3.3 (2) shows the micro DMA cycle for 1-word transfer in transfer destination address INC mode (the same apart from counter mode). (In case with an external 16 bit bus width, 0 wait and an even number of a source/destination address).

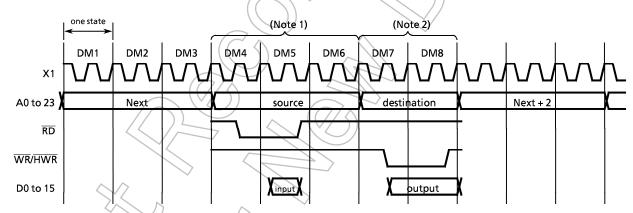


Figure 3.3 (2) Micro DMA Cycle Diagram

States 1-3: Instruction fetch cycle (prefetches the next instruction code)

If the instruction cue buffer has three or more bytes of instruction code, the cycles are dummy cycles.

States 4-5: Micro DMA read cycles

State 6 : Dummy cycle (address bus remains the same as in state 5)

States 6-8: Micro DMA write cycle

Note 1: If the source address area uses an 8-bit bus, two states are added.

If also the source address area uses a 16-bit bus and the source address is an oddnumbered address, two states are added.

Note 2: If the destination address area uses an 8-bit bus, two states are added.

If also the destination address area uses a 16-bit bus and the destination address is an odd-numbered address, two states are added.

(2) Micro DMA Software Start Function

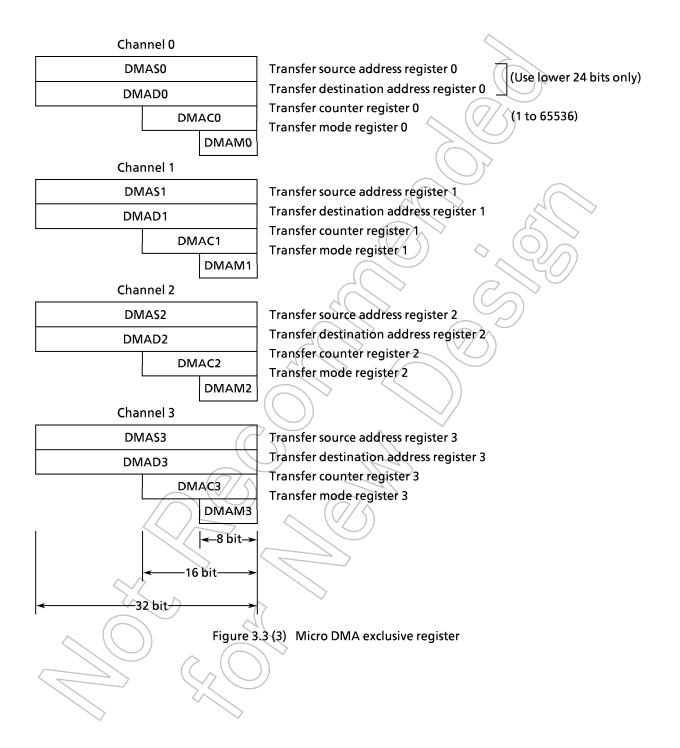
In addition to starting the micro DMA function by conventional interrupts, TMP95C001 includes an micro DMA software start function that starts micro DMA on the generation of the write cycle to the software DMA control register.

To trigger a software start, write the software micro DMA start vector "FCH" to the micro DMA start vector register DMA0V to 3V (memory address 26H, 27H, 28H, 29H). Next, writing data to the software DMA control register SDMACR0 to 3 (memory address 2AH, 2BH, 2CH, 2DH) (a value in the data does not effect a software start operation) causes micro DMA for the corresponding channel to run once. Writing again to the software DMA control register triggers another software start, provided the micro DMA transfer counter is set to other than "0". (It is not necessary to set the software micro DMA start vector again.)

Note that software start requests are one-shot requests and are not held over. If write cycle for the software DMA control register is generated when the software micro DMA start vector is not set, setting the software micro DMA start vector at a later time does not generate a software start. (The micro DMA start vector must be set prior to the micro DMA software start.)

(3) Micro DMA exclusive register

Figure 3.3 (3) shows the micro DMA exclusive register. This register is included in the CPU. (Refer to "Control register" in section 3.2.5 of "TLCS-900 CPU" in chapter 3.) It can be set by the LDC instruction.


In this figure, the transfer source address register represents a source address to be transferred, and the transfer destination address register represents a destination address to be transferred. These address register use only lower 24 bit and support 16M area.

The transfer count register can set an execution number of the micro DMA by 1 to 65536.

Setting the transfer mode register is referred to "Transfer mode register details" in section 3.3.2 (4).

Setting the data to the micro DMA exclusive register can be executed by only the "LDC cr,r" instruction.

(4) Transfer Mode Register Details

The micro DMA transfer mode is set by the transfer mode registers (DMAM0 to 3). Table 3.3 (3) shows the respective modes and the execution state number.

Table 3.3 (3) Micro DMA transfer mode

DMAM0 to 3 0 0 0 Mode Note: When setting values in this register, set the upper three bits to 0.

			Transfer byte number	Mode	Execution state number (※)	Minimum execution time at fc = 25 MHz
000 (fixed)	000	00	byte transfer	Transfer destination address INC mode ··· For I/O to memory	8 states	640 ns
(01	word transfer	(DMADn +) ← (DMASn) DMACn←DMACn − 1 if DMACn = 0, then INTTC		
		10	4 byte transfer	generated	12 states	960 ns
	001	00	byte transfer	Transfer destination address DEC mode ··· For I/O to memory (DMADn −) ← (DMASn)	8 states	640 ns
		01	word transfer	DMACn←DMACn − 1 if DMACn = 0, then INTTC	12 states	960 ns
		10	4 byte transfer	generated		
	010	00	byte transfer	Transfer source address INC mode ··· For memory to I/O (DMADn) ← (DMASn +)	8 states	640 ns
		01	word transfer	DMACn←DMACn – 1	/	
		10	4 byte transfer	if DMACn = 0, then INTTC generated	12 states	960 ns
	011	00	byte transfer	Transfer source address DEC mode For memory to I/O	8 states	640 ns
		01	word transfer	(DMADn) ← (ĎMASn −) DMACn←DMACn − 1		
		10 ,	4 byte transfer	if DMACn = 0, then INTTC generated	12 states	960 ns
	100	00	byte transfer	Address fixed mode \cdots For I/O to I/O (DMADn) \leftarrow (DMASn)	8 states	640 ns
		~01 _{>}	word transfer	DMACn←DMACn – 1 if DMACn = 0, then INTTC		
		10	4 byte transfer	generated	12 states	960 ns
<	101	00	DMASn←DMAS DMACn←DMA		5 states	400 ns

^(※) In an external 16 bit bus width, 0 wait and word/4 byte transfer mode, both the source and the destination addresses should be the even numbers.

Note: n: Corresponding micro DMA channels 0 to 3

DMADn +/DMASn +: Post-increment (increment the register value after transfer)

DMADn -/ DMASn-: Post-decrement (decrement the register value after transfer)

In the above table, "I/O" refers to fixed addresses and "memory" refers to incremented or decremented addresses.

Do not use undefined codes other than the above mentioned for transfer mode registers.

3.3.3 Interrupt Controller

Figure 3.3 (4) is a block diagram of the interrupt circuits. The left half of the diagram shows the interrupt controller; the right half includes the CPU interrupt request signal circuit and the HALT release signal circuit (A halt is referred to "Standby" in section 3.4.)

Each interrupt channel (total of 11 channels: NMI, INTO to 5 and INTTCO to 3) in the interrupt controller has an interrupt request flip-flop (11 channels), an interrupt priority setting register (10 channels of INTO to 5, INTTCO to 3), and a start vector register (4 channels) for the micro DMA processing.

(1) Interrupt request flip-flop

The interrupt request flip-flop is used to latch interrupt request from peripheral devices. The channels other than NMI have the bit < IxxC > to clear the interrupt request. (Refer to "Interrupt priority setting register" in figure 3.3(5).) This flip-flop is cleared to "0" by the following operations.

- At reset
- When an interrupt is accepted, and the CPU reads the interrupt channel vector after the acceptance of interrupt
- When the CPU accepts the micro DMA request
- When the CPU executes an instruction that clears the interrupt of that channel (writes "0" in the clear bit < IxxC > of the interrupt priority setting register)

For example, to clear the interrupt request, executed the DI instruction and write "0" to the clear bit.

Ex.) Sets a register to clear INT0 interrupt request.

Note: -: No change

The status of the interrupt request flip-flop is detected by reading the clear bit<IxxC>. Detects whether there is an interrupt request for an interrupt channel. However the interrupt request flip-flop for NMI interrupt channel can not be read.

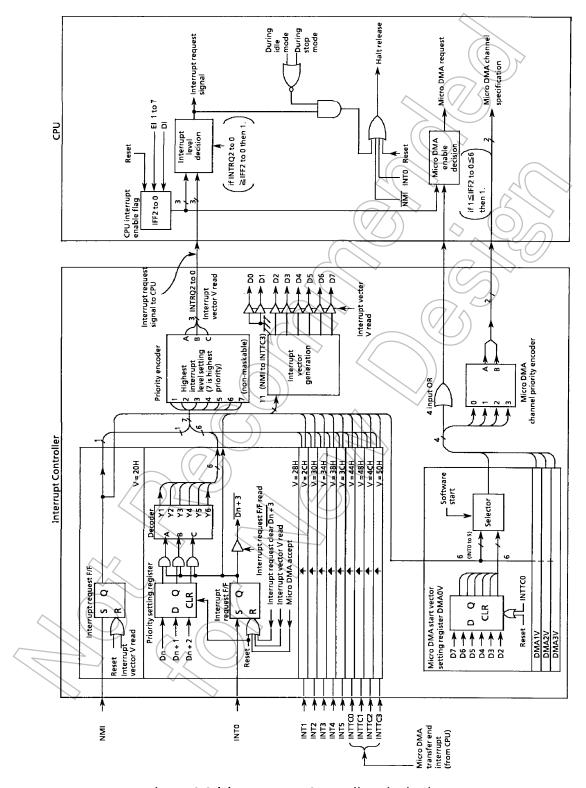


Figure 3.3 (4) Interrupt Controller Block Diagram

(2) Interrupt priority setting register

Figure 3.3(5) shows the interrupt priority setting registers. The interrupt request level setting bits < IxxM2 to 0 > are provided for each 10 interrupt channels (INT0 to 5, INTTC0 to 3). Interrupt levels to be set are from 1 to 6. Writing 0 or 7 as the interrupt priority disables the corresponding interrupt request. The priority of the non-maskable interrupt $(\overline{\text{NMI}} \text{ pin})$ is fixed to 7. If interrupt requests with the same interrupt level are generated simultaneously, interrupts are accepted in accordance with the default priority.

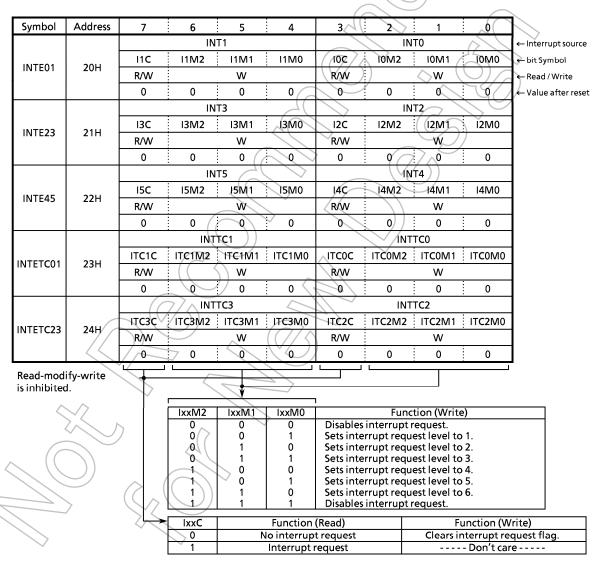


Figure 3.3 (5) Interrupt priority setting register

The interrupt controller sends the interrupt request with the highest priority among the simultaneous interrupts and its vector address to the CPU. The CPU compares the interrupt mask register <IFF2 to 0> set in the Status Register by the interrupt request signal with the priority value sent; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 in the CPU SR <IFF2 to 0>. Interrupt requests where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine.

(3) Micro DMA start vector register

The interrupt controller has the micro DMA start vector registers (4 channels). Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.3 (2)), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter registers (e.g., DMAS, DMAD, DMAC and DMAM) prior to the micro DMA processing. Figure 3.3.(6) shows the micro DMA start vector registers.

This register is used to assign the micro DMA to an interrupt source. The interrupt source whose the micro DMA start vector matches the vector value set in this register is assigned as the micro DMA start source.

When the micro DMA transfer counter value reaches 0, the interrupt controller is notified of the micro DMA transfer end interrupt (INTTC0 to 3) corresponding to the channel, the micro DMA start vector register is cleared, and the micro DMA start source of the channel is also cleared. To continue the micro DMA processing, the micro DMA start vector register must be set again within the micro DMA transfer end interrupt processing.

If the same vector is set in the micro DMA start vector registers of the multiple channels, the interrupt generated in the channel with the smaller number has a higher priority. Thus, if the same vector is set in the micro DMA start vector registers of two channels, the interrupt generated in the channel with the smaller number is processed until the micro DMA transfer end. If the micro DMA start vector or this channel is not set again, the next the micro DMA is started for the channel with the higher number. (micro DMA chaining)

Micro DMA0 start vecter register

DMA0V (0026H)Readmodifywrite is inhibited.

	7	6	5	4	3	2_			1		0
bit Symbol	DMA0V7	DMA0V6	DMA0V5	DMA0V4	DMA0V3	DMA0V	2				
Read/Write		W									
After reset	0	0	0	0	0	0 (\supset		
Function	Setting inte	Setting interrupt source to start the micro DMA channel 0.									

Micro DMA1 start vector register

DMA1V Readmodify-

(0027H)write is inhibited.

			WINCO DIVIA	1 Juli Vecto	Tregister			
	7	6	5	4	3	2	1	0
bit Symbol	DMA1V7	DMA1V6	DMA1V5	DMA1V4	DMA1V3 [DMA1V2		
Read/Write			٧	٧		// i		
After reset	0	0	0	0	0	0		
Function	Setting into	Setting interrupt source to start the micro DMA channel 1.						

Micro DMA2 start vecter register

DMA2V (0028H)Readmodifywrite is

inhibited.

	7	6	5	4 3	2 (1//)/ 0			
bit Symbol	DMA2V7	DMA2V6	DMA2V5	DMA2V4 DMA2V3	DMA2V2			
Read/Write			V	y				
After reset	0	0	0 <	0 0	0			
Function	Setting into	etting interrupt source to start the micro DMA channel 2.						

Micro DMA3 start vecter register

DMA3V (0029H)Readmodifywrite is inhibited.

	7	6	5	4 / (3	2	1	0
bit Symbol	DMA3V7	DMA3V6	DMA3V5	DMA3V4	DMA3V3	DMA3V2		
Read/Write)) v	V		/	:	:
After reset	0	0) /0	0	0	0		
Function	Setting into	Setting interrupt source to start the micro DMA channel 3.						

Setting micro DMA start source

Micro DMA start source	Micro DMA start vector register value
INT 0 Interrupt	28H
INT 1 Interrupt	2CH
INT 2 Interrupt	30H
INT 3 Interrupt	34H
INT 4 Interrupt	38H
INT 5 Interrupt	3СН
Micro DMA software start	FCH

Figure 3.3 (6) Micro DMA start vector registers and start sources

(4) External interrupt control

Table 3.3 (4) shows setting of external interrupt pin functions.

TMP95C001 can select operating mode for $\overline{\text{NMI}}$, INTO and INT5 pins among the external interrupt functions. (For the pulse width of external interrupt signal, refer to "Interrupt operation" in section 4.5.)

Interrupt		Mode	Setting method		
NIN /II			IIMC <nmiree> = 0</nmiree>		
NMI		Falling and rising edge	IIMC <nmiree> = 1</nmiree>		
INITO	_	Rising edge	HMC<10LE> = 0		
INT0		Level	IMC< 0LE> = 1		
INT1	<u></u>	Rising edge			
INT2	\int	Rising edge	4301		
INT3	\int	Rising edge			
INT4	_	Rising edge			
INITE	<u></u>	Rising edge	IIMC<15LE> = 0		
INT5	→ _	Level	IIMC<15LE> = 1		

Table 3.3 (4) Setting of External Interrupt Pin Functions

Input modes of NMI, INTO and INT5 interrupts are controlled by setting of the interrupt input mode control register, IIMC.

Figure 3.3 (7) shows the interrupt input mode control register.

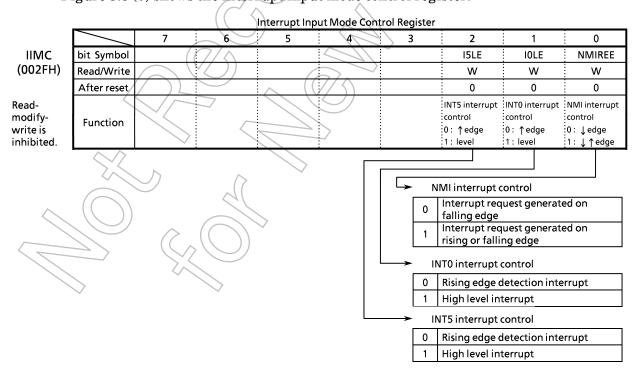


Figure 3.3 (7) Interrupt Input Mode Control Register

(5) Notes

The instruction execution unit and the bus interface unit of this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction that clears the corresponding interrupt request flag, the CPU may execute the instruction that clears the interrupt request flag between accepting and reading the interrupt vector.

To avoid the above problem, place instructions that clear interrupt request flags after a DI instruction. In the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing instruction and following more than one instruction are executed. When EI instruction is placed immediately after clearing instruction, an interrupt becomes enable before interrupt request flags are cleared.

In the case of changing the value of the interrupt mask register < IFF2 to 0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, take care as the following interrupt modes are exceptional and demand special attention.

INT0, INT5 level mode

INTO in level mode is not an edge-detect interrupt, so the interrupt request flip-flop function is canceled. The peripheral interrupt request bypasses the S input of the flip-flop, and acts as the Q output. Changing modes from edge to level automatically clears the interrupt request flag.

If the CPU enters the interrupt response sequence as a result of setting INTO from 0 to 1, INTO must be held at 1 until the interrupt response sequence is completed. If the INTO level mode is used to release a halt, INTO must be held at 1 from the time INTO changes from 0 to 1, to the time when the halt is released. (Ensure that INTO does not go back 0 due to noise before the halt is released.)

When switching modes from level to edge, any interrupt request flag set in level mode is not cleared. Accordingly, clear the interrupt request flag using the following sequence.

DΙ

LD (IIMC), 00H ; Switches from level to edge.
LD (INTE01), 00H ; Clears interrupt request flag.

FΙ

* INT5 (control register INTE45) needs the same operation, too.

Note: The following instructions or pin changes are equivalent to instructions that clear the interrupt request flag.

INTO, INT5: Instructions that switch to level mode after an interrupt request is generated in edge mode.

The pin input changes from high to low after an interrupt request is generated in level mode. ("H" \rightarrow "L")

3.4 Standby Function

(1) HALT mode

In TMP95C001, when the "HALT" instruction is executed, the operating mode changes RUN, IDLE, or STOP mode depending on the contents of the standby mode control registers (STMOD) <HALTM1,0>. Figure 3.4 (1) shows the standby mode control register.

				Standby r	mode contro	register (() \	
		7	6	5	4	3	2	1 0
STMOD (001EH)	bit Symbol	RDE		SCOUTST	CLKST	HALTM1	HALTM0	DRVE
	Read / Write	w		R/W			R/W	
	After reset	0		0	0		0	0
Read- modify- write is inhibited.	Function	RD pin output control 1 : PSRAM mode		System clock output control 0: Enable 1: Disable	Clock output control 0: Enable 1: Disable	Halt mode s 00: RUN 01: STOP 10: IDLE 11: Don't c		Pin control in STOP mode 1 : Pins are driven in STOP mode.
HALT mode setting 00 RUN mode(Only the CPU halts.) 0 VO off							effect before entering the	

Figure 3.4 (1) Standby mode control register

The features of RUN, IDLE and STOP mode are as follows.

- ① RUN : Halts the CPU only. Power dissipation remains almost unchanged.
- 2 IDLE: Operates only the internal oscillator, while halts all other circuits.
- 3 STOP: Halts all internal circuits, including the internal oscillator.

Table 3.4 (1) shows each blocks operation during halt.

Table 3.4(1) Each Blocks and Input-output Pins Operation During Halt

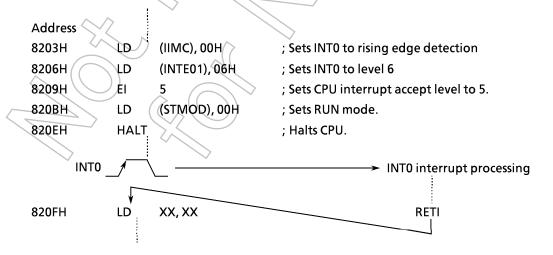
Halt Mode	RUN	IDLE	STOP		
STMOD < HALTM1, 0>	00	10	01		
D CPU	Halt				
Interrupt controller					
I/O function			See Table 3.4 (3)		

(2) HALT release

The HALT release is executed by an interrupt request from the external interrupt pins or a reset. The halt release source is depended on the status of the interrupt mask register $\langle IFF2 \text{ to } 0 \rangle$ and the halt mode. For details, see Table 3.4(2).

When the HALT state is released by INTO and the interrupt request level is smaller than the interrupt mask register value, the CPU does not execute the interrupt processing of INTO.

The HALT state cannot be released by the micro DMA start except for INTO.


Table 3.4 (2) Halt Release Source and Halt Release Operation

Interrupt mask setting for interrupt		Interrupt request level			Interrupt request level ※			
request level			≧ Interrupt mask 〈 IFF2 to 0 〉			<interrupt (iff2="" 0)<="" mask="" th="" to=""></interrupt>		
Halt Mode			RUN	IDLE	STOP	RUN	IDLE	STOP
Source Rele	- nt errupt	NMI*	0	•	×	0		\\\\\\
		INT0	0		×	0 (Con	×
		INT1 to 5	0	×	×	×	(×)	×
RESET		0	0	0	6 //	\bigcirc	0	

- After a halt is released, interrupt processing begins. (Reset initializes the LSI.)
- After a halt is released, processing begins from the next address following the HALT instruction.
- x: Cannot be used to release a halt.
- Same as a case of setting interrupt mask level to 7 by DI instruction before HALT instruction is executed.
- * : Halt release by NMI or RESET is not depended on the interrupt mask level.

Example of releasing halt.

On execution of the HALT instruction, the device enters standby state in RUN mode. Release halt using INTO.

(3) Halt Mode Operation

① RUN mode

In RUN mode, the MCU internal system clock does not stop after the HALT instruction is executed. Only CPU instruction execution stops. Therefore, the CPU performs repeated dummy cycles until the halt state is released. In the halt state, interrupt requests are sampled on the falling edge of the CLK signal.

The halt state can be released by external interrupts (INTO to 5, NMI) in RUN mode. When the interrupt request level of INT1 to 5 is smaller than the interrupt mask <IFF2 to 0>, the HALT state cannot be released by INT1 to 5.

Figure 3.4 (2) is the timing chart for releasing a halt in RUN mode using an interrupt.

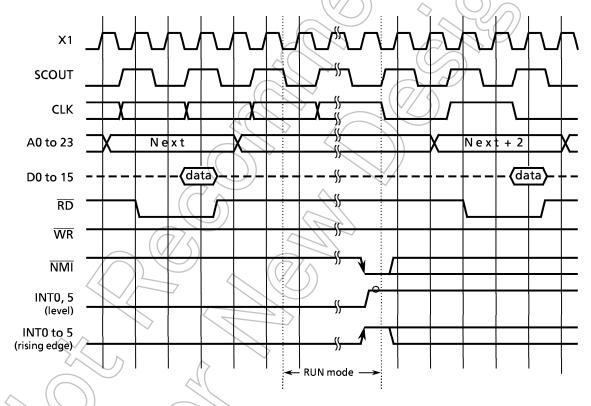


Figure 3.4 (2) Timing Chart for Releasing Halt in RUN Mode Using Interrupt

② IDLE mode

In IDLE mode, the MCU internal system clock stops. Only the internal oscillator functions. The CLK pin is fixed at "1".

In the halt state, interrupt requests are sampled asynchronously to the system clock. The release from the halt state (operation restart), however, is synchronized with the clock.

In the IDLE mode, the HALT state can be released by only the external interrupt (NMI, INT0) and a reset.

Figure 3.4 (3) is the timing chart for releasing a halt in IDLE mode using an interrupt.

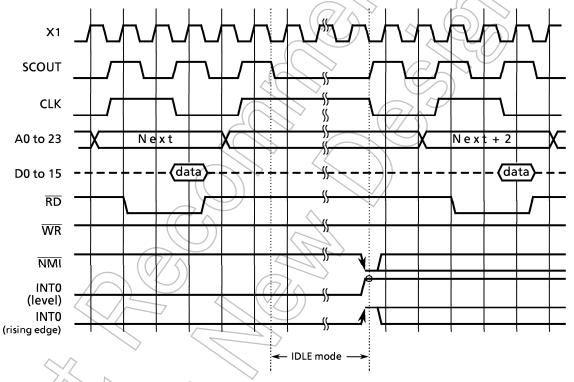


Figure 3.4 (3) Timing Chart for Releasing Halt in IDLE Mode Using Interrupt

③ STOP mode

The STOP mode is selected to stop all internal circuits including the internal oscillator. In this mode, the state of all pins is depended on the settings of STMOD<DRVE>, see Figure 3.4.(1).)

Table 3.4 (3) shows the pin states in the STOP mode.

In the STOP mode, the HALT state can be released by a reset. To release the HALT state by a reset, hold the reset input level to be 3ms or more, "0". The STMOD<DRVE> is initialized to "0" by a reset.

When the STOP mode is set to the standby state, take care not to input INTO and NMI interrupts.

Note: Usually, interrupts can release all halts status. However, the interrupts = (NMI, INTO), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP mode. (In this case, an interrupt request is kept on hold internally.) If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

Figure 3.4 (4) shows the timing chart for releasing a halt in STOP mode using a reset.

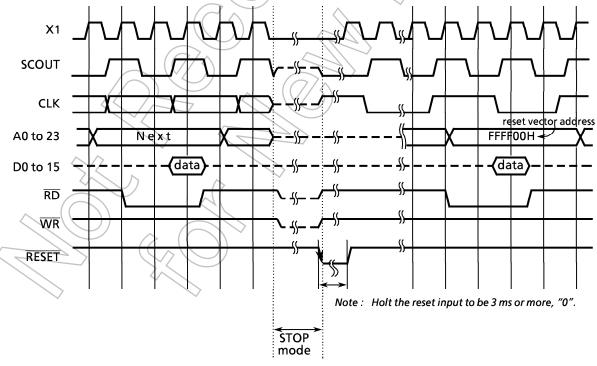


Figure 3.4 (4) Timing Chart for Releasing Halt in STOP Mode Using Reset (Case of STMOD $\langle DRVE \rangle = 0$)

Table 3.4 (1) Pin State in STOP Mode

Pin Name	Input / Output	<drve> = 0</drve>	<drve> = 1</drve>
D0 to D15	Input / Output	Hi-Z*	Hi-Z*
A0 to A23	Output	Hi-Z	Output
RD, WR, HWR, BUSAK, R/W	Output	Hi-Z) Y Output
SCOUT	Output	Hi-Z	"0"
BUSRQ, WAIT	Input	Invalid	0
INT0	Input		0
INT1 to 5	Input	Invalid	0
NMI	Input	0	0
CLK	Output	Hi-Z	"1"
RESET	Input	valid	valid
AM 8/ 16	Input (0	
X1	Input (Invalid	Invalid
X2	Output	"1"	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Output : Maintains output states prior to a halt.

: The input gate is disabled.

No through current, even at high impedance.

: Must be driven externally.

valid : Input is valid.

Invalid: Input is invalid. As the input gate is disabled, no through current.

3.5 Wait Controller

TMP95C001 can set a variable 4-block address area (CS0 to CS3 areas), and select the data bus size and number of waits in each address area (CS0 to CS3 areas and another area).

The CS0 to CS3 areas are specified by the memory start address registers MSAR0 to MSAR3 and memory address mask registers MAMR0 to MAMR3.

The master enable, data bus size and number of waits in each address area are specified by the wait control register, BOCS to B3CS and BEXCS.

TMP95C001 also has a bus wait request pin (\overline{WAIT}) and external data bus size selection pin ($\overline{AM8/16}$) as input pins to control these states. (Refer to "External data bus size selection pin" in selection 3.1.2.)

3.5.1 Address Area Specification

The CS0 to CS3 areas are specified by the memory start address registers MSAR0 to MSAR3 and memory address mask registers MAMR0 to MAMR3.

At each bus cycle, the wait controller compares the address on the bus with the address of specified areas to CS0 to CS3. If the result of the comparison is a match, this indicates an access to the specified area, and a specified operation by the wait control registers B0CS to B3CS is executed. (Refer to "Wait control register" in section 3.5.2.)

(1) Memory start address register

MSAR0 (0034H)

MSAR2 (0038H)

Figure 3.5 (1) shows the memory start address register. The memory start address registers, MSAR0 to MASR3 set the start addresses in CS0 to CS3. The higher 8 bit of the start address (A23 to A16) is set to <S23 to 16>. The lower 16 bit of the start address (A15 to A0) is always set to "0". The start address is set to one of the 64 Kbyte intervals after 000000H. Figure 3.5.(2) shows a relationship between the start address and the start address register value.

				Mem	ory S	Start Ac	dress	Register (CS	0 to C	S3 are	ea)			
		7		6		5		4	3		2			0
MSAR1	bit Symbol	S23	i	S22	i	S21		520	S19		S18	\$17	Y	S16
(0036H)	Read/Write						(R/W	7		(7		
MSAR3	After reset	1		1		1		$\langle O \rangle$	1	\Diamond	_1		i	1
(003AH)	Function					Se	ets sta	rt address fo	r A23	to A1	6	50		
										/ ~	/	/ /		

Sets CS0 to CS3 start address

Figure 3.5 (1) Memory Start Address Register

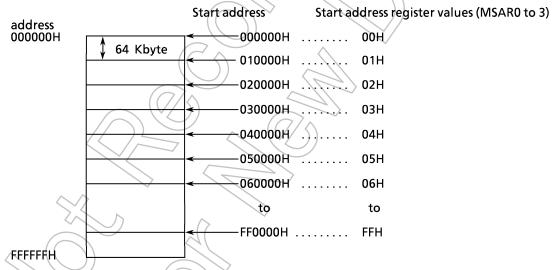


Figure 3.5 (2) Relationship between Start Address and Start Address Register Value

(2) Memory address mask register

MAMR1 (0037H)

MAMR2 | MAMR3 (0039H) | (003BH)

Figure 3.5. (3) shows the memory address mask register. The memory address mask registers, MAMR0 to MAMR3 specifies the area size of CS0 to CS3 by specifying a corresponding mask to each bit of the start addresses set by the memory start address register. Whether the address corresponding to the bit written by "0" on the bus is within CS0 to CS3 area is compared.

The CS0 to CS3 areas have different address bits which can be masked by MAMR0 to MAMR3 registers. Thus the area size which can be set differs.

			IVI	emo	ry Addr	ess I	Vlask Reg	gister	(CZ0 s	area)				
		7	6		5		4		> 3		2	1		0
	bit Symbol	V20	V19		V18		V17	()	V16		V15	V14~9		V8
,	Read/Write							R/W			17			
(0035H)	After reset	1	1		1		1		1		7	4	-	1
	Function				Sets C	S0 ar	ea size	0 : 0	ompa	re ad	dress			

CSO area size can be set from minimum 256 byte area to maximum 2 Mbyte area.

7 4 3 2 n V21 V19 X 1/7 V16 V15~9 bit Symbol V20 V18 **V8** Read/Write R/W After reset 1 1 Sets CS1 area size 0: Compare address **Function**

Memory Address Mask Register (CS1 area)

CS1 area size can be set from minimum 256 byte area to maximum 4 Mbyte area.

/				/ / /		_								
	7	<	6	5		4		3		2	:	1	0	
bit Symbol	V22	i	V21	V20		V19		V18		V17	- :	V16	V15	
Read/Write				\Diamond			R/W							
After reset	1		1	1		1		1		1		1	1	
Function	<	11		Set CS2	, CS3	area siz	e () : Comp	are	address				

Memory Address Mask Register (CS2, CS3 areas)

CS2 and CS3 area sizes can be set from minimum 32K byte area to maximum 8 Mbyte area.

Figure 3.5 (3) Memory Address Mask Register

(3) Memory start address, Address area specification

Figure 3.5. (4) explains an example of specifying 64 Kbyte area which starts from address 010000H in the CS0 area.

"01H" corresponding to the upper 8 bit of the start address is set to MSAR0 < S23 to 16>. The difference between the end address(01FFFFH) and the start address which is supposed by the area size of CS0 is calculated. As a result, bit 20 to 8 correspond to the mask value in specifying CS0 area. The area size can be specified by specifying this value to MAMR0 < V20 to 8>.

In this example, "07H" is specified to MAMR0 and 64K-byte area is specified.

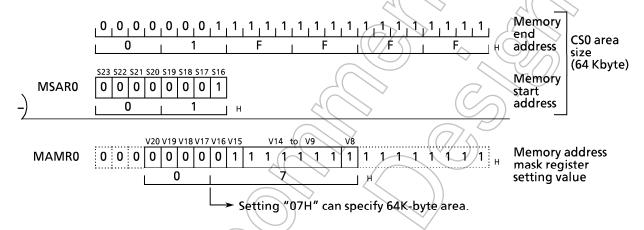


Figure 3.5 (4) Example of C\$0 area setting

MSAR0 to 3 and MAMR0 to 3 are set to "FFH" after reset. B0CS<B0E>, B1CS<B1E> and B3CS<B3E> are reset to "0" after reset. CS0, CS1 and CS3 area are disabled. CS2 area is enabled at the addresses 000040H to FFFFFFH(16 Mbyte), since B2CS<B2M> is reset to "0" and B2CS<B2E> is set to "1". In addition, the addresses other than the specified CS0 to 3 areas are operated by the bus size and the number of waits specified by BEXCS. (See "Wait control register" in section 3.5.2.)

(4) Address area size specification

Table 3.5 (2) shows the relationship of CS area and the area size. (\triangle : The area size may not be specified by the combinations between the memory start address registers and the memory address mask registers.) When you set the area size using the combinations which may not specify the area size, set the start address by a size step which you can select from address 000000H.

If CS2 area is set to 16M area or the set address areas overlap, the one with a smaller CS number is selected.

When the set address area overlaps with the internal I/O area, the functions as the internal I/O area take priority of the set address area.

(Ex.) Sets CS0 area to 128K-byte area.

1) Start address which can be set

```
000000H
020000H
040000H
060000H
)128 Kbyte
)128 Kbyte
```

In this case, all start addresses can be set.

2 Start address which can not be set

```
000000H

010000H

030000H

050000H

)64 Kbyte It the si

128 Kbyte In this ont be s
```

It the size step other than the specified size. In this case, the area size which you select can not be set from the following start address.

Table 3.5 (2) CS area and Area size

size [byte] CS area	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0		0	0	0	Δ	Δ	Δ	Δ	Δ		
CS1	0	0		0	Δ	Δ	Δ	Δ	Δ	Δ	
CS2		\Diamond	0	10	Δ	Δ	Δ	Δ	Δ	Δ	Δ
CS3	>		28	0	Δ	Δ	Δ	Δ	Δ	Δ	Δ

3.5.2 Wait Control Register

Figure 3.5 (5) shows the wait control registers. In each address area (CS0 to CS3 areas and another area), the master enable / disable, the data bus size and the number of waits are set by the wait control registers, B0CS to B3CS and BEXCS.

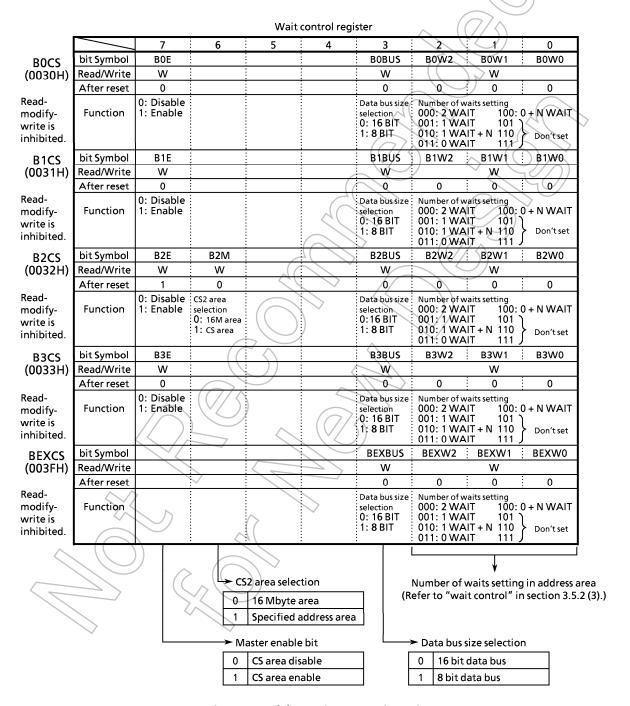


Figure 3.5 (5) Wait Control Registers

(1) Master Enable

Bit 7 of the wait control register <B0E>,<B1E>,<B2E>,<B3E> is the master enable/disable bit in each address area. Set the bit to "1" to enable the setting. A reset sets <B0E>, <B1E>, and <B3E> to "0" (disabled), and sets <B2E> to "1" (enabled). (Only CS2 area is enabled by a reset.)

(2) Data Bus Size Selection

Bit 3 of the wait control registers <B0BUS>,<B1BUS>,<B2BUS>,<B3BUS>, and <BEXBUS> specifies the width of the data bus. Set "0" to access memory in 16-bit data bus mode, or to "1" in 8-bit data bus mode.

Note that this bit is valid only in 16-bit bus mode (when the AM8/ $\overline{16}$ pin is "0"). In 8-bit bus mode (when the AM8/ $\overline{16}$ pin is "1"), memory access to all address areas uses 8-bit data bus mode, regardless of the value of bit 3. (See "External Data Bus Size Selection Pin" in section 3.1.2.)

This way of changing the data bus size depending on the address being accessed is called "dynamic bus sizing". See Table 3.5 (3) for details of this bus operation.

Operand	Operand Start	Memory Data	CPU Address	CPU	Data
Data Width	Address	Width		D15 to D8	D7 to D0
8 bits	2n + 0	8 bits	2n + 0	// xxxxx	b7 to b0
	(even-numbered)	16 bits	2n + 0	XXXXX	b7 to b0
	2n + 1	8 bits	2n\+1	xxxxx	b7 to b0
	(odd-numbered)	16 bits	2n + 1	b7 to b0	xxxxx
16 bits	2n + 0	8 bits	2n + 0	xxxxx	b7 to b0
	(even-numbered)		2n + 1	xxxxx	b15 to b8
		16 bits	2n+0	b15 to b8	b7 to b0
/	2n + 1	8 bits	// <2n + 1	xxxxx	b7 to b0
((odd-numbered)		2n + 2	xxxxx	b15 to b8
		16 bits	2n + 1	b7 to b0	xxxxx
			2n + 2	xxxxx	b15 to b8
32 bits	2n + 0	8 bits	2n + 0	xxxxx	b7 to b0
	(even-numbered)		2n + 1	xxxxx	b15 to b8
		\wedge	2n + 2	xxxxx	b23 to b16
		(2n + 3	xxxxx	b31 to b24
		16 bits	2n + 0	b15 to b8	b7 to b0
			2n + 2	b31 to b24	b23 to b16
	2n + 1	8 bits	2n + 1	xxxxx	b7 to b0
	(odd-numbered)		2n + 2	xxxxx	b15 to b8
			2n + 3	xxxxx	b23 to b16
			2n + 4	xxxxx	b31 to b24
~		16 bits	2n + 1	b7 to b0	xxxxx
			2n + 2	b23 to b16	b15 to b8
			2n + 4	xxxxx	b31 to b24

Table 3.5 (3) Dynamic Bus Sizing

xxxxx: During a read, indicates that bus input data are ignored; during a write, indicates that the bus is set to high impedance and that the bus write strobe signal remains inactive.

(3) Wait control

Wait control register bits 2 to 0(<B0W2 to 0>, <B1W2 to 0>, <B2W2 to 0>, <B3W2 to 0>, <BEXW2 to 0>) area used to specify the number of waits. Combining these bits executes the following wait operations. Do not set other than the following combinations.

000 ··· 2WAIT

Inserts a 2-state wait regardless of the WAIT pin status

001 ··· 1WAIT

Inserts a 1-state wait regardless of the \overline{WAIT} pin status.

 $010 \cdots 1WAIT + N$

Inserts a 1-state wait and samples the WAIT pin status.

If the pin is low, inserting the wait maintains the bus cycle until the pin goes high.

011 ··· 0WAIT

Completes the bus cycle without a wait regardless of the WAIT pin status.

 $100 \cdots 0 + NWAIT$

Always samples the WAIT pin status. If the pin is low, inserting the wait maintains the bus cycle until the pin goes high.

Figure 3.5 (6) and (7) show a timing chart of 0+NWAIT setting at N=0 and 1. SCOUT pin output can be used to suppose a sampling timing of \overline{WAIT} pin.

For the timing charts of other than 0+NWAIT setting, see "Standard timing, Figure 7 (1) to (5) in section 7 of TLCS-900 CPU in chapter 3.

Resetting sets these bits to "000" (2WAIT).

(4) Bus Size and Wait Control Outside CS0-CS3 Area

The wait control register, BEXCS controls the bus size and the number of waits when locations outside a variable 4-block address areas (CS0 to CS3 areas) are accessed. This register settings are always enabled for access to areas outside CS0 to CS3.

(5) Accessing 16M-byte Area/Address Setting Area

Setting B2CS<B2M> to "0" selects CS2 with a 16M-byte address area (000040H to FFFFFFH). Setting B2CS<B2M> to "1" selects CS2 with the address area specified by memory start address register MSAR2 and memory address mask register MAMR2, as in the case of CS0, CS1 and CS3. A reset clears this bit to "0", and 16M-byte area is selected.

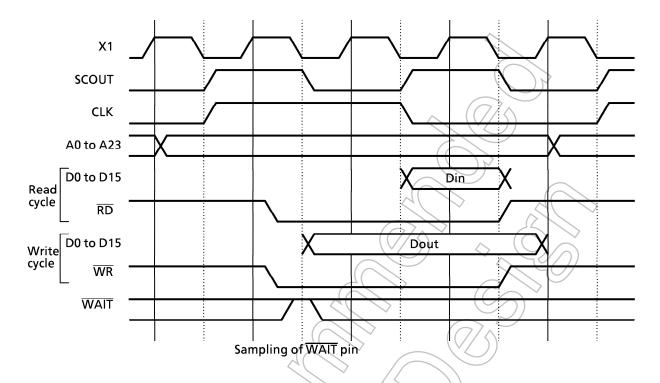


Figure 3.5 (6) Read / Write cycle in 0 + N WAIT mode (N = 0)

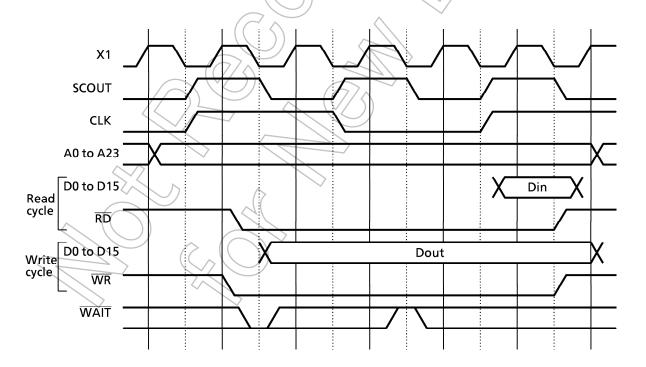


Figure 3.5 (7) Read / Write cycle in 0 + N WAIT mode (N = 1)

Wait controller setting procedure

When you set the CS0 to CS3 area, set the registers with the following procedure.

- ① Set the memory start address register (MSAR0 to MSAR3). Set the CS0 to CS3 area start address.
- ② Set the memory address mask register (MAMR0 to MAMR3). Set the CS0 to CS3 area size.
- ③ Set the control register (B0CS to B3CS).

Set the bus size, number of waits, and master enable/disable in the CS0 to CS3 area.

Example:

Set the CS0 area as $010000_{\rm H}$ to $01FFFF_{\rm H}$ (64 Kbytes), a 16-bit data bus, and zero waits:

 $MSAR0 = 01_{H}$ start address 010000_{H}

MAMR0=07_H address area 64 Kbytes

B0CS=83_H 16-bit data bus, zero waits, CS0 enabled

3.6 Bus Release Function

TMP95C001 has a bus request pin (\overline{BUSRQ}) for releasing the bus, and a bus acknowledge pin (\overline{BUSAK}) .

3.6.1 Operation

When "0" is input to the \overline{BUSRQ} pin, TMP95C001 acknowledges a bus release request. When the current bus cycle ends, TMP95C001 sets the address bus (A23 to A0) and the bus control signals (\overline{RD} , \overline{WR} , \overline{HWR} , R/\overline{W}) simultaneously to high level, sets these signals and the output buffer for the data bus (D15 to D0) to high impedance, and sets the \overline{BUSAK} pin to low level, indicating that the bus is released.

During bus release, TMP95C001 disables all access to the internal I/O registers, although the internal I/O functions are not affected.

3.6.2 Pin States at Bus Release

Table 3.6 lists pin states when the bus is released.

Table 3.6 Pin State at Bus Release

Pin Name	Pin State at Bus Release
D0 to D15	At high impedance
A0 to A23	At high impedance
RD	(first set to high level just before bus release)
WR	
HWR	
R/W	

4. Electrical Characteristics

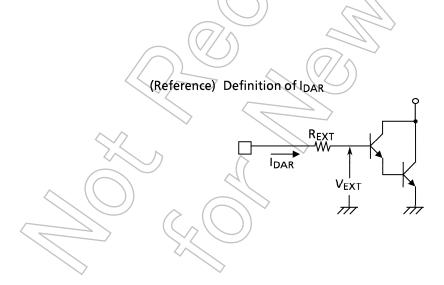
4.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V cc	- 0.5 to 6.5) P V
Input voltage	V _{IN}	– 0.5 to Vcc + 0.5	\ \ \
Output current (total)	Σ IOL	+120	mA
Output current (total)	Σ IOH	- 120	mA
Power dissipation ($Ta = 70^{\circ}C$)	P _D	400	mW
Soldering temperature (10 s)	T SOLDER	+260	°C
Storage temperature	T _{STG}	– 65 to 150	\@C
Operating temperature	T OPR	– 20 to 70	℃

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Electrical Characteristics

(1) $Vcc = +5 V \pm 10\%$, Ta = -20 to +70°C (fc = 8 to 25 MHz)


(Typ values are for $Ta = +25^{\circ}C$ and Vcc = +5 V)

Parameter	Symbol	Test Condition	Min	Max	Unit
Input Low Voltage (D0 to 15) INT1 to 5, BUSRQ, WAIT RESET, NMI, INT0 AM8/16 X1	VTL V IL1 V IL2 V IL3 V IL4		-0.3 -0.3 -0.3 -0.3 -0.3	0.8 0.3 Vcc 0.25 Vcc 0.3 0.2Vcc	> > > >
Input High Voltage (D0 to 15) INT1 to 5, BUSRQ, WAIT RESET, NMI, INT0 AM8/16 X1	V IH V IH1 V IH2 V IH3 V IH4		2.2 0.7 Vcc 0.75 Vcc Vcc – 0.3 0.8Vcc	Vcc + 0.3 Vcc + 0.3 Vcc + 0.3 Vcc + 0.3 Vcc + 0.3	>>>>
Output Low Voltage	V _{OL}	I _{OL} = 1.6 mA		0.45	V
Output High/Voltage	V он V он1 V он2	OH = - 400 μA I OH = - 100 μA I OH = - 20 μA	2.4 0.75 Vcc 0.9 Vcc		V V V
Darlington Drive Current (8 Output Pins max.)	DAR	V_{EXT} = 1.5 V_{EXT} = 1.1 $k\Omega$	—1.0	- 3.5	mA
Input Leakage Current Output Leakage Current	10	0.0≦ Vin≦ Vcc 0.2≦ Vin≦ Vcc – 0.2	0.02 (Typ) 0.05 (Typ)	±5 ±10	μ Α μ Α
Operating Current (RUN) IDLE STOP (Ta = -20 to 70°C) STOP (Ta = 0 to 50°C)	+cc	fc = 25 MHz 0.2≦ Vin≦ Vcc – 0.2 0.2≦ Vin≦ Vcc – 0.2	20 (Typ) 3.5 (Typ) 0.5 (Typ)	30 10 50 10	mA mA μA μA
Power Down Voltage (at STOP)	V _{STOP}	$V_{1L2} = 0.2 \text{ Vcc},$ $V_{1H2} = 0.8 \text{ Vcc}$	2.0	6.0	~~~
RESET Pull Up Resistance	R _{RST}		50	250	kΩ
Pin Capacitance	C 10	fc = 1 MHz		10	pF
Schmitt Width RESET, NMI, INTO	V _{TH}		0.4	1.0 (Typ)	V

Note: I_{DAR} is guaranteed for total of up to 8 ports.

(2) $Vcc = + 3 V \pm 10\%$, $Ta = -20 \sim +70 ^{\circ} C$ (fc = 4 to 12.5 MHz) (Typ values are for $Ta = +25 ^{\circ} C$ and Vcc = +3 V)

Parameter	Symbol	Test Condition	Min	Max	Unit
Input Low Voltage (D0 to 15) INT1 to 5, BUSRQ, WAIT RESET, NMI, INTO AM8/16 X1	V IL V IL1 V IL2 V IL3 V IL4		-0.3 -0.3 -0.3 -0.3 -0.3	0.6 0.3 Vcc 0.25 Vcc 0.3 0.2Vcc	<<<<
Input High Voltage (D0 to 15) INT1 to 5, BUSRQ, WAIT RESET, NMI, INT0 AM8/16 X1	V IH V IH1 V IH2 V IH3 V IH4		2.0 0.7 Vcc 0.75 Vcc Vcc – 0.3 0.8Vcc	Vcc + 0.3 Vcc + 0.3 Vcc + 0.3 Vcc + 0.3 Vcc + 0.3	>>>>
Output Low Voltage	V _{OL}	I _{OL} = 1.6 mA		0.45	V
Output High Voltage	V _{OH}	I _{OH} = -400 μA	2.4		V
Input Leakage Current Output Leakage Current		0.0≦ Vin≦ Vcc 0.2≦ Vin≦ Vcc – 0.2	0.02 (Typ) 0.05 (Typ)	±5 ±10	μ Α μ Α
Operating Current (RUN) IDLE STOP (Ta = - 20 to 70°C) STOP (Ta = 0 to 50°C)	l cc	fc = 12.5 MHz 0.2≦Vin≦Vcc – 0.2 0.2≦Vin≦Vcc – 0.2	5.0 (Typ) 0.9 (Typ) 0.5 (Typ)	9.0 1.8 50 10	mA mA μA μA
Power Down Voltage (at STOP)	V _{STOP}	V _{IL2} = 0.2 Vcc, V _{IH2} = 0.8 Vcc	2.0	6.0	٧
RESET Pull Up Resistance	R _{RST}		80	500	$\mathbf{k}\Omega$
Pin Capacitance	C 10	fc = 1 MHz		10	рF
Schmitt Width RESET, NMI, INTO	V TH		0.4	1.0 (Typ)	V

4.3 AC Electrical Characteristics

(1) $Vcc = +5 V \pm 10\%$, Ta = -20 to +70%

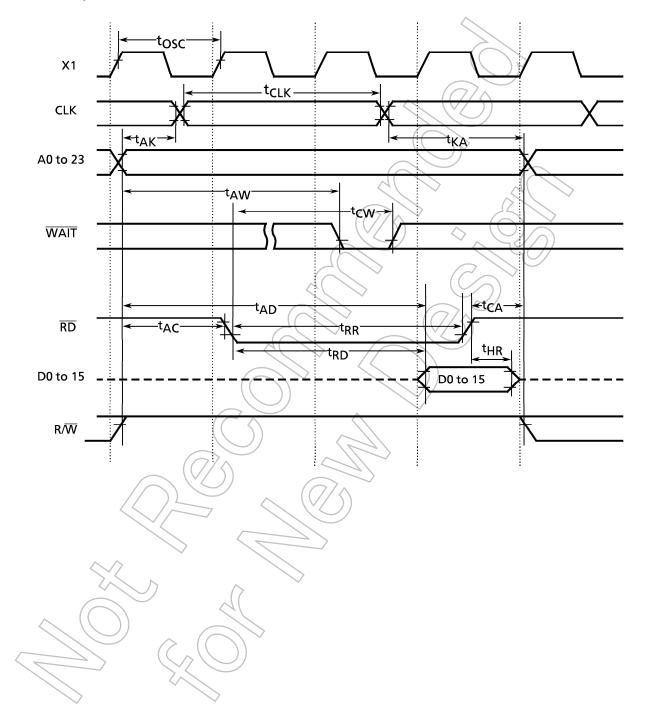
(fc = 8 MHz to 25 MHz)

No.	Parameter	Cumbal	Vari	able	20/1	//Hz	25 N	ЛHz	Unit
140.	rarameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
1	Oscillation cycle (= x)	tosc	40	125	50)	40		ns
2	Clock pulse width	t _{CLK}	2x - 40	^	60/	\wedge	40		ns
3	A0 to A23 valid→ clock hold	t _{AK}	0.5x - 20		(5)))	0		ns
4	Clock valid→ A0 to A23 hold	t _{KA}	1.5x - 60		<u></u>		0		ns
5	A0 to A23 valid→RD/WR fall	t _{AC}	1.0x - 20		30		20		ns
6	RD/WR rise→ A0 to A23 hold	tcA	0.5x - 20		5		0		ns
7	A0 to A23 valid → D0 to D15 input	t _{AD}		3.5x - 35		140		105	ns
8	RD fall → D0 to D15 input	t _{RD}	4	2.5x – 40		85 /	4()	60	ns
9	RD Low pulse width	t _{RR}	2.5x - 40		85	\Diamond	60	,	ns
10	RD rise→ D0 to D15 hold	t _{HR}	0		0		0		ns
11	WR Low pulse width	tww	2.5x - 40		85		60		ns
12	D0 to D15 valid→ WR rise	t _{DW}	2.0x - 40		60<	7	40/		ns
13		t _{WD}	0.5x - 10	>	15		70		ns
14	A0 to A23 valid $\rightarrow \overline{\text{WAIT}}$ input $\binom{1 \text{ WAIT}}{+ \text{ n mode}}$	taw		3.5x – 90		85		50	ns
	A0 to A23 valid $\rightarrow \overline{\text{WAIT}}$ input $\binom{0 \text{ WAIT}}{+ \text{ n mode}}$	t _{AW}		1.5x - 40		35		20	ns
15	$\overline{RD}/\overline{WR}$ fall $\rightarrow \overline{WAIT}$ hold (1 WAIT + n mode)	tcw	2.5x + 0		125		100		ns
	$\overline{RD}/\overline{WR}$ fall $\rightarrow \overline{WAIT}$ hold (0 WAIT + n mode)	tcw	0.5x + 0		2 5		20		ns

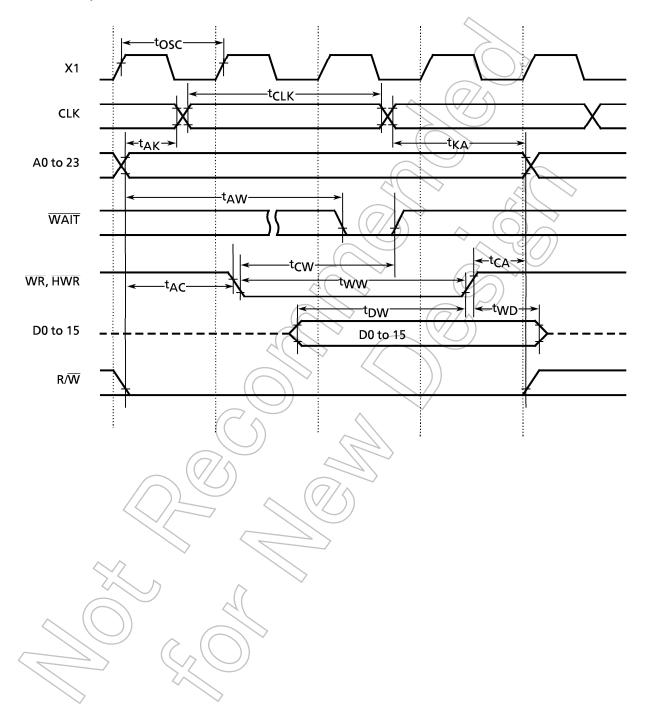
AC measuring conditions

Output level: High 2.2 V / Low 0.8 V , CL = 50 pF (Note that for D0 to D15, A0 to A23, RD, WR, HWR, and CLK, CL = 100 pF)
 Input level: High 2.4 V / Low 0.45 V (D0 to D15)
 High 0.8 Vcc / Low 0.2 Vcc (except for D0 to D15)

(2) $Vcc = +3 V \pm 10\%$, Ta = -20 to + 70%


(fc = 4 MHz to 12.5 MHz)

				(10 = 41	VIIIZ CO	12.51	1112)
No.	Parameter /	Symbol	7	able		MHz	Unit
	rarameter	33111501	Min	Max	Min	Max	Oilit
1	Oscillation cycle (= x)	tosc	80	250	80		ns
2	Clock pulse width	tclk	2x – 40		120		ns
3	A0 to A23 valid→clock hold	tAK	0.5x - 40		0		ns
4	Clock valid → A0 to A23 hold	t _{KA}	1.5x – 80		40		ns
	A0 to A23 valid→RD/WR fall	≥ t _{AC}	1.0x - 60		20		ns
6	RD/WR rise→ A0 to A23 hold	t _{CA}	0.5x - 40		0		ns
7	A0 to A23 valid → D0 to D15 input	t _{AD}		3.5x – 125		155	ns
8	RD fall → D0 to D15 input	t _{RD}		2.5x – 115		85	ns
9	RD Low pulse width	t _{RR}	2.5x – 40		160		ns
10	RD rise → D0 to D15 hold	t _{HR}	0		0		ns
11	WR Low pulse width	tww	2.5x – 40		160		ns
12	D0 to D15 valid→WR rise	t _{DW}	2.0x – 60		100		ns
13	WR rise →D0 to D15 hold	t _{WD}	0.5x - 30		10		ns
14	A0 to A23 valid $\rightarrow \overline{WAIT}$ input (1 WAIT + n mode)	t _{AW}		3.5x – 130		150	ns
	A0 to A23 valid $\rightarrow \overline{WAIT}$ input (0 WAIT + n mode)	t _{AW}		1.5x – 80		40	ns
15	RD/WR fall→WAIT hold (1 WAIT + n mode)	tcw	2.5x + 0		200		ns
	RD/WR fall→WAIT hold (0 WAIT + n mode)	t _{CW}	0.5x + 0		40		ns


AC measuring conditions

Output level: High 0.7 × V_{CC} / Low 0.3 × V_{CC}, CL = 50 pF
Input level: High 0.9 × V_{CC} / Low 0.1 × V_{CC}

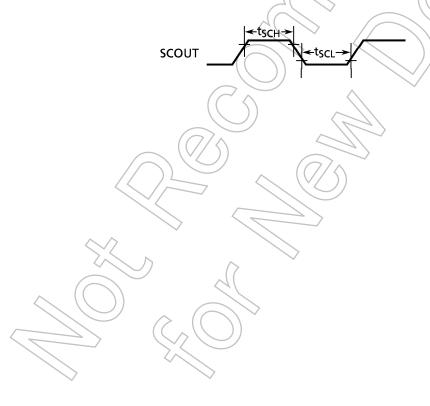
(3) Read cycle

(4) Write cycle

4.4 SCOUT pin AC Electrical Characteristics

 $Ta = -20 \text{ to } +70^{\circ}C$

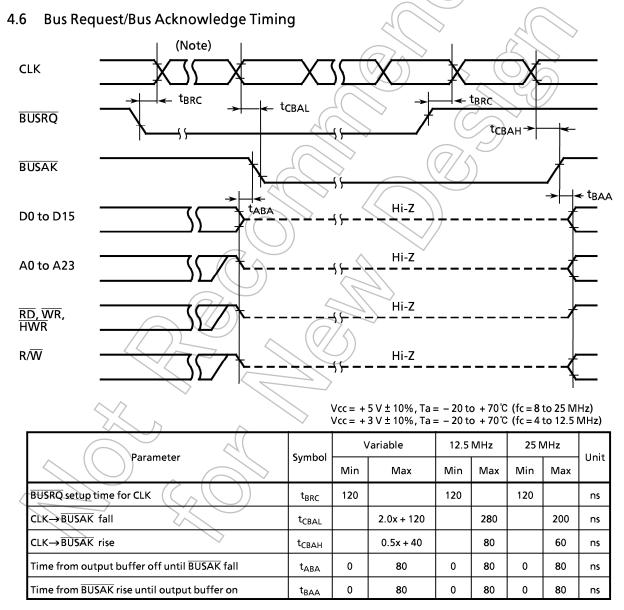
Parameter	Symbol	Variable		12.5 MHz		25 N	ЛHz
raiametei	Syllibol	Min	Max	Min	Max	Min	Max
High-level pulse width $VCC = +5 V \pm 10\%$ (fc = 8 to 25 MHz)	t _{SCH}	1x – 20		60		20	
$VCC = +3 V \pm 10\%$ (fc = 4 to 12.5 MHz)		1x – 30	<i>\</i>	50//	\mathcal{L}	1	1
Low-level pulse width $VCC = +5 V \pm 10\%$ (fc = 8 to 25 MHz)	t _{SCL}	1x – 20		60		20	
$VCC = +3 V \pm 10\%$ (fc = 4 to 12.5 MHz)		1x - 30		50			-


AC measuring conditions

- Output level
 - (1) $Vcc = +5 V \pm 10\%$

High 2.2 V/Low 0.8 V, CL = 30 pF

(2) $Vcc = +3 V \pm 10\%$


High $0.7 \times Vcc / Low 0.3 \times Vcc, CL = 30pF$

4.5 Interrupt Operation

 $\label{eq:Vcc} \begin{array}{l} \mbox{Vcc} = +5\mbox{ V} \pm 10\% \mbox{, Ta} = -20\mbox{ to } +70\mbox{ °C} \mbox{ (fc} = 8\mbox{ to } 25\mbox{ MHz)} \\ \mbox{Vcc} = +3\mbox{ V} \pm 10\% \mbox{, Ta} = -20\mbox{ to } +70\mbox{ °C} \mbox{ (fc} = 4\mbox{ to } 12.5\mbox{ MHz)} \\ \end{array}$

Downwood on	C. wala al	Variable		12.5 MHz		25 MHz		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
NMI、INTO low-level pulse width	t _{INTAL}	4x		320		160		ns
NMI、INTO high-level pulse width	t _{INTAH}	4x		320	/5)	160		ns
INT1 to INT5 low-level pulse width	t _{INTBL}	8x + 100		740		420		ns
INT1 to INT5 high-level pulse width	t _{INTBH}	8x + 100		740	>	420		ns

Note: When bus release is requested with \overline{BUSRQ} cleared to 0, that request cannot be granted until the previous bus cycle is terminated by a WAIT, and the WAIT is released.

5. List of Special Function Registers

(SFR; Special Function Register)

The special function registers control the input/output functions and peripheral components. Registers are allocated to 64 bytes within the address range from 000000H to 00003FH.

The built-in registers can not be externally accessed.

- (1) Interrupt control
- (2) Wait control
- (3) Standby mode control

Table configuration

Symbol	Name	Address	7 6 1 0
			→ bit Symbol
			→ Read / Write
			Initial value at reset
			Remarks
	ı	<	

TMP95C001 Special Function Register Address List

Address	Register Symbol	Address	Register Symbol	Address	Register Symbol	Address	Register Symbol
00000000Н		(//10H		20H	INTE01	30H	BOCS
1H		(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1H	INTE23	1H	B1CS
2H	//))	2H	\ ((<i>)</i>	/ \ 2H	INTE45	2H	B2CS
3H		3H		✓/ 3H	INTETC01	3H	B3CS
4H	\	4H		4H	INTETC23	4H	MSAR0
5H		5H		> 5H		5H	MAMR0
6Н		6Н		6Н	DMA0V	6H	MSAR1
7H.	$\searrow \nearrow$	7H		7H	DMA1V	7H	MAMR1
8H	7/	8H	_	8H	DMA2V	8H	MSAR2
9H		9H		9H	DMA3V	9H	MAMR2
AH		AH		AH	SDMACR0	AH	MSAR3
₽H.		вн		вн	SDMACR1	вн	MAMR3
CH		CH		СН	SDMACR2	СН	
DH		DH))	DH	SDMACR3	DH	
EH	\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	EH	STMOD	EH		EH	
FH		FH		FH	IIMC	FH	BEXCS

(1) Interrupt Control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Intonuint			IN	T1			IN.	ТО	
INITEO1	Interrupt	2011	I1C	I1M2	I1M1	I1M0	IOC	10M2	I0M1	10M0
INTE01	Enable	20H	R/W		W		R/W		W	
	0/1	(No RMW)	0	0	. 0	0	0	0)) 0	0
	latat		INT3				/	IN.	T2	
INTEGO	Interrupt	2411	I3C	13M2	13M1	13M0	√I2C (J2M2	I2M1	12M0
INTE23	Enable	21H	R/W	:	W	•	R/W	\mathcal{I}	W	
	2/3	(No RMW)	0	0	0	0	0	0	0	0
	lata		INT5				INT4			
INITEAE	Interrupt	inable 22H	I5C	15M2	. I5M1	: I5M0	I4C	7) I4M2	I4M1	14M0
INTE45				:	W		R/W		W	
	4/5	(No RMW)	0	0	0	0 ~	0	0	~ (0)	0
	lata			INT	TC1			INT	TC0	
INTETC	Interrupt	23H	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
01	Enable		R/W		W) R/W	\ (()) w	
	TC 0/1	(No RMW)	0	0	0	0	0	Q	(/0)	0
	latanit			INT	TC3			INT.	TC2	
INTETC	Interrupt	24H	ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	JTC2M2	ITC2M1	ITC2M0
23	Enable		R/W	:	W/		R/W		W	
TC2/3 ((No RMW)	0	0	. 0	. 0	0		0	0
								7,		

→	lxxM2	lxxM1	lxxIV10	Function (Write)
	0	0 \) 0	Disables interrupt request.
	0	0	ノ/1	Sets interrupt request level to "1".
	0		0	Sets interrupt request level to "2".
	0	((1 \)	1	Sets interrupt request level to "3".
	1	(0)	0	Sets interrupt request level to "4"
	1	0	1	Sets interrupt request level to "5".
	1(()	/_\1	0	Sets interrupt request level to "6".
	1\\/	())ı	1	Disables interrupt request.

	lxxC	Function (Read)	Function (Write)
	//0	Indicates no interrupt request.	Clears interrupt request flag.
/	1	Indicates interrupt request.	Don't care

Read / Write

R/W : Read / Write W : Write only

No RMW: Prohibit read-modify-write. (Cannot use the EX. ADD. ADC.

SUB. SBC. INC. DEC. AND. OR. XOR. STCF. RES. SET. CHG. TEST. RLC. RRC. RL. RR. SLA. SRA. SLL. SRL. RLD.

or RRD instructions).

Interrupt Control (2/2)

Symbol	Name	Address	7	6	5	4	3	. 2	1	. 0
								15LE	IOLE	NMIREE
	Interrupt						:	W	w	w
	Input				:			. (0	0	0
IIMC	Mode	2FH					:	INT5	INTO	NMI
	Contorol							0: ↑ edge	0: ↑ edge	0:↓edge
		(No RMW)					\ (1:level	1:level	1: ↓ ↑ edge
	DNAAO		DMA0V7	DMA0V6	DMA0V5	DMA0V4	DMA0V3	DMA0V2	:	:
D14401	DMA 0	26H			V	/				
DMA0V	Request Vector		0	0	0	0	/0/) > 0	:	
	vector	(No RMW)			Micro DMA0	start vector				
	DMA 1		DMA1V7	DMA1V6	DMA1V5	DMA1V4	DMA1V3	DMA1V2		:
DMA1V	Request	27H			41 /	\supset				
DIVIATV	Vector	-	0	0	0	9	Q	. 0	2 \\	
	Vector	(No RMW)			Micro DMA1	start vector		(c		
	DMA 2		DMA2V7	DMA2V6	DMA2V5	DMA2V4	:/DMA2V3	DMA2V2		
DMA2V	Request	28H			v				<u> </u>	:
DIVIAZV	Vector	(1) 51 51 6	0	0	. 0	(0)	0	. 0		
	Vector	(No RMW)			Micro DMA2	start vector			~	:
	DMA 3		DMA3V7	DMA3V6	DMA3V5	DMA3V4	DMA3V3	DMA3V2	<u> </u>	
DMA3V	Request	29H			V				<u> </u>	
DIVIASV	Vector		0	0	0	0	0 (/			
	vector	(No RMW)			Micro DMA3	start vector	\sim			

Note: Micro DMA is started by software using (2AH/2BH/2CH/2DH) write cycle of a SDMACR 0/1/2/3. (Data are invalid)

(2) Wait control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			B0E				BOBUS	B0W2	B0W1	B0W0
	Block 0		W				W		W	
	CS/WAIT		0				0	<u>:</u> (0	1 0	0
B0CS	Control	30H	0: Disable				0: 16 BIT	000: 2W	AIT 10	0: 0 + NWAIT
	Register		1: Enable				1:8BIT /	001: 1W	AIT 10	1 ک
	Register							010; 1W	AIT + N 11	0 > Don't set.
		(No RMW)						011:0W	AIT 11	1 ا
			B1E				B1BUS	B1W2	B1W1	B1W0
	Block 1		W				: \wk) \	W	
	CS/WAIT		0					<u> </u>	0	0
B1CS	Control	31H	0: Disable			. (0: 16 BIT	000: 2W	AIT 10	0: 0 + NWAIT
	Register		1: Enable				1:8BIT	001: 1W	AIT 10	1)
	Register							010: 1W	_ / /	0 > Don't set.
		(No RMW)				-(O/		011: 0W		<u>ال</u> 1
			B2E	B2M		\\\	B2BUS	B2W2	B2W1	B2W0
	Block 2		W	W	,		/ w		~ (w//	
	CS/WAIT		1	0			0	0	9	0
B2CS	Control	32H	0: Disable	0: 16M	.(_	// `	0: 16 BIT	000: 2W		0: 0 + NWAIT
	Register		1: Enable	area	9		1: 8 BIT	001: 1W		1)
	Register			1: Sets CS				010:1W	AIT + N 11	0 > Don't set.
		(No RMW)		area				011: 0W		-
			B3E			7	B3BUS /	B3W2	B3W1	B3W0
	Block 3		W	~			W		. W	
	CS/WAIT		0				0	0	0	0
B3CS	Control	33H	0: Disable				0: 16 BIT	000: 2W		0:0 + NWAIT
	Register		1: Enable))		1: 8 BIT	001: 1W		
	register							010: 1W		
		(No RMW)						011: 0W		
			1				BEXBUS	BEXW2	BEXW1	BEXW0
	External					1631	W		W	
	CS/WAIT		-(O)				0	0	0	0
BEXCS	Control	3FH	/ //	<i>))</i>		, \	0: 16 BIT	000: 2W		0: 0 + NWAIT
	Register				((//	$\langle \wedge \rangle$	1: 8 BIT	001: 1W		
			/		$\setminus \setminus \setminus \setminus$	ノノ		010: 1W		
		(No RMW)	<u> </u>					011: 0W		
	Memory		523	\$22	521	S20	<u>S19</u>	S18	S17	<u>\$16</u>
	Start	2411					W	: 4	: .	: ,
MSAR0	Address	34H	1	1	1	1 1	1 1	<u> </u>	1	1
	Reg. 0	N		^	\	A23 t				
			1/20	: ((/10	1/10	Sets start V17		: \/4F	V14~9	1/0
	Memory		V20	V19	V18		: •.•	. V15	; V14~9	V8
NAARABO	Start))	1		. 4		W : 1	: 4	: 4	: 4
IVIAIVIKU	Address	3'5H	> 1		1	1	<u>; 1</u>	<u>; 1</u>	<u>; 1</u>	; 1
	Mask		((\ / \	())	Sets CS0	area size.	0 : Compare	address		
	Reg. 0		\$23	522	S21	S20		S18	S17	S16
	Memory		343	; 322	; 3 21		: 319 W	; 316	; 31/	: 310
MSAR1	Start	36H	1	1	1		<u>vv</u> i 1	1	1	1
IVIDAKI	Address	3011	<u> </u>	: '	: '		<u>: </u>	: '	: 1	; '
	Reg. 1					Sets start				
	Memory		V21	V20	V19	Sets start	V17	V16	V15~9	V8
	Start		VZI	: VZU	: עוא		<u>: V17</u> W	: VIO	: V15~9	: vo
MAMR1		37H	1	1	1	1 K/	<u>vv</u> i 1	<u> </u>	1	1
IVIAIVIKI	Mask	3/П	<u> </u>	: 1		; I	: !	<u>: I</u>	; 1	: '
					Sets CS1	area size.	0 : Compare	address		
	Reg. 1		l							

Wait Control (2/2)

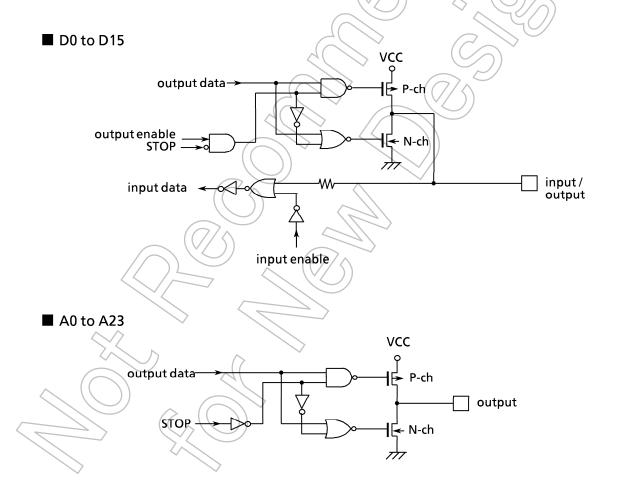
Symbol	Name	Address	7	: 6		5	4	3	2	1	0
			523	S22	- 1	S21	\$20	S19	518	S17	S 16
	Memory						I	R/W			
MSAR2	Start Address	38H	1	1		1	1	1	(1() > 1	1
							A23	to A16	_ //		
	Reg. 2						Sets sta	rt address.			
	Memory		V22	V21		V20	V19	₹V18	(V17)	V16	V15
	Start							R/W			
MAMR2	Address	39H	1	1		1	1		1	1 [1
	Mask					Sate C	°C2 area siza	0 : Compare	addrass		
	Reg. 2					sets C	.32 area size.	0 . Compare	aduress		
	Memory		S23	S22		S21	S20	S19	S18	\$17	S16
	Start							R/W		41	>
MSAR3	Address	3AH	1	1		1	11		1		1
	Reg. 3						A23	to A16	. (
	incg. 5						Sets sta	rt address.	\\	y_{Δ}	
	Memory		V22	V21		V20	V19	V18	V17	V16//	V15
	Start						7(//	R/W			
MAMR3	Address	3BH	1	1	<u> </u>	1 (1	1	((1)	<u> 1</u>	1
	Mask					Sate	S3 area size.	0 : Compare	address)	
	Reg. 3					Jets	SS al ea size.	o . compare	address	/	

(3) Stanby Mode Control

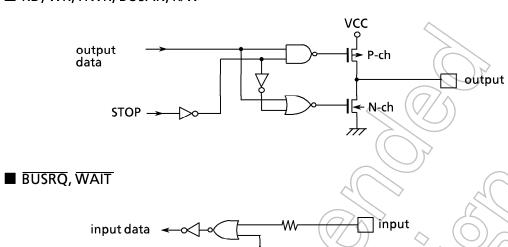
Symbol	Name	Address	7	6	:)) 5	4	3/	2	1	i	0
			RDE		SCOUTST	CLKST	HALTM1	HALTM0	:		DRVE
			w				R/W				R/W
	Stand-By-		0		0	10	0	0	:		0
STMOD	Mode	1EH	1: PSRAM	7	0: Output	:0: Output	Halt mod	le setting	•		1: Pins are
	Control		mode))	enable	enable	00: RUN				driven in STOP
	Register				1: Output disable	1: Output disable	; 01.3101				mode.
		(No RMW)	/		(High-	(High-	: 10: IDLE : 11: Don't	care		:	
		(:	impedance): /impedano					

Note: "0" must not be written in <CLKST> and <SCOUTST>. (Only resetting can clear.)

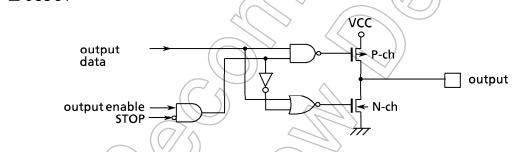
6. Port Section Equivalent Circuit Diagram


• Reading circuit diagrams

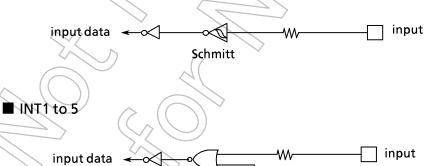
Basically, TMP95C001 uses the same gate symbols as the standard CMOS logic IC (74HCxxx) series.

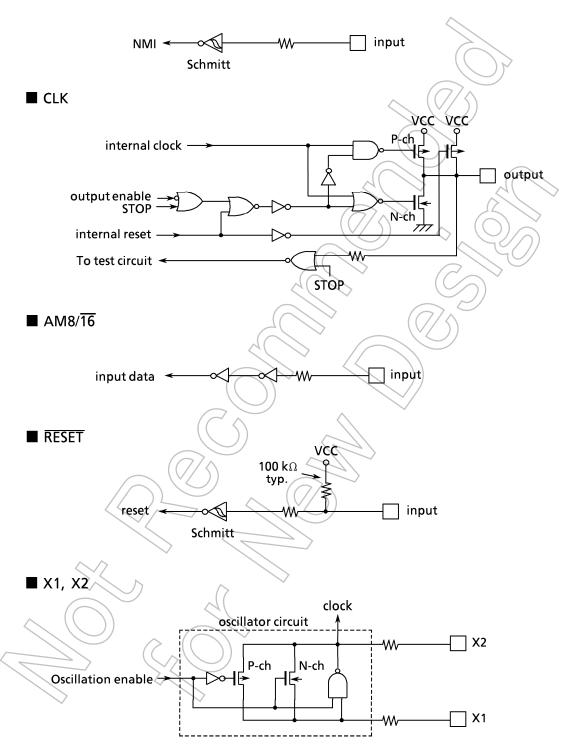

The following is a special signal.

STOP: When the hold mode register is set to STOP mode (STMOD<HALTM1,0> set to 0,1) and the CPU executes the HALT instruction, the STOP signal is set to active, "1". Note that when drive enable bit STMOD<DRVE> is set to "1", STOP remains at "0".


• The input protection resistor operates in the range of several tens to several hundreds of ohms.

■ RD, WR, HWR, BUSAK, R/W




STOP

■ INT0

STOP

■ NMI

Note: The oscillation enable signal becomes nonactive "0" by execution of HALT instruction (STOP mode).

7. Cautions and Restrictions

- (1) Special Notation and Terms
 - ① Internal I/O registers: Register symbols < bit symbols > Example: MSAR0 < S23 > ··· The S23 bit of the MSAR0 register
 - 2 Read-modify-write instructions

The CPU reads the data from memory, modifies them, and writes them to the same memory address.

(mem), R/#

Example 1: SET 3, (MSAR0) ··· Sets bit 3 of MSAR0 register.

Example 2: INC 1, (100H) ... Increments data at address 100H by 1.

• TLCS-900 read-modify-write instructions.

Exchange

EX (mem), R
Arithmetic Operations
ADD (mem), R/# ADC

SUB (mem), R/# SBC (mem), R/# INC #3, (mem) DEC #3, (mem)

Logical Operations

AND (mem), R/# OR (mem), R/#
XOR (mem), R/#

Bit Operations

 STCF
 #3/A, (mem)
 RES
 #3, (mem)

 SET
 #3/A, (mem)
 CHG
 #3, (mem)

TSET #3, (mem)

Rotate and shift

RLC (mem) RRC (mem) RL(mem) RR(mem) SRA SLA (mem) (mem) SLL SRL (mem) (mem) RRD RLD (mem) (mem)

3 One state

The single cycle resulting from dividing the oscillation frequency by 2 is called "one state".

Example: At oscillation frequency 25 MHz

2/25 MHz = 80 ns = 1 state

(2) Points of Note and Restrictions

① AM8/ $\overline{16}$ pin

Connect this pin to Vcc or GND pins. Do not change pin levels during operation.

2 CPU (Micro DMA)

Only "LDC cr, r" and "LDC r, cr" can write or read data to or from control registers, such as the transfer source register (DMASn) in the CPU.

- 3 As this device does not support minimum mode, do not use the "MIN" instruction.
- **4** POP SR instruction

Please execute POP SR instruction during DI condition.

(5) Releasing the HALT mode by requesting an interruption

Usually, interrupts can release all halts status. However, the interrupts $= (\overline{NMI}, INT0)$, which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP mode. (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

