MULTÍ DÍMENSÍON Sensing the Future

TMR-MAC005

Microampere Current Sensor

General Description

TMR-MAC005 is a microampere current sensor incorporating high sensitivity tunneling magnetoresistive (TMR) sensor and Integrated coil with anti-magnetic interference design.

TMR-MAC005 provides 10 mA measuring range, 150 nA and standard SOP8 package.

Features and Benefits

- Tunneling magnetoresistance technique
- Low current measurement
- 150 nA high resolution
- Excellent temperature stability
- Wide operating voltage range
- Compact size

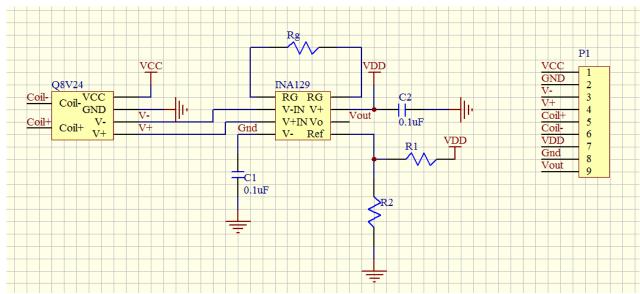
Applications

- Weak current measurement
- Bioelectric current measurement
- Industrial sensor
- Instrument and equipment

SPECIFICATIONS

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltage	V _{CC}	7	V
Reverse supply voltage	V _{RCC}	7	V
External magnetic field	н	3000	Oe
ESD performance (HBM)	V _{ESD}	4000	V
Ambient operating temperature	T _A	~40~125	°C
Ambient storage temperature	Ts	~50~150	°C



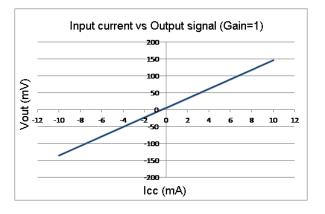
Electrical Parameters (at Vcc=5.0V, T_A=25°C, differential output)

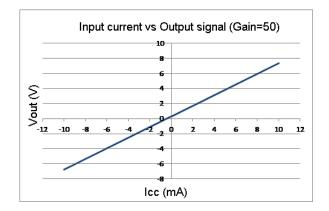
Parameters	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage	V _{cc}	Operating		5	7	V
Supply current	I _{CC}	Output open		70 ⁽¹⁾		μΑ
TMR resistance	R			70		kohm
Coil resistance	R_coil			85		ohm
Current measuring range	Range		-10		10	mA
Sensitivity	Sen	±10 mA		2.9		mV/V/mA
Electrical offset voltage	Voffset			-1		mV/V
Resolution	Res	±10 mA @ 1 Hz		150		nA
Linearity error	Non_line	±10 mA		0.5%		FS%
Temperature coefficient of sensitivity	TCS	within current measuring range		-300		PPM/ ℃
Output noise	Ni	1/f V noise @ 1 Hz		1.2		μV/rtHz
		thermal V noise		70		nV/rtHz
		1/f I noise @ 1 Hz		150		nA/rtHz
		thermal I noise		10		nA/rtHz

Note

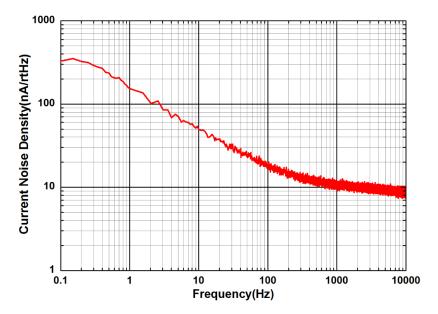
1. Icc may vary at 5V Vcc due to the resistance difference, customizable according to requirements

TYPICAL BLOCK DIAGRAM

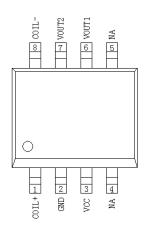

Note


1.VCC could equal to VDD

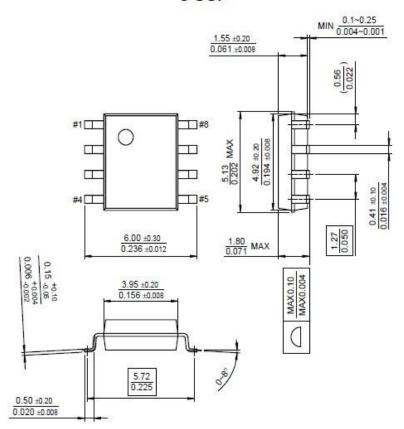
2.C1=0 (short circuit) when using single power supply


- 3. Tuning Voffset by changing the ratio of R1/R2
- 4. Choose proper gain by changing Rg

TYPICAL TRANSFER FUNCTION



TYPICAL CURRENT NOISE DENSITY SPECTRUM


CONNECTION DIAGRAM

1	Coil+
2	GND
3	VCC
4	N/A
5	N/A
6	Vout1
7	Vout2
8	Coil-

DIMENSIONS (mm)

8-SOP

MultiDimension Technology Co., Ltd.

Address:No.7 Guangdong Road, Zhangjiagang Free Trade Zone, Jiangsu, 215634, China Web: www.dowaytech.com/en Email: info@dowaytech.com

The information provided herein by MultiDimension Technology Co., Ltd. (hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimension reserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimension does not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimension for any damages resulting from such applications.