TOSHIBA Photo-IC Silicon Epitaxial Planar

# TPS855(F)

Lead(Pb)-Free

Luminosity Adjustment for TV Screens, CRT Monitors and Liquid-crystal Display Monitors Other Equipment Requiring Luminosity Adjustment

The TPS855(F) is a linear-output photo-IC which incorporates a photodiode and a current amp circuit in a single chip. This photo-IC is current output type, so can set up output voltage freely by arbitrary load resistance.

• High sensitivity  $I_L = 280 \mu A (typ.)$ 

@Ev = 100 lx Using the fluorescent light

- Little fluctuation in light current
  - $\therefore$  1.67 times width (±25% typ.)
- Excellent illumination output linearity
- Open-emitter output
- Side-view package
- Environmentally friendly silicon used as chip material instead of CdS Suitable as a substitute for CdS-based products

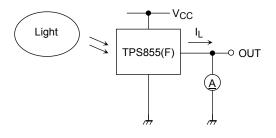
# Absolute Maximum Ratings (Ta = 25°C)

| Characteristics                                | Symbol           | Rating        | Unit |
|------------------------------------------------|------------------|---------------|------|
| Supply voltage                                 | V <sub>CC</sub>  | –0.5 to 7     | V    |
| Output voltage                                 | V <sub>OUT</sub> | $\leq V_{CC}$ | V    |
| Light current                                  | ١L               | 10            | mA   |
| Permissible power dissipation                  | Р                | 150           | mW   |
| Operating temperature range                    | T <sub>opr</sub> | –25 to 85     | °C   |
| Storage temperature range                      | T <sub>stg</sub> | -40 to 100    | °C   |
| Soldering temperature range (5s)<br>( Note 1 ) | T <sub>sol</sub> | 260           | °C   |

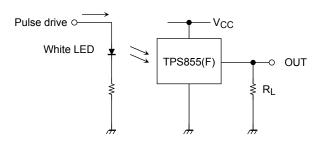
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

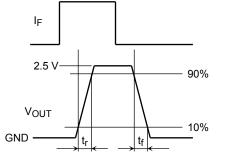
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Solder under the lead stopper.


# **Electrical and Optical Characteristics (Ta = 25°C)**

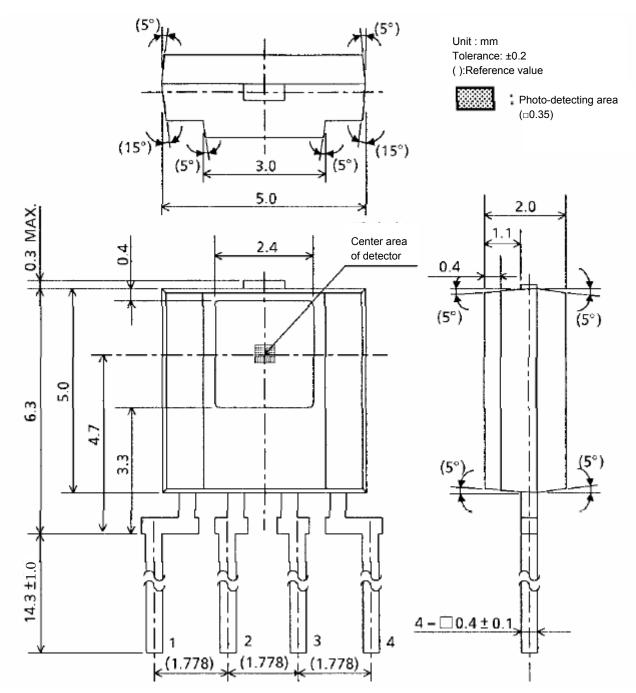
| Characteristics             |           | Symbol                  | Test Condition                                                                                                                    | Min | Тур. | Max | Unit |
|-----------------------------|-----------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| Supply voltage              |           | V <sub>CC</sub>         | —                                                                                                                                 | 2.7 |      | 5.5 | V    |
| Supply current              |           | ICC                     | $\label{eq:VCC} \begin{array}{l} V_{CC} = 5 \; V, \; E_{V} = 1000 \; \text{Ix} \\ R_{L} = 250 \; \Omega \end{array} \tag{Note 2}$ | _   | 4.5  | _   | mA   |
| Light current (1)           |           | I <sub>L</sub> (1)      | $V_{CC}$ = 5 V, $E_V$ = 100 lx (Note 2), (Note 4)                                                                                 |     | 365  | _   | μΑ   |
| Light current (2)           |           | I <sub>L</sub> (2)      | $V_{CC}$ = 5 V, $E_V$ = 10 lx $(Note \; 3), \; (Note \; 4) \label{eq:VCC}$                                                        | 21  | 28   | 35  | μΑ   |
| Light current (3)           |           | I <sub>L</sub> (3)      | $\label{eq:VCC} \begin{array}{l} V_{CC}=5 \; V, \; E_V=100 \; \text{lx} \\ (\text{Note 3}), \; (\text{Note 4}) \end{array}$       | 210 | 280  | 350 | μΑ   |
| Light current ratio         |           | <u>l_ (1)</u><br>l_ (3) | —                                                                                                                                 |     | 1.3  | 1.7 |      |
| Dark current                |           | I <sub>LEAK</sub>       | $V_{CC} = 5.5 \text{ V}, \text{ E}_{V} = 0$                                                                                       | _   |      | 0.5 | μA   |
| Saturation output voltage   |           | Vo                      | $V_{CC}=5~V,~R_L=75~k\Omega,~E_V=100~\text{lx} \label{eq:VCC} $ (Note 3)                                                          | 4.2 | 4.35 |     | V    |
| Peak sensitivity wavelength |           | λр                      | —                                                                                                                                 |     | 640  |     | nm   |
| Switching time              | Rise time | tr                      | $V_{CC} = 5 \text{ V}, \text{ R}_{L} = 5 \text{ k}\Omega$                                                                         |     | 0.2  | —   | ms   |
|                             | Fall time | t <sub>f</sub>          | (Note 5)                                                                                                                          |     | 0.6  | _   |      |


Note 2: CIE standard A light source is used (color temperature = 2856K, approximaterd incandescence light)


Note 3: Fluorescence light is used as light source. However, white LED is substituted in a mass-production process.

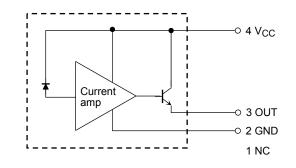
Note 4: Light current measuremen circuit




Note 5: Rise time/fall time measurement method






2007-10-01

### Package Dimensions: TOSHIBA 0-5K1

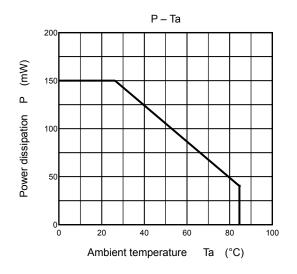


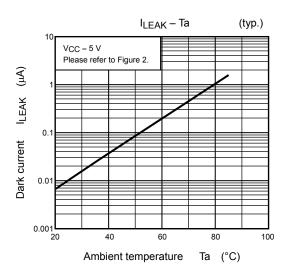
Weight: 0.20 g (typ.)

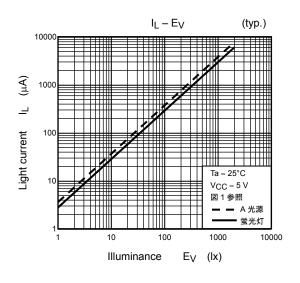
# **Block Diagram**

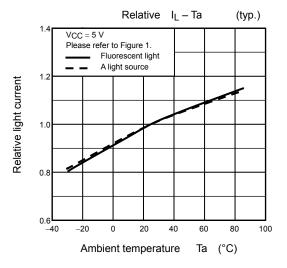


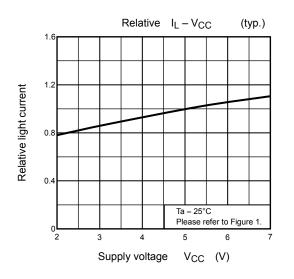
2007-10-01

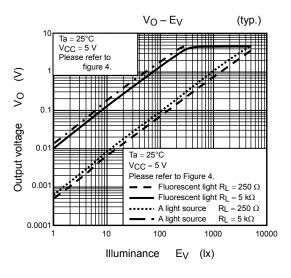

# **Handling Precautions**


At power-on in darkness, the internal circuit takes about 50 ms to stabilize. During this period the output signal is unstable and may change. Please take this into account.

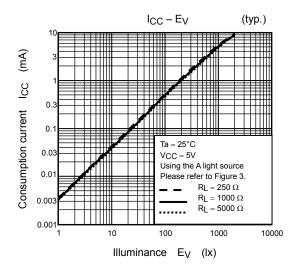

#### **Mounting Precautions**

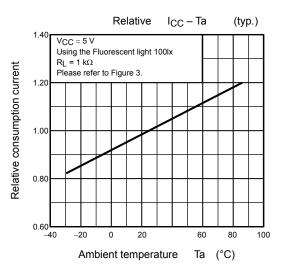

- (1) When forming the leads, bend each lead under the lead stopper. Soldering must be performed after the leads have been formed.
- (2) Soldering must be performed under the stopper.
- (3) To stabileze the power line, insert a bypass capacitor of up to  $0.01 \,\mu$  F between V<sub>CC</sub> and GND, close to the device.

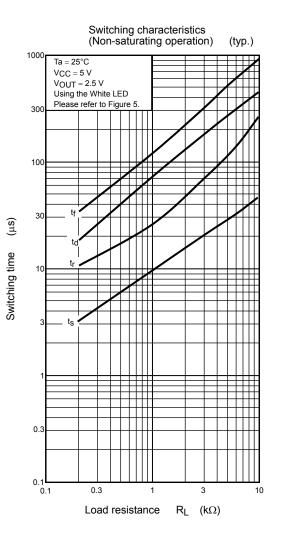

# **TOSHIBA**

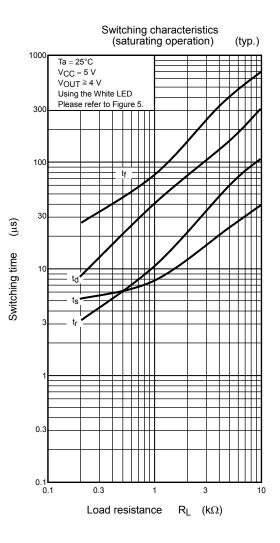




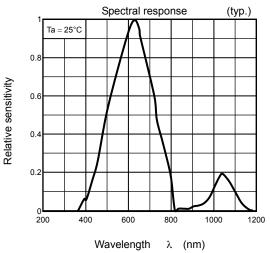



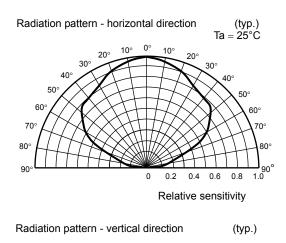



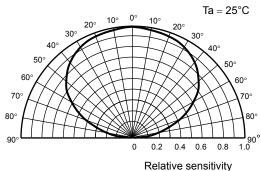



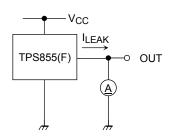




# **TOSHIBA**

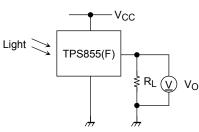



# TOSHIBA





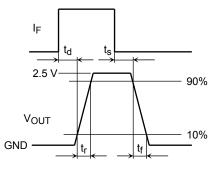
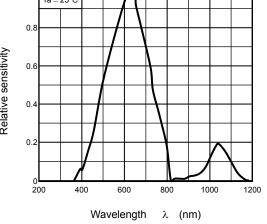
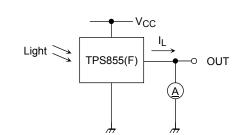
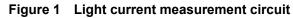


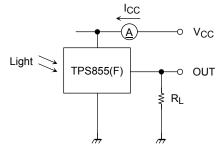




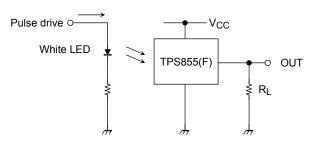



#### Figure 3 Output voltage measurement circuit



Figure 5 Switching measurement circuit and waveform






**Measurement Circuits** 









### **RESTRICTIONS ON PRODUCT USE**

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
   In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
  responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
  may result from its use. No license is granted by implication or otherwise under any patents or other rights of
  TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.