

TMR7102-D, TMR7102-E

CAN Bus Digital Output Current Sensor

Description

TMR7102 series are closed loop current sensors for accurate measurement of DC current with galvanic isolation between primary and secondary circuits.

Features and Benefits

- · Low temperature coefficient
- Galvanic isolation
- · High immunity to external interference
- High accuracy among all temperature ranges
- · CAN bus output

Applications

- Full electric vehicle current measurement
- Hybrid vehicle current measurement
- Battery energy storage systems (BESS)

Selection Guide

Model	Primary Nominal Current	Primary Current Measuring Range	Output Format	Baud Rate
TMR7102-5000D	500 A	±580 A	CAN2.0B	500 kbps
TMR7102-5000E	500 A	±580 A	CAN2.0B	250 kbps

Insulation and Environmental Characteristics

Parameters	Symbol	Typical	Unit
Load Dump Over Voltage	V _{cc}	32	V (400 ms)
Over Voltage	V _{cc}	24	V (1 min)
Reverse Polarity	V _{cc}	-16	V (1 min)
Dielectric Strength	V _D	2.5	kV(50 Hz, 1 min)
Insulation Resistance	R _{IS}	500	MΩ
Creepage Distance	d _{CP}	7.3	mm
Clearance	d _{CL}	6	mm
Ambient Operating Temperature	T _A	-40 ~ +85	°C
Ambient Storage Temperature	T _{STG}	-40 ~ +85	°C
Mass	m	80	g

CAN Bus Digital Output Current Sensor

Catalogue

1. Specifications	03
2. CAN2.0 Output Format	03
3. Error Lookup Table	03
4. Output Error	04
5. Application Information	04
6. Dimensions	05

.

1. Specifications

 $T_{\rm\scriptscriptstyle A}$ = +25 °C, $V_{\rm\scriptscriptstyle CC}$ = +13.5 V, unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
General Electrical Data							
Primary Nominal Current	I _{PN}	-	-	500	-	А	
Primary Current Measuring Range	I _{PM}	-	-580	-	+580	А	
Supply Voltage	V _{cc}	±5 %	+9	+13.5*	+16	V	
Over Voltage Protection	OVP	±5 %	-	+18	-	V	
	I _c	$T_A = +25 \text{ °C}, V_{CC} = +13.5 \text{ V}, I_P = 0 \text{ A}$	-	30	-	mA	
Current Consumption		T_A = +25 °C, V_{CC} = +13.5 V, I_P = 500 A	-	280	-		
Static Performance Data							
Electric Offect	I _{OE}	$T_A = +25 \text{ °C}, I_P = 0 \text{ A}$	-	±0.1	-	А	
		$T_A = -40 \text{ °C} \sim +85 \text{ °C}, I_P = 0 \sim \pm I_{PN}$	-	±0.25	-	А	
A cource)/	X _G	$T_A = +25 \text{ °C}, I_P = 0 \sim \pm I_{PN}$	-0.5	-	+0.5	% I _{pn}	
Acculacy		$T_{A} = -40 \text{ °C} \sim +85 \text{ °C}, I_{P} = 0 \sim \pm I_{PN}$	-0.6	-	+0.6	% I _{PN}	
Linearity Error	ε	$T_A = +25 \text{ °C}, I_P = 0 \sim \pm I_{PN}$	-	±0.2	-	% I _{pn}	

*Mean value for 12V lead acid battery system

2. CAN2.0 Output Format

Component		Proper	ties	Unit App		plicable Part Number	
Output Mode		CAN2.0B		-	All parts		
		500		kbps	TMR7102-5000D		
Dau		250	I	kbps	TMR7102-5000E		
St	art Bit	big end	lian	-	All parts		
CAN Report Rate		100	0 Hz			All parts	
CAN ID	Data Length	Signal Name	Signal Description		Start Bit	End Bit	
			0x8000000 = 0 mA		0 31	31	
	Current Value	0x80000001 = 1 mA					
			0x7FFFFFF = -1 mA				
0x3C2	8	Error Indicator	0-No error, 1-Error		32	32	
		Error Information	Default 0x64, see error lookup table for detail		33	39	
		Product Name	Default 0x48		40	55	
		Software Revision	n Default 0x00			56	63

3. Error Lookup Table

Failure Mode	Signal Value	Error Indicator	Error Infomation
Flash Error	0xFFFFFFF	1	0x40
Over Current > 580A	0xFFFFFFF	1	0x41
V _{cc} Out of Range	0xFFFFFFF	1	0x46

4. Output Error

Figure 1. Output Error @ -40 °C ~ +85 °C

5. Application Information

Electrical Connection

Primary through hole dimension: $\leq \Phi 24 \text{ mm}$

Secondary electrical connection: 4 Position TYCO 1473672-1, wiring info shown in Figure.

Pin Number	Name	Function
1	CAN-L	CAN-L
2	CAN-H	CAN-H
3	GND	Ground
4	V _{cc}	Power supply

Figure 2. Pin configuration and wiring Diagram

Mounting method

2 × M6 copper or SS304 screws (Recommended torque 2.5 N•m).

TMR7102 Guidelines

- 1) V_{OUT} is positive when the primary current (I_P) is in the same direction as the arrow indication on the label and vice versa.
- 2) Improper connection may result in permanent damage of the sensor.
- 3) Sensor is customizable upon request.

TMR7102-D, TMR7102-E

CAN Bus Digital Output Current Sensor

6. Dimensions

Figure 3. Dimension (unit: mm, tolerances for unmarked scales ±1 mm)

Copyright © 2023 by MultiDimension Technology Co., Ltd.

Information furnished herein by MultiDimension Technology Co., Ltd. (hereinafter MDT) is believed to be accurate and reliable. However, MDT disclaims any and all warranties and liabilities of any kind, with respect to any examples, hints or any performance or use of technical data as described herein and/or any information regarding the application of the product, including without limitation warranties of non-infringement of intellectual property rights of any third party. This document neither conveys nor implies any license under patent or other industrial or intellectual property rights. Customer or any third-party must further determine the suitability of the MDT products for its applications to avoid the applications default of customer or third-party. MDT accept no liability in this respect.

MDT does not assume any liabilities of any indirect, incidental, punitive, special or consequential damages (including without limitation of lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, MDT's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the terms and conditions of commercial sale of MDT.

Absolute maximum ratings are the extreme limits the device will withstand without damage to the MDT product. However, the electrical and mechanical characteristics are not guaranteed as the maximum limits (above recommended operating conditions) are approached. MDT disclaims any and all warranties and liabilities of the MDT product will operate at absolute maximum ratings.

Specifications may change without notice.

Please download latest document from our official website www.dowaytech.com/en.

Recycling

The product(s) in this document need to be handed over to a qualified solid waste management services company for recycling in accordance with relevant regulations on waste classification after the end of the product(s) life.

No.2 Guangdong Road, Zhangjiagang Free Trade Zone, Jiangsu, China Web: www.dowaytech.com/en E-mail: info@dowaytech.com

