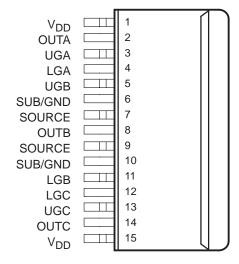
- **Configured for 3-Phase Brushless Motor Drive**
- Low $r_{DS(on)} \dots 0.25 \Omega$ Typ
- High Voltage Output . . . 30 V
- Pulsed Current . . . 12 A Per Channel
- **Input Transient and ESD Protection**
- Compatible With High-Side and Low-Side **Current Sense Resistors**

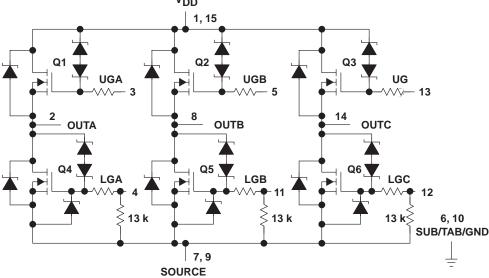

description

The TPIC1310 is a monolithic gate-protected power DMOS array that consists of six electrically isolated N-channel enhancement-mode DMOS transistors configured as a three-half H-bridge.

When suitably heat sunk, the TPIC1310 can drive motors requiring 2.5 A of phase current. The DMOS transistors are immune to second breakdown effects and current crowding, problems often associated with bipolar transistors.


The TPIC1310 is offered in 15-pin through-hole (KTS) and surface-mount (KTR) PowerFLEX™ packages and is characterized for operation over the case temperature range of -40°C to 125°C.

KTR or KTS PACKAGE (TOP VIEW)


Tab is SUB/GND

schematic

KTR PACKAGE **KTS PACKAGE** V_{DD}

- NOTES: A. Terminals 1 and 15 must be externally connected.
 - Terminals 6 and 10 must be connected to GND.
 - C. Terminals 7 and 9 must be connected to the sense resistor or GND.
 - D. No terminal may be taken greater than 0.5 V below GND.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerFLEX is a trademark of Texas Instruments Inc.

TPIC1310 3-HALF H-BRIDGE GATE PROTECTED POWER DMOS ARRAY

SLIS071 - DECEMBER 1997

absolute maximum ratings over operating case temperature range (unless otherwise noted)†

Drain-to-source voltage, V _{DS}	30 V
Output-to-GND voltage	
SOURCE-to-SUB/GND voltage	$-0.3\ V$ to 20 V
Gate-to-source voltage range, V _{GS}	\ldots -0.3 V to 20 V
Continuous output current, each output, all outputs on, T _C = 25°C	3 A
Continuous source-to-drain diode current, T _C = 25°C	3 A
Pulsed output current, each output, I _{max} , T _C = 25°C (see Note 1 and Figure 14)	12 A
Continuous V _{DD} and SOURCE current, T _C = 25°C	3 A
Pulsed V _{DD} and SOURCE current, T _C = 25°C (see Note 1)	12 A
Continuous total dissipation, T _C = 25°C (see Note 2 and Figure 14)	13.9 W
Operating virtual junction temperature range, T _J	\dots -40°C to 150°C
Operating case temperature range, T _C	
Storage temperature range	\dots -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Pulse duration = 10 μ s, duty cycle \leq 2%
 - 2. Package is mounted in intimate contact with an infinite heat sink.

electrical characteristics, $T_C = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
V(BR)DSX	Drain-to-source breakdown voltage		I _D = 250 μA,	$V_{GS} = 0$	30			V
V _{GS(th)}	Gate-to-source threshold voltage		I _D = 1 mA, See Figure 4	$V_{DS} = V_{GS}$	0.9	1.2	1.7	V
V _(BR) GS	Gate-to-source breakdown voltage	Low-side	I _{GS} = 250 μA		20			V
	Course to mate broad device valte as	Low-side	I _{SG} = 250 μA		0.3			V
V(BR)SG	Source-to-gate breakdown voltage	High-side	I _{SG} = 250 μA		20			V
V _{DS(on)}	Drain-to-source on-state voltage		I _D = 3 A, See Notes 3 and 4	V _{GS} = 14 V,		0.66	0.9	V
VF(SD)	Forward on-state voltage, source-to-drain	ı	I _S = 3 A, V _{GS} = 0, See Notes 3 and 4 and Figure 11			1.1	1.4	V
1	Dunin numerat mate abouted to account		V _{DS} = 28 V,	T _C = 25°C		0.05	1	
IDSS	Drain current-gate shorted to source		V _{GS} = 0	T _C = 125°C		0.5	10	μΑ
I _{GSSF}	Forward-gate current, drain short circuited to source	current, drain short Low-side Internal 13 kΩ from ga		V _{DS} = 0, ate to source		2	4	mA
	circuited to source	High-side	V _{SG} = 16 V,	$V_{DS} = 0$		20	200	nA
I _{GSSR}	Reverse-gate current, drain short circuited	d to source	$V_{SG} = 0.3 V$,	$V_{DS} = 0$		20	200	nA
Leakage current, drain-to-GND gate shorted to		1 VDCND = 28 V	T _C = 25°C		0.05	1	μА	
likg	source		VDGND = 28 V			0.5	10	μΛ
			ID = 3 A,	T _C = 25°C		0.27	0.37	
rDS(on) Stat	Static drain-to-source on-state resistance	See Notes 3 and 4 and Figures 5 and 6	T _C = 125°C		0.45	0.55	Ω	
	Static drain-to-source on-state resistance		V _{GS} = 14 V, I _D = 3 A, See Notes 3 and 4 and Figures 5 and 6	T _C = 25°C		0.22	0.32	22
				T _C = 125°C		0.32	0.47	
9fs	fs Forward transconductance		V _{DS} = 10 V, See Notes 3 and 4 a	I _D = 3 A, nd Figure 8	0.5	0.85		S
C _{iss}	Short-circuit input capacitance, low-side		V 05.V	V 0		110		
Coss	Short-circuit output capacitance, low-side		V _{DS} = 25 V, f = 1 MHz,	V _{GS} = 0, See Figure 10		120		pF
C _{rss}	Short-circuit reverse transfer capacitance	, low-side	7			60		

[†] Engineering estimate

NOTES: 3. Technique should limit $T_J - T_C$ to 10°C maximum.

4. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

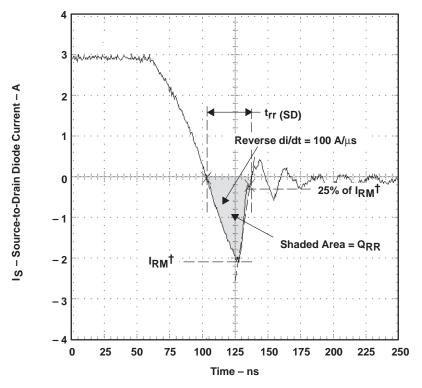
source-to-drain and GND-to-drain diode characteristics, T_C = 25°C

	PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT		
t _{rr}	Reverse-recovery time	High side		$V_{DS} = 28 \text{ V},$ di/dt = 100 A/ μ s,		30		ns		
Q _{RR}	Total diode charge	High-side				30		nC		
t _{rr}	Reverse-recovery time	l our side	Low side	VGS	I _S = 3 A, V _{GS} = 0,	V _{DS} = 28 V, di/dt = 100 A/μs,		70		ns
Q _{RR}	Total diode charge		See Figure 13,	SUB/GND connected to SOURCE		350		nC		

TPIC1310 3-HALF H-BRIDGE GATE PROTECTED POWER DMOS ARRAY SLISO71 – DECEMBER 1997

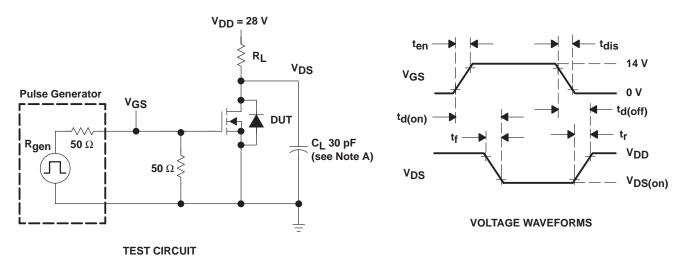
resistive-load switching characteristics, $T_C = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _d (on)	Turn-on delay time			70		ns
t _d (off)	Turn-off delay time	$V_{DD} = 28 \text{ V}, R_{L} = 9.3 \Omega,$		200		
t _r	Rise time	t _{en} = 10 ns, t _{dis} = 10 ns, See Figure 2		140		
t _f	Fall time			55		
Qg	Total gate charge	V _{DS} = 12 V,		1.6	2	
Q _{gs(th)}	Threshold gate-to-source charge	I _D = 3 A, V _{GS} = 10 V, See Figure 3 and Figure 12		0.5	0.62	nC
Q _{gd}	Gate-to-drain charge			0.25	0.31	
L _D	Internal drain inductance			5		nH
LS	Internal source inductance			5		ПП
Rg	Internal gate resistance			500		Ω


thermal resistance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case thermal resistance, one output on	See Note 5		7.5	9	°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance, two outputs on	See Notes 5 and 6		4.5	5.5	°C/W

NOTES: 5. Package mounted in intimate contact with infinite heatsink.


6. Two outputs with equal power

PARAMETER MEASUREMENT INFORMATION

[†] I_{RM} = maximum recovery current

Figure 1. Reverse-Recovery-Current Waveform of Source-to-Drain Diode

NOTE A: C_L includes probe and jig capacitance.

Figure 2. Resistive-Switching Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

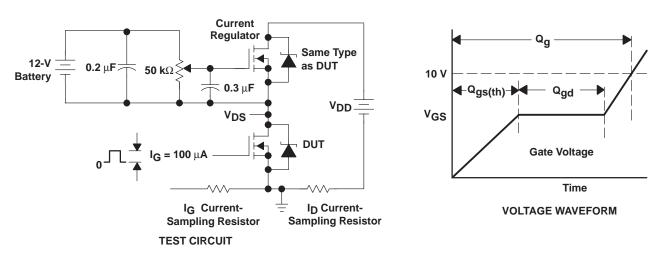
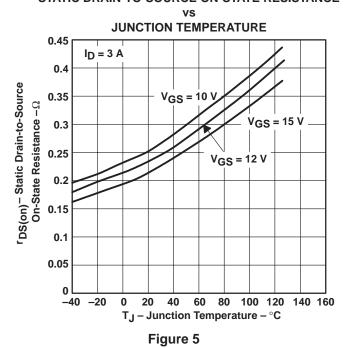
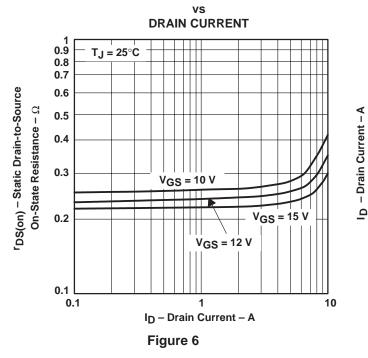



Figure 3. Gate-Charge Test Circuit and Voltage Waveform

GATE-TO-SOURCE THRESHOLD VOLTAGE JUNCTION TEMPERATURE VGS(th) - Gate-to-Source Threshold Voltage - V 1.6 $V_{DS} = V_{GS}$ 1.4 $I_D = 10 \text{ mA}$ 1.2 $I_D = 1 \text{ mA}$ 1.0 0.8 0.6 0.4 0.2 -40 - 2040 60 80 100 120 140 160 0 T_J - Junction Temperature - °C


Figure 4

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE

TYPICAL CHARACTERISTICS

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE

DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE

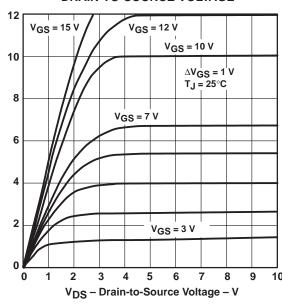
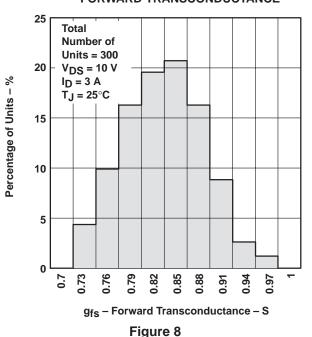
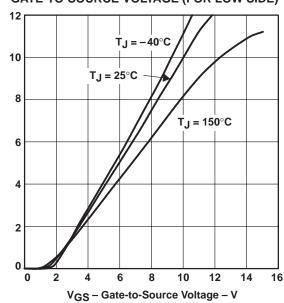
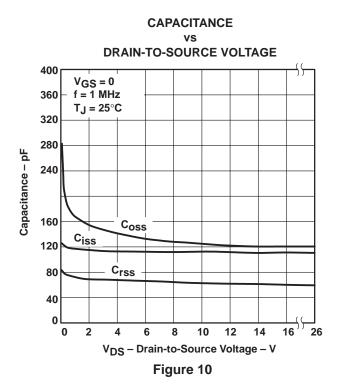
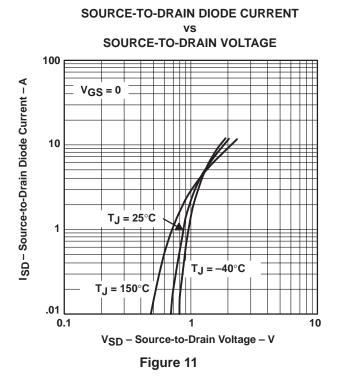
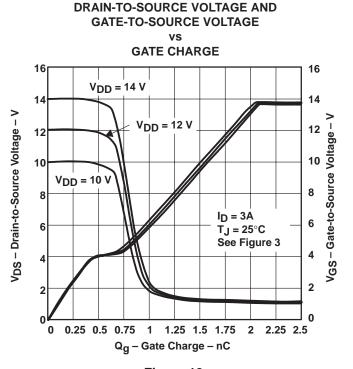



Figure 7

DISTRIBUTION OF FORWARD TRANSCONDUCTANCE

DRAIN CURRENT
vs
GATE-TO-SOURCE VOLTAGE (FOR LOW SIDE)


Figure 9

ID - Drain Current - A

TYPICAL CHARACTERISTICS

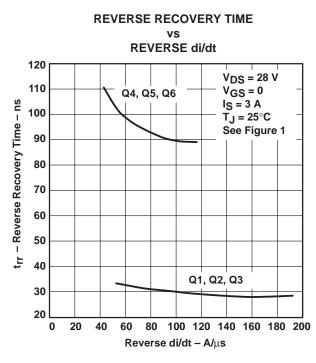
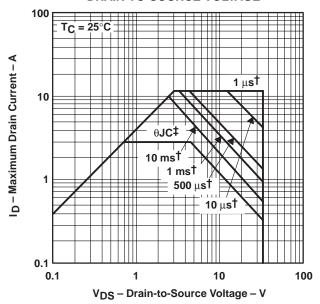



Figure 12

Figure 13

THERMAL INFORMATION

MAXIMUM DRAIN CURRENT DRAIN-TO-SOURCE VOLTAGE

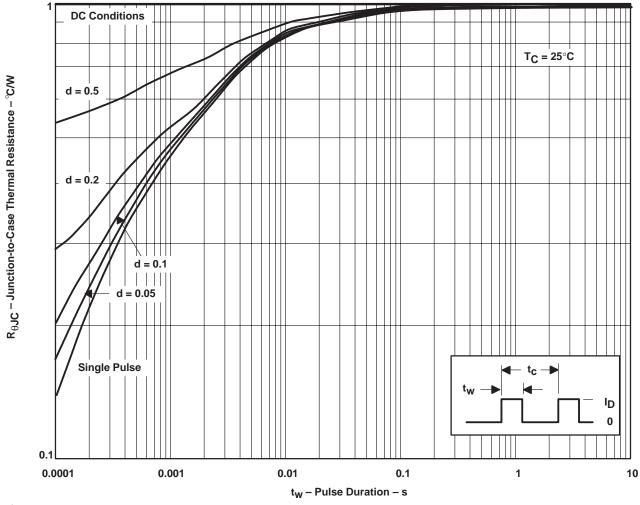

[†]Less than 2% duty cycle

Figure 14

[‡] Device mounted in intimate contact with infinite heatsink.

THERMAL INFORMATION

JUNCTION-TO-CASE THERMAL RESISTANCE vs PULSE DURATION

† Package mounted in intimate contact with infinite heat sink.

NOTE E: $Z_{\theta JC}(t) = r(t) R_{\theta JC}$ $t_W = \text{pulse duration}$ $t_C = \text{cycle time}$ $d = \text{duty cycle} = t_W/t_C$

Figure 15

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated