

Functional Block Diagram

Product Description

TriQuint's TQP4M30007 is a high power antenna switch in a single pole three throw (SP3T) configuration. The die utilizes TriQuint's PHEMT MMIC switch process to provide optimized cross-modulation performance for use in CDMA applications. PHEMT Switches are a very low DC current replacement for classic PIN diode based switches. This product is ideally suited to applications where the antenna of a CDMA handset is to be routed to the Cellular duplexer, the PCS duplexer and the GPS receiver input. The design is symmetric and broadband allowing the user to assign cellular, PCS and GPS to ports RF1, RF2 or RF3 as desired.

Electrical Specifications^{1, 2}

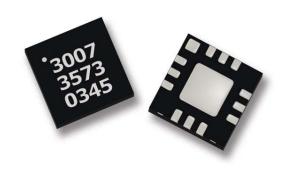
Parameter	Min	Тур	Max	Units
Cellular Insertion Loss		0.45	0.70	dB
GPS Insertion Loss		0.52	0.77	dB
PCS Insertion Loss		0.55	0.80	dB
Cellular Isolation	25	28		dB
GPS Isolation	20	23		dB
PCS Isolation	20	22		dB
Cellular Cross-Modulation ²	•	-108	-100	dBm
PCS Cross-Modulation ²		-106	-100	dBm

Note 1: Test Conditions Zo = 50 ohms: Vcontrol =0V/2.6V, Tc=25°C.

Note 2: Cross-Modulation Test Conditions:

Cellular: PTx1 = 23 dBm @ 836 MHz, PTx2 = 23 dBm @ 837 MHz, P_{int} = -23 dBm @ 881.5 MHz PCS: PTx1 = 23 dBm @ 1879.5 MHz, PTx2 = 23 dBm @ 1880.5 MHz, P_{int} = -23 dBm @ 1960 MHz

Features


- pHEMT GaAs MMIC Die
- Excellent Cross-Modulation Performance
 - -108 dBm Typ @ Cellular
 - -106 dBm @ PCS
- Excellent ESD Rating: 300V HBM, 2000V CDM
- Low Control Voltage Operation to +2.4V
- High Isolation: 22dB typ at PCS Band
- Low Insertion Loss: 0.55 dB typ at PCS Band
- Very Low Control Current: 18 μA typ
- MLP-12 Package
- Small Footprint 3.0 x 3.0 mm

Applications

 CDMA Handset Antenna Switch for Cellular, PCS and GPS operation.

Package Style

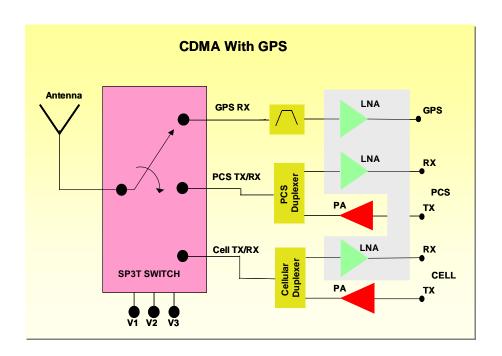
MLP-12 lead 3 x 3 mm Package:

Absolute Maximum Ratings

Symbol	Parameter	Absolute Maximum Value	Units
P _{IN Max}	Maximum Input Power	+38	dBm
Vctrl	Control Voltage	+/- 6	VDC
Tc	Case Temperature, Survival	-40 to +85	°C
T _{STG}	Storage Temperature	-40 to +150	°C

Note: The part may not survive all maximums applied simultaneously.

Electrical Characteristics^{1,2}


Parameter (all paths)	Test Conditions	Units	Min	Тур	Max
Cellular Insertion Loss	Antenna to Selected Port (824 – 894 MHz)	dB		0.45	0.7
GPS Insertion Loss	Antenna to Selected RF Port (1574 – 1577 MHz)	dB		0.52	0.77
PCS Insertion Loss	Antenna to Selected RF Port (1850 – 1990 MHz)	dB		0.55	8.0
Cellular Isolation	RF Off Port to Selected RF On Port (824 – 894 MHz)	dB	25	28	
GPS Isolation	RF Off Port to Selected RF On Port (1574 – 1577 MHz)	dB	20	23	
PCS Isolation	RF Off Port to Selected RF On Port (1850 – 1990 MHz)	dB	20	22	
Cellular Cross-Modulation	PTx1 = 23 dBm @ 836 MHz, PTx2 = 23 dBm @ 837 MHz, P _{int} = -23 dBm @ 881.5 MHz	dBm		-108	-100
PCS Cross-Modulation	PTx1 = 23 dBm @ 1879.5 MHz, PTx2 = 23 dBm @ 1880.5 MHz, P _{int} = -23 dBm @ 1960 MHz	dBm		-106	-100
Cellular IIP3	Two tones; +23 dBm each; 837 MHz and 838 MHz	dBm		+70	
PCS IIP3	Two tones; +23 dBm each; 1880 MHz and 1881 MHz	dBm		+67	
2 nd Harmonic	Cellular; @ +25.5 dBm input	dBc		-88	
2 nd Harmonic	PCS; @ +24 dBm input	dBc		-85	
3 rd Harmonic	Cellular; @ +25.5 dBm input	dBc		-87	
3 rd Harmonic	PCS; @ +24 dBm input	dBc		-92	
P-0.1 dB	Cellular	dBm		+36.5	
P-0.1 dB	PCS	dBm		+36.3	
Return Loss	0.5 to 2.0GHz	dB		-25	-20
Leakage Current	-	μА		18	40
Trise, Tfall	10% to 90% RF , 90% to 10% RF	μS			1
Ton , Toff	50% control to 90% RF, and 50% control to 10% RF	μS			1

Note 1: External DC Blocking capacitors are required at all RF ports.

Note 2: Test Conditions Zo = 50 ohms: Vcontrol =0V/2.6V, Tc=25°C.

Application Example

Truth Table 1,2

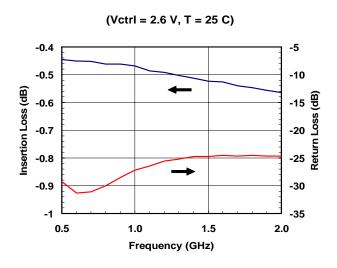
V1	V2	V3	ANT- RF1	ANT- RF2	ANT- RF3
1	0	0	On	Off	Off
0	1	0	Off	On	Off
0	0	1	Off	Off	On

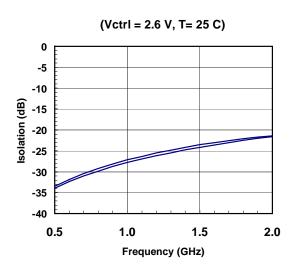
Note 1: State 1 = +2.4V to +5.0V; State 0 = 0V to +0.2V

Note 2: Differential voltage from State 1 to State 0 must be a minimum of 2.4V Note 3: DC grounding is not required. Control voltages applied to pins 1, 6 and 9 are differential, being 0v and 2.6V nominally.

Note 4: All pins including the package center paddle are n/c = no connection and not grounded as the preferred user configuration. RF performance figures are quoted with n/c. Grounding an n/c will not prevent the switch operation but may give a small degradation in RF performance.

Pin Descriptions:

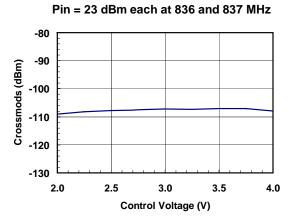

Pad Number	Pad Name	Description	
1	V3	Control RF Port 3	
2	RF3	RF Port 3	
3	N/C	No Connection	
4	N/C	No Connection	
5	RF2	RF Port 2	
6	V2	Control RF Port 2	
7	N/C	No Connection	
8	RF1	RF Port 1 Port	
9	V1	Control RF Port 1	
10	N/C	No Connection	
11	ANT	ANTENNA	
12	N/C	No Connection	


Typical Performance

Test Conditions (Unless Otherwise Specified): Zo = 50 ohms: Vcontrol = 0V/2.6V, Tc=25°C.

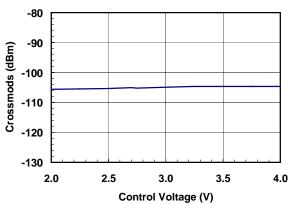
Insertion Loss and Match

Isolation



Low Band Cross Modulation

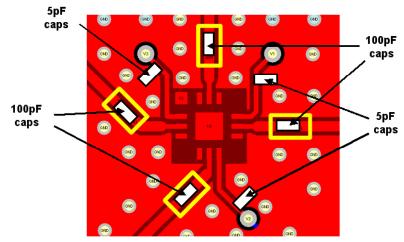
TQP4M3007 at Vcontrol = 2.6V


RF to Antenna Cell Band (T= 25 C)

CW interferer = -23 dBm at 881.5 MHz

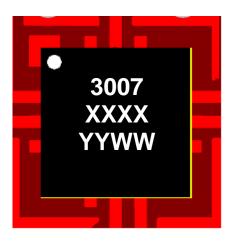
High Band Cross Modulation

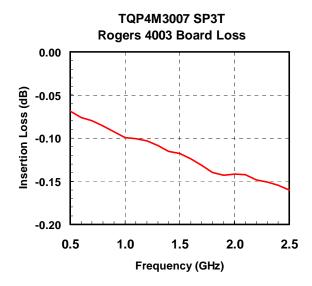
TQP4M3007 at Vcontrol = 2.6V RF to Antenna PCS Band (T= 25 C) CW interferer = -23 dBm at 1960 MHz Pin = 23 dBm each at 1879.5 and 1880.5 MHz



Typical Test Circuit

ANTENNA RF connector DC connector DC connector SPAIR 33.0


Application Board Capacitors and Locations:



Applications information; tuning procedures; board layout precautions

Package Configuration on Board:

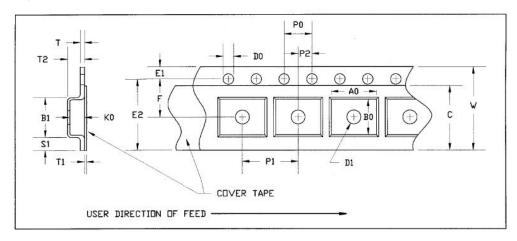
Application Board Loss De-Embedding Curve:

Part Marking Information:

TOP MARK

PIN 1

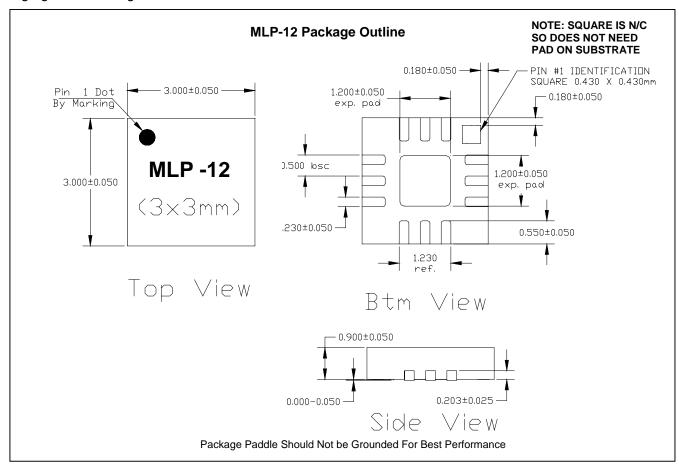
WHITE INK OR LASER MARK.


Line 1: 3007

Line 2: XXXX-TriQuint assembly lot number

Line 3: YYWW = Year and Work Week

Tape and Reel Information:


FIXED CARRIER AND COVER TAPE DIMENSIONS

PART	FEATURE	SYMBOL	SIZE (in)	SIZE (mm)
CAVITY	BOTTOM HOLE DIAMETER	D1	0.059	1.50
PERFORATION	DIAMETER	D0	0.059	1.50
	PITCH	P0	0.157	1007-179
	POSITION	E1	0.069	1.75
CARRIER TAPE	THICKNESS	T	0.012	
COVER TAPE	THICKNESS	T1	0.002	0.056

PART	FEATURE	SYMBOL	SIZE (in)	SIZE (mm)
CAVITY	LENGTH	A0	0.134	3.40
	WIDTH	B0	0.126	3.20
	DEPTH	K0	0.055	1.40
	PITCH	P1	0.157	4.00
DISTANCE	CAVITY TO PERFORATION	P2	0.079	2.00
BETWEEN	LENGTH DIRECTION			
CENTERLINE	CAVITY TO PERFORATION	F	0.138	3.50
	WIDTH DIRECTION			
COVER TAPE	WIDTH	С	0.213	5.40
CARRIER TAPE	WIDTH	W	0.315	8.00

Packaging and Ordering Information

Additional Information ¹T

1 For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: Hwww.triquint.comH Tel: (503) 615-9000
Email: info_wireless@tqs.com Fax: (503) 615-8902

For technical questions and additional information on specific applications:

Email: info_wireless@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party.

TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.

Copyright $^{\scriptsize @}$ 2005 TriQuint Semiconductor, Inc. All rights reserved.