

TMR7503-F

Unibody Low Temperature Coefficient Current Sensor

Description

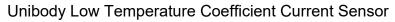
TMR7503-F is an open loop current sensor for accurate measurement of DC, AC, pulsed current and arbitrary waveform current with galvanic isolation between primary and secondary circuit.

Features and Benefits

- · Low temperature coefficient
- High immunity to external interference
- Galvanic isolation
- Excellent linearity
- · Light weight and compact
- RoHS & REACH compliant

Applications

- DC motor drives
- Inverters and variable frequency drives (VFD)
- Uninterruptible power supplies (UPS)
- · Communication power supplies
- Battery management system (BMS)
- Switching power supplies
- Power supplies for welding application


Selection Guide

Model	Primary Nominal Current Primary Current Measuring	
TMR7503-0500F	50 A	±150 A
TMR7503-1000F	100 A	±300 A
TMR7503-2000F	200 A	±600 A
TMR7503-3000F	300 A	±900 A
TMR7503-4000F	400 A	±900 A
TMR7503-5000F	500 A	±900 A
TMR7503-6000F	600 A	±900 A

Insulation and Environmental Characteristics

Parameters	Symbol	Typical	Unit	
Dielectric Strength	V_{D}	5	kV(50Hz, 1min)	
Insulation Resistance	R_{ls}	1000	ΜΩ	
Creepage Distance	d_{CP}	7.7	mm	
Clearance	d _{CL}	4.8	mm	
Ambient Operating Temperature	T _A	-40 to +105	°C	
Ambient Storage Temperature	T_{STG}	-50 to +125	°C	
Mass	m	61	g	

Catalogue

1. Specifications	03
2. Typical Output Characteristics	04
3. Typical Temperature Characteristics	05
4. Parameters Definition And Formula	07
5. Application Information	08
6 Dimensions	00

1. Specifications

 $\rm T_A$ = +25 °C, $\rm V_{CC}$ = ±15 V, $\rm R_L$ = 10 k $\rm \Omega,$ unless otherwise noted

Parameter	Symbol	(Condition	Min.	Тур.	Max.	Unit	
	l.	G	General Electrical Data					
		TMR7503-0500F		_	50	-	A	
Primary Nominal Current	I _{PN}	TMR7503-1000F		-	100	-		
		TMR7503-2000F		-	200	-		
		TMR7503-3000F		-	300	-		
		TMR7503-4000F		-	400	-		
		TMR7503-5000F		-	500	-		
		TMR7503-6000F		-	600	-		
		TMR7503-0500F		-150	-	150		
		TMR7503-1000F		-300	-	300		
		TMR7503-2000F		-600	-	600		
Primary Current Measuring Range	I _{PM}	TMR7503-3000F		-900	-	900	A	
weasuning realinge		TMR7503-4000F		-900	-	900	1	
		TMR7503-5000F		-900	-	900	-	
		TMR	7503-6000F	-900	-	900		
			TMR7503-0500F	-	80.00	-	mV/A	
	S	$I_P = 0$ to $\pm I_{PN}$	TMR7503-1000F	-	40.00	-		
			TMR7503-2000F	-	20.00	-		
Sensitivity			TMR7503-3000F	-	13.33	-		
			TMR7503-4000F	-	10.00	-		
			TMR7503-5000F	-	8.00	-		
			TMR7503-6000F	-	6.67	-		
Output Voltage	V _{OUT}	I _P	=0 to ±I _{PM}	-	V _{OE} + S × I _P	-	V	
Supply Voltage	V _{cc}		±5 %		±15	-	V	
Current Consumption	I _c	I _P = 0		-	±20	-	mA	
Load Resistance	R _L	$I_P = 0 \text{ to } \pm I_{PN}$		1	10	-	kΩ	
Load Capacitance	C _L	I _P	= 0 to ±I _{PN}	-	100	-	pF	
		St	atic Performance Data					
Accuracy	X _G	T _A = +25	$^{\circ}$ C, I_{P} = 0 to $\pm I_{PN}$	-1	±0.5	1	1 0/ 1	
Accuracy		$T_A = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C}, \ I_P = 0 \text{ to } \pm I_{PN}$		-3.5	±1.5	3.5	% I _{PN}	
Linearity Error	ϵ_{L}	$T_A = -40$ °C to +105 °C, $I_P = 0$ to $\pm I_{PN}$		-	0.4	8.0	% I _{PN}	
Symmetry	ε _{SYM}	$T_A = -40$ °C to +105 °C, $I_P = 0$ to $\pm I_{PN}$		99	100	101	%	
Sensitivity Error	ε _s	$T_A = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C}, \ I_P = 0 \text{ to } \pm I_{PN}$		-2	-	2	%	
Offset Error	V _{OE}	$T_A = +25 ^{\circ}\text{C}, I_P = 0$		-20	±10	20	mV	
		$T_A = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C}, \ I_P = 0$		-60	±20	60	111.4	
Hysteresis	V _{OH}	$T_A = -40 ^{\circ}\text{C} \text{ to}$	$+105$ °C, $I_P = \pm I_{PN} \rightarrow 0$	-20	±10	20	mV	
		Dyr	namic Performance Data	l	,			
Response Time	t _R	di/dt > 50 A/µ	us, 10% to 90% of I _{PN}	-	1	-	μs	
Bandwidth	BW		-3 dB	DC	180	-	kHz	

2. Typical Output Characteristics

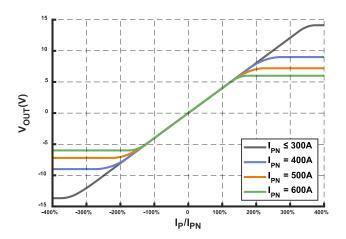


Figure 1. Output voltage versus primary current

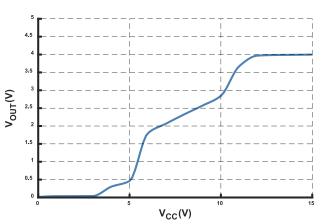


Figure 2. Output voltage versus supply voltage

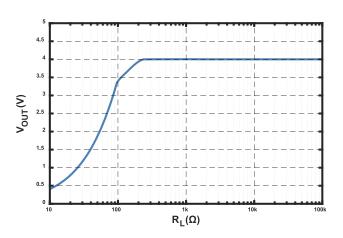


Figure 3. Output voltage versus load resistance $(@I_P=I_{PN})$

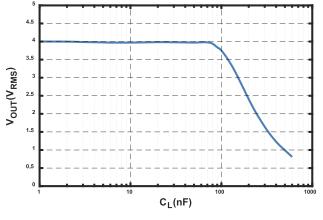


Figure 4. Output voltage versus load capacitance $(@I_P = I_{PN})$

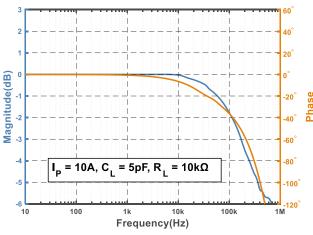
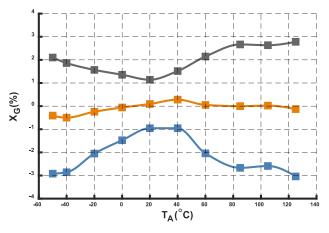



Figure 5. Bode plot of TMR7503-F

3. Typical Temperature Characteristics

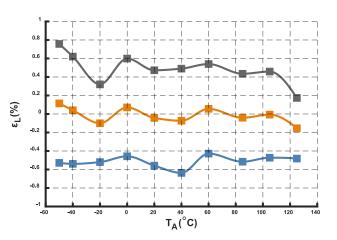
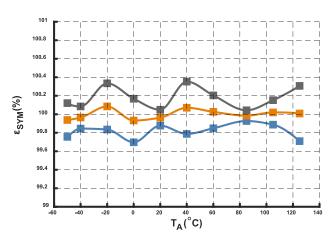



Figure 6. Total error versus ambient temperature

Figure 7. Linearity error versus ambient temperature

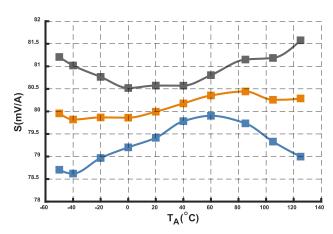
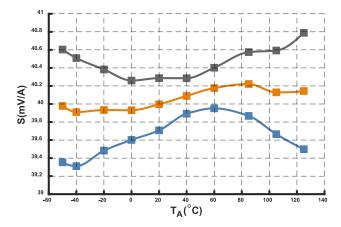



Figure 8. Symmetry versus ambient temperature

Figure 9. Sensitivity $@I_{PN} = 50 \text{ A versus ambient}$ temperature

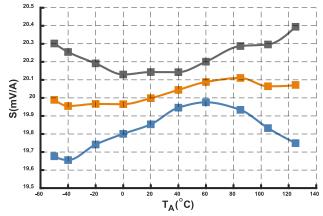


Figure 10. Sensitivity $@I_{PN} = 100 \text{ A versus ambient}$ temperature

Figure 11. Sensitivity @I_{PN} = 200 A versus ambient temperature

05

Typical Temperature Characteristics

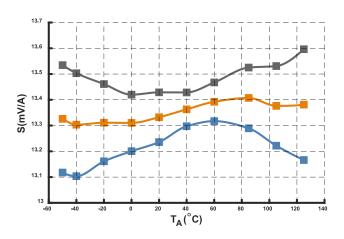


Figure 12. Sensitivity $@I_{PN}$ = 300 A versus ambient temperature

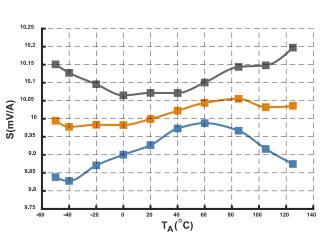


Figure 13. Sensitivity $@I_{PN}$ = 400 A versus ambient temperature

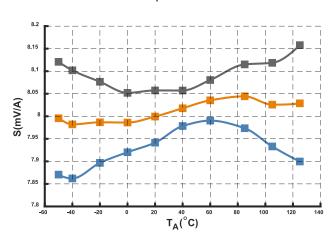


Figure 14. Sensitivity @I_{PN} = 500 A versus ambient temperature

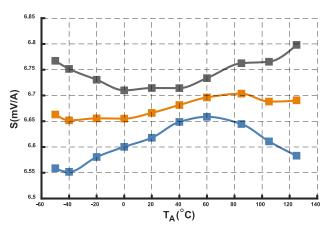


Figure 15. Sensitivity @I_{PN} = 600 A versus ambient temperature

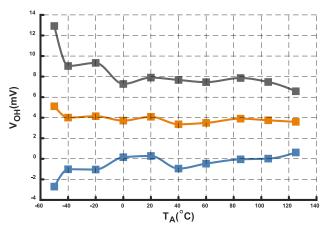


Figure 16. Hysteresis versus ambient temperature

4. Parameters Definition And Formula

1) Output Voltage

$$V_{OUT} = V_{OE} + S \times I_{P}$$

 V_{OUT} stands for current sensor output voltage at given primary current, V_{OE} stands for offset error, S stands for sensitivity, I_P stands for primary current.

2) Accuracy

$$X_G = MAX_{I_P} \left(\frac{V_{OUT} - (S \times I_P)}{S \times I_{PN}} \times 100\% \right)$$

I_{PN} stands for nominal primary current

3) Sensitivity

$$S = \frac{V_{OUT(@ I_{PN})} - V_{OUT(@ -I_{PN})}}{2 \times I_{PN}}$$

 $V_{OUT_{\left(\tiny{\textcircled{0}} \mid_{PN} \right)}} \text{ and } V_{OUT_{\left(\tiny{\textcircled{0}} \mid_{PN} \right)}} \text{ stand for the voltage output at } I_{PN} \text{ and } \text{-}I_{PN} \text{ respectively.}$

4) Linearity

$$\varepsilon_{L} = \underset{I_{P} \in [-I_{PN}, I_{PN}]}{\text{MAX}} \left(\frac{V_{\text{OUT}} - (\overline{V}_{\text{OE}} + \overline{S} \times I_{P})}{S \times I_{PN}} \times 100\% \right)$$

 \overline{S} and \overline{V}_{OE} stand for the average values of the sensitivity and offset error.

5) Symmetry

$$\varepsilon_{\text{SYM}} = \left| \frac{V_{\text{OUT}(@ I_{\text{PN}})} - \overline{V}_{\text{OE}}}{V_{\text{OUT}(@ -I_{\text{DN}})} - \overline{V}_{\text{OE}}} \right| \times 100\%$$

6) Hysteresis

$$V_{OH} = MAX \Delta H$$

ΔH is the maximum residual voltage between full scale positive and negative nominal current.

5. Application Information

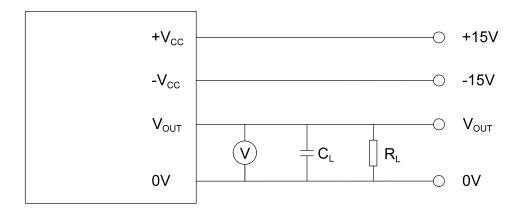


Figure 17. Connection diagram of TMR7503

Mounting Recommendation

1. Mounting method: $3 \times \Phi$ 4.5 mm holes (pick one)

1 × M4 copper or SS304 screw (recommended applied torque 0.75 N•m)

2. Primary through-hole dimensions: 20 mm × 10 mm

3. Secondary terminal: Molex 22041041 (previous 5045-04A series)

Crimp Housing: Molex 22011042, Crimping Terminal: Molex 08500113

Remarks

- 1. V_{OUT} is positive when the primary current is in the same direction as the arrow indication on the label and vice versa.
- 2. Improper connection can cause permanent damage of the sensor.
- 3. Excessive capacitive load may result in distortion of output signals when measuring high frequency primary signal. Please refer to Output Voltage vs Load Capacitance Curve.
- 4. Sensor is customizable upon request.
- 5. Dynamic performances (di/dt and response time) are best with a single busbar completely filling the primary hole.

6. Dimensions

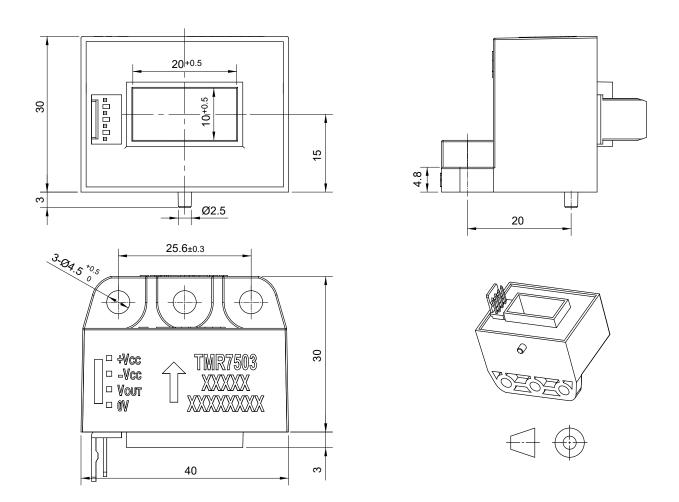


Figure 18. Sensor outline (unit: mm, tolerances for unmarked scales ±1 mm)

Copyright © 2024 by MultiDimension Technology Co., Ltd.

Information furnished herein by MultiDimension Technology Co., Ltd. (hereinafter MDT) is believed to be accurate and reliable. However, MDT disclaims any and all warranties and liabilities of any kind, with respect to any examples, hints or any performance or use of technical data as described herein and/or any information regarding the application of the product, including without limitation warranties of non-infringement of intellectual property rights of any third party. This document neither conveys nor implies any license under patent or other industrial or intellectual property rights. Customer or any third-party must further determine the suitability of the MDT products for its applications to avoid the applications default of customer or third-party. MDT accept no liability in this respect.

MDT does not assume any liabilities of any indirect, incidental, punitive, special or consequential damages (including without limitation of lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, MDT's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the terms and conditions of commercial sale of MDT.

Absolute maximum ratings are the extreme limits the device will withstand without damage to the MDT product. However, the electrical and mechanical characteristics are not guaranteed as the maximum limits (above recommended operating conditions) are approached. MDT disclaims any and all warranties and liabilities of the MDT product will operate at absolute maximum ratings.

Specifications may change without notice.

Please download latest document from our official website www.dowaytech.com/en.

Recycling

The product(s) in this document need to be handed over to a qualified solid waste management services company for recycling in accordance with relevant regulations on waste classification after the end of the product(s) life.

