This data sheet is applicable to all TMS417809As and TMS427809A/Ps symbolized by Revision "E" and subsequent revisions as described in the device symbolization section.

- Organization . . . 2097152 by 8 Bits
- Single Power Supply (5 V or 3.3 V)
- Performance Ranges:

CCESS TIME	ACCESS TIME	ACCESS TIME	EDO CYCLE
^t RAC MAX	^t CAC MAX	^t AA MAX	^t HPC MIN
50 ns	13 ns	25 ns	20 ns
60 ns	15 ns	30 ns	25 ns
70 ns	18 ns	35 ns	30 ns
50 ns	13 ns	25 ns	20 ns
60 ns	15 ns	30 ns	25 ns
70 ns	18 ns	35 ns	30 ns
	TIME ^t RAC MAX 50 ns 60 ns 70 ns 50 ns 60 ns	TIME TIME tRAC tCAC MAX MAX 50 ns 13 ns 60 ns 15 ns 70 ns 18 ns 50 ns 13 ns 60 ns 15 ns 70 ns 18 ns 50 ns 13 ns 60 ns 15 ns	tRAC tCAC tAA MAX MAX MAX 50 ns 13 ns 25 ns 60 ns 15 ns 30 ns 70 ns 18 ns 35 ns 50 ns 13 ns 25 ns 60 ns 15 ns 30 ns 70 ns 18 ns 35 ns 50 ns 13 ns 25 ns 60 ns 15 ns 30 ns

- Extended-Data-Out (EDO) Operation
- CAS-Before-RAS (CBR) Refresh
- Long Refresh Period and Self-Refresh Option (TMS427809AP)
- High-Impedance State Unlatched Output
- High-Reliability Plastic 28-Lead 400-Mil-Wide Surface-Mount Small-Outline J-Lead (SOJ) Package (DZ Suffix) and 28-Lead 400-Mil-Wide Surface-Mount Thin Small-Outline Package (TSOP) (DGC Suffix)
- Ambient Temperature Range 0°C to 70°C

description

The TMS417809A and TMS427809A series are 16777216-bit dynamic random access memory (DRAM) devices organized as 2097152 words of 8 bits each. The TMS427809AP series is a low-power, self-refresh, 16777216-bit DRAM organized as 4194304 words of four bits.They employ TI state-of-the-art technology for high performance, reliability, and low power.

			GE
(TOP V	IEVV)	
			h
Vcc	1	28	Vss
DQ0	2	27	DQ7
DQ1	3	26	DQ6
DQ2	4	25	DQ5
DQ3	5	24	DQ4
W	6	23	CAS
RAS	7	22	OE
NC	8	21] A9
A10	9	20	A8
A0 [10	19] A7
A1 [11	18	A6
A2 [12	17	A5
A3 [13	16	A4
Vcc	14	15]V _{SS}

	PIN NOMENCLATURE
A[0:10]	Address Inputs
DQ[0:7]	Data In/Data Out
CAS	Column-Address Strobe
NC	No Internal Connection
OE	Output Enable
RAS	Row-Address Strobe
VCC	3.3-V or 5-V Supply
Vss	Ground
W	Write Enable

AVAILABLE OPTIONS

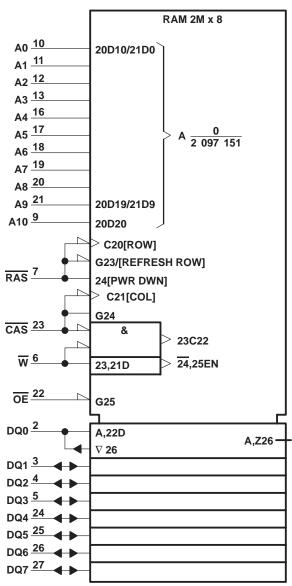
DEVICE	POWER SUPPLY	REFRESH CYCLES
TMS417809A	5 V	2048 in 32 ms
TMS427809A	3.3 V	2048 in 32 ms
TMS427809AP	3.3 V	2048 in 128 ms

These devices feature maximum RAS access times of 50-, 60-, and 70 ns. All address and data-in lines are latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The TMS417809A is offered in a 28-lead plastic surface-mount SOJ package (DZ suffix). The TMS427809A/P is offered in a 28-lead plastic surface-mount TSOP package (DGC suffix). These packages are designed for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

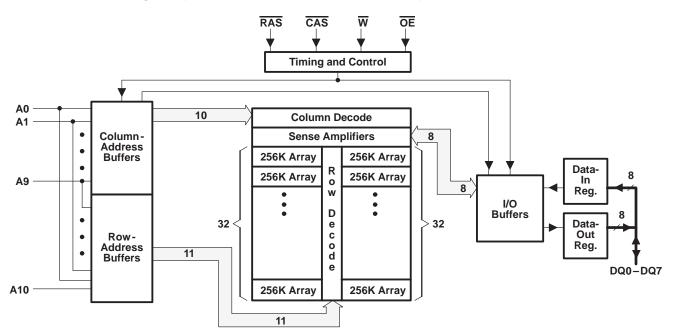


Copyright © 1997, Texas Instruments Incorporated

1

TMS417809A, TMS427809A, TMS427809AP 2097152 BY 8-BIT EXTENDED DATA OUT DYNAMIC RANDOM-ACCESS MEMORIES SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

logic symbol (TMS417809A and TMS427809A/P)[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 647-12.

TMS417809A, TMS427809A, TMS427809AP 2097152 BY 8-BIT EXTENDED DATA OUT DYNAMIC RANDOM-ACCESS MEMORIES SMKS894B – AUGUST 1996 – REVISED NOVEMBER 1997

functional block diagram (TMS417809A and TMS427809A/P)

operation

extended data out

Extended data out (EDO) allows data output rates up to 50 MHz for 50-ns devices. When keeping the same row address while selecting random column addresses, the time for row-address setup-and-hold and for address multiplexing is eliminated. The maximum number of columns that can be accessed is determined by t_{RASP} , the maximum RAS low time.

The EDO does not place the data-in/data-out pins (DQ pins) in the high-impedance state with the rising edge of \overline{CAS} . The output remains valid for the system to latch the data. After \overline{CAS} goes high, the DRAM decodes the next address. \overline{OE} and \overline{W} can control the output impedance. Descriptions of \overline{OE} and \overline{W} further explain EDO operation benefits.

address: A0-A10

Twenty-one address bits are required to decode each of the 2097152 storage-cell locations. Eleven row-address bits are set up on inputs A0 through A10 and latched onto the chip by RAS. Ten column-address bits are set up on A0 through A9. All addresses must be stable on or before the falling edge of RAS and CAS. RAS is similar to a chip-enable because it activates the sense amplifiers as well as the row decoder. CAS is used as a chip-select, activating the output buffers and latching the address bits into the column-address buffers.

output-enable (OE)

 \overline{OE} controls the impedance of the output buffers. While \overline{CAS} and \overline{RAS} are low and \overline{W} is high, \overline{OE} can be brought low or high and the DQs transition between valid data and high impedance (see Figure 8). There are two methods of placing the DQs into the high-impedance state and maintaining that state during \overline{CAS} high time. The first method is to transition \overline{OE} high before \overline{CAS} transitions high and keep \overline{OE} high for t_{CHO} (hold time, \overline{OE} from \overline{CAS}) past the \overline{CAS} transition. This disables the DQs and they remain disabled, regardless of \overline{OE} , until \overline{CAS} falls again. The second method is to have \overline{OE} low as \overline{CAS} transitions high. Then \overline{OE} can pulse high for a minimum of t_{\underline{OEP} </sub> (precharge time, \overline{OE}) anytime during \overline{CAS} high time, disabling the DQs regardless of further transitions on \overline{OE} until \overline{CAS} falls again (see Figure 8).

write-enable (\overline{W})

The read- or write mode is selected through \overline{W} . A logic high on \overline{W} selects the read mode, and a logic low selects the write mode. The data inputs are disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} (early write), data out remains in the high-impedance state for the entire cycle, permitting a write operation with \overline{OE} grounded. If \overline{W} goes low in an extended-data-out read cycle, the DQs are disabled as long as \overline{CAS} is high (see Figure 8).

data in/data out (DQ0-DQ7)

Data is written during a write- or read-modify-write cycle. Depending on the mode of operation, the latter of the falling edges of \overline{CAS} or \overline{W} strobes data into the on-chip data latch with setup-and-hold times referenced to the latter edge. The DQs drive valid data after all access times are met and the data remains valid except in cases described in the \overline{W} and \overline{OE} descriptions.

RAS-only refresh

A refresh operation must be performed once every 32 ms (128 ms for TMS427809AP) to retain data. This can be achieved by strobing each of the 2048 rows (A0–A10). A normal read- or write cycle refreshes all bits in each row that is selected. A RAS-only operation can be used by holding CAS at the high (inactive) level, conserving power as the output buffers remain in the high-impedance state. Externally generated addresses must be used for a RAS-only refresh.

hidden refresh

A hidden refresh can be performed while maintaining valid data at the output pin. This is accomplished by holding \overline{CAS} at V_{IL} after a read operation and cycling \overline{RAS} after a specified precharge period, similar to a \overline{RAS} -only refresh cycle. The external address is ignored and the refresh address is generated internally.

CAS-before-RAS (CBR) refresh

CBR refresh is performed by bringing \overline{CAS} low earlier than \overline{RAS} (see parameter t_{CSR}) and holding it low after \overline{RAS} falls (see parameter t_{CHR}). For successive CBR-refresh cycles, \overline{CAS} can remain low while cycling \overline{RAS} . The external address is ignored and the refresh address is generated internally.

battery-backup refresh

TMS427809AP

A low-power battery-backup refresh mode that requires less than 350 μ A of refresh current is available on the TMS427809AP. Data integrity is maintained using CBR refresh with a period of 62.5 μ s while holding RAS low for less than 300 ns. To minimize current consumption, all input levels must be at CMOS levels (V_{IL} < 0.2 V, V_{IH} > V_{CC} - 0.2 V).

self-refresh (TMS427809AP)

The self-refresh mode is entered by dropping \overline{CAS} low prior to \overline{RAS} going low, then \overline{CAS} and \overline{RAS} are both held low for a minimum of 100 μ s. The chip is refreshed internally by an on-board oscillator. No external address is required because the CBR counter is used to keep track of the address. To exit the self-refresh mode, both \overline{RAS} and \overline{CAS} are brought high to satisfy t_{CHS}. Upon exiting self-refresh mode, a burst refresh (refreshes a full set of row addresses) must be executed before continuing with normal operation to ensure that the DRAM is fully refreshed.

power up

To achieve proper device operation, an initial pause of 200 μ s followed by a minimum of eight initialization cycles is required after power up to the full V_{CC} level. These eight initialization cycles must include at least one refresh (RAS-only or CBR) cycle.

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

absolute maximum ratings over ambient temperature range (unless otherwise noted)[†]

•
\ldots – 1 V to 7 V
- 0.5 V to 4.6 V
\ldots – 1 V to 7 V
- 0.5 V to 4.6 V
50 mA
1 W
0°C to 70°C
– 55°C to 125°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to VSS.

recommended operating conditions

		ΤM	IS417809	9A	Т	TMS427809A/P MIN NOM MAX 3 3.3 3.6 0 0 0		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	3	3.3	3.6	V
VSS	Supply voltage		0			0		V
VIH	High-level input voltage	2.4		6.5	2		V _{CC} + 0.3	V
VIL	Low-level input voltage [‡]	- 1		0.8	- 0.3		0.8	V
ТА	Ambient temperature	0		70	0		70	°C

[‡]The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.

electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted)

TMS417809A

	PARAMETER	+	'41780	9A-50	'41780	9A-60	'41780	9A-70	UNIT
	PARAMETER	TEST CONDITIONS [†]	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
VOH	High-level output voltage	I _{OH} = - 5 mA	2.4		2.4		2.4		V
VOL	Low-level output voltage	I _{OL} = 4.2 mA		0.4		0.4		0.4	V
łı	Input current (leakage)	$V_{CC} = 5.5 \text{ V}, \qquad V_{I} = 0 \text{ V to } 6.5 \text{ V},$ All others = 0 V to V _{CC}		± 10		± 10		± 10	μA
IO	Output current (leakage)	$\frac{V_{CC}}{CAS} = 5.5 \text{ V}, \qquad V_{O} = 0 \text{ V to } V_{CC},$		± 10		± 10		± 10	μΑ
ICC1 ^{‡§}	Average read- or write-cycle current	V _{CC} = 5.5 V, Minimum cycle		130		110		100	mA
		$V_{IH} = 2.4 V (TTL),$ After one memory cycle, \overline{RAS} and \overline{CAS} high		2		2		2	
ICC2	Average standby current	$V_{IH} = V_{CC} - 0.2 V (CMOS),$ After one memory cycle, \overline{RAS} and \overline{CAS} high		1		1		1	mA
ICC3 ^{‡§}	Average refresh current (RAS-only refresh or CBR)	V _{CC} = 5.5 V, Minimum cycle, RAS cycling, CAS high (RAS only), RAS low after CAS low (CBR)		130		110		100	mA
ICC4 ^{‡¶}	Average EDO current			110		90		80	mA

[†] For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.

[‡] Measured with outputs open

\$ Measured with a maximum of one address change while $\overline{RAS} = V_{IL}$ \$ Measured with a maximum of one address change during each EDO cycle, t_{HPC}

TMS417809A, TMS427809A, TMS427809AP 2097152 BY 8-BIT EXTENDED DATA OUT DYNAMIC RANDOM-ACCESS MEMORIES SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

electrical characteristics over recommended ranges of supply voltage and ambient conditions (unless otherwise noted) (continued)

DAI	DAMETED		at	'427809A	/P-50	'427809A	P-60	'427809A	/P-70	UNUT
PAI	RAMETER	TEST CONDITION	ST	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
VOH	High-level output	I _{OH} = - 2 mA	LVTTL	2.4		2.4		2.4		V
VОН	voltage	I _{OH} = – 100 μA	LVCMOS	$V_{CC}-0.2$		$V_{CC}-0.2$		$V_{CC}-0.2$		v
VOL	Low-level output	I _{OL} = 2 mA	LVTTL		0.4		0.4		0.4	V
VOL	voltage	I _{OL} = 100 μA	LVCMOS		0.2		0.2		0.2	v
I	Input current (leakage)	$\label{eq:VCC} \begin{array}{ll} V_{CC} = 3.6 \mbox{ V}, & V_I = 0 \mbox{ V to } 3.9 \mbox{ V}, \\ \mbox{All others} = 0 \mbox{ V to } V_{CC} \end{array}$			± 10		± 10		± 10	μA
IO	Output current (leakage)	$\frac{V_{CC}}{CAS} = 3.6 \text{ V}, \qquad \text{V}_{O} = 0 \text{ V}$	to V_{CC} ,		± 10		± 10		± 10	μΑ
ICC1 ^{‡§}	Average read- or write-cycle current	V _{CC} = 3.6 V, Minimum	cycle		120		100		90	mA
		$V_{IH} = 2 V (LVTTL)$	'427809A		2		2		2	mA
	Average standby current	After one memory cycle, RAS and CAS high	'427809AP		1		1		1	ША
ICC2		current (LVCM	$V_{IH} = V_{CC} - 0.2 V$ (LVCMOS),	'427809A		1		1		1
		After one memory cycle, RAS and CAS high	'427809AP		150		150		150	μΑ
ICC3 ^{‡§}	Average refresh current (RAS-only refresh or CBR)	$\frac{V_{CC}}{RAS} = 3.6 \text{ V}, \qquad \text{Minimum} \\ \frac{RAS}{CAS} \text{ cycling}, \\ \frac{CAS}{RAS} \text{ high (RAS-only refresh RAS low after CAS low (CB) } \\ \frac{CAS}{RAS} \text{ low after CAS low (CB)} \\ \frac{CAS}{RAS} \text{ low (CB)} \\ \frac{CAS}{RAS} \text{ low after CAS low (CB)} \\ \frac{CAS}{RAS} \text{ low after CAS low (CB)} \\ \frac{CAS}{RAS} \text{ low (CB)} \\ \frac{CAS}{RAS} \text{ low after CAS low (CB)} \\ \frac{CAS}{RAS} \text{ low (CB)} \\ C$	ı),		120		100		90	mA
I _{CC4} ‡¶	Average EDO current	$\frac{V_{CC}}{RAS low} = 3.6 \text{ V}, \qquad \frac{t_{HPC}}{CAS cycl} = \text{M}$	1IN, ing		110		90		80	mA
ICC6#	Average self-refresh current	CAS < 0.2 V, RAS < 0. Measured after t _{RASS} min	2 V,		200		200		200	μA
ICC10 [#]	Battery back-up operating current (equivalent refresh time is 128 ms), CBR only	Measured after t _{RASS} min $t_{RC} = 62.5 \ \mu\text{s}, t_{RAS} \le 300 \ \text{ns}$ $V_{CC} - 0.2 \ \text{V} \le V_{IH} \le 3.9 \ \text{V},$ $0 \ \text{V} \le V_{IL} \le 0.2 \ \text{V}, \ \text{W} \text{ and } OE = V_{IH},$ Address and data stable			350		350		350	μΑ

[†] For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.

[‡] Measured with outputs open

\$ Measured with a maximum of one address change while $\overline{RAS} = V_{IL}$ \$ Measured with a maximum of one address change during each EDO cycle, t_{HPC}

For TMS427809AP only

capacitance over recommended ranges of supply voltage and ambient temperature, f = 1 MHz (see Note 2)

	PARAMETER	MIN	MAX	UNIT
C _{i(A)}	Input capacitance, A0–A10		5	pF
C _{i(OE)}	Input capacitance, OE		7	pF
C _{i(RC)}	Input capacitance, CAS and RAS		7	pF
C _{i(W)}	Input capacitance, W		7	pF
Co	Output capacitance [†]		7	pF

 $+\overline{CAS}$ and $\overline{OE} = V_{IH}$ to disable outputs

NOTE 2: V_{CC} = NOM supply voltage ±10%, and the bias on pins under test is 0 V.

switching characteristics over recommended ranges of supply voltage and ambient temperature (see Note 3)

	PARAMETER		A-50 A/P-50	'417809 '427809		'417809 '427809	-	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t _{AA}	Access time from column address (see Note 4)		25		30		35	ns
^t CAC	Access time from CAS (see Note 4)		13		15		18	ns
^t CPA	Access time from CAS precharge (see Note 4)		28		35		40	ns
^t RAC	Access time from RAS (see Note 4)		50		60		70	ns
^t OEA	Access time from OE (see Note 4)		13		15		18	ns
^t CLZ	Delay time, CAS to output in low impedance	0		0		0		ns
^t REZ	Output buffer turn-off delay from RAS (see Note 5)	3	13	3	15	3	18	ns
^t CEZ	Output buffer turn-off delay from CAS (see Note 5)	3	13	3	15	3	18	ns
toez	Output buffer turn-off delay from OE (see Note 5)	3	13	3	15	3	18	ns
tWEZ	Output buffer turn-off delay from \overline{W} (see Note 5)	3	13	3	15	3	18	ns

NOTES: 3. With ac parameters, it is assumed that $t_T = 2$ ns.

4. For TMS427809A/P, access times are measured with output reference levels of V_{OH} = 2 V and V_{OL} = 0.8 V.

5. The maximum values of tREZ, tCEZ, tOEZ, and tWEZ are specified when the output is no longer driven. Data-in should not be enabled until one of the applicable maximum values is satisfied.

EDO timing requirements (see Note 3)

		'41780 '42780	9A-50 9A/P-50	'41780 '42780	9A-60 9A/P-60	'417809A-70 '427809A/P-70		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
^t HPC	Cycle time, EDO page mode, read-write	20		25		30		ns
^t PRWC	Cycle time, EDO read-write	57		68		78		ns
^t CSH	Delay time, RAS active to CAS precharge	40		48		58		ns
^t CHO	Hold time, OE from CAS	7		10		10		ns
^t DOH	Hold time, output from CAS	5		5		5		ns
^t CAS	Pulse duration, CAS active (see Note 6)	8	10000	10	10000	12	10000	ns
^t WPE	Pulse duration, \overline{W} active (output disable only)	7		7		7		ns
^t CP	Pulse duration, CAS precharge	8		10		10		ns
^t OCH	Setup time, OE before CAS	8		10		10		ns
^t OEP	Precharge time, OE	5		5		5		ns

NOTES: 3. With ac parameters, it is assumed that $t_T = 2$ ns.

6. In a read-write cycle, t_{CWD} and t_{CWL} must be observed.

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

ac timing requirements (see Note 3)

				-	'417809A-70 '427809A/P-70			
		MIN	MAX	MIN	MAX	MIN	MAX	
^t RC	Cycle time, random read or write	84		104		124		ns
^t RWC	Cycle time, read-write	111		135		160		ns
t _{RASP}	Pulse duration, RAS active, fast page mode (see Note 7)	50	100 000	60	100 000	70	100 000	ns
t _{RAS}	Pulse duration, RAS active, non-page mode (see Note 7)	50	10 000	60	10 000	70	10 000	ns
t _{RP}	Pulse duration, RAS precharge	30		40		50		ns
tWP	Pulse duration, write command	8		10		10		ns
t _{RASS}	Pulse duration, RAS active, self refresh (see Note 8)	100		100		100		μs
t _{RPS}	Pulse duration, RAS precharge after self refresh	90		110		130		ns
tASC	Setup time, column address	0		0		0		ns
^t ASR	Setup time, row address	0		0		0		ns
tDS	Setup time, data in (see Note 9)	0		0		0		ns
t _{RCS}	Setup time, read command	0		0		0		ns
^t CWL	Setup time, write command before CAS precharge	8		10		12		ns
^t RWL	Setup time, write command before RAS precharge	8		10		12		ns
tWCS	Setup time, write command before CAS active (early-write only)	0		0		0		ns
tWRP	Setup time, W high before RAS low (CBR refresh only)	10		10		10		ns
tCSR	Setup time, CAS referenced to RAS (CBR refresh only)	5		5		5		ns
^t CAH	Hold time, column address	8		10		12		ns
^t DH	Hold time, data in (see Note 9)	8		10		12		ns
^t RAH	Hold time, row address	8		10		10		ns
^t RCH	Hold time, read command referenced to \overline{CAS} (see Note 10)	0		0		0		ns
^t RRH	Hold time, read command referenced to RAS (see Note 10)	0		0		0		ns
tWCH	Hold time, write command during CAS active (early-write only)	8		10		12		ns
^t ROH	Hold time, RAS referenced to OE	8		10		10		ns
^t WRH	Hold time, \overline{W} high after \overline{RAS} low (CBR refresh only)	10		10		10		ns
^t CHR	Hold time, CAS referenced to RAS (CBR refresh only)	10		10		10		ns
^t OEH	Hold time, OE command	13		15		18		ns
^t RHCP	Hold time, RAS active from CAS precharge	28		35		40		ns
^t CHS	Hold time, \overline{CAS} referenced to \overline{RAS} (self refresh only)	- 50		- 50		- 50		ns
^t AWD	Delay time, column address to write command (read-write only)	42		49		57		ns
^t CRP	Delay time, CAS precharge to RAS	5		5		5		ns

NOTES: 3. With ac parameters, it is assumed that $t_T = 2$ ns.

7. In a read-write cycle, t_{RWD} and t_{RWL} must be observed. 8. During the period of 10 μ s $\leq t_{RASS} \leq$ 100 μ s, the device is in a transition state from normal-operation mode to self-refresh mode. 9. Referenced to the later of CAS or W in write operations

10. Either tRRH or tRCH must be satisfied for a read cycle.

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

ac timing requirements (see Note 3) (continued)

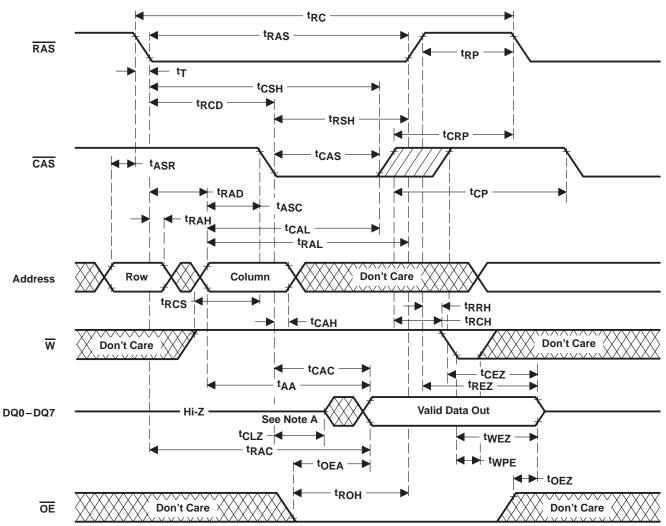
			'417809A-50 '427809A/P-50		'417809A-60 '427809A/P-60		'417809A-70 '427809A/P-70		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
tCWD	Delay time, CAS to write command (read-write only)		30		34		40		ns
^t OED	Delay time, OE to data in		13		15		18		ns
^t RAD	Delay time, RAS to column address (see Note 11)		10	25	12	30	12	35	ns
^t RAL	Delay time, column address to RAS precharge		25		30		35		ns
^t CAL	Delay time, column address to CAS precharge		18		20		25		ns
^t RCD	Delay time, RAS to CAS (see Note 11)		12	37	14	45	14	52	ns
^t RPC	Delay time, RAS precharge to CAS		5		5		5		ns
^t RSH	Delay time, CAS active to RAS precharge		8		10		12		ns
^t RWD	Delay time, RAS to write command (read-write only)		67		79		92		ns
^t CPW	Delay time, CAS precharge to write command (read-write only)		45		54		62		ns
		'417809A		32		32		32	
^t REF	Refresh time interval	'427809A		32		32		32	ms
		'427809AP		128		128		128	
tŢ	Transition time		2	30	2	30	2	30	ns

NOTES: 3. With ac parameters, it is assumed that $t_T = 2$ ns.

11. The maximum value is specified only to ensure access time.

PARAMETER MEASUREMENT INFORMATION

(a) LOAD CIRCUIT


NOTE A: CL includes probe and fixture capacitance.

DEVICE	V _{CC} (V)	R ₁ (Ω)	R ₂ (Ω)	V _{TH} (V)	R _L (Ω)
'417809A	5	828	295	1.31	218
'427809A/P	3.3	1178	868	1.4	500

Figure 1. Load	Circuits for	Timing	Parameters
----------------	---------------------	--------	------------

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

PARAMETER MEASUREMENT INFORMATION

NOTE A: Output can go from the high-impedance state to an invalid-data state prior to the specified access time.

Figure 2. Read-Cycle Timing

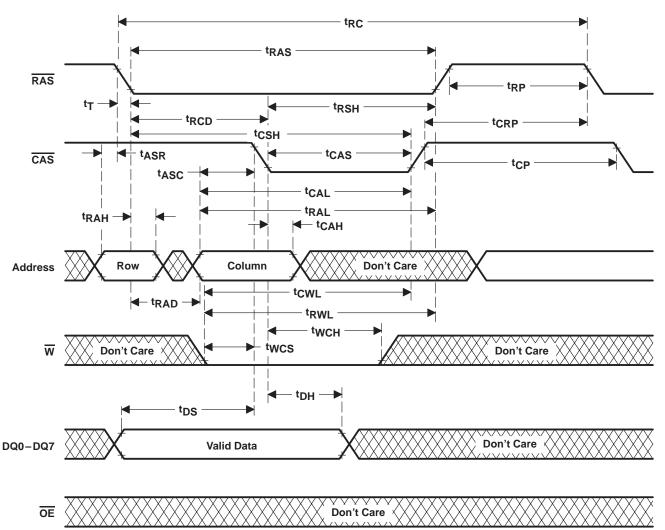


Figure 3. Early-Write-Cycle Timing

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

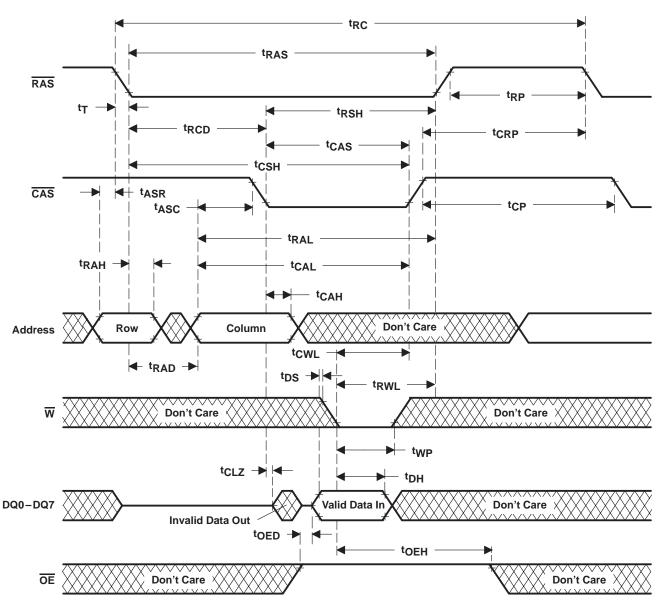
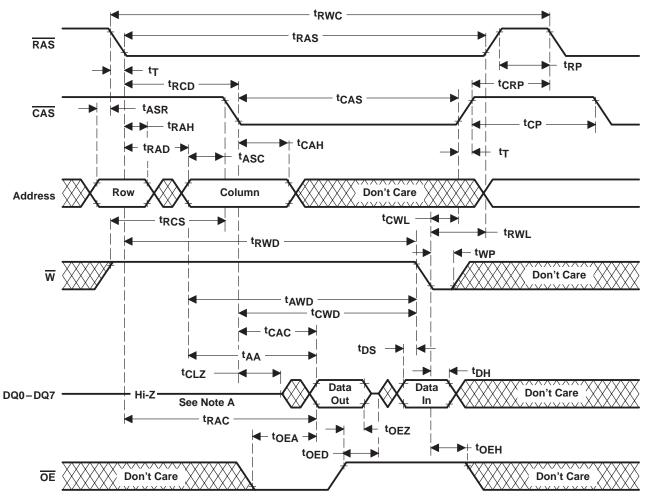
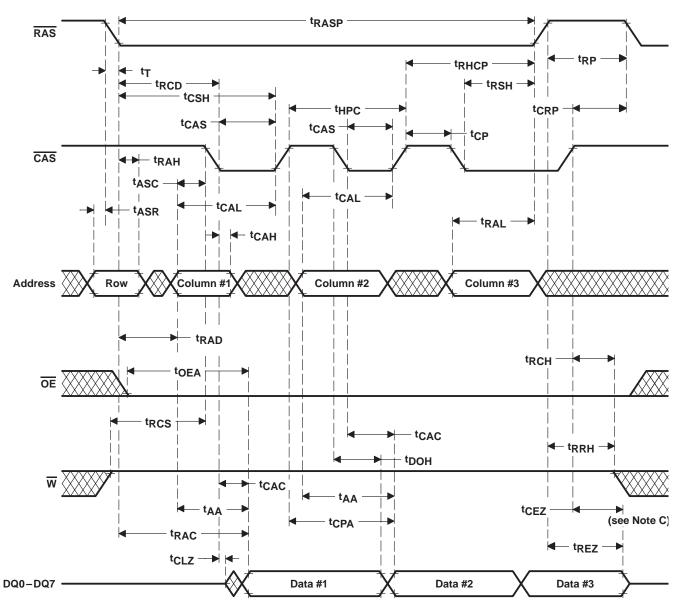



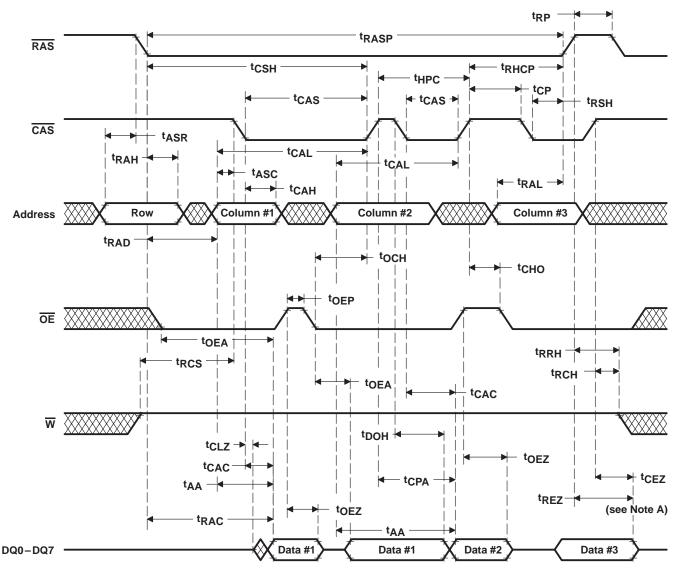
Figure 4. Write-Cycle Timing



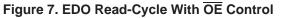
NOTE A: Output can go from the high-impedance state to an invalid-data state prior to the specified access time.

Figure 5. Read-Write-Cycle Timing

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997


PARAMETER MEASUREMENT INFORMATION

NOTES: A. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.


Figure 6. EDO Read Cycle

NOTE A: Output is turned off by tCEZ if RAS goes high during CAS low.

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

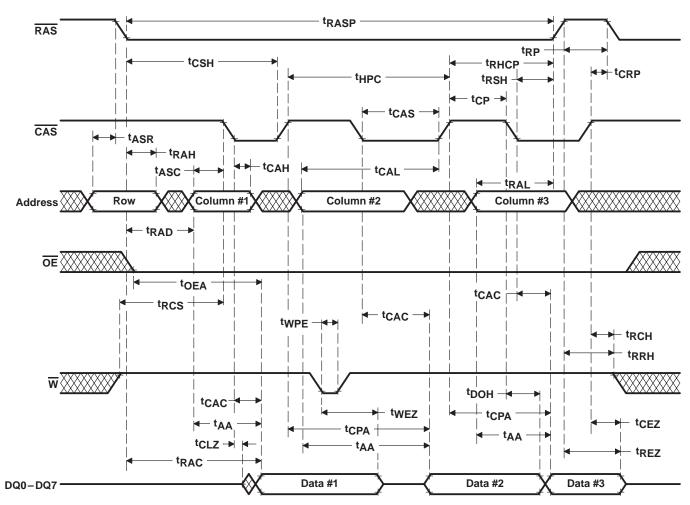
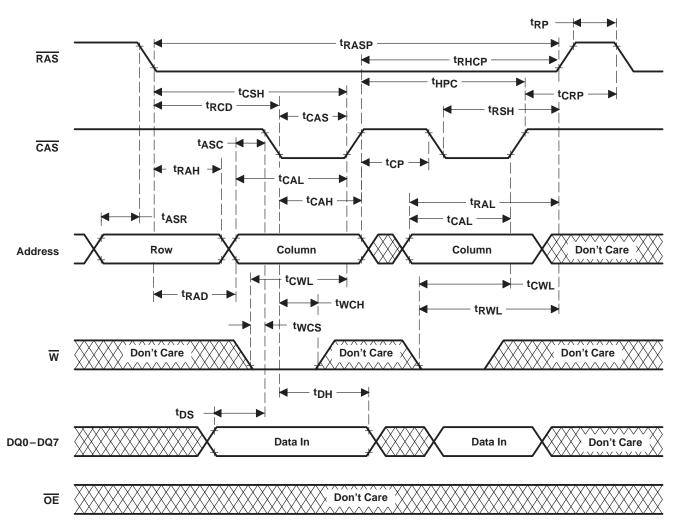
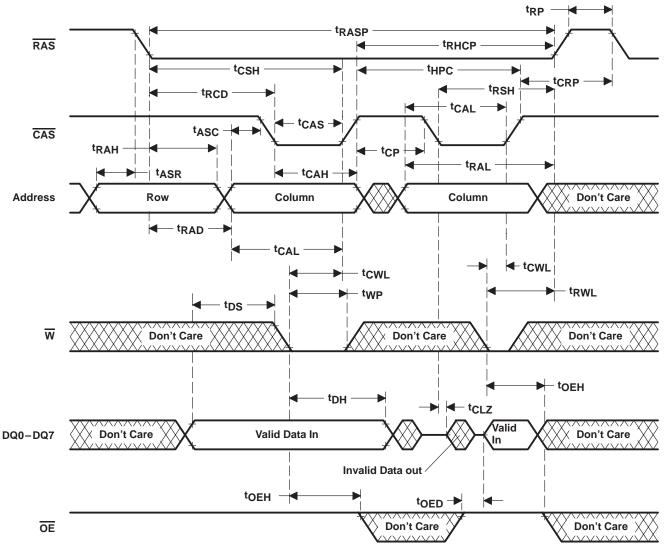



Figure 8. EDO Read-Cycle With W Control

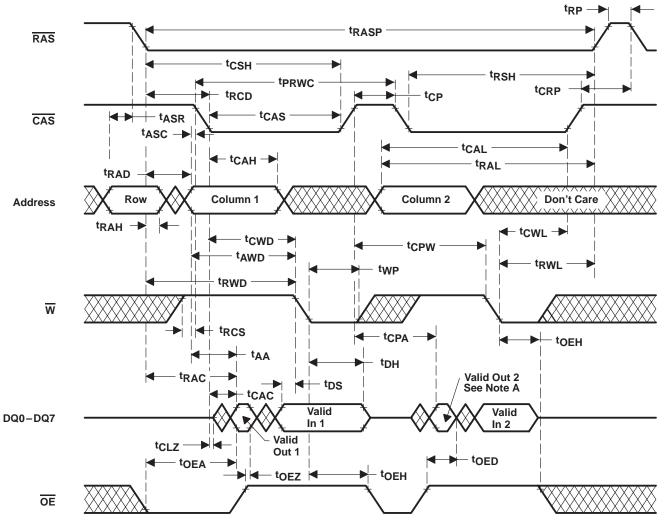
PARAMETER MEASUREMENT INFORMATION



NOTE A: A read cycle or a read-write cycle can be intermixed with write cycles as long as read and read-write timing specifications are not violated.

Figure 9. EDO-Early-Write-Cycle Timing

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997



NOTE A: A read cycle or a read-write cycle can be intermixed with write cycles as long as read and read-write timing specifications are not violated.

Figure 10. EDO Write-Cycle Timing

PARAMETER MEASUREMENT INFORMATION


NOTES: A. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.

B. A read or write cycle can be intermixed with read-write cycles as long as the read- and write-timing specifications are not violated.

Figure 11. EDO Read-Write-Cycle Timing

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

PARAMETER MEASUREMENT INFORMATION

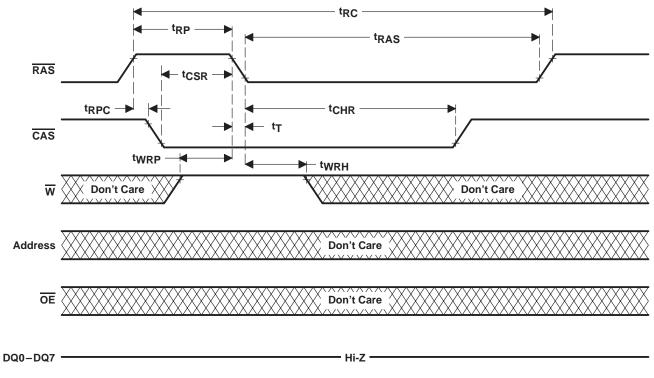


Figure 13. Automatic-CBR-Refresh-Cycle Timing

SMKS894B – AUGUST 1996 – REVISED NOVEMBER 1997

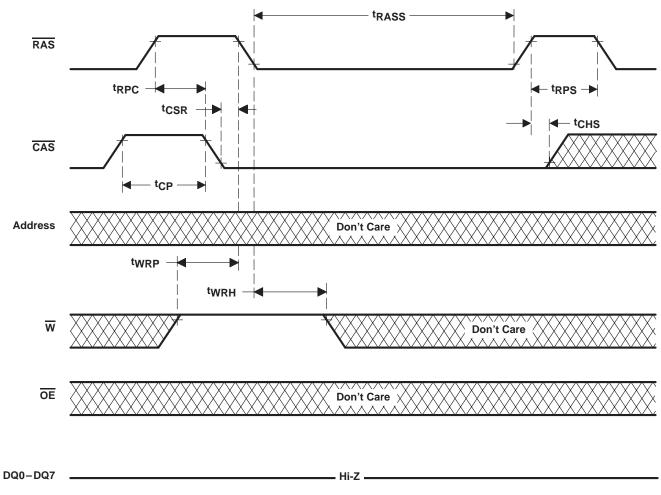


Figure 14. Self-Refresh-Cycle Timing

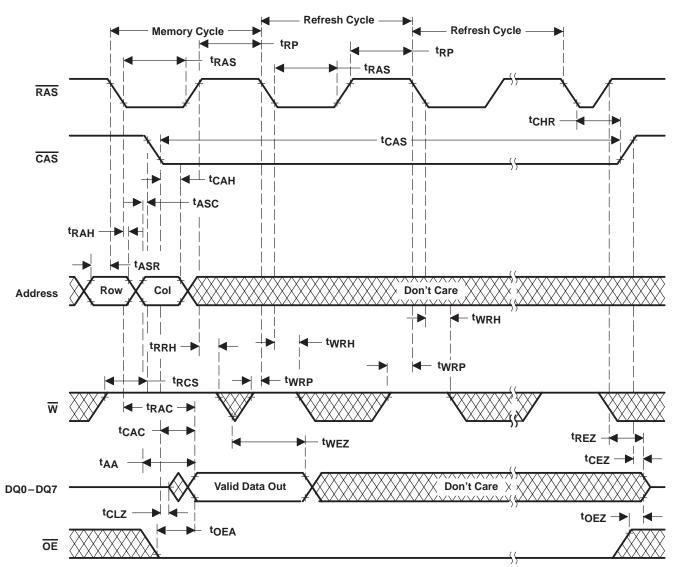
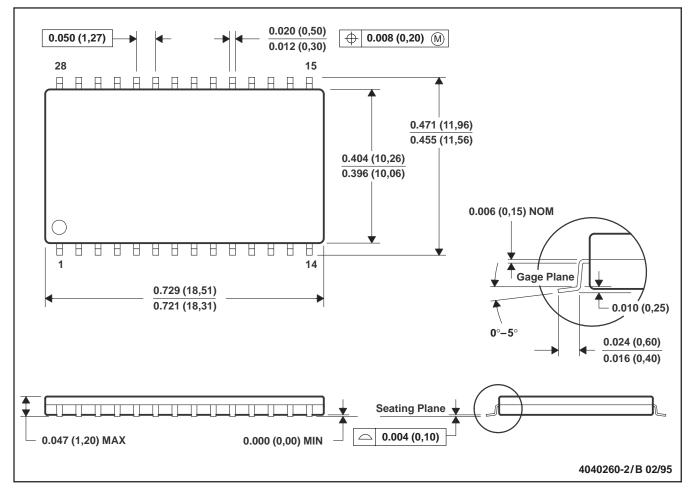


Figure 15. Hidden-Refresh-Cycle (Read) Timing

SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

PARAMETER MEASUREMENT INFORMATION

Figure 16. Hidden-Refresh-Cycle (Write) Timing



TMS417809A, TMS427809A, TMS427809AP 2097152 BY 8-BIT EXTENDED DATA OUT DYNAMIC RANDOM-ACCESS MEMORIES SMKS894B - AUGUST 1996 - REVISED NOVEMBER 1997

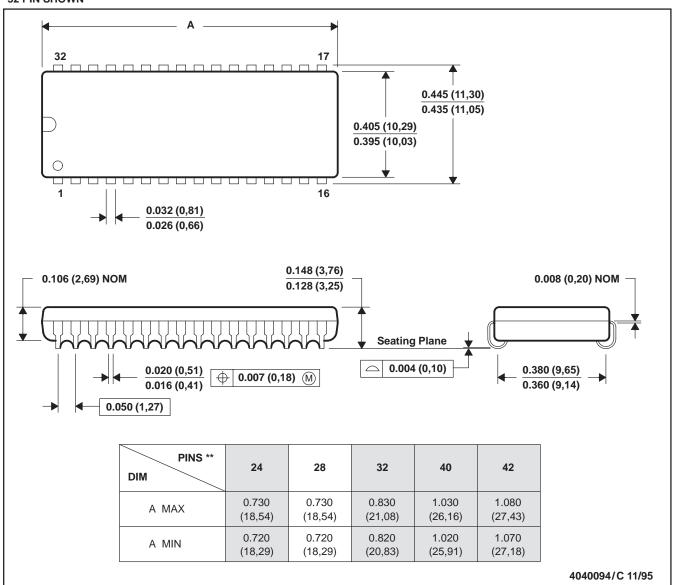
MECHANICAL DATA

DGC (R-PDSO-G28)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.

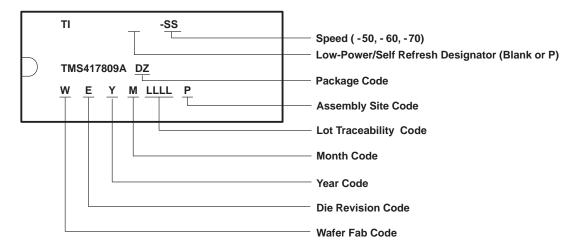


TMS417809A, TMS427809A, TMS427809AP 2097152 BY 8-BIT EXTENDED DATA OUT DYNAMIC RANDOM-ACCESS MEMORIES SMKS894B – AUGUST 1996 – REVISED NOVEMBER 1997

MECHANICAL DATA

PLASTIC SMALL-OUTLINE J-LEAD PACKAGE

DZ (R-PDSO-J**) 32 PIN SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Plastic body dimensions do not include mold protrusion. Maximum mold protrusion is 0.005 (0,13).
- D. The 24 pin package has the center two pins removed on both sides.

device symbolization (TMS417809A illustrated)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated