

TN1205H

High temperature 12 A SCRs

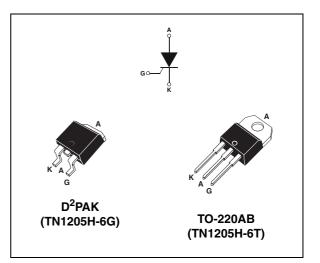
Datasheet – production data

Features

- High junction temperature: $T_i = 150 \text{ °C}$
- Medium current SCRs
- High noise immunity up to 150 °C
- RoHS (2002/95/EC) compliant
- 600 V V_{DRM}, V_{RRM}

Application

- General purpose AC line load switching
- Motor control circuits
- Small home appliances
- Lighting
- Inrush current limiting circuits
- Over-voltage crowbar protection


Description

Available in standard gate triggering levels, the TN1205H SCR series has very high switching capability up to junction temperature of 150 °C.

These products fit all modes of control found in applications such as overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition and voltage regulation circuits.

These products are particulary adapted for use in areas where the ambient temperature is high or the ventilation low, or where an increase of power density is required.

Through-hole or surface-mount packages provide performance in a limited space area.

Table 1.Device summary

Order code	Package	V _{DRM} , V _{RRM}	I _{GT}	
TN1205H-6T	TO-220AB	600 V	2 to 5 mA	
TN1205H-6G	D ² PAK	000 V	2 10 3 IIIA	

This is information on a product in full production.

1 Characteristics

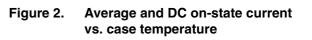
Symbol	Parameter			Value	Unit	
I _{T(RMS)}	On-state rms current (180° conduction angle)	nt (180° conduction angle) TO220-AB, T 126 °C				
I _{T(AV)}	Average on-state current (180° conduction angle)	D ² PAK	T _c = 136 °C	7.6	А	
1	Non repetitive surge pack on state surrent $t_p = 8.3 \text{ ms}$		T - 25 °C	126	Α	
I _{TSM} Non repetitive surge peak on-state current		t _p = 10 ms	– T _j = 25 °C	120	A	
l ² t	I^2 t Value for fusing $t_p = 10 \text{ ms}$				A ² S	
V _{DSM} , V _{RSM}	Non repetitive surge peak off-state voltage	t _p = 10 ms	V _{DRM} , V _{RRM} +100	V		
dl/dt	$ \begin{array}{ c c c } \hline Critical \mbox{ rate of rise of on-state current } I_G = 2 \mbox{ x } I_{GT}, \\ t_r \leq 100 \mbox{ ns} \end{array} \ \ F = 60 \mbox{ Hz} \ \ T_j \label{eq:rate} $			100	A/µs	
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 150 °C	4	Α	
P _{G(AV)}	Average gate power dissipation	1	W			
V _{RGM}	Maximum peak reverse gate voltage	5	V			
T _{stg} T _j	Storage junction temperature range Operating junction temperature range	- 40 to + 150	°C			
TL	Maximum lead temperature for soldering during 10	260	°C			

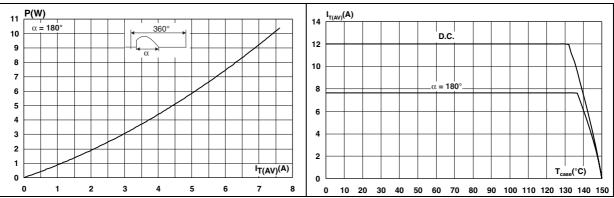
Table 2. Absolute ratings (limiting values)

Table 3.Electrical characteristics (T_i = 25 °C, unless otherwise specified)

Symbol	Test conditions	Test conditions			Unit
	V 10 V D 22 O		MIN.	2	
^I GT	I_{GT} $V_D = 12 V, R_L = 33 \Omega$		MAX.	5	mA
V _{GT}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$		MAX.	1.3	V
V _{GD}	$V_{D} = V_{DRM}, R_{L} = 3.3 \text{ k}\Omega $ MI			0.2	V
I _Н	I _T = 500 mA gate open		MAX.	20	mA
١L	$I_{G} = 1.2 I_{GT}$		MAX.	40	mA
dV/dt	V _D = 67% V _{DBM} gate open	T _j = 125 °C	MIN.	200	V/µs
uv/ui	VD = 07 % VDRM gate open	T _j = 150 °C	IVIIIN.	100	v/µs
t _{gt}	I_{TM} = 40 A, V_D = 500 V, I_G = 100 mA, dI_G/dt = 5 A/µs		typ.	1.9	μs
t _q	$ \begin{array}{l} V_{DM} = 335 \text{ V}, \text{ Tj} = 125 \ ^{\circ}\text{C}, \text{ I}_{TM} = 20 \text{ A}, \text{ V}_{R} = 25 \text{ V}, \ (\text{dI}_{T}/\text{dt})_{Max} = 30 \text{ A}/\mu\text{s}, \\ \text{dV}_{D}/\text{dt} = 50 \text{ V}/\mu\text{s}, \text{ R}_{GK} = 100 \ \Omega \end{array} \right. \qquad \text{typ.} $			65	μs

Symbol	Test condi	Value	Unit		
V _T	I _{TM} = 24 A, t _p = 380 μs	T _j = 25 °C		1.6	V
V _{TD}	Threshold voltage	T _j = 150 °C		0.8	V
R _d	Dynamic resistance	T _j = 150 °C	MAX.	30	mΩ
		T _j = 25 °C	WIAA.	5	μA
I _{DRM} I _{RRM}	$V_{DRM} = V_{RRM}$	T _j = 125 °C		1	
		T _j = 150 °C		3	mA

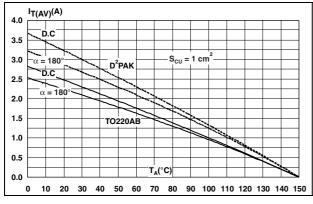

Table 4.Static characteristics


Table 5.Thermal resistance

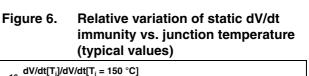
Symbol	Parameter	Value Max.	Unit		
R _{th(j-c)}	Junction to case (DC)			1.3	°C/W
P	lunction to ambient (DC)	$S^{(1)} = 1 \text{ cm}^2$	D ² PAK	45	°C/W
R _{th(j-a)} Junction to ambient (DC)			TO-220AB	60	0/11

1. S = Copper surface under tab

Figure 1. Maximum average power dissipation vs. average on-state current


^{_Z}th(j-a)

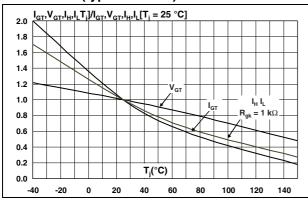
T_p(s)

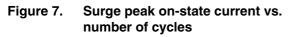

1.0E+03

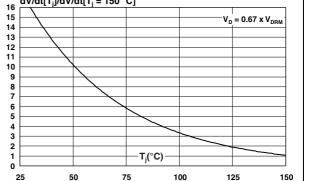
1.0E+02

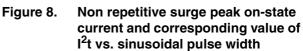
Figure 3. Average and DC on-state current vs. ambient temperature

Figure 5. Relative variation of I_{GT},V_{GT}, I_H, I_L vs. junction temperature (typical values)


1.0E+00


Relative variation of thermal


impedance vs. pulse duration


TO-220AB

1.0E+01

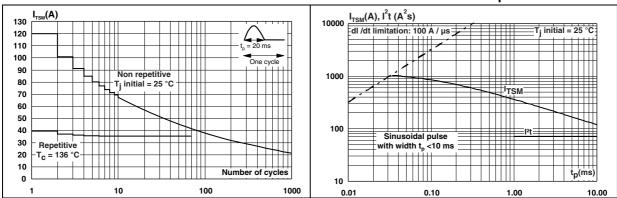


Figure 4.

1.00

0.10

0.01

1.0E-03

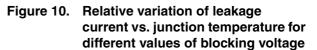
 $K = [Z_{th} / R_{th}]$

1.0E-02

z_{th(j-c)}

D²PAK

S_{cu} = 1 cm²


(Epoxy Fr4)

1.0E-01

≠f¶|

Figure 9. On-state characteristics (maximum values)

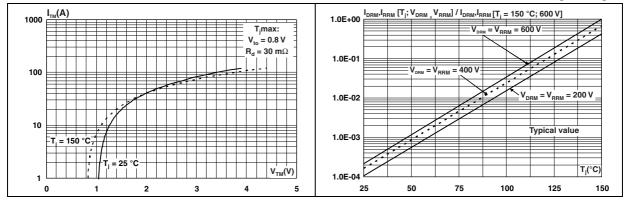
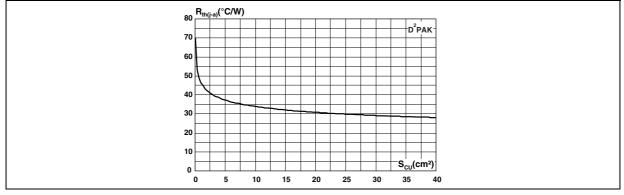



Figure 11. Thermal resistance junction to ambient vs. copper surface under tab (D²PAK, printed circuit board FR4, copper thickness: 35 μm)

2 Ordering information scheme

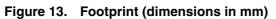
Figure 12.	Orderina	information	scheme
i igaio izi	oraoning	mormation	001101110

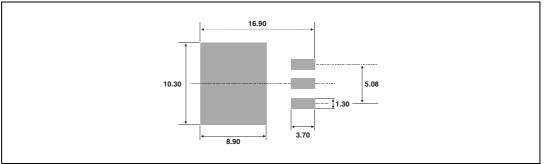
Voltage $6 = 600 V$ PackageT = TO-220ABG = $D^2 PAK$	Standard SCRCurrent $12 = 12 \text{ A}$ Sensitivity $05 = 2 \text{ to 5 mA}$ Junction temperatureH = 150 °C	TN 12 05 H - 6 G - TR
Package T = TO-220AB	Voltage	
	Package T = TO-220AB	

3 Package information

- Epoxy meets UL94, V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.


Table 6. TO-220AB dimensions


					Dimer	nsions		
		Ref.	Ref. Millimeters		rs	inches		
			Min.	Тур.	Max.	Min.	Тур.	Max.
		А	15.20		15.90	0.598		0.625
		a1		3.75			0.147	
Ø I	b2	a2	13.00		14.00	0.511		0.551
		В	10.00		10.40	0.393		0.409
	F	b1	0.61		0.88	0.024		0.034
A		b2	1.23		1.32	0.048		0.051
14 I3		С	4.40		4.60	0.173		0.181
		c1	0.49		0.70	0.019		0.027
		c2	2.40		2.72	0.094		0.107
a2		e	2.40		2.70	0.094		0.106
	M =	F	6.20		6.60	0.244		0.259
→□+ →□+ →□+ →□+ →□+ →□+ →□+ →□+ →□+ →□+	tinit tinit	ØI	3.75		3.85	0.147		0.151
		14	15.80	16.40	16.80	0.622	0.646	0.661
		L	2.65		2.95	0.104		0.116
		12	1.14		1.70	0.044		0.066
		13	1.14		1.70	0.044		0.066
		М		2.60			0.102	

					Dimer	nsions		
		Ref.	Mi	illimete	ers		Inches	
			Min.	Тур.	Max.	Min.	Тур.	Max.
		Α	4.30		4.60	0.169		0.181
	▲ →	A1	2.49		2.69	0.098		0.106
	C2→→	A2	0.03		0.23	0.001		0.009
	В	0.70		0.93	0.027		0.037	
	C	B2	1.25	1.40		0.048	0.055	
		С	0.45		0.60	0.017		0.024
		C2	1.21		1.36	0.047		0.054
		D	8.95		9.35	0.352		0.368
G		Е	10.00		10.28	0.393		0.405
		G	4.88		5.28	0.192		0.208
	2mm min. FLAT ZONE	L	15.00		15.85	0.590		0.624
	V2	L2	1.27		1.40	0.050		0.055
	- · ·	L3	1.40		1.75	0.055		0.069
		R		0.40			0.016	
		V2	0°		8°	0°		8°

Table 7.D²PAK Dimensions

4 Ordering information

Table 8. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
TN1205H-6T	TN1205H6T	TO-220AB	2.0 g	50	Tube
TN1205H-6G	TN1205H6G	D ² PAK	1.5 g	50	Tube
TN1205H-6G-TR	TN1205H6G	D ² PAK	1.5 g	1000	Tape and reel

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
17-Feb-2011	1	First issue.
26-Sep-2011	2	Corrected typographical error in Features and Description.
17-Jan-2012	3	Updated units for t _{gt} in <i>Table 3</i> .
26-Apr-2012	4	Moved junction temperature to top of features list. Description reworded for readability. No technical changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 018497 Rev 4

