

TMR7559-B

Board Mount Precision Current Sensor

Description

TMR7559-B is a close loop current sensor for accurate measurement of DC, AC, pulsed current and arbitrary waveform current with galvanic isolation between primary and secondary circuits.

Features and Benefits

- High accuracy
- Excellent linearity
- · Low temperature coefficient
- Fast response time
- · Galvanic isolation
- RoHS & REACH compliant

Applications

- Solar inverter
- · Direct-current dynamo
- Uninterruptible power supplies (UPS)
- Switched model power supplies (SMPS)
- Variable frequency drive (VFD)

Selection Guide

Part Number	Primary Nominal Current	Primary Current Measuring Range
TMR7559-1000B	100 A	±300 A
TMR7559-1500B	150 A	±450 A
TMR7559-2000B	200 A	±500 A
TMR7559-2500B	250 A	±500 A

Insulation and Environmental Characteristics

Parameters	Symbol	Тур.	Unit	
Dielectric Strength	V_{D}	4	kV(50 Hz, 1 min)	
Insulation Resistance	R _{is}	1000	ΜΩ	
Creepage Distance	d_{CP}	22	mm	
Clearance	d_{CL}	14.5	mm	
Ambient Operating Temperature	T _A	-40 to +85	°C	
Ambient Storage Temperature	T_{STG}	-50 to +105	°C	
Mass	m	60	g	

Catalogue

1. Specifications	03
2. Maximum Continuous DC Primary Current	04
3. Typical Output Characteristics	05
4. Typical Temperature Characteristics	06
5. Parameters Definition And Formula	07
6 Dimensions	08

1. Specifications

 $\rm T_A$ = +25 °C, $\rm V_{CC}$ = 5 V, $\rm R_L$ = 10 k $\Omega,$ unless otherwise noted

Parameter	Symbol	Co	Min.	Тур.	Max.	Unit	
		General	Electrical Data				
Primary Nominal Current		TMR7559-1000B		-	100	-	Α
	I _{PN}	TMR7559-1500B		-	150	-	
		TMR7559-2000B		-	200	-	
		TMR7559-2500B		-	250	-	
		TMR7559-1000B		-300	-	300	Α
Primary Current Measuring Range	I _{PM}	TMR7559-1500B		-450	-	450	
		TMR7559-2000B		-500	-	500	
		TMR7559-2500B		-500	-	500	
			TMR7559-1000B	-	6.25	-	mV/A
Compilitivity	S	$I_P = 0 \text{ to } \pm I_{PN}$	TMR7559-1500B	-	4.167	-	
Sensitivity			TMR7559-2000B	-	3.125	-	
			TMR7559-2500B	-	2.7	-	
Supply Voltage	V _{CC}	±5 %		-	5	-	V
Reference Output Voltage	V_{REF}	-		2.485	2.5	2.515	V
Offset Voltage	V _{OFF}	-		-	2.5	-	V
Output Voltage	V _{OUT}	$I_P = 0 \text{ to } \pm I_{PM}$		-	V _{OFF} + S × I _P	-	V
Current Consumption	I _c	I _P = 0		-	16	-	mA
		Static Pe	erformance Data				
Accuracy	X _G	$I_P = 0 \text{ to } \pm I_{PN}$		-	±0.8	-	- % I _{PN}
		$T_A = 85 ^{\circ}\text{C}, I_P = 0 \text{ to } \pm I_{PN}$		-	±1.4	-	
Linearity Error	ε_	$I_P = 0 \text{ to } \pm I_{PN}$		-	±0.15	-	% I _{PN}
Symmetry	ε _{SYM}	$T_A = -40 ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$, $I_P = 0$ to $\pm I_{PN}$		99	100	101	%
Offset Error	V _{OE}	$T_A = +25 ^{\circ}\text{C}, I_P = 0$		-	-	5	mV
		Dynamia	Performance Data				
		Dynamic F	enormance Data				
Response Time	t _R		, 10% to 90% of I _{PN}	-	1	-	μs

2. Maximum Continuous DC Primary Current

TMR 7559 Maximum continuous DC primary current

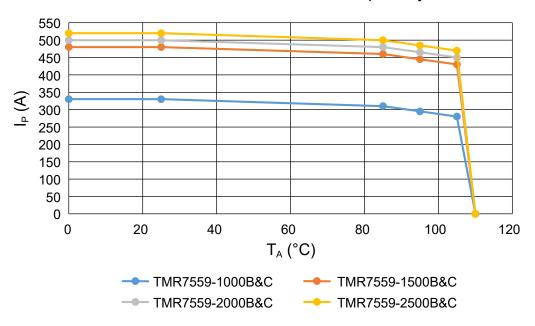


Figure 1. I_P vs T_A for TMR7559

The maximum continuous DC primary current plot shows the boundary of the area for which all the following conditions are true:

- |_P < |_{PM}
- Junction temperature T_i < 125°C
- Primary conductor temperature T_A < 110°C

3. Typical Output Characteristics

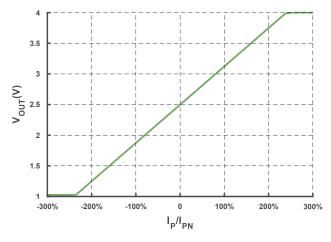


Figure 2. Output Voltage vs Primary Current

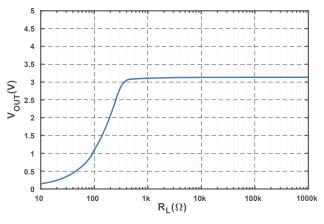


Figure 4. Output Voltage vs Load Resistance (@ $I_P = I_{PN}$)

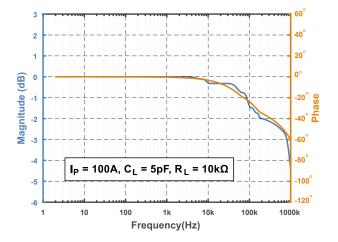


Figure 6. Bode Plot

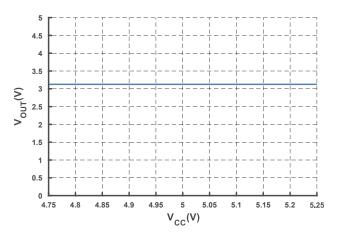


Figure 3. Output Voltage vs Supply Voltage ($@I_P = I_{PN}$)

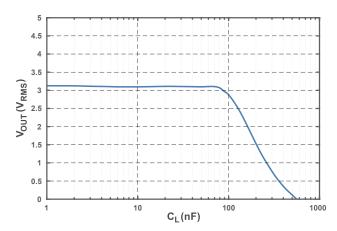
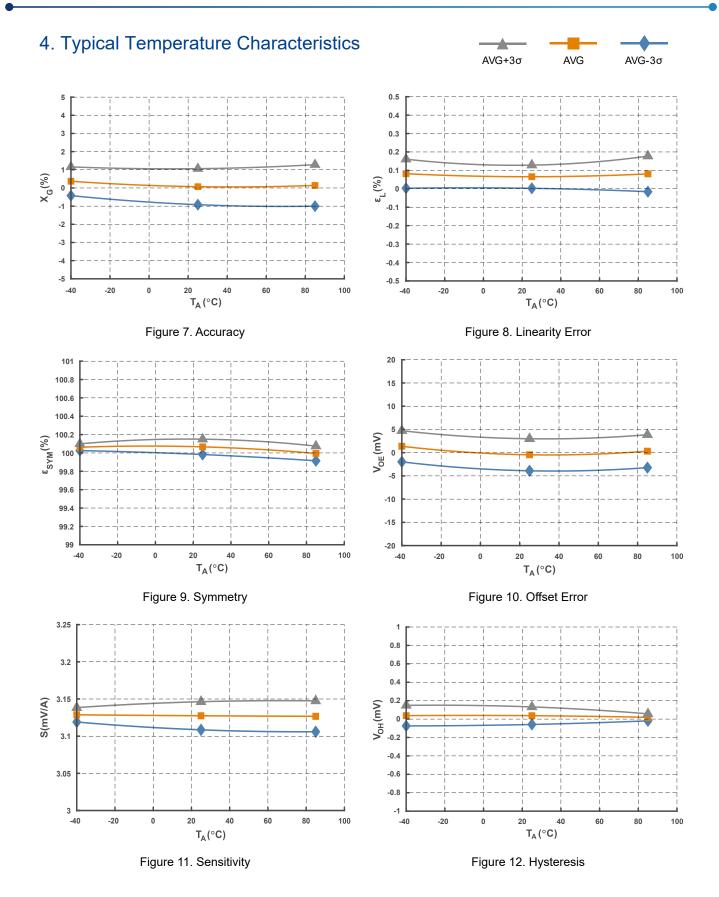



Figure 5. Output Voltage vs Load Capacitance (@ $I_P = I_{PN}$)

5. Parameters Definition And Formula

1) Output Voltage

$$V_{OUT} = V_{OFF} + S \times I_{P}$$

 V_{OUT} stands for current sensor output voltage at given primary current, V_{OFF} stands for offset voltage, S stands for sensitivity, I_P stands for primary current.

2) Accuracy

$$X_{G} = \underset{I_{P} \in [-I_{PN}, I_{PN}]}{MAX} \left(\frac{(V_{OUT} - V_{REF}) - (S \times I_{P})}{S \times I_{PN}} \times 100\% \right)$$

I_{PN} stands for nominal primary current

3) Sensitivity

$$S = \frac{V_{OUT(@ I_{PN})} - V_{OUT(@ -I_{PN})}}{2 \times I_{PN}}$$

 $V_{OUT_{\left(igotimes I_{PN}
ight)}}$ and $V_{OUT_{\left(igotimes I_{PN}
ight)}}$ stand for the current output at I_{PN} and I_{PN} respectively.

4) Linearity

$$\epsilon_{L} = \underset{I_{P} \in [-I_{PN}, \ I_{PN}]}{\mathsf{MAX}} \left(\frac{(\mathsf{V}_{\mathsf{OUT}} - \mathsf{V}_{\mathsf{REF}}) - \left(\overline{\mathsf{V}}_{\mathsf{OE}} + \overline{\mathsf{S}} \times \mathsf{I}_{\mathsf{P}}\right)}{\mathsf{S} \times \mathsf{I}_{\mathsf{PN}}} \times 100\% \right)$$

 \overline{S} and \overline{V}_{OE} stand for the average values of the sensitivity and electric offset.

5) Symmetry

$$\varepsilon_{\text{SYM}} = \left| \frac{V_{\text{OUT}(@ I_{PN})} - \overline{V}_{\text{OFF}}}{V_{\text{OUT}(@ -I_{DN})} - \overline{V}_{\text{OFF}}} \right| \times 100\%$$

6) Hysteresis

$$V_{OH} = MAX \Delta H$$

ΔH is the maximum residual output current between full scale positive and negative nominal current.

Offset Voltage

$$V_{OE} = V_{OUT}_{(@ I_P = 0)} - V_{REF}$$

6. Dimensions

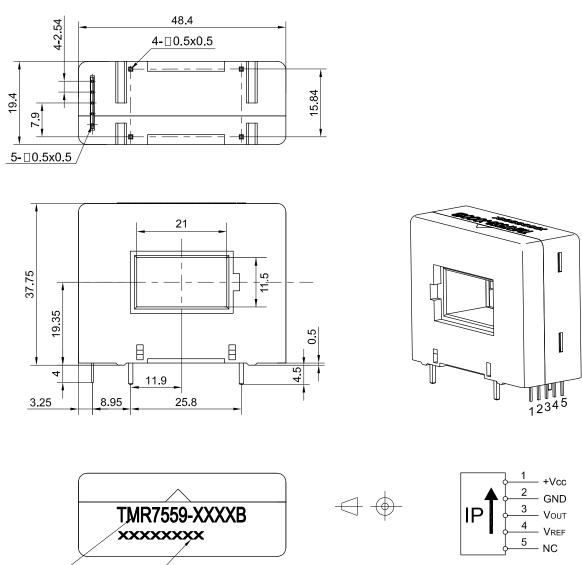


Figure 13. Dimension (unit: mm, tolerances for unmarked scales ±1 mm)

Remarks

Part number

- 1. V_{OUT} is positive when the primary current (I_P) is in the same direction as the arrow indication on the label and vice versa.
- 2. Improper connection may result in permanent damage of the sensor.

Serial number

- 3. Excessive capacitive load may result in distortion of output signals when measuring high frequency primary signal. Please refer to Output Voltage vs Load Capacitance Curve.
- 4. Dynamic performances (di/dt and response time) are best with a single busbar completely filling the primary through hole.
- 5. Sensor is customizable upon request.

Copyright © 2023 by MultiDimension Technology Co., Ltd.

Information furnished herein by MultiDimension Technology Co., Ltd. (hereinafter MDT) is believed to be accurate and reliable. However, MDT disclaims any and all warranties and liabilities of any kind, with respect to any examples, hints or any performance or use of technical data as described herein and/or any information regarding the application of the product, including without limitation warranties of non-infringement of intellectual property rights of any third party. This document neither conveys nor implies any license under patent or other industrial or intellectual property rights. Customer or any third-party must further determine the suitability of the MDT products for its applications to avoid the applications default of customer or third-party. MDT accept no liability in this respect.

MDT does not assume any liabilities of any indirect, incidental, punitive, special or consequential damages (including without limitation of lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, MDT's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the terms and conditions of commercial sale of MDT.

Absolute maximum ratings are the extreme limits the device will withstand without damage to the MDT product. However, the electrical and mechanical characteristics are not guaranteed as the maximum limits (above recommended operating conditions) are approached. MDT disclaims any and all warranties and liabilities of the MDT product will operate at absolute maximum ratings.

Specifications may change without notice.

Please download latest document from our official website www.dowaytech.com/en.

Recycling

The product(s) in this document need to be handed over to a qualified solid waste management services company for recycling in accordance with relevant regulations on waste classification after the end of the product(s) life.

