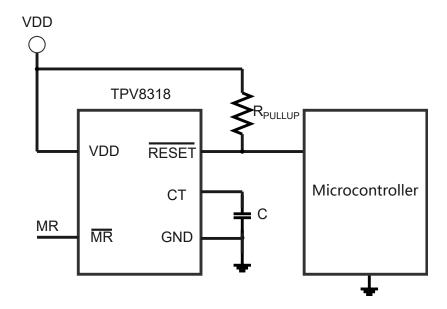


Features

- Wide Supply Voltage Range: 1.6 V to 6 V
- Very Low Quiescent Current: 2 μA
- Reset Threshold Voltage from 1.6 V to 4.2 V
- Power-On Reset Generator with Adjustable Delay Time 430 µs to 150 ms
- High Threshold Accuracy 1.5% Typ.
- Manual Reset (MR) Input
- Open-Drain RESET Output
- Active Low RESET
- Temperature Range: −40°C to 125°C
- Green Product, SOT23-5 Package

Applications

- Server and Datacenter
- Surveillance and IP Camera
- · Network Switches and Routers
- Solid State Drive
- Optical Communication Module


Description

The TPV8318 is a family of supervisory circuits to monitor a voltage rail from 1.6 V to 6 V, asserting an active low open drain $\overline{\text{RESET}}$ output when the VDD voltage drops below the reset threshold or when manual reset pin $\overline{\text{MR}}$ is logic low. The $\overline{\text{RESET}}$ output remains low for the user-adjusted delay time by an external capacitor after the VDD voltage returns above the fixed threshold with a 150-mV hysteresis or manual reset $\overline{\text{MR}}$ returns to logic high.

The threshold voltage of the TPV8318 device can achieve 1.5% accuracy. The delay time can be set to 430 μ s to 150 ms by connecting the external capacitor to the CT pin. The TPV8318 has a very low typical guiescent current of 2 μ A.

The TPV8318 is available in the SOT23 package, and its operating temperature range is from −40°C to +125°C.

Typical Application Circuit

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Product Family Table	3
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings	5
ESD, Electrostatic Discharge Protection	5
Thermal Information	5
Electrical Characteristics	6
Typical Performance Characteristics	7
Detailed Description	8
Overview	8
Functional Block Diagram	8
Feature Description	8
Application and Implementation	10
Application Information	10
Typical Application	10
Tape and Reel Information	11
Package Outline Dimensions	12
SOT23-5	12
Order Information	13
IMPORTANT NOTICE AND DISCLAIMER	14

Product Family Table

Order Number	Threshold Voltage (V)	Nominal Monitored Voltage (V)	Marking	Package
TPV8318LD160-S5TR-S (1)	1.6	1.8	L16	SOT23-5
TPV8318LD170-S5TR-S (1)	1.7	1.9	L17	SOT23-5
TPV8318LD220-S5TR-S (1)	2.2	2.5	L22	SOT23-5
TPV8318LD270-S5TR-S (1)	2.7	3.0	L27	SOT23-5
TPV8318LD300-S5TR-S	3.0	3.3	L30	SOT23-5
TPV8318LD400-S5TR-S (1)	4.0	5.0	L40	SOT23-5
TPV8318LD420-S5TR-S (1)	4.2	5	L42	SOT23-5

⁽¹⁾ For future products, contact the 3PEAK factory for more information and samples.

Revision History

Date	Revision	Notes
2023-04-13	Rev.A.0	Initial release.
2024-02-5	Rev.A.1	Corrected the temperature range to 125°C in order information.
2024-06-05	Rev.A.2	Corrected typo.

www.3peak.com 3 / 14 GA20230502A2

Pin Configuration and Functions

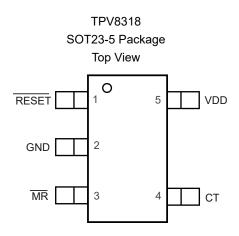


Table 1. Pin Functions: TPV8318

Pin No.	Name	I/O	Description
1	RESET	0	RESET Output. This pin is active low open drain output. It is driven to a low impedance state when RESET is asserted by the VDD voltage lower than the threshold V _{IT} , or the $\overline{\text{MR}}$ pin is low. RESET will keep low for the reset delay time programmed by the CT pin after VDD is above V _{IT} , or $\overline{\text{MR}}$ pin is high. A pulled-up resistor from 10 kΩ to 1 MΩ should be connected to VDD.
2	GND	-	Ground.
3	MR	I	Manual Reset Input $\overline{\text{MR}}$ low asserts the $\overline{\text{RESET}}$ pin. $\overline{\text{MR}}$ is internally tied to VDD by a 90-k Ω pull-up resistor.
4	СТ	0	Reset Delay Time Programming Pin. Connecting this pin to ground referenced capacitor gives a user-programmable reset delay time.
5	VDD	I	Supply Voltage. A 0.1-µF ceramic capacitor placed as close as to the VDD pin.

www.3peak.com 4 / 14 GA20230502A2

Specifications

Absolute Maximum Ratings

	Parameter	Min	Max	Unit
Power Supply	VDD	-0.3	6.5	V
V _{CT} , V _{RESET} , V _{MR}	Input Voltage for CT, MR, RESET pin	-0.3	6	V
I _{CT}	Current of CT pin		10	mA
I _{RESET}	Current of RESET pin		5	mA
TJ	Maximum Junction Temperature		150	°C
T _A	Operating Temperature Range	-45	125	°C
T _{STG}	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering 10 sec)		300	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Parameter		Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	±2000	V
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	θ _{JA}	Ө JС	Unit
SOT23-5	118	52	°C/W

www.3peak.com 5 / 14 GA20230502A2

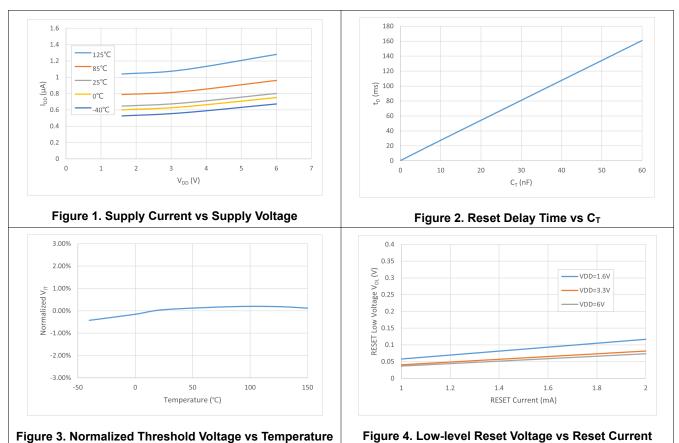
⁽²⁾ This data was taken with the JEDEC low effective thermal conductivity test board.

⁽³⁾ This data was taken with the JEDEC standard multilayer test boards.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Electrical Characteristics

All test conditions: $V_{DD} = 5 \text{ V}$, $T_A = -40^{\circ}\text{C}$ to 125°C , unless otherwise noted.


	Parameter		Conditions	Min	Тур	Max	Unit
Supply \	Voltage and Current						
V_{DD}	Supply Voltage Range		-40°C < T _A < 125°C	1.6		6.0	V
V _{POR}	Power-up Reset Voltage				0.5	0.8	V
	Quiescent Current (IQ)		V _{DD} = 3.3 V, RESET not asserted, MR, RESET, CT pin open		0.7	1.55	μΑ
I _{DD}			V _{DD} = 6 V, RESET not asserted, MR, RESET, CT pin open		0.8	1.65	μΑ
VoL	Output Low Voltage of RESET	Din	1.3 V ≤ V _{DD} < 1.6 V, I _{OL} = 0.4 mA			0.3	V
VOL	Output Low Voltage of RESET Fill		$1.6 \text{ V} \le \text{V}_{DD} < 6.0 \text{ V},$ $I_{OL} = 1.0 \text{ mA}$			0.4	V
V _{IT. ERR}	Negative-going Input Threshold Accuracy		T _A = 25°C	-1.5		1.5	%
VII, ERR			-40°C < T _A < 125°C	-2.5		2.5	%
V_{HYS}	Hysteresis on V _{IT}	Hysteresis on V _{IT}			150		mV
R_MR	MR Internal Pull-up Resistanc	MR Internal Pull-up Resistance			90		kΩ
Іон	RESET Leakage Current		V _{RESET} = 5.5 V			300	nA
C	Input Capacitance, any pin	CT pin	$V_{IN} = 0 V to V_{DD}$		5		pF
C _{IN}	input Capacitance, any pin	Other pins	V _{IN} = 0 V to 6.0 V		5		pF
VIL	MR Logic Low Input			0		0.3V _{DD}	
V_{IH}	MR Logic High Input			0.7V _{DD}		V_{DD}	
Switchir	ng Electrical Specification						
	Input Pulse Width to Assert	VDD	V _{IH} = 3.15 V, V _{IL} = 2.85 V		80		μs
t _w	RESET Pin	MR	$V_{IH} = 0.7 \ V_{DD}, \ V_{IL} = 0.3 \ V_{DD}$		340		ns
		C _T = Open			0.4		ms
t _D Rese	Reset Delay Time	C _T = 100 pF			0.67		ms
		C _T = 1000 pF			2.9		ms
t _{MR}	Propagation Delay from MR to	Reset	$V_{IH} = 0.7 \ V_{DD}, \ V_{IL} = 0.3 \ V_{DD}$		350		ns
t _{RP}	Propagation Delay from VDD	Drop to Reset			100		μs

www.3peak.com 6 / 14 GA20230502A2

Typical Performance Characteristics

All test conditions: V_{DD} = 5 V, T_A = +25°C, unless otherwise noted.

www.3peak.com 7 / 14 GA20230502A2

Detailed Description

Overview

The TPV8318 is a family of supervisory circuits to monitor a voltage rail from 1.6 V to 6 V, asserting an active low open drain $\overline{\text{RESET}}$ output when the VDD voltage drops below the reset threshold, or when manual reset pin $\overline{\text{MR}}$ is logic low. The $\overline{\text{RESET}}$ output remains low for the user adjusted delay time by an external capacitor after the VDD voltage returns above the fixed threshold with a hysteresis, or manual reset $\overline{\text{MR}}$ returns to logic high.

Functional Block Diagram

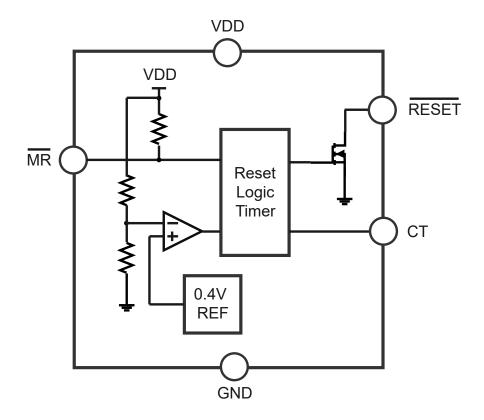


Figure 5. Functional Block Diagram

Feature Description

RESET Output

The reset threshold voltage can be set by the factory from 1.6 V to 4.2 V. The VDD pin monitors the system voltage. If the voltage on this pin drops below V_{IT} , the \overline{RESET} is asserted.

The TPV8318 features an active-low output. For active-low output, the reset signal is guaranteed to be logic low for VDD down to V_{IT} . Reset remains asserted for the duration of the reset delay time (t_D) after VDD rises above the reset threshold. Figure 6 shows the reset outputs.

www.3peak.com 8 / 14 GA20230502A2

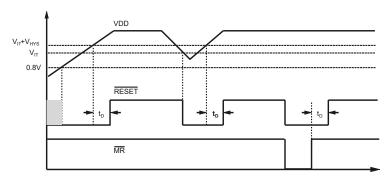


Figure 6. Reset and MR Reset Timing

RESET Delay Time

The TPV8318 provides programmable reset delay time (t_D), which is realized by selecting a capacitor between CT and GND to allow the designer to set any reset delay time from 43 μs to 150 ms. The reset delay time (t_D) under a given capacitor value is calculated using Equation 1.

$$t_D(\mu s) = 2.7 \times 10^6 \times C_{CT}(\mu F) + 430 \ (\mu s)$$
 (1)

Manual RESET (MR) Input

The manual reset (\overline{MR}) input allows a microcontroller to initiate a reset. A logic low on \overline{MR} causes \overline{RESET} to assert. After \overline{MR} returns to logic high, \overline{RESET} is de-asserted after the reset delay time. \overline{MR} can be left unconnected if not used.

www.3peak.com 9 / 14 GA20230502A2

Application and Implementation

Note

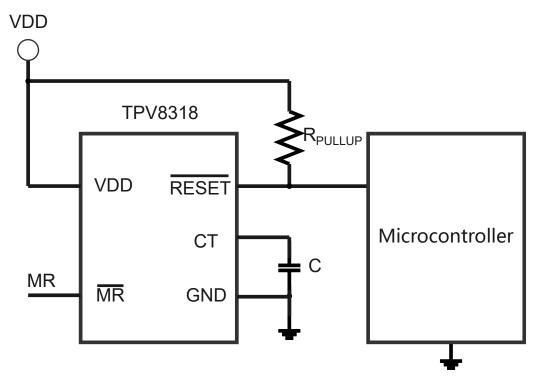
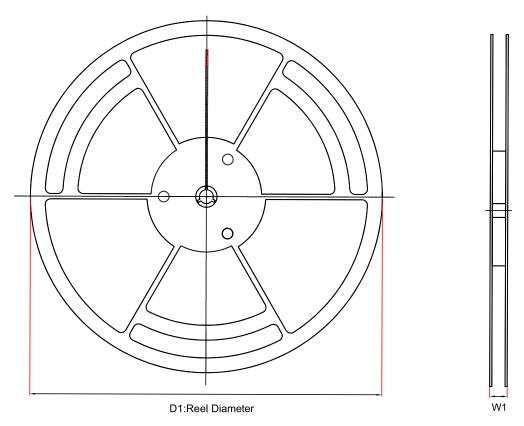
Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

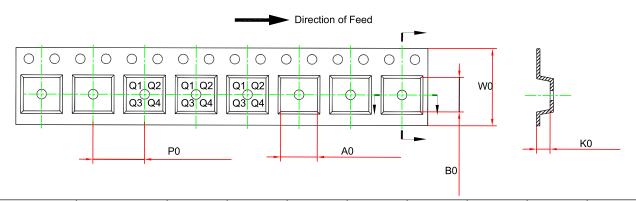
Application Information

The TPV8318 is a family of supervisory circuits to monitor a voltage rail from 1.6 V to 6 V, asserting an active low open drain $\overline{\text{RESET}}$ output when VDD voltage drops below the reset threshold or when manual reset pin $\overline{\text{MR}}$ is logic low. The $\overline{\text{RESET}}$ output remains low for the user-adjusted delay time by an external capacitor after the VDD voltage returns above the fixed threshold with a 150-mV hysteresis or manual reset $\overline{\text{MR}}$ returns to logic high.

Typical Application

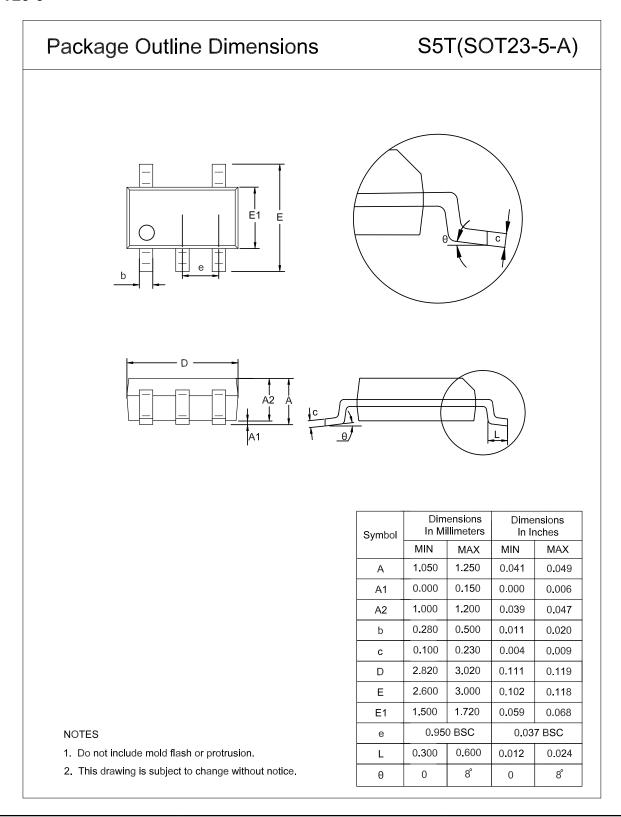
Figure 7 shows the typical application schematic.


Figure 7. Typical Application Circuit

www.3peak.com 10 / 14 GA20230502A2

Tape and Reel Information


Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPV8318LDxx x-S5TR-S	SOT23-5	180.0	13.1	3.2	3.2	1.4	4	8	Q3

www.3peak.com 11 / 14 GA20230502A2

Package Outline Dimensions

SOT23-5

www.3peak.com 12 / 14 GA20230502A2

Order Information

Order Number	Operating Temperature Range	Package	Package Marking Information MSL		Transport Media, Quantity	Eco Plan
TPV8318LD300-S5TR-S	−40 to 125°C	SOT23-5	L30	3	Tape and Reel, 3000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

www.3peak.com 13 / 14 GA20230502A2

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 14 / 14 GA20230502A2