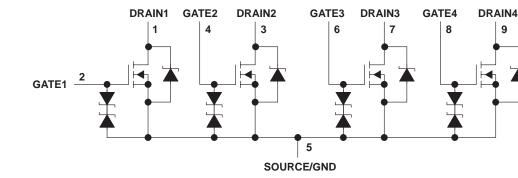
SLIS049 - NOVEMBER 1996

- Low r_{DS(on)} . . . 0.3 Ω Typ
- High Output Voltage . . . 60 V
- Pulsed Current . . . 6 A Per Channel
- Avalanche Energy Capability . . . 36 mJ
- Input Transient Protection ... 2000 V


description

schematic

The TPIC2401 is a monolithic power DMOS array that consists of four electrically isolated N-channel enhancement-mode DMOS transistors configured with a common source and open drains. Each transistor features integrated high-current zener diodes to prevent gate damage in the event that an overstress condition occurs. These zener diodes also provide up to 2000 V of ESD protection when tested using the human-body model.

The TPIC2401 is offered in a 9-pin PowerFLEXTM (KTA) package and is characterized for operation over the case temperature range of -40° C to 125°C.

KTA PACKAGE (TOP VIEW) q 🔟 DRAIN4 🔟 GATE4 8 7 GATE3 6 SOURCE/GND 5 □ GATE2 4 3 □ GATE1 2 1 □ DRAIN1

NOTE A: For correct operation, no output pin may be taken below GND.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerFLEX is a trademark of Texas Intruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

SLIS049 - NOVEMBER 1996

absolute maximum ratings over operating case temperature range (unless otherwise noted)[†]

Drain-to-source voltage, V _{DS}	
Continuous drain current, each output, all outputs on, T _C = 25°C	1.5 A
Pulsed drain current, each output, I_Omax , $T_C = 25^{\circ}C$ (see Note 1 and Figure 7)	6 A
Continuous gate-to-source zener diode current, T _C = 25°C	±25 mA
Pulsed gate-to-source zener diode current, $T_C = 25^{\circ}C$	±250 mA
Single-pulse avalanche energy, E_{AS} , $T_{C} = 25^{\circ}C$ (see Figures 4 and 6)	
Continuous total power dissipation at (or below) T _A = 25°C	1.7 W
Power dissipation at (or below) T _C = 75°C, all outputs on	
Operating virtual junction temperature range, T _J	–40°C to 150°C
Operating case temperature range, T _C	–40°C to 125°C
Storage temperature range, T _{stg}	–40°C to 125°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Pulse duration = 10 ms, duty cycle = 2%

electrical characteristics, $T_C = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V(BR)DSX	Drain-to-source breakdown voltage	I _D = 250 μA,	$V_{GS} = 0$	60			V
VGS(th)	Gate-to-source threshold voltage	I _D = 1 mA,	V _{DS} = V _{GS} ,	1.5	2.05	2.2	V
VGS(th)match	Gate-to-source threshold voltage matching	See Figure 5			5	40	V
V(BR)GS	Gate-to-source breakdown voltage	IGS = 250 μA		18			V
V(BR)SG	Source-to-gate breakdown voltage	I _{SG =} 250 μA		9			V
V _{DS(on)}	Drain-to-source on-state voltage	I _D = 1.5A, See Notes 2 and 3	V _{GS} = 10 V,		0.45	0.54	V
V _{F(SD)}	Forward on-state voltage, source-to-drain	$I_S = 1.5A$, $V_{GS} = 0 V$, See Notes 2 and 3 and Figure 12			0.85	1	V
		V _{DS} = 48 V,	$T_{C} = 25^{\circ}C$		0.05	1	μA
IDSS	Zero-gate-voltage drain current	$V_{GS} = 0$	$T_{C} = 125^{\circ}C$		0.5	10	
IGSSF	Forward gate current, drain short circuited to source	V _{GS} = 15 V,	$V_{DS} = 0$		20	200	nA
IGSSR	Reverse gate current, drain short circuited to source	$V_{SG} = 5 V,$	$V_{DS} = 0$		10	100	nA
•	Static duais to acurac an atota registerios	V _{GS} = 10 V, I _D =1.5 A,	$T_{C} = 25^{\circ}C$		0.3	0.36	0
^r DS(on)	Static drain-to-source on-state resistance	See Notes 2 and 3 and Figures 6 and 7 $T_{C} = 125^{\circ}C$		0.48	0.6	Ω	
9fs	Forward transconductance	V _{DS} = 15 V, See Notes 2 and 3 ar	I _D = 1 A, nd Figure 9	0.9	1.15		S
C _{iss}	Short-circuit input capacitance, common source				180	225	
C _{OSS}	Short-circuit output capacitance, common source	V _{DS} = 25 V, f = 1 MHz,	V _{GS} = 0, See Figure 11		100	138	pF
C _{rss}	Short-circuit reverse transfer capacitance, common source	, – , , , , , , , , , , , , , , , , , ,			75	100	

NOTES: 2. Technique should limit $T_J - T_C$ to 10°C maximum.

3. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

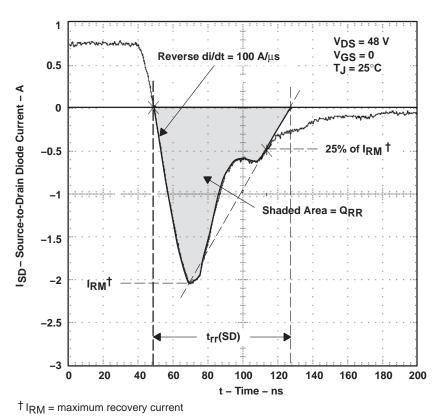
SLIS049 - NOVEMBER 1996

source-to-drain diode characteristics, T_C = 25°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{rr}	Reverse-recovery time	$I_{S} = 0.75 \text{ A}, V_{DS} = 48 \text{ V},$		80		ns
Q _{RR}	Total diode charge	V _{GS} = 0, di/dt = 100 A/μs, See Figures 1 and 14		180		nC

resistive-load switching characteristics, T_C = 25°C

	PARAMETER	Т	EST CONDITION	IS	MIN	TYP	MAX	UNIT	
^t d(on)	Delay time, V_{GS}^{\uparrow} to V_{DS}^{\downarrow} turn on					194			
^t d(off)	Delay time, $V_{GS}\downarrow$ to $V_{DS}\uparrow$ turn off	V _{DD} = 25 V,	/ _{DD} = 25 V, R _L = 25 Ω,	t _{en} = 10 ns,		430			
tr	Rise time, V _{DS}			See Figure 2	180		ns		
t _f	Fall time, V _{DS}					90			
Qg	Total gate charge					4	5		
Qgs(th)	Threshold gate-to-source charge	V _{DD} = 48 V, See Figure 3	I _D = 1 A,	I A, V _{GS} = 10 V,		0.45	0.56	nC	
Q _{gd}	Gate-to-drain charge					1.55	1.93		
LD	Internal drain inductance					5		الم	
LS	Internal source inductance					5		nH	
Rg	Internal gate resistance					500		Ω	


thermal resistance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	All outputs with equal power			72	
R _{θJC}	Junction-to-case thermal resistance	All outputs with equal power			5	°C/W
		One output dissipating power			8.5	

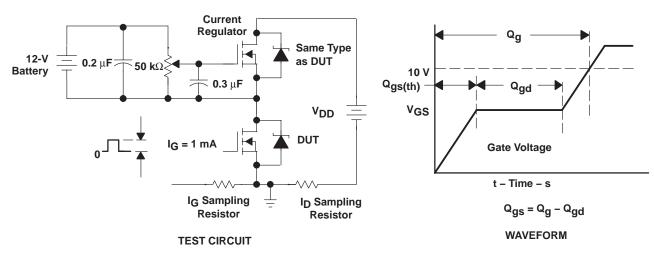
NOTES:



SLIS049 - NOVEMBER 1996

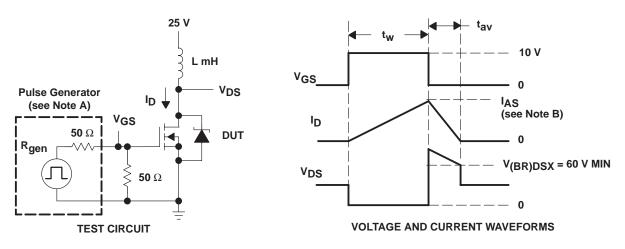
PARAMETER MEASUREMENT INFORMATION

Figure 1. Reverse-Recovery Current Waveform of Source-to-Drain Diode



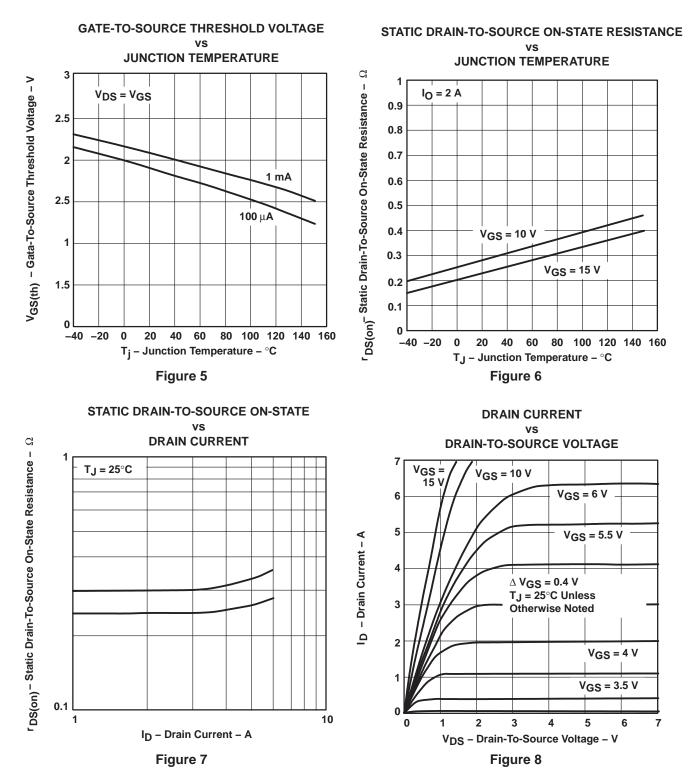
NOTE A: The pulse generator has the following characteristics: $t_{en} \le 10$ ns, $t_{dis} \le 10$ ns, $Z_O = 50 \Omega$.

Figure 2. Resistive Switching



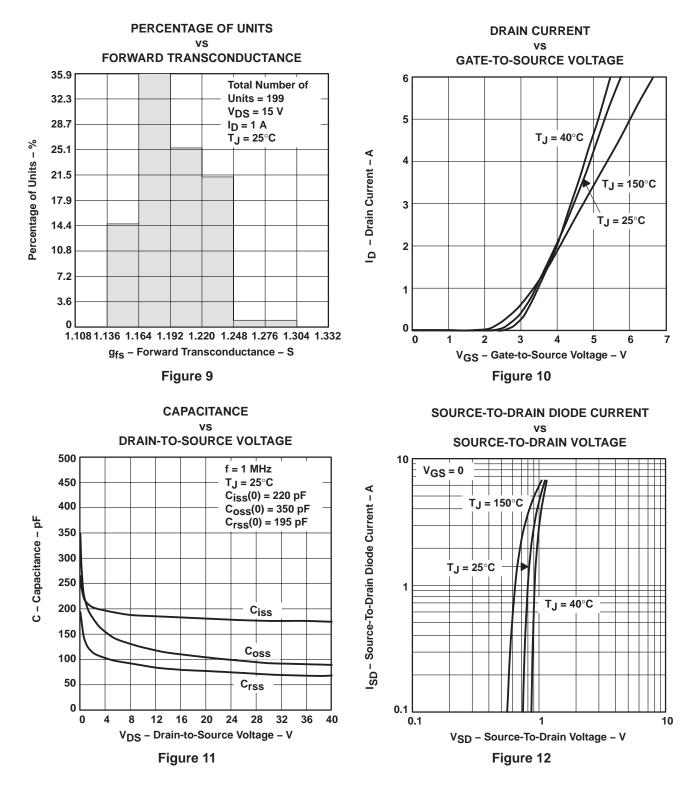
SLIS049 - NOVEMBER 1996

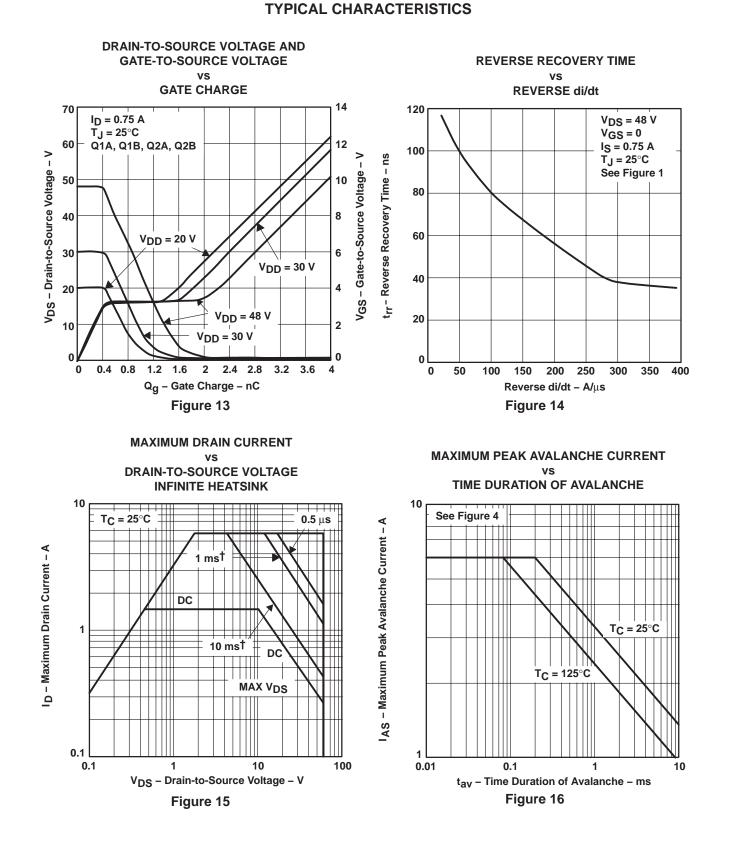
PARAMETER MEASUREMENT INFORMATION



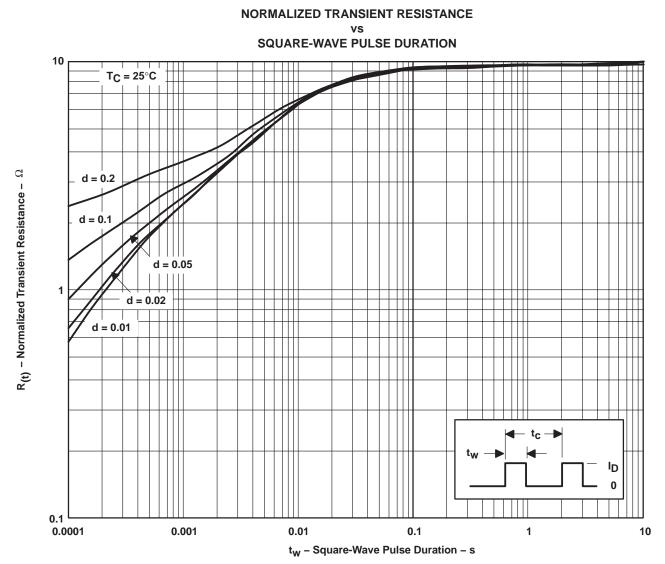
NOTES: A. The pulse generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $Z_O = 50 \Omega$. B. Input pulse duration (t_W) is increased until peak current I_{AS} = 1.5 A. Energy test level is defined as $E_{AS} = \frac{I_{AS} \times V_{(BR)DSX} \times t_{av}}{2} = 36 \text{ mJ}$ minimum where t_{av} = avalanche time.

Figure 4. Single-Pulse Avalanche-Energy Test Circuit and Waveforms


SLIS049 - NOVEMBER 1996


SLIS049 - NOVEMBER 1996

TYPICAL CHARACTERISTICS


SLIS049 - NOVEMBER 1996

SLIS049 - NOVEMBER 1996

THERMAL INFORMATION

[†] Package mounted in intimate contact with infinite heat sink.

NOTE A: $Z_{\Theta JC}(t) = r(t) R_{\Theta JC}$ $t_W = pulse duration$ $t_C = cycle time$ $d = duty cycle = t_W/t_C$

Figure 17

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated